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Background: Deep learning techniques and tools have experienced enormous
growth and widespread diffusion in recent years. Among the areas where deep
learning has become more widespread there are computational biology and
cognitive neuroscience. At the same time, the need for tools able to explore,
understand, and possibly manipulate, a deep learning model has strongly
emerged.

Methods: We propose an approach to map a deep learning model into a
multilayer network. Our approach is tailored to Convolutional Neural Networks
(CNN), but can be easily extended to other architectures. In order to show
how our mapping approach enables the exploration and management of deep
learning networks, we illustrate a technique for compressing a CNN. It detects
whether there are convolutional layers that can be pruned without losing too
much information and, in the affirmative case, returns a new CNN obtained
from the original one by pruning such layers.

Results: We prove the effectiveness of the multilayer mapping approach
and the corresponding compression algorithm on the VGG16 network and two
benchmark datasets, namely MNIST, and CALTECH-101. In the former case,
we obtain a 0.56% increase in accuracy, precision, and recall, and a 21.43%
decrease in mean epoch time. In the latter case, we obtain an 11.09% increase
in accuracy, 22.27% increase in precision, 38.66% increase in recall, and 47.22%
decrease in mean epoch time. Finally, we compare our multilayer mapping
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approach with a similar one based on single layers and show the effectiveness
of the former.

Conclusions: We show that a multilayer network-based approach is able
to capture and represent the complexity of a CNN. Furthermore, it allows
several manipulations on it. An extensive experimental analysis described in
the paper demonstrates the suitability of our approach and the goodness of its
performance.

Keywords: Deep Learning; Convolutional Neural Networks; Multilayer
Networks; Mapping CNNs into Multilayer Networks; Convolutional Layer
Pruning

1 Introduction

In recent years, deep learning models have been introduced in different appli-
cation areas for their ability to solve different kinds of optimization problem,
such as document and text processing, object recognition in images and videos,
image generation, speech and language recognition, and translation [1]. Due
to the increasing complexity of these tasks, more demanding models have
been required to achieve the best performances. Think, for instance, of resid-
ual networks, inception networks, and dense networks. These models require
a lot of computational power with Graphical Processing Units for speeding
up the time-consuming training process. In real-time decision making, a deep
model with many parameters requires more time and resources to process its
input, with further requirements in terms of energy and space. In mobile and
edge devices, deep learning is a big opportunity but, at the same time, a big
issue because, in this scenario, the computational power, storage capacity, and
energy are limited [2, 3].

One of the most important features of deep learning systems is their ability
to solve complex pattern recognition problems. Such patterns may involve
images, signals, and sequences. These types of data are very common in many
fields, such as biology and medicine. As a result, deep learning systems are
having enormous popularity and success in contexts like computational biology
and cognitive neuroscience [4, 5].

Several authors have begun to highlight the importance of reducing the size
of deep networks and accelerating the models in terms of network structure
and knowledge [6, 7]. Accordingly, most effort has been performed to introduce
efficient and reduced-in-size ad-hoc deep network architectures, such as Mobile
networks [8], SqueezeNet [9], ShuffleNet [10] and ESPNet [11]. Furthermore,
different methods for reducing the model size whilst preserving the loss of
performance have been proposed. The latter refers to four main categories of
methods, i.e., (i) pruning, (i) quantization, (iii) low-rank factorization, and
(iv) knowledge distillation [3].

To maximize the effectiveness of these methods, it is extremely important
to be able to explore the various layers and components of a deep learn-
ing architecture. Such exploration should allow the identification of the most
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important components, the detection of interesting patterns and features, the
tracking of information flow, the understanding of which parts of the network
can be preserved, which can be replaced or removed, and so forth.

In this paper, we want to provide a contribution to this setting. We argue
that complex networks, and specifically multilayer networks, can be a very
useful tool to represent, analyze, explore and manipulate deep learning mod-
els. Based on this intuition, we first propose an approach to map deep learning
networks into multilayer networks and then we use the latter to explore and
handle the former. More specifically, we focus on one family of deep learn-
ing networks, namely Convolutional Neural Networks (hereafter, CNNs) [12],
although the proposed approach could be extended to other ones. Multilayer
networks [13] are sufficiently articulated to capture all aspects characterizing
CNNs. Our mapping approach, which is the first main contribution of this
paper, aims to map every aspect of a CNN (i.e., nodes, layers, filters, weights,
etc.) in the four main components of a multilayer network, namely nodes, arcs,
arc weights, and layers.

Once we have applied our mapping approach and obtained a multilayer net-
work, representing a CNN, the latter can be used for several, both exploratory
and manipulative, purposes. To give an idea of its potential, we will use it as a
support structure for a convolutional layer pruning approach [14]. The objec-
tive of this approach is to identify whether there are layers of a CNN that can
be pruned without losing too much information and, in the affirmative case,
return a new CNN obtained from the original one by pruning these layers. Such
a pruning approach represents the second main contribution of this paper.

In order to provide an overview of the steps of our approach, we report
a corresponding workflow in Figure 1. As can be seen in this figure, the first
step of the workflow consists of the creation of a multilayer network from a
CNN trained on a suitable dataset. This task involves the computation of
four elements, namely nodes, arcs, arc weights, and class networks. The multi-
layer network thus obtained is given as input to the next step, which performs
its compression and returns a pruned version of it, with fewer layers and
parameters. The pruned CNN represents the result of our approach.

Summarizing, the main contributions of this paper are as follows: (i) we
propose a technique to map a CNN into a multilayer network; thanks to this
technique, it is possible to explore and manage a CNN starting from the corre-
sponding multilayer network-based representation; (ii) we present a technique
to compress a CNN starting from its multilayer network-based representation;
this technique allows for speeding up the training of the original CNN, as well
as the extraction of information and knowledge from it.

2 Related Literature

In the last years, different approaches have been introduced in the literature
for the pruning, quantization, and low-rank factorization of neural networks,
as well as for extracting knowledge from them.
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Fig. 1 Workflow of our approach to map a CNN into a multilayer network and then com-
press it

Pruning methods can be classified as: (i) weight pruning, where redundant
connections, or connections having a weight below a threshold, are pruned;
(i) neuron pruning, where redundant neurons, together with incoming and
outgoing connections, are pruned; (iii) filter pruning, where the least relevant
filters, according to a given ranking, are pruned; (iv) layer pruning, where
pruning of some layers is performed [3]. In this research area, the approach
of [15] prunes network connections according to their impact on the training
error. Specifically, it removes the connections units with the least impact on
the error and, then, adopts the backpropagation algorithm for re-training the
network. The approach of [16] also removes redundant neurons by pruning the
weights providing the minimum change in the output activation of neurons. In
[17], the authors propose an approach to handle sparsely connected networks.
The approach described in this paper randomly deletes connections from a
dense layer using a new sparse weight matrix. Furthermore, it proposes an effi-
cient hardware architecture for reducing memory usage. In [18], the authors
propose an approach for an efficient pruning of parameters based on the corre-
lation between neuron activations in the inner layer and the increase in neuron
correlation through additional output nodes. In the literature, several tech-
niques for reducing the parameters of a fully connected layer have been also
proposed. They replace this layer with an Adaptive Fastfood transform with
non-linearity [19] and a global average pooling layer [20, 21]. In CNNs, prun-
ing is performed by deleting redundant filters from convolutional layers and
parameters of fully connected layers to reduce the storage and computational
overhead of the network [3]. A new method for deleting redundant connec-
tions is proposed in [22]. It consists of two iterative steps, namely: (i) pruning,
where redundant connections are deleted, and (7i) splicing, where deleted con-
nections that are considered important are recovered. Also, the authors of [23]
present an approach for pruning the convolutional layer filters having a low
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ranking, computed according to their Ll-norm, and weakly affecting model
accuracy. They also show that the resulting model is fine-tuned/re-trained. In
[24], the authors propose an approach that prunes and fine-tunes a network
until a trade-off between accuracy and model size is obtained. Instead, the
authors of [25] propose an approach that identifies the most relevant filters
using the lasso regression method; then, it prunes irrelevant filters and recon-
structs the output using unpruned filters and applying linear least squares.
Inter-filter and intra-filter redundancy is investigated in [26], where the authors
convert the operations of the convolutional layer into sparse matrix multipli-
cation to process by means of a new efficient algorithm. In [27], the authors
introduce a method based on gradual pruning of small magnitude weights in
the training phase. Finally, the authors of [14] propose a method for pruning
convolutional layers, which differs from the previous works on neuron, weight
or filter pruning. Specifically, it identifies redundant connections based on the
features learned in the convolutional layers and prunes the involved layers.
Finally, other pruning methods propose to remove neurons using a statisti-
cal study of the derivatives of the model outputs with regard to each hidden
neuron. In particular, the authors of [28] present a method to prune hidden
neurons in a Multilayer Feedforward Network. They show that it is possible
to preserve the performances on the validation and test set while decreasing
the model complexity by deleting non-relevant neurons. Instead, the authors
of [29] address this issue as a part of an approach aiming to improve recurrent
network load forecasting.

As for quantization methods, they can be used during the training process,
or after it, for an efficient inference [3]. In this context, the authors of [30]
propose to use a hash function for randomly grouping weight connections into
buckets; all the connections falling in the same bucket have the same weight;
obtained weights are fine-tuned during the training process. In several studies,
network weights are binary values (e.g., +1 and -1) during the training forward
and backward phases [31] in such a way as to substitute multiply-accumulate
operations with only accumulations. Instead, with quantized backpropagation
[32], network weights fall in the ranges [-1, 0] and [0, +1]; in this way, multi-
plications in the forward and backward steps are avoided. An approach to also
binarize activations is proposed in [33], whereas the authors of [34, 35] exam-
ine the effects of binarization and ternarization on the loss. In [36], the authors
propose not only the quantization of weights and activations but also the
stochastic quantization of gradients. The authors of [37] apply singular value
decomposition on the filters of binarized CNNs to reduce both the parameters
and the dimension of a network. The approach proposed in [38] first deletes
redundant weight connections; then, it performs weight quantization using k-
means; afterward, it applies a re-training step to improve accuracy; finally,
it uses the Huffman coding on the quantized model to decrease its size. In
[39], the authors introduce pruning at different granularity levels and scales.
In order to detect candidates for pruning, they use particle filtering, where
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the misclassification rate affects the weight of configurations. To further lower
model size, they adopt a fixed-point optimization.

As for knowledge distillation, the authors of [40] prove that the knowledge
acquired by a large model, for which the extraction of features is easy, can be
moved to a smaller model to facilitate the deployment operation. Specifically,
they adopt a temperature for creating the soft output from the teacher model.
Then, they use this temperature for training the student model from teacher
one with the objective of minimizing the error between the outputs of the two
models. The authors of [41] propose a new method for training deep neural
networks. Here, the training of the student model is driven by the middle layer
of the teacher model, which is used not only for outputs but also to increase the
accuracy of the student model. In [42], the authors paraphrase the knowledge
of the teacher model into a simpler form using convolution operations involving
the paraphraser and the translator. This knowledge is then moved onto a
student model and allows the latter to learn more easily knowledge from the
teacher model. The authors of [43] propose to match the gradients, instead
of the soft outputs, for moving the knowledge from the teacher model to the
student one. In [44], the authors propose an approach that generates a student
model with low precision (quantization) from the knowledge of the teacher.
Then, it uses stochastic gradient descent for optimizing the quantized elements
to improve fitting with the teacher model. The authors of [45] introduce On-
the-fly Native Ensemble (ONE). This method is first trained by creating a
multi-branch variant of the target neural network through the addition of
auxiliary branches. Then, it generates the teacher model as an ensemble of
all the branches; each branch is trained using two loss terms, namely softmax
cross-entropy loss and distillation loss. In [46], the information flow through
a neural network is captured by a new representation called relational graph.
The authors prove that the clustering coefficient and the average path length
of this graph affect the neural network’s predictive performance. Thus, there is
a sweet spot of relational graphs leading to neural networks with an improved
performance. Finally, in [47], the authors represent a social network graph as
an artificial neural network and, then, explore the internal dynamics of the
latter.

As far as the low-rank factorization is concerned, the authors of [48] propose
to factorize the weight matrix of the final weight layer, of size m x n and
rank r, in two matrices of size m X r and n x r, to decrease the number of
parameters of a deep neural network by a factor p, such that p > T'(::I"). In
order to decrease the number of computations in both the convolutional and
the fully connected layers, the authors of [49] adopt a low-rank approximation;
they obtain a noticeable reduction in terms of memory usage for the weights
in both convolutional and dense layers. In order to decrease the number of
parameters of a CNN, the authors of [50] use singular value decomposition,
which decomposes a tensor for speeding up the deep neural network. The
authors of [51] introduce a new approach for compressing a network model; it
performs rank selection, low-rank tensor decomposition, and fine-tuning and
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minimizes the tensor’s reconstruction error. Low-rank decomposition of filters
learned from scratch during training, instead of pre-training, is proposed in
[52, 53]. Also, in [54], the authors introduce a new method for compressing
and accelerating very deep CNNG; it performs network approximation in terms
of non-linear units, instead of linear responses or filters. Generalized singular
value decomposition, instead of stochastic gradient descend, has been used for
solving non-linear problems. The authors of [55] propose a constrained-based
optimization approach for detecting an optimal low-rank approximation of a
trained CNN. The adopted constraints are the number of multiply-accumulate
operations and the memory usage of the model.

In the past literature, different approaches have been introduced for inter-
preting deep learning models [56]. Some of them provide an explanation of
the deep networks through the visualization and the localized inspection of
high-level representations of graphs. In particular, the authors of [57] present
ActiVis, which can visualize how neurons are activated by user-specified
instances, or instance subsets, for explaining how a model generates its pre-
dictions. They provide a graph-based representation of the model allowing
the local inspections of the activations at each layer codified as a node. The
authors of [58] propose SUMMIT, an interactive tool aiming to detect rele-
vant neurons and their relationships in the network. SUMMIT is based on an
attribution graph that represents and summarizes important neuron connec-
tions and network substructures determining the model’s outcome. In [59], the
authors perform the interpretation of a CNN through the generation of an
explanatory graph representing the hidden knowledge embedded in it. Each
node of the graph corresponds to a part pattern codified in a filter, while
each edge maps co-activation and spatial relationships between patterns. In
[60], the authors propose to use a decision tree to interpret the role of filters
in a convolutional layer for prediction; it also determines at which extent fil-
ters contribute to prediction and which object parts mainly affect the latter.
The authors of [61] propose a method to build a model for hierarchical object
recognition based on the semantics hidden in the convolutional layers of a pre-
trained CNN. This method extracts an interpretable And-Or graph with four
layers in order to explain the semantic hierarchy hidden in a CNN.

3 Mapping a Convolutional Neural Network
into a multilayer network

In this section, we illustrate our technique for mapping a CNN into a multi-
layer network, which is the first part of the approach proposed in this paper.
Specifically, in Subsection 3.1, we introduce the concept of class network,
while, in Subsection 3.2, we describe how the class network is used to map the
corresponding CNN into a multilayer network.
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3.1 Class network definition

In this subsection, we provide a description of a CNN in terms of a single-layer
network, called class network. Formally, a class network is a weighted directed
graph G = (V, E, W), where V is the set of nodes, F is the set of arcs, and W
is the set of arc weights. The definition of each element of the class network
is tailored to the specificities of the CNN architecture. Therefore, when we
present the various elements of the former and their correspondences with
the latter, we will provide a formalization of the CNN. It will help to better
understand the way in which the class network elements have been defined.

3.1.1 Node definition

A CNN consists of M convolutional layers, each characterized by a number
x of filters (also called “kernels”). In a convolutional layer, each filter slides
over the input with a given stride to create a feature map. The input Z is
the original image for the first convolutional layer or a feature map for the
next convolutional layers. The application of a filter at the position (i, j) of Z
(hereafter, Z(i, 7)) provides a new element O(i, j) of the output feature map
O. Figure 2(a) shows the application of a filter of size 3 x 3 at position Z(8, 8),
whereas Figure 2(b) shows the new produced element O(8,8) (red colored).
The area of the filter is green colored.

From all aforementioned, the set V of the nodes of G consists of a set
{V1,Va, ..., Vasr} of node subsets. Here, the subset V}, denotes the contribution
of the k*" convolutional layer ¢, obtained by applying the z;, filters of this layer
to the input of ¢x. Therefore, a node p € Vj, represents the output obtained by
applying the xy, filters of ¢ at some position (7, j) of the input.

3.1.2 Arc definition

Since the application of a filter at Z(i, j) generates a new element O(4, j) (see
Figure 2), a direct connection between Z(%,j) and O(i,j) is straightforward.
Actually, in order to keep the context information, a direct connection is pro-
vided not only between Z(%,j) and O(i, j), but also between Z(i,j) and each
element adjacent to O(i,j) within the filter area. Figure 3 shows the direct
connections between Z(8, 8), on which a filter of size 3 x 3 is applied, and the
elements O(8 4+ a,8+5b), -1 <a<land -1<b<1.

Considering the set of x, filters of a convolutional layer ¢, there are xy, sets
of direct connections (like the ones of Figure 3) between Z(i,7) and O(3, j),
one for each filter zy. In particular, Figure 4 shows the direct connections
between Z(8,8), where three different filters of size 3x3 are applied, the new
produced elements O1(8,8), O2(8,8) and O3(8,8) of the three feature maps,
and their eight neighbors at positions O, (8+a,8+b), -1 <a <1, -1<b<1
and 1 < h < 3 of each feature map.

Since the set of x; filters is applied to the input with a given stride, a
set of similar connections towards the feature maps is generated for different
positions of the input.
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Fig. 2 (a) Application of a filter of size 3 x 3 (green colored) to Z(8, 8); (b) the new produced
element O(8,8) (red colored)
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Fig. 3 Direct connections (dashed lines) between Z(8,8) and the elements O(8 + a,8 + b),
—1<a<1land —1<b<1 (red and green colored)
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Fig. 4 Direct connections (dashed lines) between Z(8,8) and Oy (8 4+ a,8+b), -1 < a <1,
—1<b<1land1l < h < 3, obtained by applying three filters (yellow, blue and green colored)

As for the pooling layer, it shrinks the input feature maps and, in our
approach, leads to an increase in the number of connections between the input
and the output. This is accomplished by sliding the filter over the input with a
given stride and determining an aggregated value for each filter window'. Since
aggregated values are anyway elements of the feature map provided in input,
the next application of a convolutional layer to the feature map returned by
the pooling layer generates connections between the aggregated values and the
elements of the feature map returned by the convolutional layer. Specifically,
direct connections exist between the aggregated values of the feature map
provided in input to the pooling layer and the adjacent elements of the feature
map generated by the next convolutional layer.

Figure 5 shows a sample procedure of direct connection generation for a
pooling layer. On the left, a pooling filter of size 2 x 2 and stride 2 is applied
to the input; the selected aggregated values are visible in the feature map as
colored elements. On the right, the next application of a convolutional filter
of size 3 x 3 at position Z(2,2) generates 9 direct connections between Z(2,2)
and O2+a,2+0), -1<a<1,-1<b<1.

3.1.3 Weight definition

The application of a filter to the element Z(i,j) generates a new element
O(i,7), whose value is given by the following convolution operation:

9(i,3) = f(i,5) * Z(i,j) = Z Zfst (i+ 5,5 +1), (1)

s=—at=—b

where f is the filter of size (2a + 1) x (20 + 1).

LAn example of aggregated value could be the maximum.
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Fig. 5 Example of direct connection generation for a pooling layer. The filter is of size 2 x 2
with stride 2. For each filter application, a colored element corresponds to the aggregated
value. At right, the 9 direct connections between the aggregated value at position Z(2,2)
and the elements O(2+4a,2+b), =1 <a <1, —1 < b < 1 are represented by dashed lines.

Accordingly, the direct connections generated between Z(i,j) and O(i +
5,7 +t), —a < s <a, —b <t < b, are labeled with the weight A(g(s,7)).
This represents the result of the application of the activation function A()
to the output g(i,j) of the convolution operation. The activation function
represents the last step in the creation of our feature map. Its application to
the convolution result returns the final weights of the arcs. In the rest of this
section, in order to not burden the examples, we will use the identity activation
function, whose output is identical to the input, and thus to the convolution
result, i.e. A(g(i,7)) = g(i,7). Figure 6 shows that the application of a filter
of size 3 x 3 to Z(8,8) returns O(8 + a,8 +b), —1 <a <1, -1 <b < 1. The
weight is the convolution result g(8,8) = f(8,8) *Z(8,8) = (0-7) + (—1-6) +
0-6)+(=1-4)+(5-4)+(=1-2)+(0-3)+ (=1-3)+(0-7) = 5.

Fig. 6 Application of a filter of size 3 x 3 to Z(8,8) (red colored) and computation of the
weights for the direct connections between Z(8, 8) and O(8+a,8+b), -1 <a<1,-1<b<1

For a number z of filters, the direct connections between Z(7, j) and Op, (i +
a,j+0b), -1<a<1 —-1<b<1,1<h<uz, are weighted with the results
obtained by applying the activation function .A() to the outputs of the corre-
sponding convolution operation, i.e. A(g1(%,7)), A(92(2,7)), - -, A(gz(%,))-
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Figure 7 shows the application of three filters of size 3 x 3 (green, blue and
yellow colored, respectively) to Z(8,8). It also reports, for each filter f5, the
weighted direct connections generated between Z(8,8) and Op(8 + a,8 + b),
—1<a<1,-1<b<1,1<h<3. The three weights ¢1(8,8), g2(8,8) and
93(8,8) are obtained as follows:

® 91(8,8) = f1(8,8) *Z(8,8) = (0 x 7) + (=1 x 6) + (0 x 6) + (=1 x 4) + (5 x
)+ (-1x2)+(0x3)+(—-1x3)+(0x7) =5
® 32(8,8) = f2(8,8) * Z(8,8) = (1 x 7) + (—1 x 6) + (0 x 6) + (1 x 4) + (3 x
4)+(1x2)+(0x3)+(0x3)+(-1x7)=-2;
® g5(8,8) = f3(8,8) *Z(8,8) = (0x 7)+ (0 x 6) + (=1 x 6) + (—1 x 4) + (4 x
DH+(-1x2)+(I1x3)+(-1x3)+(1x7) =11

e,
ri

)

L

| 1.4 1T I
feature map 1 ! feature map 2 SRR feature map 3

Fig. 7 Application of three filters of size 3 x 3 (green, blue and yellow colored, respectively)
to Z(8,8) and computation, for each filter, of the weights of the direct connections between
Z(8,8) and Op(84+a,8+b), -1 <a <1, —-1<b<1,1<h<3. More specifically, 5 is the
result of the convolution between Z(8, 8) and the filter fi,i.e. 5 = g1(8,8) = f1(8,8)*Z(8,8).
Also, -2 is the result of the convolution between Z(8, 8) and the filter f2,i.e. =2 = g2(8,8) =
f2(8,8) x Z(8,8). Finally, 11 is the result of the convolution between Z(8,8) and the filter

f3, i.e. 11 = g3(8,8) = f3(8,8) * Z(8,8)

In order to generate the arcs of the graph G from the weights of the direct
connections of the z filters, we adopt some statistical descriptors. The goal is
to have only one set of arcs from the node corresponding to Z(i, j) to the node
corresponding to O(i + s,j + 1), —a < s < a, —b < t < b%. The weight of an
arc from Z(i,7) to O(i + s,j +t) is obtained by applying a suitable descriptor
parameter to the weights of A(gn(7,7)), 1 < h < z.

The two statistical descriptors used in this context are: (i) the mean,
and (i) the median, which revealed to achieve the best performance results.
Accordingly, the weight of the direct connections from Z(%, j) to O(i+ s, j +t)
can be obtained as:

Eh 1 ( (25.7)) (2)

Imean(i,§) = )

2Here and in the following, we will use the symbols Z(%,j) and O(i,j) to denote both the
elements of the feature maps and the corresponding nodes of the class network.
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Fig. 8 Weights of the arcs from Z(8,8) to O(8+a,8+b), -1 <a <1, —1 <b <1, obtained
by applying the mean (on the left) and the median (on the right) as statistical descriptors
of the corresponding direct connections

A(Q[%](%J)) if z is even
gmedian(i)j) = A(g[L_l](i,j))+A(g[L_H](i,j)) (3)
2 2 if z is odd

where gmean (i, j) is the mean value, and gpmedian (¢, 7) is the median value.
Figure 8 shows the direct connections between Z(8,8) and O(8 + a,8 + b),
—1<a<1,-1<b<1, whose weights are the mean value (see Figure 8(a))
and the median value (see Figure 8(b)) of the connections for the three filters
depicted in Figure 7. The mean value is 4.67, whereas the median value is 5.
From all aforementioned, the set E of the arcs of G is a set of subsets
E = {E\, Es,..., Epj_1}. Here, Ej, denotes the set of arcs connecting nodes
of V}, to nodes of Vj41. Analogously, the set W of the weights of G consists
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of a set of subsets W = {Wy, Wa, ..., Was_1}, where Wy, is the set of weights
associated with the arcs of Ej.

3.2 Mapping a CNN into a multilayer network

In the previous subsection, we have illustrated how it is possible to construct
a class network representing a CNN. In this section, we show how, starting
from the class network and a dataset on which the corresponding CNN is
trained and tested, it is possible to construct a more complex structure called
multilayer network.

Roughly speaking, a multilayer network is a set of ¢ class networks, one
for each target class of the dataset. Formally speaking, given a dataset D con-
sisting of ¢ target classes Cly,Cls,...,Cl;, and given a Convolutional Neural
Network cnn, the multilayer network G = {G', G2, ...G?} corresponding to cnn
is a set of ¢ class networks. The class network G", 1 < h < t, corresponds
to the h'" target class of D. Figure 9 shows a sample multilayer network G
characterized by three layers, each corresponding to a generated class network.
The top (resp., middle, bottom) class network is denoted as G' (resp., G?,
G?). Figure 10 shows the generation of a portion of the multilayer network
G shown in Figure 9. It is obtained by extracting the feature maps of three
target classes from cnn. In this last network a set of filters of size 3 x 3 with
stride 1, sliding over positions (3,2) and (4,2) of the feature maps, generates
some arcs for the class networks of G. The weights of these arcs are computed
as described in Section 3.1.3. In particular, the mean statistical descriptor is
applied. Specifically, for the class network G* (resp., G2, G3), two sets of arcs
of weights 5 (resp., 1, 3) and 4 (resp., 7, 6) are generated between the first
and second feature maps, and the set of arcs of weights 2 (resp., -2, 4) and 8
(resp., 9, -1) are generated between the second and the third feature maps.

3.2.1 Algorithm for building the multilayer network

In this section, we illustrate our algorithm to construct a multilayer network
from a CNN and a dataset D consisting of a set of ¢ target classes. It consists
of two steps, namely: (i) creation of a list of patch lists, which represents a
support data structure for the next step; (4i) creation of the multilayer network
from the list of patch lists. We have defined a suitable function for each of
these steps.

The function corresponding to the first step, called CREATE_PATCHES,
is reported in Algorithm 1. It receives a Convolutional Neural Network cnn
and a target class Clp, 1 < h < t, and constructs a list of patch lists.
CREATE_PATCHES operates on the feature maps provided in input to each
convolutional layer of cnn. A patch is a part of a feature map; in particular,
it has the same size as the filters applied by the next convolutional layer and
gives rise to a node in the multilayer network.
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(c) Gs

Fig. 9 Sample multilayer network G composed of three layers corresponding to the class
networks G, G2, and G3.

CREATE_PATCHES proceeds as follows. It uses a list conv_layers that
initially contains the sequence of the convolutional layers present in the ref-
erence CNN. It iterates over all elements of conv_layers, providing in input
the images of Cl;,. During each iteration, it takes the current element as the
source and the next element as the target. The feature map returned as output
from source represents the input to target; the latter receives this input and
processes it as specified below.

At the beginning of each iteration, CREATE_PATCHES determines the
starting and ending points of the output of source. In particular, the starting
(resp., ending) points imgys (resp., imgye) and imgps (resp., imgp.) repre-
sent the center of the first (resp., last) application of the convolutional filters
activated by target on the output of source. After this, CREATE_PATCHES
iterates on the output of source and creates a patch for each application of the
convolutional filter on an element. For each patch, it stores its identifier, the
coordinates of its center, its width and height expressed in pixels, and the cor-
responding source and target. At the end of the iteration, it stores the patches
corresponding to a convolutional layer in a list called patch_list.
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Fig. 10 Generation of a portion of the class networks G, G2 and G® corresponding to the
layers of the multilayer network G depicted in Figure 9

The lists corresponding to all the convolutional layers of cnn are stored in a
list of lists called list_of-patch_lists, which represents the output of CREATE_
PATCHES.

The function corresponding to the second step, called CREATE_LAYER_
NETWORK, is shown in Algorithm 2. It receives a Convolutional Neural Net-
work cnn and a target class Cly, 1 < h < t, and returns a layer (specifically,
the ht" layer G") of the multilayer network G.

First, CREATE_LAYER_NETWORK calls the function CREATE_
PATCHES, described in Algorithm 1, which returns the list of patch lists cor-
responding to cnn when trained with the images of the target class Cly. Then,
it creates an initially empty network G”. Afterward, it iterates over the list of
patch lists returned by CREATE_PATCHES considering two lists at a time.
In particular, it considers the current list as source and the next one as target.

At the beginning of each iteration, CREATE_LAYER_NETWORK adds to
G" a node for each patch present in source and a node for each patch present
in target, if they are not already present in G”. Then, it computes a pair of
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Algorithm 1 Function CREATE_PATCHES

Input

B cnn: a Convolutional Neural Network

B Cl,: a target class

B get_convolutional layers: a function that receives a CNN and returns the
list of its convolutional layers

Output

W [ist_of patch_lists: the list of the patch lists

1: function CREATE_PATCHES()

2: list_of_patch_lists = ()

3: conv_layers = get_convolutional_layers(cnn)
4: for i = 0 to len(conv_layers)-1 do

5: patch_list = ()

6: source = conv_layers|i]

7 target = conv_layers[i + 1]

s: e = Lf,ar_qet[“fqtl,zterwidth”]J

9: imgns = Ltarget[”fil;ev‘height“]

10: imgwe = source[”width”] — imguys

11: imgpe = source[”height”] — imgps

12: for i = imgys to imgywe do

13: for j = imgns to imgpe do

14: patch = (id, center, width, height, source, target)
15: Add patch to patch_list

16: end for

17: end for

18: Add patch_list to list_of_patch_lists

19: end for
20: return list_of_patch_lists

21: end function

parameters called wyqtio and hrqti0. In fact, as we have seen in Section 3.1.2,
a pooling layer can exist between two consecutive convolutional layers, which
reduces the image size. If this happens, the area covered by a filter in target is
greater than the one covered in source (see Figure 5). The parameters w,qtio
and h,qti0 allow us to model this phenomenon, as we will see below.

At this point, CREATE_.LAYER NETWORK stores in wpound (resp.,
hpound) half the width (resp., height) in pixels of the filter associated with the
convolutional layer. Indeed, as we have seen in Section 3.1.2, the application
of convolutional filters is done with reference to the center of the filter, and
therefore of the patch. For this reason, CREATE_LAYER_NETWORK iterates
over the source and target nodes on which the filter acts and whose coordi-
nates are determined from those of the center of the filter, its width, and its
height. More specifically, given a node node; with coordinates (node;, , node;, ),
CREATE_LAYER _NETWORK considers all the nodes of source that can be
processed by the filter whose center falls into the rectangle defined by the coor-
dinates of the patch of node; (this rectangle is determined thanks to wpound
and Apound) and, for each of them, adds an arc from it to node; in Gh.

Once this arc has been inserted, CREATE_LAYER_NETWORK computes
the corresponding weights by applying the formulas seen in Section 3.1.2. For
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this purpose, it first considers the feature map of source and selects the portion
of this map corresponding to the inserted arcs. This portion consists of a
rectangle comprised between the top left corner (nodes, — Whound, Nodes, —
hbouna) and the bottom right corner (nodes, +wWyound, nodes, + hpound). These
two pairs of coordinates correspond exactly to the ones of the application of
a filter to the patch of nodes, whose output is connected to node;. Note that,
for each arc, both the weight based on the mean (see Equation (2)) and the
one based on the median (see Equation (3)) are stored.

At the end of its iterations, CREATE_LAYER_NETWORK has created the
ht" layer G" of the multilayer network G; G” corresponds to the target class
Cly. Applying CREATE_LAYER_NETWORK ¢ times, once for each target
class of the dataset D, we obtain the final multilayer network.

We end this section by pointing out that Algorithms 1 and 2 are general
and can be applied to many kinds of CNN.

4 Applying the multilayer network model to
compress a CNN

In the previous section, we proposed an approach to map a CNN in a multilayer
network. The network thus obtained represents the tool we use to analyze and
manipulate the corresponding CNN. The operations that can be performed in
a CNN thanks to the multilayer network thus obtained are many and various.
To give an idea of their potential, in this section, we illustrate one of them,
namely the compression of a CNN, which represents the second main contri-
bution of this paper. First, we provide an informal description of the proposed
compression approach, along with an example of its behavior. Then, we present
its formalization through a pseudocode algorithm.

4.1 Methodology

Consider a multilayer network G and let G” be its h*" layer. G" consists of a
weighted directed graph. Therefore, given a node v of G", we can define: (i)
the indegree of v, as the sum of the weights of the arcs of G" incoming into
v; (ii) the outdegree of v, as the sum of the weights of the arcs outgoing from
v; (i) the degree of v, as the sum of its indegree and its outdegree. In the
following, we use the symbol d”(v) to denote the degree of v in G. Instead,
we use the symbol §(v) to indicate the overall (weighted) degree of v in G.
As we will see below, §(v) is an important indicator of the effectiveness of the
filter represented by v.

As we have seen above, a multilayer network G = {G!,G?,... G} has a
layer for each target class. As a consequence, we can think that the overall
degree §(v) of the node v in G can be obtained by suitably aggregating the
degrees d*(v),d?*(v), -+ ,d'(v) of v in the t layers of G. More specifically:

5(v) = F(d*(v),d*(v), ..., d" (v)) (4)

where F is an aggregation function.
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Algorithm 2 Function CREATE_LAYER_NETWORK

Input

B cnn: a Convolutional Neural Network

B Cl,: a target class

B get_feature_maps: a function that receives a CNN and a target class Cly,
and returns the list of the feature maps for each layer of the CNN when
trained with Cly,

Output

B G": the A" layer of the multilayer network G

1: function CREATE_LAYER-NETWORK()
2: f-maps = get_feature_maps(cnn, Cly)
3: list_of _patch_lists = CREATE_PATCHES (cnn,Cly,)
4: Gh =10
5: for i = 0 to len(list_of_patch_lists)-1 do
6: source = list_of_patch_lists[i]
7 target = list_of _patch_lists[i + 1]
8: Add nodes from source and target to G" if they are not present therein
9: w.. . — source[ width’]
: ratio target]” width”]

100 e, = 2l

11: Woouna = | LTI e wiaun ] |

12: hyound = Largd[”f“;rhewmu]J

13: for node; in target do

14: (nodeis, nodety) = nodey[” center_coordinates”]

15: for nodes in source do

16: (nodes, ,nodes, ) = nodes|” center_coordinates”]

17: if (nodes, — Wyound) - Wratio < nodery < (nodes, + Whound) - Wratio then

18: if (nodes, — hpound) * hratio < nodey, < (nodes, + hpound) * hratio then

19: Add an arc from nodes to node; in G"

20: map = f-maps[source[’name”]]

21: Select the portion of f_maps starting from the top left corner (nodes, —
wbound,nodesy — hbound) to the bottom right corner (nodes, + wbound,nodesy + Rbound)
and store it in nodemap

22: Add the mean and the median of nodemap as the weights of the arc from
nodes to node;

23: end if

24: end if

25: end for

26: end for

27: end for

28: return G"

29: end function

Let d''(v) = Y)_, d"(v) be the sum of the degrees of v in the ¢ layers
of G. Our approach adopts the following entropy-based aggregation function
[62, 63] for determining the overall degree §(v) of v in G :

6(v) = - 4'(v) log ( 4 (v) ) ; (5)

o o dtot (v) dtot (v)

This function refers to the well-known concept of information entropy intro-
duced by Shannon in [64]. The definition of §(v) in Equation (5) favors a
uniform distribution of the degree of v in the different layers while it penalizes
the presence of a high degree of v in few layers. The rationale underlying it is
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favoring those nodes whose feature extraction is balanced for different target
classes [65] and penalizing those nodes that make a significant contribution in
only few target classes.

Our compression approach aims to select a subset of the nodes of G with
the highest values of the overall degree §. Selecting such a subset allows us to
determine the best convolutional layers that will form the compressed CNN. In
particular, our approach selects the nodes of G whose values of overall degree
¢ are higher than a certain threshold:

ths =~ -5, (6)

Here, § is a statistical aggregation of the values of the overall degree 6 of all
nodes in G. Our approach allows the adoption of two statistical aggregators,
namely mean and median. Our choice fell on these two operators because they
are the ones that allowed us to achieve the best experimental results. v is a
scaling factor whose value belongs to the real interval [0, +00). It allows us to
tune the contribution of 4.

After the subset of the nodes of G having an overall degree § higher than th;
has been selected, our approach determines the set of the convolutional layers
from which these nodes are extracted. Then, it creates the compressed CNN
from these convolutional layers. Once this task is completed, a new training
task must be performed to adjust the weights of the compressed network.

Figure 11 shows a flattened representation of a portion of the multilayer
network G = {G',G% G®} depicted in Figure 9. Here, all the nodes are
numbered from 1 to 26.

In order to compute the threshold ths, § is first determined as the mean
of the overall degrees 0 of the nodes of G. For a node v, §(v) is computed
according to Equation (5). For instance, §(2) is computed as follows:

=[5 ()] £ (215

PN I T
+[dm(2) 9 <dwt<2ﬂ { 3(&'% (7)

153
e, (6 o (21
153 "\ 153 153 9\ 153
=0.344+0.36 +0.37 = 1.07
where d*(2), d?(2) and d3(2) are the degrees of node 2 for G!, G? and G3,
respectively, whereas d'°*(2) = 153 is the total degree of this node.
Analogously, the overall degree § of the other nodes are: §(1) = §(3) =
0(4) = 6(5) = 0.94, 6(6) = 4(8) = d6(9) = 6(11) = 1.09, §(12) = 6(13) =
§(14) = 1.07, §(18) = §(19) = §(20) = §(21) = §(22) = 6(23) = 1.00. Finally,
nodes 7, 10, 15, 16, 17, 24, 25, and 26 do not give any contribution, since the
log in Equation (5) has no meaning for negative numbers.
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Fig. 11 Flattened representation of a portion of the multilayer network G depicted in Figure
9

Observe that 6(2) = 1.07 < §(11) = 1.09, because the degree distribution
of node 11 (i.e., d*(11) = 9, d*(11) = 8, and d3(11) = 9), is more balanced over
the three network layers than the one of node 2 (i.e., d*(2) = 36, d*(2) = 63,
and d3(2) = 54) — see Figure 11.

The value of §, adopting the mean as a statistical aggregator, is computed
as follows:

[(0.94-4) + (1.07-4) + (1.09 - 4) + (1.00- 6)] _ 18.40

0= 2 2

=071 (8)

Let the scaling factor v be equal to 1.50. Then, the threshold ths will be
computed as ths = v -6 = 1.50 - 0.71 = 1.06. The nodes with degree § > ths
are 2, 6, 8,9, 11, 12, 13, 14. They are located in the first and second feature
maps (see Figures 10 and 11). Hence, the compressed CNN model consists of
the first and second convolutional layers, while the third one is pruned from
the model.
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4.2 Approach formalization

In this subsection, we present the formalization of the CNN compression
approach that we informally described in the previous subsection. The cor-
responding pseudocode can be found within the function COMPRESS_CNN
shown in Algorithm 3.

This function receives: (i) the Convolutional Neural Network cnn that we
want to compress; (i) the multilayer network G associated with cnn and com-
puted by applying the approach described in Section 3.2; (iii) the scaling factor
~ that we have seen in Equation (6); (iv) the type aggriype of statistical aggre-
gation function used in the computation of 6 in Equation (6). At present, the
possible types are “mean” and “median”.

It also uses some support functions, namely:

® compute_overall_degrees, which computes the value of the overall degree § of
each node of G.

® get_convolutional_layers, which receives a CNN and returns the list of its
convolutional layers.

® mean (resp., median), which receives the set of overall degrees ¢ of the nodes
of G and computes & as their mean (resp., median).

® remove_convolutional_layers, which receives a Convolutional Neural Network
cnn and a list removable_layers of convolutional layers to be pruned from
it and returns a compressed version ¢nm of cnn, in which the layers of
removable_layers have been pruned.

First, COMPRESS_CNN creates an empty list preserving_layers; it will
contain all the layers of cnn to be preserved in ¢nn. Then, it calls the function
compute_overall_degrees to compute the list § of the overall degrees of the nodes
of G. Afterwards, it computes the threshold ths by applying Equation (6) and
taking aggriype into account.

At this point, for each node v of G, COMPRESS_CNN checks whether its
overall degree 6(v) is greater than ths. In the affirmative case, it adds the
convolutional layer associated with v to the list preserving_layers. This way of
proceeding implies that a convolutional layer is preserved if it has at least one
node that provides a significant contribution to the operation of cnn.

Once all preserving layers have been identified, COMPRESS_CNN obtains
the prunable layers by calling the function get_convolutional_layers with cnn
as input and subtracting from the layers returned by it those present in the
list preserving_layers.

After determining the layers to be pruned, COMPRESS_CNN calls the
function remove_convolutional_ layers giving it cnn and removable_layers as
input. The latter function prunes all the layers of removable_layers from cnn
thus obtaining ¢nm, which is also the output of COMPRESS_CNN.
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Algorithm 3 COMPRESS_CNN

Input

B cnn: a CNN to compress

B G: the multilayer network associated with cnn

B ~: a real number representing the scaling factor in the computation of ths

B aggryype: the statistical aggregation function chosen for the computation of
)

B compute_overall_degrees: a function that computes the overall degree ¢ of
each node of G

B get_convolutional layers: a function that returns the list of the convolu-
tional layers of a CNN

B median: a function that returns the median of a list of values

B mean: a function that returns the mean of a list of values

B remove_convolutional layers: a function that prunes a list of convolutional
layers from a CNN

Output

B cnn: a compressed version of cnn

1: function COMPRESS_CNN()

2: preserving_layers = ()

3: & = compute_overall_degrees(G)

4: if aggriype = “mean” then

5: 6 = mean(9)

6: else if aggriype = “median” then

7 6 = median(d)

8: end if

9: thse =~-0

10: for each node v of G do

11: if §(v) > ths then

12: Add the convolutional layer associated with v to preserving-layers
13: end if

14: end for

15: removable_layers = get_convolutional_layers(cnn) \ preserving_layers
16: cnn = remove_convolutional_layers(cnn, removable_layers)

17: return cnn

18: end function

5 Experiments

In this section, we evaluate the performance of our approach. We pointed out
that it is general and can be applied to several kinds of CNN. The inter-
ested reader can find the corresponding source code at the GitHub address
https://github.com/lucav48/cnn2multilayer. In our experiments, we decided
to apply it to VGG16 [66]; it is a benchmark vision CNN that won the ILSVR
(ImageNet) competition in 2014. We tested the effectiveness of our approach
in two well-known computer vision tasks, namely: (i) handwriting charac-
ter recognition, and (7i) object recognition. The image datasets used for the
experiments are MNIST and CALTECH-101, which are considered well-suited
benchmarks for testing CNN architectures in these tasks [67, 68].
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MNIST? consists of 60,000 training and 10,000 test images representing
binary handwritten digits categorized into 10 target classes, which correspond
to the digits from 0 to 9. Images from MNIST represent a portion of the
larger NIST*, a well-known dataset for evaluating computer vision and pattern
recognition approaches. Each image of MNIST is 28 x 28 pixels in bitmap
(.bmp) format, centered and size normalized.

CALTECH-101° is a dataset with 9,146 colored pictures of different objects
belonging to 101 target classes (e.g. chair, ant, watch, pizza). Each class com-
prises from 40 to 800 images in JPEG (. jpg) format. The original size of each
image is about 300 x 200 pixels but, in our tests, we scaled it to 128 x 128 pixels.

In our campaign, we first trained the VGG16 model from scratch. Then,
we generated the layers of the multilayer network from the target classes of the
dataset. For each target class, we computed the average of the feature maps
over the image set before proceeding with the compression, and use them as
the weights of the arcs.

As for MNIST, we used the predefined training and test sets and the pre-
defined classes, i.e. 60,000 training and 10,000 test images categorized into 10
target classes. As for CALTECH-101, we performed a holdout validation that
used 80% of the images for training and the remaining 20% of them for test-
ing. Furthermore, from the training set of each dataset, we selected 90% of the
images for training our model and the remaining 10% of them for validating it.

For tuning the hyperparameters of the VGG16 model, we randomly picked
up its hyperparameters for 50 times. Each hyperparameter ranged in a suitable
set. Specifically, we picked up the batch size in the set [16, 32, 64, 128], the
learning rate 7 in the set [0.0001, 0.001, 0.01, 0.1], the optimizer in the set
[Adam, SGD], and the epoch number in the range [100, 1000]. For each trial, we
trained the VGG16 model with the selected hyperparameters on the training
set and computed the performance measures of the compression algorithm on
the validation set. In the end, we selected the model which obtained the best
values of the performance measures on the validation set. Accordingly, we set:
(i) the batch size equal to 128 for MNIST and 64 for CALTECH-101; (i)
the learning rate n equal to 0.0001; (iiz) the Adam optimizer; (iv) the epoch
number equal to 100. For limiting overfitting, we monitored validation loss and
stopped training when no more changes occurred for three iterations.

We first performed a sensitivity analysis for studying the impact of the
scaling factor « on the compression performances of our approach when also
varying the statistical aggregation function (i.e., mean and median) used in the
computation of & (see Section 4.1). Then, we compared the results obtained by
our approach, set with the best combination of v and statistical aggregation
function, with the ones obtained by a single-layer network-based approach on
the same datasets. For this analysis, we used the test set of both datasets.

3http://yann.lecun.com/exdb/mnist /
“https://www.nist.gov/srd /nist-special-database-19
Shttp://www.vision.caltech.edu/Image_Datasets/Caltech101/
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We carried out our experiments on Google Colab, which provided a GPU
NVIDIA Tesla K80, 12 GB RAM, and 2 Intel Xeon CPUs 2.30GHz. The pro-
gramming environment consisted of Python 3.7, Tensorflow 2.6, and NetworkX
2.6.3.

5.1 Reference Convolutional Neural Network

The VGG16 [66, 69] network is characterized by five convolutional blocks,
named as Conv;, 1 < i <5, five max pooling layers (red colored), and three
fully connected layers (green colored), as shown in Figure 12. Each convolu-
tional block consists of two or three convolutional layers with a given number of
filters of size 3 x 3 and stride 1. One of the VGG16 configurations also includes
convolutional filters of size 1 x 1, which can be considered as a linear transfor-
mation of the input channels. Padding in the convolutional layers with filters
of size 3 x 3 preserves the spatial resolution after the convolution and is fixed
to 1 pixel. The convolutional blocks are interleaved with max pooling layers
with filters of size 2 x 2 and stride 2. This configuration of convolutional and
max pooling layers is consistent throughout the whole network structure. It is
followed by three fully connected layers; the first two have the same number
of channels, while the third one has a number of channels equal to the num-
ber of target classes. The final part corresponds to the softmax layer, which
returns the output. All the hidden layers are characterized by the rectification
non-linearity (ReLU) which is the activation function for this network.

convl

conv2

conv3

convéd

convs fe6 fe7 8

—

e
14 14 %512 1x1x4096 1x1x1000

28 x 28 x 512

56 x 56 x 256

T %7 x512

@ convolution+ReLU
max pooling
=7 fully connected+Rel.U

224 % 224 % 64

Fig. 12 The VGG16 network architecture
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In the standard VGG16 network architecture, i.e., the one shown in Figure
12, the input is an RGB image of size 224 x 224. Also, the first two fully con-
nected layers consist of 4,096 neurons, while the third one has 1,000 neurons,
which correspond to the target classes of the ILSVRC-2012 dataset competi-
tion [66]. Finally, VGG16 has about 138 million parameters. In our specific
case, the input to VGG16 can be an image with size different from 224 x 224.
Thus, the number of parameters of our VGG16 is varied accordingly.

Similar to the VGG16 model presented above, another interesting Convo-
lutional Neural Network is the VGG19 [66] model. In particular, VGG19 has
three more convolutional layers than VGG16, which leads to more parameters
to train and higher complexity of the corresponding architecture.

5.2 Obtained results

In this section, we describe the results obtained by performing several tests
to validate our approach. Specifically, in Subsection 5.2.1, we describe the
tuning activities performed on our approach, as well as the tasks carried out
for computing its performance. Next, in Subsection 5.2.2, we compare our
approach with an analogous one based on a single-layer network, instead of a
multilayer one.

5.2.1 Tuning and performances

In Table 1 (resp., Table 2), we show some results obtained by VGG16 when
the input is MNIST (resp., CALTECH-101). In particular, we report the val-
ues of accuracy, precision, recall, mean time per epoch (in seconds) of the CNN
training phase, number of CNN parameters, and number of convolutional lay-
ers pruned by our compression method. The scaling factor v varies from 0.25
to 2.00 with steps of 0.25. This revealed as the best working range for our
approach. Recall that v = 0 corresponds to no compression.

We report the values of the above metrics when the statistical aggrega-
tion function for computing ¢ is the mean or the median and when the arc
weight is based on the mean or the median. As a consequence, we have four

possible combinations that we represent as (dmean, Imean)s (Omedian, Ymean)s
(5meanagmedian) and (6median7gmedian)7 YGSPGCtiVely'

Figure 13 (resp., Figure 14) shows the VGG16 convolutional layers pre-
served and pruned by our compression approach for the first (resp., last) two
configurations when the input is MNIST. Figures 15 and 16 show the same
data when the input is CALTECH-101. In these figures, green circles denote
preserved layers whereas red crosses indicate pruned ones.

Note that the accuracy, precision, and recall of MNIST are higher than
0.97 for all configurations. In particular, the highest values of these parameters
are obtained for the configuration (gmedian7 Jmean) and v greater than 0.75. In
this case, the accuracy is higher than 0.99, whereas precision and recall are up
to 0.99 when v ranges between 1.00 and 1.50. With these configurations, our
compression approach prunes the first two layers of Convg and the first layer
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Fig. 13 Convolutional layers of VGG16 preserved and pruned by our compression algorithm

for MNIST (arc weights based on mean)
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Fig. 14 Convolutional layers of VGG16 preserved and pruned by our compression algorithm
for MNIST (arc weights based on median)

of Convy. Pruning also the third layer of Convs and the first layer of Conuv,
leads to a slight decrease in accuracy, precision, and recall. The configura-

tion (Omedians Gmean) guarantees the best performances but it also requires the
highest mean epoch time and the highest number of parameters. It also leads
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Fig. 15 Convolutional layers of VGG16 preserved and pruned by our compression algorithm
for CALTECH-101 (arc weights based on mean)
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Fig. 16 Convolutional layers of VGG16 preserved and pruned by our compression algorithm
for CALTECH-101 (arc weights based on median)

to the lowest number of pruned convolutional layers that gradually increases
when v increases.

The configuration (Smean, JImean) leads to lower values of accuracy, preci-
sion and recall than the previous configuration when + is higher than 0.75.
The highest values of these parameters are obtained for v = 1.25. When ~
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ranges between 0.75 and 1.25, Convs and the first layer of Conv, are pruned.
When v = 1.25 also the first layer of Convs can be pruned without a sig-
nificant decrease in the performance values. Instead, if also the second layer
of Convs is pruned, the accuracy, precision, and recall start to decrease and
become lower than 0.99. If compared with (gmedian, 9mean ), this configuration
leads to an average decrease in the mean epoch time of 4.9s and of the num-
ber of parameters of 1.06 million. It also leads to an increase in the number of
pruned convolutional layers of 1.5.

Analogous trends can be observed for the configuration (Smediany Imedian)-
In this case, the values of accuracy, precision, and recall are up to 0.99 for
v between 1.50 and 2.00. This configuration leads to the pruning of the first
layer of Convy and Convy, the first two layers of Convs, and the third layer
of Conv, and Conwvs. If compared with the configuration (Smmn, mean), this
one leads to an average increase in the mean epoch time of 1.25s, to an average
decrease in: (i) the number of parameters of 1.89 million, and (%) the number
of pruned convolutional layers of 0.87.

Finally, as for the configuration (gme(m, 9median), the accuracy, precision
and recall reached the lowest values. For instance, the accuracy value is below
0.985 whereas precision and recall are up to 0.98 when ~« ranges between 0.50
and 1.00. On the other side, this configuration leads to a rapid decrease in the
mean epoch time below 30s and of the number of CNN parameters below 25
million; at the same time, there is an increase in the pruned layers up to 8. In
this case, the compressed CNN model only preserves all the layers of Convy,
the second layer of C'onvy, and the first two layers of Convs. Interestingly,
pruning also the second layer of C'onv, does not lead to a significant decrease in
accuracy, precision and recall if 7y is higher than 1. At the same time, this choice
further reduces the mean epoch time and the number of CNN parameters.

As far as CALTECH-101 is concerned, the highest values of the per-
formance measures are obtained when v ranges from 0.75 to 1.50. More
specifically, the highest value of accuracy (resp., precision, recall) is 0.661
(resp., 0.527, 0.599) and is reached when v = 1 for the configuration
(Emedmn, Imean ). With this configuration, when ~ ranges between 0.75 and
1.50, the mean epoch time and the number of CNN parameters gradually
decrease, whereas the number of pruned convolutional layers rapidly increases.
This trend can be observed in Figure 15, where the convolutional layers are
rapidly pruned until the CNN model consists of the first layer of Conv, and
the third layer of Conwvy. Interestingly, in spite of the presence of only two lay-
ers, the performance measures keep the same or higher values than the ones
obtained with no compression (i.e., with v = 0).

The configuration (gmmn, Jmean) shows closely related trends with
(Omedians 9mean) in all measures.

By contrast, the performance measures of (Smean, median) diverge from
the ones obtained by the two previous configurations. In fact, they show an
increasing trend against v and their value becomes even higher than the ones
obtained with no compression when ~ is high. On the other side, the mean
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epoch time is on average 12.6s higher, the number of CNN parameters is 13.5
million higher and the number of pruned convolutional layers is 4.12 less than
the previous two configurations. This is justified by the reduced number of
convolutional layers pruned with this configuration, which gradually comprises
the two blocks C'onv; and C'onvs, the second layer of Conv, and the first two
layers of Conuvs.

Finally, the configuration (gmedmn,gmedmn) does not provide any com-
pression, and all the six measures into consideration do not show any change
against .

From all previous reasoning, we can conclude that the configuration guar-
anteeing the best tradeoff between costs and benefits is (Smmn, Jmean) With
v = 1.25. In fact, in this case, the values of the performance measures are
higher than the corresponding ones without compression for both MNIST
and CALTECH-101. At the same time, the mean epoch time and the num-
ber of CNN parameters are acceptably low, whereas the number of pruned
convolutional layers is high.

From a cross-comparison of the layer distributions, we can say that the best
tradeoff between costs and benefits corresponds to pruning C'onvs, Convs, and
the first layer of Conuvy.

Clearly, if we are not interested in the best tradeoff, but we are willing
to sacrifice costs (i.e., to accept a high mean epoch time and a high number
of CNN parameters) for maximizing benefits (i.e., high values of accuracy,
precision, and recall) the best configuration is (0,median, Gmean)-

As a further analysis, we verified the effectiveness of our approach on
VGG19 [66], trained on MNIST and CALTECH-101. The performance results
we obtained are shown in Table 3. Here, for the sake of space, we report only

the results obtained by our approach with the configuration (0mean; Gmean)-

Table 3 Performance results obtained by our approach applied on VGG19, trained on
MNIST and CALTECH-101- adopted configuration: (0mean; gmean)

Mean epoch

Dataset Model ¥ Accuracy | Precision | Recall | F1-Score time (s) Parameters
MNIST VGGI9 0 0.988 0.986 0.986 0.986 32 38,952,650
Compressed VGG19 1 0.991 0.991 0.991 0.991 24 33,789,514

| VGGI9 0 0.565 0.412 0.45 0.430 a1 70,782,118
CALTECH-101 | 1 hressed VGG19 | 125 | 0.619 0483 | 0547 | 0513 21 56,180,262

From the analysis of this table, we can observe that our compression
approach works well also in this case. As for the MNIST dataset, we obtained
a compressed VGG19 that has slightly higher accuracy, precision and recall
than the original one, while having fewer parameters (-13.2%) and a lower
training time (-25.0%) than the latter. Similar reasoning can be made for the
CALTECH-101 case; here, the compressed VGG19 shows a higher accuracy,
precision, and recall than the original one, while being a smaller and faster
model (-20.6% in the number of parameters and -52.2% in the mean epoch
time) than it.
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Finally, we measured the computation time needed to compress VGG16
and VGG19, as well as the inference time for a single prediction. We computed
all these parameters for both the original and compressed models. The results
obtained are reported in Table 4.

Table 4 Computation time needed by our approach to compress VGG16 and VGG19
when it is trained on MNIST and CALTECH-101; inference time required for a single
prediction by the original model and the compressed one

CNN Compression Inference time of Inference time of
time (s) the original model (ms) | the compressed model (ms)
VGGI6 10.28 25.2 14.9
MNIST VGG19 11.78 320 20,5
VGGI6 412.45 44.1 24.1
CALTECH-101 | yGGig | 43767 61.2 35.3

From the analysis of this table we can observe that, as for the MNIST
case, the compression time for both VGG16 and VGG19 is low and acceptable.
Furthermore, as for the inference time, we obtain compressed models that
are 35-40% faster than the original ones. As for the CALTECH-101 case, the
compression time is higher because this dataset has many more classes than
MNIST (102 against 10), and its images have a higher resolution (128 x 128 x 3
against 28 x 28 x 1). However, we point out that the compression time includes
the building of the multilayer network corresponding to the CNN, which is a
one-time operation for any value of the threshold . Instead, as for the inference
time, the compressed models are 42-45% faster than the original ones.

5.2.2 Comparison results

In order to highlight the importance of adopting a multilayer network for
supporting the representation and manipulation of CNNs, we compare our
compression method with an analogous one based on a single-layer network.
This approach considers each target class as a single contribution to the CNN
compression. As a consequence, given a class network G", it first computes 6",
1 < h <t, as a statistical aggregation of the values of the degree § of all the
nodes of G". Then, it calculates th'g =~-.6M, 1< h <t Afterwards, it selects
the subset of the nodes of G, 1 < h < t, having a degree § higher than thg’.
Finally, it determines the set of nodes from which the convolutional layers of
the compressed CNN are extracted by computing the intersection of these ¢
subsets.

Table 5 shows the performance results obtained by VGG16 when the input
datasets are MNIST and CALTECH-101. In particular, we report the values of
accuracy, precision, recall, F1-Score, mean time per epoch (in seconds) of the
CNN training phase, number of CNN parameters, and number of convolutional
layers pruned obtained by applying our multilayer network-based (indicated by
“m”) compression approach and the single layer network-based one (denoted
by “s”) described above. In order to make the comparison as objective as
possible, we identified the best configuration also for the single-layer network-
based approach and adopted it in the comparison. This configuration states
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that the statistical aggregation function adopted in the computation of (5_h,

1 < h <, is the mean, the arc weight is based on the mean (gmean), and v =
1.25.

Table 5 Performance results obtained by our approach based on a multilayer network
(m) and a single-layer one (s) when applied on VGG16, and MNIST and CALTECH-101
are provided in input

geer::lrl]::smce Accuracy Precision Recall F1-Score Mfiz :E);;Ch ##parameters #lgty‘gse z
multilayer (m)

single-layer (s) m s m B m s m s m s m s m s

MNIST 0.990 | 0.987 | 0.988 | 0.984 | 0.987 | 0.983 | 0.987 | 0.983 | 38.0 | 44.1 [ 2.9-107 | 3.1-107 5 3

CALTECH-101 | 0.641 | 0.51 [ 0.509 | 0.315 | 0.546 | 0.326 | 0.527 | 0.320 | 33.1 | 19.0 | 5.6-10" | 2.5- 107 8 12

As for MNIST, we observe that the compression method based on a mul-
tilayer network obtains the highest values of accuracy, precision, recall, and
F1-Score, whereas the mean epoch time is 6s lower, the number of CNN param-
eters is 2 million lower, and the number of pruned convolutional layers is 2
more than the ones obtained by adopting a single-layer network.

As for CALTECH-101, we observe that the compression method based on a
single-layer network obtains better values of mean epoch time, number of CNN
parameters, and number of pruned convolutional layers than the one based on
a multilayer network. However, the former leads to much lower results than
the latter for accuracy (0.641 against 0.510), precision (0.509 against 0.315),
recall (0.546 against 0.326), and F1-Score (0.527 against 0.320).

After comparing our compression approach with an analogous one based
on a single-layer network, we went on to perform a theoretical analysis and
a qualitative comparison between our approach and others that have been
shown to work very well in the area of pruning-based compression. We have
chosen this category of compression approaches because it is the one to which
our approach belongs. Table 6 reports the results of our theoretical analysis
considering four comparison features, namely pruning type, re-training type,
pruning rate, and training after pruning, as suggested in [3].

Table 6 Theoretical analysis of our compression approach and other related ones based
on pruning

Approach Pruning type | Re-training type | Pruning rate | Pruning after training
Our approach Layers Fine-tune Fixed Yes
Li et al. (2016) [23] Filters Fine-tune Fixed Yes (iteratively)
Han et al. (2015) [70] [ Connections Fine-tune Fixed Yes (iteratively)
Liu et al. (2017) [71] Filters Fine-tune Fixed Yes (iteratively)

From the analysis of Table 6, we can observe that our approach is the
only one capable of removing convolutional layers and not individual filters
or connections. Another difference concerns the training of the CNN after
pruning. In fact, our approach trains the CNN only once after pruning; this is
achieved by selecting the most relevant nodes in the multilayer representation
of a CNN. The approach of [70] trains the CNN to learn which connections
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are relevant and then prunes the irrelevant ones. The approach of [23] is based
on an acceleration method for a CNN;, in which filters having a small effect on
the accuracy of the output are pruned. Finally, the approach of [71] detects
insignificant filters during the training task and then prunes them.

Furthermore, we highlight that our compression approach represents only
one possible application of the idea of modeling a CNN through a multilayer
network. In fact, this new representation of a CNN allows the application of
concepts and approaches typical of Complex Network Analysis to the context
of deep learning. Thanks to this way of proceeding, it is possible to perform a
variety of analyses and applications on CNNs with the advantage of not having
to treat them as black boxes. In fact, unlike many other CNN investigation
approaches already proposed in the literature, our approach’s capability of
mapping all the constructs of a CNN while preserving all their features allows
for explanations of how information flows through the various layers of the
CNN, shedding a light on the black box characterizing it.

In Table 7, we report a quantitative comparison between our compression
approach and the other three ones already examined in Table 6. We adopted
Top-1 accuracy as performance measure and MNIST [3] as the dataset for
training and testing. As for our approach, we used the best configuration,
namely (8,means Gmean), and we set v = 1 for VGG19, and v = 1.25 for VGG16.

Table 7 Quantitative comparison between our compression approach and other related
ones based on pruning

Approach CNN Top-1 accuracy Note
VGG16 0.990 Gean mean)s 7 = 1.25
Our approach = : !
PP VGG19 0.991 Bmean, gmean), ¥ = 1
0.985 Filters pruned in the first layer: 0%, in the other layers: 50%
Li et al. (2016) [23] AlexNet 0.986 Filters pruned in the first layer: 30%, in the other layers: 50%
0.987 Filters pruned in the first layer: 0%, in the other layers: 60%
0.985 Conv. pruned: 60%, FC pruned: 70% (L1-norm)
5 )
Han et al. (2015) [70] | AlexNet 0.984 Conv. pruned: 60%, FC pruned: 70% (L1-norm, BND)
. 0.986 Filters pruned: 40%
Liu et al. (2017) [71] AlexNet 0.988 Filters pruned: 50%

From the analysis of Table 7, we can observe that our approach achieves
the highest Top-1 accuracy for both VGG16 and VGG19 (the corresponding
values are 0.990 for VGG16 and 0.991 for VGG19). As for the approach of [23],
the best configuration prunes all filters in the first layer and 60% of filters in the
next layers. It achieves a Top-1 accuracy equal to 0.987. As for the approach
of [70], the authors propose two configurations. The first prunes 60% of the
convolutional layers connections and 70% of the fully connected (FC) layers
connections. It then re-trains the compressed model with an L1-norm. The
second configuration performs the same pruning as the first one but trains the
model with an L1-norm using Batch Normalization and Dropout (BND). The
value of Top-1 accuracy obtained with these two configurations is very similar;
in fact, it is 0.985 with the first configuration and 0.984 with the second one.
Finally, the approach of [71] obtains a Top-1 accuracy value equal to 0.988
with 50% of pruned filters, and a Top-1 accuracy value equal to 0.986 with
40% of pruned filters.
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5.3 Discussion

In this section, we draw some considerations on the approaches presented in
this paper. First, we observe that our approach to map a CNN into a multilayer
network is general and can be applied to most classical CNN architectures,
such as LeNet, AlexNet, GoogleNet, VGG19, and so forth.

Another advantage of our multilayer network-based representation is that
it provides important insights about what is happening under the hood of a
CNN. In fact, it allows us to identify the best performing nodes and describe
how they interact with their neighbors. We can observe how information flows
through the arcs of the multilayer network, which is a representation of how
the corresponding CNN filters process images. The ability of our approach to
identify the most important convolutional layers of a CNN derives exactly from
this observation capability. In turn, the ability to identify the most important
convolutional layers represents the starting point for several tasks, one of which
is the compression of a CNN that we have seen in detail in this paper.

Our compression approach prunes entire layers; this reduces the number
of parameters to be trained and speeds up both training and inference tasks.
Interestingly, pruning a whole layer does not disrupt the nature of a CNN
model, as it could happen with the cutting of redundant connections (see
Section 2).

As for compression performance, we have already seen in Table 7 that our
approach is able to provide very satisfactory results in terms of Top-1 accuracy.
In fact, the value of this parameter is 0.990 for VGG16 and 0.991 for VGG19.
As we have seen in Section 5.2.2, this value is comparable and, actually, slightly
higher than that obtained by the other related pruning-based compression
approaches. Indeed, as seen in Table 7, the latter are able to guarantee a
Top-1 accuracy ranging from 0.984, in the case of the approach described in
[70], to 0.988, in the case of the approach described in [71]. Another interest-
ing strength of our compression approach concerns the difference between the
value of Top-1 accuracy before and after compression. Specifically, with our
approach, Top-1 accuracy increases by 0.4% after compression. In other words,
if compression is performed by means of our approach, it results in an improve-
ment in classification results. In contrast, the other three approaches examined
above lead to a decrease in Top-1 accuracy after compression. Specifically, in
the approach described in [23] (resp., [70], [71]), Top-1 accuracy decreases by
0.02% (resp., 0.15%, 0.04%) after compression.

We can draw further considerations by observing which layers are typi-
cally pruned by our approach. Regarding this, we must preliminarily recall an
important behavior typical of CNNs, i.e., the fact that the first convolutional
layers extract high-level patterns from images (e.g., the shape of a dog), while
the last ones focus on in-depth patterns (e.g., details of the dog, like its ears
or its nose). From Figures 13 - 16, we can see that our compression approach
does not generally prune the first convolutional layers, which are the ones close
to the input; in fact, this pruning activity happens only when ~ is high. One
reason for this behavior concerns the fact that these layers probably extract
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generic patterns that are always useful for classifying input images. This char-
acteristic makes them essential, and so they are hardly pruned by our approach.
Instead, the most pruned layers are the middle ones. This could depend on
the excessive number of convolution operations applied on a fine feature map.
Indeed, it could happen that the first 3-4 convolutional layers extract a mean-
ingful pattern from images, which then undergoes other 7-8 convolutions and
loses its significance. Finally, the last layers of VG(G16, i.e., the ones close to
the classification output, are pruned less than the middle layers but more than
the initial ones. The reason for this behavior is not so obvious and requires
further study in the future.

Although our multilayer network-based representation has several interest-
ing properties, it still has some limitations. For instance, it does not consider
residual connections, typical of ResNet architectures; therefore, ResNet can-
not be represented through it. However, this kind of connection can be easily
added to our model, and we plan to make this task in the next future. Another
limit concerns the view of the filters of a convolutional layer as a single unit.
Indeed, our mapping approach aggregates all the computation results of the
convolutional filters through a mean or a median. This aggregation keeps the
multilayer network size low, but it loses information about single filters. Of
course, this is a tradeoff between the computation time required to process a
larger multilayer network and the need for an in-depth analysis. However, this
implies that we cannot prune any filter from the convolutional layers because
we do not have the corresponding data within the multilayer network model.
Actually, this issue can be addressed by making the multilayer network bigger,
and then by developing a compression algorithm (similar to the one proposed
here) to identify the most performing filters from the convolutional layers of a
CNN.

Another limit concerns the datasets we employed here. MNIST and
CALTECH-101 are surely two important benchmarks, heavily used by the
research community. However, both of them are not as big as ImageNet,
CALTECH-256, and CIFAR100, which are much more complex and require
much more computational power. We are confident that our approach can
show good performances also with datasets like these, but it surely will be
interesting to verify if this conjecture is true.

6 Conclusion

In this paper, we have proposed an approach for representing, exploring and
handling a CNN thanks to the possibility of using concepts and techniques
derived from graph theory. To achieve this goal, our approach employs two
techniques. The first aims to map a CNN into a multilayer network. In par-
ticular, it maps each element of a CNN into the constructs of a multilayer
network, such as nodes, arcs, arc weights, and layers. Then, starting from the
multilayer network representation thus obtained, the second technique deter-
mines the redundant convolutional layers of a CNN and removes them in such
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a way as to obtain a pruned version of it. Thanks to this way of proceeding,
we can reduce the complexity of a CNN model while preserving good perfor-
mances. Finally, we presented an extensive experimental campaign aimed to
show the suitability of the proposed approach and to evaluate its performance.
In particular, we tested our multilayer network representation on VGG16 and
VGG19, trained on MNIST and CALTECH-101 datasets. The obtained results
are interesting since we were able to reduce the number of parameters, as well
as the training and inference times of the CNN models while keeping good
performances.

The possibility to compress CNNs and, more generally, deep learning sys-
tems can be extremely important in areas related to biology and cognitive
computing. In fact, these are two areas that can benefit greatly from deep
learning systems and techniques, as evidenced, for instance, in [4, 5].

The concepts and techniques proposed in this paper certainly represent
a point of arrival in our research. However, at the same time, they are a
starting point for further efforts in this research field. For instance, we plan
to extend our approach in such a way as to represent the residual connections
typical of ResNet architectures. Following a similar reasoning, we can think of
mapping a Recurrent Neural Network (i.e., RNN) into a multilayer network.
Specifically, in this case, each layer could represent a dataset class, while a
node in a layer could represent an RNN cell (think, for instance, of a Long-
Short Term Memory unit). Then, node connections are defined by applying the
same reasoning considered in this paper for CNNs. Specifically, a connection
between two nodes is created if the output of one node represents the input
of the other one. In this way, connections are defined by the output passed to
the units of the next layer, as well as by the hidden states passed to the units
that are found to be adjacent to the ones of the current layer based on the
input sequence. Going forward with this way of proceeding, we might think
of mapping the Attention mechanism into a multilayer network. This would
require the definition of a way to map the hidden states, the context vector,
and the resulting output. These future works could lead our representation
and compression approach to be applied in many other scenarios.

Finally, as further future work, we might consider overcoming the current
limitation of aggregating convolutional filters through a mean or median oper-
ator. In fact, we currently chose such form of aggregation because it keeps the
dimension of the multilayer network low. However, it causes us to lose infor-
mation about the single filters. In the future, we would like to find ways to
proceed that overcome this limitation.

Declarations

Data Availability All datasets used in our experiments are public datasets.
They are available online. The source code is stored at the GitHub address
https://github.com/lucav48/cnn2multilayer.


https://github.com/lucav48/cnn2multilayer

Springer Nature 2021 BTEX template

A Multilayer Network Based Approach to Represent, Explore... 39

Ethics Approval This article does not contain any studies with human
participants or animals performed by any of the authors.

Conflicts of interest The authors are declaring that there are no conflicts
of interests.

References

1]

Dargan, S., Kumar, M., Ayyagari, M.R., Kumar, G.: A survey of deep
learning and its applications: A new paradigm to machine learning.
Archives of Computational Methods in Engineering 27, 1071-1092 (2020)

Merzoug, M.A., Mostefaoui, A., Kechout, M.H., Tamraoui, S.: Deep learn-
ing for resource-limited devices. In: Proc. of the ACM Symposium on QoS
and Security for Wireless and Mobile Networks, New York, NY, USA, pp.
81-87 (2020). Association for Computing Machinery

Choudhary, T., Mishra, V., Goswami, A., Sarangapani, J.: A comprehen-
sive survey on model compression and acceleration. Artificial Intelligence
Review, 1-43 (2020)

Angermueller, C., Parnamaa, T., Parts, L., Stegle, O.: Deep learning for
computational biology. Molecular systems biology 12(7), 878 (2016)

Mahmud, M., Kaiser, M.S., McGinnity, T.M., Hussain, A.: Deep learn-
ing in mining biological data. Cognitive computation 13(1), 1-33 (2021).
Springer

Chen, Y., Zheng, B., Zhang, Z., Wang, Q., Shen, C., Zhang, Q.: Deep
learning on mobile and embedded devices: State-of-the-art, challenges,
and future directions. ACM 53(4) (2020). Association for Computing
Machinery

Chen, Z., Chen, Z., Lin, J., Liu, S., Li, W.: Deep neural network accelera-
tion based on low-rank approximated channel pruning. IEEE Transactions
on Circuits and Systems I: Regular Papers 67(4), 1232-1244 (2020)

Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand,
T., Andreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural
networks for mobile vision applications. CoRR abs/1704.04861 (2017)
https://arxiv.org/abs/1704.04861

Tandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J.,
Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parame-
ters and <0.5 MB model size. arXiv preprint arXiv:1602.07360 (2016)

Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In: Proc. of the IEEE


{arXiv:1704.04861}

40

[12]

[13]

[14]

[16]

[17]

[19]

Springer Nature 2021 BTEX template

A Multilayer Network Based Approach to Represent, FExplore...

Conference on Computer Vision and Pattern Recognition (CVPR’1S),
Salt Lake City, Utah, USA, pp. 6848-6856 (2018). IEEE

Mehta, S., Rastegari, M., Caspi, A., Shapiro, L., Hajishirzi, H.: Espnet:
Efficient spatial pyramid of dilated convolutions for semantic segmenta-
tion. In: Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR’18), Salt Lake City, Utah, USA, pp. 6848-6856
(2018). IEEE

Khan, A., Sohail, A., Zahoora, U., Qureshi, A.S.: A survey of the recent
architectures of deep convolutional neural networks. Artif. Intell. Rev.
53(8), 5455-5516 (2020). https://doi.org/10.1007/s10462-020-09825-6

Kivela, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter,
M.A.: Multilayer networks. Journal of Complex Networks 2(3), 203-271
(2014). https://doi.org/10.1093/comnet/cnu016

Chen, S., Zhao, Q.: Shallowing deep networks: Layer-wise pruning based
on feature representations. IEEE Transactions on Pattern Analysis and
Machine Intelligence 41(12), 3048-3056 (2019)

Suzuki, K., Horiba, I., Sugie, N.: A simple neural network pruning algo-
rithm with application to filter synthesis. Neural Process. Lett. 13(1),
43-53 (2001). https://doi.org/10.1023/A:1009639214138

Srinivas, S., Babu, R.V.: Data-free parameter pruning for deep neural
networks. CoRR abs/1507.06149 (2015)

Ardakani, A., Condo, C., Gross, W.J.: Sparsely-connected neural net-
works: Towards efficient VLSI implementation of deep neural networks.
CoRR abs/1611.01427 (2016)

Babaeizadeh, M., Smaragdis, P., Campbell, R.H.: A simple yet effective
method to prune dense layers of neural networks. In: Proc. of the Interna-

tional Conference on Learning Representations (ICLR’17), Toulon, France
(2017). ICLR

Yang, Z., Moczulski, M., Denil, M., De Freitas, N., Song, L., Wang, Z.:
Deep fried convnets. In: Proc. of the IEEE International Conference on
Computer Vision (ICCV’15), pp. 1476-1483 (2015). https://doi.org/10.
1109/1CCV.2015.173

Lin, M., Chen, Q., Yan, S.: Network In Network (2014)
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D.,

Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolu-
tions. In: Proc. of the IEEE Conference on Computer Vision and Pattern


https://doi.org/10.1007/s10462-020-09825-6
https://doi.org/10.1093/comnet/cnu016
https://doi.org/10.1023/A:1009639214138
https://doi.org/10.1109/ICCV.2015.173
https://doi.org/10.1109/ICCV.2015.173

[22]

[25]

[26]

27]

[28]

Springer Nature 2021 BTEX template

A Multilayer Network Based Approach to Represent, Explore... 41

Recognition (CVPR’15), pp. 1-9 (2015)

Guo, Y., Yao, A., Chen, Y.: Dynamic network surgery for efficient dnns.
In: Proc. of the International Conference on Neural Information Process-
ing Systems (NIPS’16). NIPS’16, pp. 1387-1395. Curran Associates Inc.,
Red Hook, NY, USA (2016)

Li, H., Kadav, A., Durdanovic, 1., Samet, H., Graf, H.P.: Pruning filters
for efficient convnets. CoRR abs/1608.08710 (2016)

Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convo-
lutional neural networks for resource efficient inference. In: Proc. of the
International Conference on Learning Representations (ICLR’17), Toulon,
France (2017). ICLR

He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep
neural networks. In: Proc. of the IEEE International Conference on Com-
puter Vision (ICCV’17), pp. 1398-1406 (2017). https://doi.org/10.1109/
ICCV.2017.155

Liu, B., Wang, M., Foroosh, H., Tappen, M., Penksy, M.: Sparse convo-
lutional neural networks. In: Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR’15), pp. 806-814 (2015). https:
//doi.org/10.1109/CVPR.2015.7298681

Zhu, M., Gupta, S.: To prune, or not to prune: exploring the efficacy of
pruning for model compression (2017)

Albu, F., Mateescu, A., Dumitriu, N.: Architecture selection for a mul-
tilayer feedforward network. In: Proc. of International Conference on
Microelectronics and Computer Science (ICMCS’97), pp. 131-134 (1997)

Czernichow, T., Germond, A., Dorizzi, B., Caire, P.: Improving recurrent
network load forecasting. In: Proc. of International Conference on Neural
Networks (ICNN’95), vol. 2. Perth, WA, Australia, pp. 899-904 (1995).
IEEE

Chen, W., Wilson, J.T., Tyree, S., Weinberger, K.Q., Chen, Y.: Compress-
ing neural networks with the hashing trick. In: Proc. of the International
Conference on Machine Learning (ICML’15), pp. 2285-2294. JMLR.org,
Lille, France (2015)

Courbariaux, M., Bengio, Y., David, J.-P.: Binaryconnect: Training deep
neural networks with binary weights during propagations. In: Proc. of
the International Conference on Neural Information Processing Systems
(NIPS’15). NIPS’15, pp. 3123-3131. MIT Press, Cambridge, MA, USA
(2015)


https://doi.org/10.1109/ICCV.2017.155
https://doi.org/10.1109/ICCV.2017.155
https://doi.org/10.1109/CVPR.2015.7298681
https://doi.org/10.1109/CVPR.2015.7298681

42

32]

[33]

[34]

[35]

[39]

[40]

[41]

Springer Nature 2021 BTEX template

A Multilayer Network Based Approach to Represent, FExplore...

Lin, Z., Courbariaux, M., Memisevic, R., Bengio, Y.: Neural networks with
few multiplications. In: Bengio, Y., LeCun, Y. (eds.) Proc. of the Inter-
national Conference on Learning Representations (ICLR’16), San Juan,
Puerto Rico (2016)

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Bina-
rized neural networks. In: Proc. of the International Conference on Neural
Information Processing Systems (NIPS’16), Red Hook, NY, USA, pp.
4114-4122 (2016). Curran Associates Inc.

Hou, L., Yao, Q., Kwok, J.T.: Loss-aware binarization of deep networks.
In: Proc. of the International Conference on Learning Representations
(ICLR’17), Toulon, France (2017). ICLR

Hou, L., Kwok, J.T.: Loss-aware weight quantization of deep networks.
In: Proc. of the International Conference on Learning Representations
(ICLR’18). ICLR, Vancouver, BC, Canada (2018)

Zhou, S., Ni, Z., Zhou, X., Wen, H., Wu, Y., Zou, Y.: Dorefa-net: Training
low bitwidth convolutional neural networks with low bitwidth gradients.
CoRR abs/1606.06160 (2016) https://arxiv.org/abs/1606.06160

Lin, J.-H., Xing, T., Zhao, R., Zhang, Z., Srivastava, M., Tu, Z., Gupta,
R.K.: Binarized convolutional neural networks with separable filters for
efficient hardware acceleration. In: 2017 IEEE Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), pp. 344-352
(2017). https://doi.org/10.1109/CVPRW.2017.48

Han, S., Mao, H., Dally, W.J.: Deep Compression: Compressing Deep Neu-
ral Networks with Pruning, Trained Quantization and Huffman Coding
(2016)

Anwar, S., Hwang, K., Sung, W.: Structured pruning of deep convolutional
neural networks. J. Emerg. Technol. Comput. Syst. 13(3) (2017). https:
//doi.org/10.1145 /3005348

Hinton, G., Vinyals, O., Dean, J.: Distilling the Knowledge in a Neural
Network (2015)

Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.:
Fitnets: Hints for thin deep nets. In: Proc. of the International Conference
on Learning Representations (ICLR’15) (2015)

Kim, J., Park, S., Kwak, N.: Paraphrasing complex network: Network
compression via factor transfer. In: Advances in Neural Information
Processing Systems, vol. 31 (2018). Curran Associates, Inc.


{arXiv:1606.06160}
https://doi.org/10.1109/CVPRW.2017.48
https://doi.org/10.1145/3005348
https://doi.org/10.1145/3005348

[43]

[44]

[45]

[46]

[47]

[48]

[52]

Springer Nature 2021 BTEX template

A Multilayer Network Based Approach to Represent, Explore... 43

Srinivas, S., Fleuret, F.: Knowledge transfer with Jacobian matching. In:
Proc. of the International Conference on Machine Learning (ICLR’18),
vol. 80, pp. 4723-4731 (2018). PMLR

Polino, A., Pascanu, R., Alistarh, D.: Model compression via distillation
and quantization. In: Proc. of the International Conference on Learning
Representations (ICLR’18). ICLR, Vancouver, BC, Canada (2018)

Lan, X., Zhu, X., Gong, S.: Knowledge distillation by on-the-fly native
ensemble. In: Advances in Neural Information Processing Systems, vol.
31 (2018). Curran Associates, Inc.

You, J., Leskovec, J., He, K., Xie, S.: Graph structure of neural networks.
In: Proc. of the International Conference on Machine Learning (ICML’20),
vol. 119, pp. 1088110891 (2020). PMLR

Altas, D., Cilingirturk, A.M., Gulpinar, V.: Analyzing the process of the
artificial neural networks by the help of the social network analysis. New
Knowledge Journal of Science 2, 80-91 (2013)

Sainath, T.N., Kingsbury, B., Sindhwani, V., Arisoy, E., Ramabhadran,
B.: Low-rank matrix factorization for deep neural network training with
high-dimensional output targets. In: 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing, pp. 6655-6659 (2013). https:
//doi.org/10.1109/ICASSP.2013.6638949

Denton, E.L., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R.: Exploit-
ing linear structure within convolutional networks for efficient evaluation.
In: Advances in Neural Information Processing Systems, vol. 27 (2014).
Curran Associates, Inc.

Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neu-
ral networks with low rank expansions. In: Proc. of British Machine Vision
Conference (BMVC’14) (2014). BMVA Press

Kim, Y., Park, E., Yoo, S., Choi, T., Yang, L., Shin, D.: Compression of
deep convolutional neural networks for fast and low power mobile appli-
cations. In: Bengio, Y., LeCun, Y. (eds.) 4th International Conference on
Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4,
2016, Conference Track Proceedings (2016)

Toannou, Y., Robertson, D.P.,; Shotton, J., Cipolla, R., Criminisi, A.:
Training cnns with low-rank filters for efficient image classification. In:
Bengio, Y., LeCun, Y. (eds.) 4th International Conference on Learn-
ing Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings (2016)


https://doi.org/10.1109/ICASSP.2013.6638949
https://doi.org/10.1109/ICASSP.2013.6638949

44

[53]

[56]

Springer Nature 2021 BTEX template

A Multilayer Network Based Approach to Represent, FExplore...

Alvarez, J.M., Salzmann, M.: Compression-aware training of deep net-
works. In: Proceedings of the 31st International Conference on Neural
Information Processing Systems. NIPS’17, pp. 856-867. Curran Asso-
ciates Inc., Red Hook, NY, USA (2017)

Zhang, X., Zou, J., He, K., Sun, J.: Accelerating very deep convolutional
networks for classification and detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence 38(10), 1943-1955 (2016). https://doi.
org/10.1109/TPAMI.2015.2502579

Li, C., Shi, C.-R.: Constrained optimization based low-rank approxima-
tion of deep neural networks. In: Proc. of the European Conference Com-
puter (ECCV’18), vol. 11214, pp. 746-761. Springer, Munich, Germany
(2018)

Yao, K., Cao, F., Leung, Y., Liang, J.: Deep Neural Network Compres-
sion through Interpretability-Based Filter Pruning. Pattern Recognition,
108056 (2021). Elsevier

Kahng, M., Andrews, P.Y., Kalro, A., Chau, D.H.: Activis: Visual explo-
ration of industry-scale deep neural network models. IEEE Transactions
on Visualization and Computer Graphics 24(1), 88-97 (2018). https:
//doi.org/10.1109/TVCG.2017.2744718

Hohman, F., Park, H., Robinson, C., Polo Chau, D.H.: Summit: Scaling
deep learning interpretability by visualizing activation and attribution
summarizations. IEEE Transactions on Visualization and Computer
Graphics 26(1), 1096-1106 (2020). https://doi.org/10.1109/TVCG.2019.
2934659

Zhang, Q., Cao, R., Shi, F., Wu, Y.N., Zhu, S.-C.: Interpreting cnn knowl-
edge via an explanatory graph. Proceedings of the AAAI Conference on
Artificial Intelligence 32(1) (2018)

Zhang, Q., Yang, Y., Ma, H., Wu, Y.N.: Interpreting cnns via deci-
sion trees. In: 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 6254-6263 (2019). https://doi.org/10.
1109/CVPR.2019.00642

Zhang, Q., Cao, R., Wu, Y.N., Zhu, S.-C.: Mining object parts from cnns
via active question-answering. In: Proc. of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR’17), Los Alamitos, CA,
USA, pp. 3890-3899 (2017). IEEE

Manel Hmimida, R.K.: Community detection in multiplex networks: A
seed-centric approach. Networks & Heterogeneous Media 10(1), 71-85
(2015)


https://doi.org/10.1109/TPAMI.2015.2502579
https://doi.org/10.1109/TPAMI.2015.2502579
https://doi.org/10.1109/TVCG.2017.2744718
https://doi.org/10.1109/TVCG.2017.2744718
https://doi.org/10.1109/TVCG.2019.2934659
https://doi.org/10.1109/TVCG.2019.2934659
https://doi.org/10.1109/CVPR.2019.00642
https://doi.org/10.1109/CVPR.2019.00642

(63]

[64]

Springer Nature 2021 BTEX template

A Multilayer Network Based Approach to Represent, Explore... 45

Battiston, F., Nicosia, V., Latora, V.: Structural measures for multi-
plex networks. Phys. Rev. E 89, 032804 (2014). https://doi.org/10.1103/
PhysRevE.89.032804

Shannon, C.E.: A mathematical theory of communication. The Bell Sys-
tem Technical Journal 27(3), 379-423 (1948). https://doi.org/10.1002/j.
1538-7305.1948.tb01338.x

Gowdra, N., Sinha, R., MacDonell, S., Yan, W.Q.: Mitigating severe over-
parameterization in deep convolutional neural networks through forced
feature abstraction and compression with an entropy-based heuristic.
Pattern Recognition, 108057 (2021). Elsevier

Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-
scale image recognition. In: Bengio, Y., LeCun, Y. (eds.) Proc. of the
International Conference on Learning Representations (ICLR’15) (2015)

Alvear-Sandoval, R.F., Sancho-Gomez, J.L., Figueiras-Vidal, A.R.: On
improving cnns performance: The case of mnist. Information Fusion 52,
106-109 (2019). https://doi.org/10.1016/j.inffus.2018.12.005

Angelov, P., Soares, E.: Towards explainable deep neural networks (xdnn).
Neural Networks 130, 185-194 (2020). https://doi.org/10.1016/j.neunet.
2020.07.010

Ferguson, M., Ak, R., Lee, Y.-T.T., Law, K.H.: Automatic localization
of casting defects with convolutional neural networks. In: 2017 IEEE
International Conference on Big Data (Big Data), pp. 1726-1735 (2017).
https://doi.org/10.1109/BigData.2017.8258115

Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both weights and
connections for efficient neural networks. In: Proceedings of the 28th Inter-
national Conference on Neural Information Processing Systems - Volume
1. NIPS’15, pp. 1135-1143. MIT Press, Cambridge, MA, USA (2015)

Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning Efficient
Convolutional Networks through Network Slimming. arXiv (2017). https:
//doi.org/10.48550/ ARXIV.1708.06519


https://doi.org/10.1103/PhysRevE.89.032804
https://doi.org/10.1103/PhysRevE.89.032804
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1016/j.inffus.2018.12.005
https://doi.org/10.1016/j.neunet.2020.07.010
https://doi.org/10.1016/j.neunet.2020.07.010
https://doi.org/10.1109/BigData.2017.8258115
https://doi.org/10.48550/ARXIV.1708.06519
https://doi.org/10.48550/ARXIV.1708.06519

	Introduction
	Related Literature
	Mapping a Convolutional Neural Network into a multilayer network
	Class network definition
	Node definition
	Arc definition
	Weight definition

	Mapping a CNN into a multilayer network
	Algorithm for building the multilayer network


	Applying the multilayer network model to compress a CNN
	Methodology
	Approach formalization

	Experiments
	Reference Convolutional Neural Network
	Obtained results
	Tuning and performances
	Comparison results

	Discussion

	Conclusion

