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Lipid nanoparticles own a remarkable potential in nanomedicine, only partially disclosed. While the clinical 
use of liposomes and cationic lipid-nucleic acid complexes is well-established, liquid lipid nanoparticles 
(nanoemulsions), solid lipid nanoparticles, and nanostructured lipid carriers have even greater possibilities. 
However, they face obstacles in being used in clinics due to a lack of understanding about the molecular 
mechanisms controlling their drug loading and release, interactions with the biological environment (such as 
the protein corona), and shelf-life stability. To create effective drug delivery carriers and successfully translate 
bench research to clinical settings, it is crucial to have a thorough understanding of the internal structure of 
lipid nanoparticles. Through synchrotron small-angle X-ray scattering experiments, we determined the spatial 
distribution and internal structure of the nanoparticles’ lipid, surfactant, and the bound water in them. The 
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nanoparticles themselves have a barrel-like shape that consists of coplanar lipid platelets (specifically cetyl 
palmitate) that are covered by loosely spaced polysorbate 80 surfactant molecules, whose polar heads retain a 
large amount of bound water. To reduce the interface cost of bound water with unbound water without stacking, 
the platelets collapse onto each other. This internal structure challenges the classical core-shell model typically 
used to describe solid lipid nanoparticles and could play a significant role in drug loading and release, biological 
fluid interaction, and nanoparticle stability, making our findings valuable for the rational design of lipid-based 
nanoparticles.
1. Introduction

Lipid nanoparticles (LNPs) have been widely investigated as drug 
delivery systems for enhancing drug bioavailability and targeting ther-
apeutic and diagnostic agents to pathological sites such as brain and 
solid tumors [1–6]. The recent introduction to clinics of RNAi and 
mRNA-based medicinal products using LNPs [7,8] has highlighted the 
enormous potential of lipid carriers as drug delivery systems for both 
large biomacromolecules like nucleic acid and peptides, as well as small 
molecule drugs. However, LNPs comprise a diverse range of nanometer 
carriers composed of lipid molecules. Indeed, due to the broad defini-
tion of lipids according to IUPAC [9], LNPs encompass various struc-
turally different nanoscale carriers, including liposomes, liquid LNPs, 
solid LNPs, nanostructured lipid carriers, and cationic lipid-nucleic acid 
complexes [4].

LNPs for drug delivery have the advantage of using GRAS materi-
als [10] and industrial-scale production protocols [4], which increases 
the likelihood of developing effective nanotechnology-based medicine 
for clinical use. However, the lack of a deep and comprehensive under-
standing of the LNP structure hinders the rational, safe and effective 
design of these drug carriers. The effectiveness and safety of LNPs are 
not only influenced by the lipids in their formulation and the amount 
of drug they can hold but also by various factors such as their size, 
shape, surface chemistry, internal structure, and drug distribution. Care-
ful analysis of the entire system is essential in comprehending the 
nano-bio interface, which is accountable for the safety and efficacy of 
nanotechnology-based medication. [11].

Solid LNPs are a type of drug delivery and targeting carriers that 
have shown great promise due to their stability over time. Compared to 
other lipid-based delivery systems like liposomes and nanoemulsions, 
solid LNPs have the solid-state stability of the core that is less prone 
to problems such as drug leakage/degradation and particle coales-
cence. They can encapsulate a variety of hydrophobic and hydrophilic 
drugs [12,13] and this adaptability to deliver a wide range of ther-
apeutic compounds is expected to increase demand for them in the 
market [14].

Although solid LNPs have shown excellent performance in preclin-
ical studies, they have been studied as nanoscopic carriers for drug 
delivery and targeting for only the last three decades, much less than li-
posomes and cationic lipid particles for RNA delivery. Also, solid LNPs 
still face stability challenges like premature drug leakage and nanopar-
ticle aggregation, which hinder their clinical use [4]. Researchers pre-
viously thought lipid polymorphism was responsible for these issues, 
as observed through techniques like calorimetry and X-ray diffraction. 
Solid LNPs were described using a core-shell model with a (solid) lipid 
core stabilized by a surfactant shell, possibly penetrating with its hy-
drophobic tail the lipid surface [15]. However, recent findings have 
shown that the interplay between lipids and surfactants is more complex 
and LNP structure cannot be explained by this model alone [16,17]. 
This new understanding sheds light on the structure, shelf-life stability, 
drug loading/release, and interaction with the biological environment 
of solid LNPs, offering new possibilities for drug delivery.

In this study, we used solid LNPs made of cetyl palmitate (CP) and 
polysorbate 80 (P80) to investigate how the combination of lipids and 
surfactants affects the internal lamellar structure and the P80 surface 
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coverage. CP was selected due to its easy biodegradability in vivo [18,
10], fundamental to avoiding waste disposable, while P80 is non-ionic 
surfactant approved by regulatory agencies for parenteral use and so 
already employed in injectable formulations [19].

Understanding the internal structure and composition is crucial for 
predicting drug loading, cargo stability, and release based on the drug’s 
physicochemical properties. Similarly, studying the surface characteris-
tics is essential for analyzing the nano-bio interface and comprehending 
the role of adsorbed biomolecules (bio-corona) on biodistribution and 
cellular uptake.

We conducted synchrotron small-angle X-ray scattering (SAXS) ex-
periments on P80 micelles and P80-stabilized LNPs at different concen-
trations and temperatures. By using advanced methods, we were able to 
determine that these particles have a barrel-like shape made up of CP
platelets that are covered by loosely spaced P80 molecules retaining a 
large amount of bound water. These findings demonstrate the interplay 
between lipid, surfactant, and water in the formation of the solid LNP 
inner core. Furthermore, ≈ 65% of the platelet surface is made of wa-
ter bound to P80 and in contact with amorphous CP. Consequently, we 
found that some lipid regions are in contact with the surrounding water 
via bound water.

2. Materials and methods

2.1. Materials

CP (batch 120851, purity ∼ 93%) was kindly gifted by Gattefossé 
s.a.s. (Saint-Priest, France) while P80 (batch BCBV8843) was from 
Sigma-Aldrich (Milan, Italy). Water (resistivity 18.3 MΩcm at 25 ◦C) 
was produced with a Synergy® UV Water Purification System (Milli-
pore Sigma, USA). If not specified, all the materials and solvents used 
in the present research work were used as provided by the supplier 
without further purification.

2.1.1. Solid LNPs preparation
Solid LNPs were prepared through the hot, high-pressure homog-

enization technique with slight adaptations of a previously reported 
protocol [20,21]. Briefly, 4 g of CP, melted at 65 ◦C, were slowly added 
to 40 mL of heated water (65 ◦C) containing P80 at a concentration of 
2% (w/v) under mixing at 8000 rpm by a high-shear mixer (Ultra Tur-
rax T25 IKA® Werke GmbH & Co. KG, Staufen, Germany). The obtained 
emulsion was passed through a homogenizer (high-pressure homoge-
nizer Emulsiflex C5, Avestin Inc., Ottawa, Canada) 7 times at a pressure 
of 1500 bar [20]. The homogenizer was conditioned at 65 ◦C during all 
the homogenization process. After the last homogenization cycle, the 
obtained nanoemulsion was cooled down in an ice bath, maintaining 
the dispersion under mild magnetic stirring (20 min). Upon cooling, 
the nanoemulsion droplets solidify, generating solid LNPs.

2.2. Methods

2.2.1. DLS experiments
Dynamic Light Scattering (DLS) experiments were carried out to 

evaluate the average size, at micrometric resolution, of solid LNPs as 
well as their stability as a function of the time from preparation. Mea-
surements were performed on a Zetasizer PRO instrument (Malvern 

Panalytical Ltd, Malvern, United Kingdom) at 25 ◦C by detecting the 
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intensity of the light (wavelength 6328 Å) scattered at a fixed angle 
of 173◦. A freshly prepared dispersion of solid LNPs was diluted to 
1 g/L, and three independent DLS measurements of the second-order 
intensity autocorrelation functions, 𝑔2(𝜏) −1, where 𝜏 is the correlation 
time, were performed after 0, 2, 6, 15, and 30 days passed from the na-
noemulsion preparation. Data were analyzed by assuming a Gaussian 
distribution of the hydrodynamic LNP radius, 𝑅𝐻 , as detailed in the 
Sect. S1 of the Supplementary Material (SM). Zeta Potential measure-
ments were also performed using the same instrument.

2.2.2. AFM experiments
AFM measurements were carried out on an AIST-NT Scanning Probe 

Microscopy (Horiba Scientific, Kyoto, Japan). Images were generated 
in non-contact mode with a pyramidal silicon tip with radius 80 Å. 
To improve the quality of the measurements, samples were diluted to 
0.1 g/L. An amount of ≈ 5 μL of the diluted dispersion was deposited 
on a freshly cleaved mica surface and then dried with a nitrogen flux. 
All images were acquired with a resolution of 512 ×512 pixels at a scan 
rate of 1 Hz and were analyzed with Gwyddion [22] and ImageJ [23]
software. The AFM particle size analysis was carried out by selecting 
about 50 individual LNPs and measuring the distance 𝑅c between the 
center and the border along randomly oriented straight lines passing 
through the center of the particle. A histogram of all measurements was 
then determined by using a 50 Å grid and fitted using a simple Gaussian 
distribution.

2.2.3. SAXS experiments
SAXS experiments were carried out at the beamline ID02 of ESRF, 

the European Synchrotron Radiation Facility (Grenoble, France). A 
unique flow-through capillary, with quartz walls of 10 μm and a di-
ameter of ∼ 2.0 mm, equipped with a motorized syringe that allowed 
the sample volume to be moved continuously forward and backward 
in order to limit the radiation damage, was used for both samples 
and buffers. Two sample-to-detector distances were used, correspond-
ing to 1.5 m and 15 m, and data were merged to achieve a 𝑞-range 
(𝑞 = 4𝜋 sin𝜃∕𝜆 being the modulus of the scattering vector, where 2𝜃
is the scattering angle and 𝜆 = 0.995 Å the X-ray wavelength) of 
0.001 − 0.5 Å−1. For each of the two distances, SAXS measurements 
were performed at the temperature of 20, 25, 30, 37, 25 and 20 ◦C by 
using an increasing and decreasing temperature ramp accessible using 
a Peltier-controlled stage. 2D SAXS patterns were collected by using a 
CCD detector (Rayonix MX170 HS) and subsequently corrected for the 
CCD dark counts, for the spatial inhomogeneities of the detector and 
normalized to an absolute scale using the standard procedure [24]. Ten 
2D SAXS patterns of 0.1 s duration were collected for each sample or 
buffer. The 1D SAXS profiles were obtained by azimuthally averaging 
each of the 10 normalized 2D SAXS patterns. The mean and the stan-
dard deviation of the 1D SAXS profiles were calculated based on the 10 
2D SAXS patterns. To each sample, the buffer contribution, multiplied 
by the factor 1 − 𝜂, 𝜂 being the sample volume fraction, was subtracted 
from the 1D SAXS profile to finally obtain the macroscopic differential 
scattering cross-section, 𝑑Σ∕𝑑Ω(𝑞), together with its standard devia-
tion, 𝜎(𝑞), as a function of 𝑞.

Other SAXS experiments on a second batch of samples prepared with 
the same method exposed in the Sect. 2.1.1 were performed at the 
Austrian SAXS beamline of the ELETTRA synchrotron (Trieste, Italy). 
Measurements of both samples and buffers were carried out in a unique 
quartz capillary (diameter 1.5 mm and wall thickness 10 μm) mounted 
on a thermostatic support connected to a circulation bath for tem-
perature control. 2D SAXS patterns were collected 3 times with an 
acquisition time of 20 s using a Pilatus3 1 M detector. Data reduction 
was performed with the methodology previously described for the ESRF 
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data.
Journal of Colloid And Interface Science 662 (2024) 446–459

Fig. 1. Chemical structure of the molecules cetyl palmitate, CP (top), and 
polysorbate 80, P80 (bottom).

2.2.4. SAXS models
We have developed novel models to analyze SAXS data of solid 

lipid nanoparticles formed by cetyl palmitate and stabilized by polysor-
bate 80 (Fig. 1) as well as SAXS data of only P80. The models take into 
account the whole 𝑞-range of all synchrotron SAXS data and exploit 
the information coming from (i) the absolute calibration of such data, 
(ii) the chemical compositions of CP and P80 (Table 1) and (iii) their 
nominal concentrations in the SAXS investigated water solutions. More-
over, those models are applied to simultaneously fit all the experimental 
SAXS curves by following a so-called global fit approach [25].

Data of samples containing only P80 have been analyzed with the 
form factor of cylinders with spherical end-caps [26], with size distribu-
tion described by the ladder model [27], and with the structure factor 
derived by a perturbation of the Percus-Yevick (PY) model due to the 
hard sphere double Yukawa potential (HSDY) in the framework of the 
random phase approximation (RPA) [28–30].

SAXS curves of LNPs have been modeled by the form factor of a 
barrel formed by the stacking of polydisperse CP platelets [31,32] cov-
ered with a non continuous layer of P80 with low surface density. The 
stacking structure factor has been described in the framework of the 
para-crystal theory [33–36]. The excess P80 molecules of these samples 
are considered to form micelles, described with the same approach used 
for samples of only P80.

In the following paragraphs, a complete description of these models 
is shown.

SAXS of growing and interacting end-capped cylindrical micelles Micelles 
composed by the nonionic surfactant P80 are supposed to be distributed 
in different sizes according to the ladder model derived by Thomas et 
al. [27]. We first consider the chemical potential of a micelle formed 
by 𝑚 self-assembled molecules, 𝜇𝑚 = 𝜇◦

𝑚
+ R𝑇 log𝐶𝑚, where R is the 

perfect gas constant, 𝑇 the absolute temperature, 𝐶𝑚 the molar con-
centration of the micelle and 𝜇◦

𝑚
is the standard chemical potential 

in the molar unit (corresponding to 𝐶𝑚 = 1 M). The formation of this 
micelle from 𝑚 isolated molecules is written as a chemical reaction, 
𝑚 P80 ⇌ P80𝑚. At the equilibrium, according to standard thermody-
namics, the chemical potential of P80 in any state should be the same, 
hence 𝜇1 = 𝜇𝑚∕𝑚. It follows that 𝐶𝑚 = 𝐶𝑚1 𝑒

−(𝜇◦𝑚−𝑚𝜇
◦
1 )∕(R𝑇 ). The ladder 

model [27] simply assumes that the standard chemical potential differ-
ence, 𝜇◦

𝑚
−𝑚𝜇◦1 , is a linear function of 𝑚,

𝜇◦
𝑚
−𝑚𝜇◦1 = Δ+ (𝑚−𝑚0)𝛿 (1)

where Δ is the free energy gain when a micelle with the minimum ag-
gregation number 𝑚0 is formed and 𝛿 is the free energy gain when a 
molecule is added to a micelle already formed. To note, both Δ and 
𝛿 must be negative, indicating that the two corresponding processes 

are favored. On the other hand, Δ − 𝑚0𝛿, the free energy required 
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Table 1

Chemical groups forming the polar and the hydrophobic domains of CP and P80
molecules. The first block of the table reports the number of electrons and the molec-
ular volume at 25 ◦C of each group. The second bloc reports the abundance of the 
groups in the hydrophobic and polar domains CP and P80 molecules. (a) Data calcu-
lated according to Marsh et al. [37].

> C = =O −O− OH CH CH2 CH3 H2O

n. electrons 6 8 8 9 7 8 9 10
𝜈◦ (a) (Å3) 13.0 12.0 15.0 16.0 21.5 27.7 52.9 29.9

CP polar head 1 1 1
CP hydrophobic tail 29 2
P80 dry polar head 1 1 22 3 4 42
P80 hydrophobic tail 2 14 1
to form two end-caps in the cylindrical body of the micelle should 
be positive. The mass balance of P80 leads to the following equation, 
𝐶P80 = 𝐶1 +

∑∞
𝑚=𝑚0

𝑚𝐶𝑚, where 𝐶P80 = 𝑐P80 𝑑wat ∕𝑀P80 is the nominal 
molar concentration of P80 (𝑐P80 is the w/v concentration at the refer-
ence temperature 𝑇◦ = 298.15 K, 𝑀P80 is the molecular weight of P80
and 𝑑wat is the bulk water relative mass density, calculated, according 
to Eq. (2) of Spinozzi et al. [30], as a function of 𝑇 ). We thus derive 
𝐶P80 = 𝐶1 + 𝑒−(Δ−𝑚0𝛿)∕(R𝑇 )

∑∞
𝑚=𝑚0

𝑚𝐶𝑚1 𝑒
−𝑚𝛿∕(R𝑇 ). The last equation can 

be re-written in terms of the fraction of free P80 molecules in solution, 
𝛼1 = 𝐶1∕𝐶P80, and by calculating the derivative of the sum of the first 
𝑚 elements of a geometric series. The result leads to an equation of the 
unique variable 𝑧 = 𝛼1𝐶P80𝑒−𝛿∕(R𝑇 ),

𝑧𝑒𝛿∕(R𝑇 ) + 𝑒−(Δ−𝑚0𝛿)∕(R𝑇 )𝑧𝑚0
𝑚0 − 𝑧(𝑚0 − 1)

(1 − 𝑧)2
= 𝐶P80 (2)

We have checked that, by assuming 𝑧 < 1, Eq. (2) can by numerically 
solved. As a result, the fraction 𝛼1 can be obtained as a function of 𝑐, 𝑇
and the two thermodynamic parameters ruling the micellar processes, 
Δ and 𝛿. Moreover, the average micellar aggregation number, <𝑚 >, 
can be easily derived, according to Eq. S10 of the SM. Examples of nu-
merical solutions of Eq. (2) and calculation of 𝐶𝑚 are shown in Fig. S1 
of the SM. By extending this treatment from a discrete to a continu-
ous approach and by neglecting the SAXS contribution of isolated P80
molecules, the average form factor of end-cap cylindrical (ec) micelles 
can be written by

𝑃ec(𝑞) =

∞

∫
𝑚0

𝑝(𝑚)𝑃ec,𝑚(𝑞)𝑑𝑚 (3)

where 𝑃ec,𝑚(𝑞) is the form factor of the micelle formed by the aggrega-
tion of 𝑚 P80 molecules of which 𝑚0 are involved in the formation of 
two end-caps and the remaining 𝑚 −𝑚0 are forming a cylindrical region 
between them and 𝑝(𝑚) represents the probability density of having mi-
celles with 𝑚 molecules,

𝑝(𝑚) =
𝐶𝑚

∫ ∞
𝑚0
𝐶𝑚 𝑑𝑚

. (4)

An expression similar to Eq. (3) can be derived for the average ampli-
tude of polydisperse micelles,

𝑃 (1)
ec (𝑞) =

∞

∫
𝑚0

𝑝(𝑚)𝑃 (1)
ec,𝑚(𝑞)𝑑𝑚 (5)

We have adopted one of the most suitable SAS models for describ-
ing this kind of micellar shape [38], which is the one developed by 
Kaya [26], here extended to the presence of an inner hydrophobic do-
main (2-domain) and an outer hydrated polar head domain (1-domain). 
A representation of this model is shown in Fig. 2. The geometrical pa-
rameters of the model are the radius 𝑅2,cyl (green segment, Fig. 2) of the 
inner cylindrical domain (intense blue shadow, Fig. 2) and its length 𝐿
449

(dark-green segment, Fig. 2), the thickness 𝛿cyl (orange segment, Fig. 2) 
Fig. 2. Sketches of the globular end-cap cylinder model, with negative, null 
and positive parameter ℎ, panels A, B and C, respectively. The geometrical 
parameters of the model represented with colored segments, are: ℎ (red, ab-
solute value), 𝑅2,cyl (green), 𝑅2,cap (blue), 𝛿cyl (orange), 𝛿cap (dark-red) and 𝐿
(dark green). Areas with less intense and more intense shadings represent the 
ED of end-cap and cylindrical regions, respectively, red and blue shading being 
the corresponding hydrated polar head and hydrophobic domains, respectively. 
(For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)

of the outer cylindrical shell (intense red shadow, Fig. 2), the radius 
𝑅2,cap (blue segment, Fig. 2) of the inner spherical cap domain (less in-
tense blue shadow, Fig. 2) and the thickness 𝛿cap (dark-red segment, 
Fig. 2) of the outer shell of the spherical cap domain. The parameter 
ℎ = ±

√
𝑅2
2,cap −𝑅

2
2,cyl (red segment, Fig. 2) could be negative, null, or 

positive, as highlighted in panels A-C of Fig. 2, respectively. To note, 
the condition 𝑅2,cap >𝑅2,cyl should be respected. By observing the right 
triangles with the colored sides that appear in panels A and C of Fig. 2, 
it is evident that 𝛿cyl + 𝑅2,cyl =

√
(𝑅2,cap + 𝛿cap)2 − ℎ2, hence only one 

of two parameters 𝛿cyl and 𝑅2,cyl can be considered independent. The 
scattering parameters of the model are the electron densities (EDs) of 
the cylindrical and end-cap regions, distinguished in hydrated polar do-
mains (𝜌1,cyl and 𝜌1,cap, more intense and less intense red shadows in 
Fig. 2) and in hydrophobic domains (𝜌2,cyl and 𝜌2,cap, more intense and 
less intense blue shadows in Fig. 2). The geometrical parameters of the 
model can be related to the aggregation numbers 𝑚 and 𝑚0. Indeed, by 
referring to the hydrophobic molecular volume of P80 in the end-cap 
domain, 𝜈hyd,cap, we have the following constraint,

𝑚0𝜈hyd,cap =
4
3
𝜋𝑅3

2,cap

[
1 + 3

2
ℎ

𝑅2,cap
− 1

2

(
ℎ

𝑅2,cap

)3
]
, (6)

whereas, considering the hydrophobic molecular volume of P80 in the 
cylindrical domain, 𝜈hyd,cyl, we have

(𝑚−𝑚0)𝜈hyd,cyl = 𝜋𝑅2
2,cyl𝐿 (7)

The X-ray scattering amplitude 𝐴𝑚(𝐪), which is defined as the Fourier 
transform of the excess X-ray scattering length density, of the core-
shell end-cap cylinder formed by 𝑚 P80 molecules, derived according to 

Kaya’s model [26], is fully reported in Eq. S11 of the SM as a function 
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of the components of the scattering vector 𝐪 parallel and perpendicular 
to the cylindrical axis, 𝑞‖ = 𝑞 cos𝛽𝑞 and 𝑞⟂ = 𝑞 sin𝛽𝑞 , respectively (𝛽𝑞 is 
the angle between 𝐪 and the cylindrical axis and 𝑞 is the modulus of 𝐪). 
Corresponding orientational integrals 𝑃ec,𝑚(𝑞) and 𝑃 (1)

ec,𝑚(𝑞) are defined 
in Eqs. S16 and S17 of the SM. By entering the results of the ladder 
model, 𝐶𝑚 = 𝑒−(Δ−𝑚0𝛿)∕(𝑅𝑇 )𝑒−𝑚𝐸 , where the positive dimensionless pa-
rameter 𝐸 = 𝛿∕(R𝑇 ) − log𝐶P80 − log𝛼1 has been introduced, we have 
been able to simplify Eqs. (3) and (5) according to

𝑃ec(𝑞) =

𝜋∕2

∫
0

𝑑𝛽𝑞 sin𝛽𝑞
𝑁2
𝐷2
, (8)

𝑃 (1)
ec (𝑞) =

𝜋∕2

∫
0

𝑑𝛽𝑞 sin𝛽𝑞
𝑁1
𝐷1
, (9)

where the working factors 𝑁2, 𝐷2, 𝑁1 and 𝐷1 are fully reported in 
Eqs. S18-S21 of the SM. The volumetric properties of the P80 molecules 
have been used to calculate all the electron densities as well as the area 
per molecule in both end-cap and cylinder regions. All details are shown 
in Sect. S11.2 of the SM. Besides, the average number density of the 
micelles, defined by 𝑛ec =𝑁𝐴 ∫ ∞

𝑚0
𝐶𝑚 𝑑𝑚 (𝑁𝐴 is Avogadro’s number), is 

𝑛ec = (𝑁𝐴∕𝐸)𝑒−(Δ−𝑚0𝛿)∕(R𝑇 )−𝑚0𝐸 .
The effective structure factor 𝑆𝑀 (𝑞), a term that reflects the corre-

lation among micelles, particularly relevant at the high concentration 
(particle volume fraction 𝜂 greater than ≈ 0.01), and that depends on 
the coupling function 𝛽(𝑞) = [𝑃 (1)

ec (𝑞)]2∕𝑃ec(𝑞) [30], is modeled with the 
same approach, based on the HSDY potential, that some of us have suc-
cessfully applied to different nanosized systems [39,30,40]. In the case 
of the nonionic P80 surfactant, the micelle charge is set to zero. Hence, 
the only relevant parameters are the effective average micelle diame-
ter 𝜎ec (so that the volume fraction that appears in the PY expression 
of 𝑆0(𝑞) (see Eq. S1 of Piccinini et al. [40]) is 𝜂 = 𝑛ec𝜋𝜎3ec∕6), the depth 
𝐽 of the attractive potential’s well, and the decay range 𝑑. Moreover, 
since our experimental data show a 𝑞−4 behavior at low 𝑞 (Sect. 3.3) 
probably due to the presence of very large micellar aggregates, the final 
equation used to fit all the experimental SAXS differential macroscopic 
cross section recorded for the samples containing only P80 is

𝑑Σ
𝑑Ωec

(𝑞) = 𝑛ec𝑟2e𝑃ec(𝑞)𝑆𝑀 (𝑞) + 𝑘por𝑞−4 (10)

where 𝑘por represents the Porod’s constant. The factor 𝑟e = 0.28 ⋅
10−12 cm is the scattering length of the electron.

SAXS of stacked polydisperse platelets in the form of barrel SAXS data of
CP solid LNPs stabilized by P80 (Sect. 3.3) show two sets of low-order 
diffraction peaks, similar to previous results [41–43,21,44,20,6], that 
grow over a typical bilayer band, widely seen in SAXS experiments of 
flat bilayers [45], suggesting the presence of platelets. The first peak’s 
positions of the two families are at ≈ 0.160 Å−1 and ≈ 0.143 Å−1, cor-
responding to repeat distances of ≈ 39.3 Å and ≈ 43.9 Å, respectively. 
The low 𝑞 behavior of these SAXS curves shows a power trend 𝑞−𝑝
with exponent 2 < 𝑝 < 3, far from the characteristic 𝑝 = 2 value of 
freely rotating platelets in solution [46], indicating that a certain degree 
of parallel platelet-platelet stacking interaction would occur. Based on 
these preliminary observations, together with the AFM and DLS results 
shown in Sect. 3 and by taking into account the detailed model devel-
oped by Schmiele et al. [31,32] for platelet systems, we have worked 
out a novel model aimed at analyzing SAXS curves in the whole 𝑞-range. 
As a matter of fact, it should be noted that no model among those re-
ported in the literature has proved capable of fitting the SAXS curves 
in the entire range of 𝑞. This novel model (Fig. 3A) is based on the 
following assumptions.

(i) The platelets are composed of three cylindrical structures that are 
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embedded inside one another (Fig. 3B). The innermost cylinder (blue, 
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Fig. 3. The platelets model for LNPs. A) Randomly oriented, polydispersed, 
barrel-like LNPs. Each comprises a stack of 𝑁𝑐 platelets, orthogonal to their 
main axis 𝑧, separated by a distance 𝑐 (red marks), with 𝑁𝑐 and 𝑐 follow-
ing Gaussian distributions and a cross-section radius distributed according to 
an elliptical profile (Fig. S2). B) Section of a single platelet along its central 
axis 𝑧. The inner cylinder (blue), made of crystalline CP molecules (red), has 
half-height 𝑡 and radius 𝑅 (vertical and horizontal dark-blue double arrows, re-
spectively). The 𝑡∕𝑅 ratio is not in scale and has been chosen for the sake of 
visualization. Amorphous-CP molecules (pink) form a cylindrical shell (cyan) 
with thickness 𝑡2 (dark-cyan double arrows) within another cylindrical shell 
(green) with thickness 𝑡1 (dark-green double arrows) made of P80 molecules 
(orange) and bound water (not shown). Labels 𝑓 = 1, 2, and 3 mark the regions 
with different ED profiles along 𝑧. The 𝑓 = 3 region has six layers (𝑗 = 1, 2, 
3, and those specular to the central plane orthogonal to 𝑧, with thicknesses 𝑡1 , 
𝑡2, and 𝑡, respectively) with distinctive EDs. The 𝑓 = 2 region has layers 𝑗 = 2
and 3 with the same ED, while for the 𝑓 = 1 region all the layers have the 
same ED. C) Cross section of the inner cylinder (outgoing 𝑧 axis) in which small 
crystalline domains, randomly oriented and containing several parallel CP bi-
layers, are shown. The crystalline domains are distinguished into two groups, 
with shorter and longer lamellar distances. A zoom of two adjacent bilayers for 
each of the two groups of crystalline domains is shown in panels D and E, re-
spectively, where the red double arrows represent the corresponding lamellar 
distances 𝑑1 and 𝑑2. A hypothetical disposal of the CP molecules, oriented dif-
ferently in the two types of bilayers, is shown. The three specular layers, shown 
by decreasing intensities of blue, represent the ED of the carboxyl group, the 
middle and terminal chains, respectively. Their corresponding thicknesses 𝛿𝑘,1 , 
𝛿𝑘,2 and 𝛿𝑘,3 (𝑘 = 1, 2) are indicated by the double arrows shown on the right 
with the same color as the ED domains.

Fig. 3C) is made up of lamellar layers consisting of CP molecules (red) 
with internal structures (Fig. 3D and E). This cylinder is surrounded 
by a cylindrical shell (cyan) consisting of widely-spaced P80 aliphatic 
chains (orange) and amorphous CP molecules (pink). The outer cylinder 
(green) is made up of P80 polar heads and bound water molecules that 
bridge the hydrophilic moieties, as illustrated in atomistic simulations 
of phospholipid membranes [47].
(ii) The innermost cylinder (shown in Fig. 3 in blue color) has both 
the radius 𝑅 and the height 2𝑡 polydisperse. The mean value of the 
radius is indicated with 𝑅0 =<𝑅 >, its dispersion index is 𝜉𝑅 = (<𝑅2>
−𝑅2

0)
1∕2∕𝑅0, while 𝑡0 =<𝑡 > indicates the mean value of half the height 

2 2 1∕2
of the inner cylinder, with dispersion index 𝜉𝑡 = (<𝑡 > −𝑡0) ∕𝑡0.
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(iii) According to AFM results, we assume that LNPs are barrel-shaped 
particles, defined by a maximum and a minimum radius of the circular 
cross-section, 𝑅𝑀 and 𝑅𝑚 = 𝜈𝑅𝑀 , respectively, with 0 < 𝜈 < 1, 𝜈 be-
ing the “bulging” parameter of the barrel. Also, we assume a smooth 
variation of the barrel’s circular cross-section radius according to an el-
liptical profile, as depicted in Fig. S2 of the SM, where we have also 
plotted the theoretical distribution function of the barrel circular cross-
section radius,

𝑝(𝑅,𝑅𝑀,𝑅𝑚) =

{
𝑅−𝑅𝑚

(𝑅𝑀−𝑅𝑚)
√
(𝑅𝑀−𝑅)(𝑅𝑀+𝑅−2𝑅𝑚)

𝑅𝑚 ≤𝑅<𝑅𝑀
0 otherwise

(11)

According to this view, the barrel shape is obtained by the stacking 
of parallel cylindrical platelets (Fig. 3A). Since AFM results indicate a 
polydispersion of the barrel size, we assume a Gaussian distribution of 
the maximum circular cross-section radius 𝑅𝑀 of the barrel, centered 
at 𝑅𝑀,max and with standard deviation 𝜉𝑅𝑀𝑅𝑀,max, As a consequence, 
the overall distribution function 𝑝(𝑅) of the platelet radius is written 
as,

𝑝(𝑅) =

𝑅𝑀,ub

∫
𝑅𝑀,lb

𝑝(𝑅,𝑅𝑀,𝜈𝑅𝑀 )𝑝(𝑅𝑀 )𝑑𝑅𝑀 (12)

𝑝(𝑅𝑀 ) = 1
𝑍𝑅𝑀

𝑒
−(𝑅𝑀−𝑅𝑀,max)2∕(2𝜉2𝑅𝑀

𝑅2
𝑀,max) (13)

The lower and the upper bounds of the integral are 𝑅𝑀,lb =
max{𝑅𝑀,max(1 − 𝑝𝐺𝜉𝑅𝑀 ), 𝑅𝑀,min} and 𝑅𝑀,ub =𝑅𝑀,max(1 + 𝑝𝐺𝜉𝑅𝑀 ), re-
spectively, where 𝑝𝐺 ≈ 3 represents the number of standard deviations 
of the Gaussian taken into consideration, whereas 𝑅𝑀,min represents the 
minimum value of 𝑅𝑀 , a parameter necessary in order to avoid non-
physical negative values of 𝑅𝑀 . The normalization factor, 𝑍𝑅𝑀 , can be 
analytically calculated as reported in Eq. S22 of the SM. Examples of 
𝑝(𝑅) calculated with Eq. (13) are reported in Fig. S3 of the SM. To note, 
the average platelet radius and its dispersion are calculated according 
to

𝑅0 =

𝑅𝑀,ub

∫
𝜈𝑅𝑀,lb

𝑅𝑝(𝑅)𝑑𝑅 (14)

𝜉2
𝑅
= 1
𝑅2
0

𝑅𝑀,ub

∫
𝜈𝑅𝑀,lb

(𝑅−𝑅0)2 𝑝(𝑅)𝑑𝑅 (15)

with ∫ 𝑅𝑀,ub
𝜈𝑅𝑀,lb

𝑝(𝑅) 𝑑𝑅 = 1. Analytical expressions of 𝑅0 and 𝜉𝑅 are given 
in Eqs. S23-S24 of the SM.
(iv) A Gaussian function also describes the distribution function of 𝑡
with the maximum at the position 𝑡max and the standard deviation de-
fined as 𝜉𝑡max

𝑡max. Since 𝑡 is a positively defined quantity, the average 
thickness, 𝑡0 and the dispersion, 𝜉𝑡, are calculated by integrating the 
Gaussian function only in a positive range of 𝑡, as described in detail in 
the Sect. S5 of the SM. To note, 𝑡 is represented by a dark-blue arrow in 
Fig. 3B.
(v) Platelets are highly anisometric cylinders, with 𝑅 ≫ 𝑡, hence, ac-
cording to scattering theory [46], the SAXS signal only depends on the 
excess ED along the axis 𝑧 of the platelet (drawn in Fig. 3B). As a conse-
quence, there are three distinct ED profiles along 𝑧, indicated with the 
label 𝑓 = 1, 2, 3, each of them formed by 3 specular layers in respect to 
the middle plane orthogonal to the 𝑧 axis (Fig. 3B). Such layers are in-
dexed by 𝑗 = 1, 2, 3, and the corresponding thicknesses are 𝑡1, 𝑡2 and 𝑡. 
In positions labeled with 𝑗 = 0 in Fig. 3B there are stacked platelets with 
their 𝑡1, 𝑡2 and 𝑡 layers, with a stacking interlayer distance Δ𝑡 ≃ 1 Å, as 
discussed in section 3.3.2 (Fig. 9M). We associate Δ𝑡∕2 to each stacked 
platelet as a correction to the thickness 𝑡1 of the hydrated-P80 layer. 
For the ED profile indexed with 𝑓 = 3, the 3 layers have distinct val-
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ues of ED, as shown in Fig. 3 with blue (𝑗 = 3), cyan (𝑗 = 2) and green 
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(𝑗 = 1) colors. Differently, for the ED profile with index 𝑓 = 2, two lay-
ers have the same ED, shown in cyan (𝑗 = 2, 3) in Fig. 3B, whereas for 
𝑓 = 1 all layers have the same ED. We also assume smooth transitions 
of EDs from two subsequent layers and from the last layer to bulk water 
by adopting the error function to describe the smooth effect (see Fig. S4 
of the SM and Spinozzi et al. [48] for details). The smooth parameter 
from 𝑗-layer to (𝑗 − 1)-layer is the standard deviation 𝜎pl,𝑗 of the error 
function.
(vi) The stacking among roughly parallel platelets (Fig. 3A) is de-
scribed by the para-crystal theory applied along the 𝑧 direction, with 
a repeat distance 𝑐 = 2(𝑡 + 𝑡2 + 𝑡1 + Δ𝑡∕2) (Fig. 3A, red arrows) and dis-
tortion parameter 𝑔𝑐 = 𝜎𝑐∕𝑐, 𝜎𝑐 being the standard deviation of 𝑐. The 
number of stacking platelets, 𝑁𝑐 , is polydisperse, according to a Gaus-
sian distribution function 𝑝𝑁𝑐 (𝑁𝑐), with the maximum at the position 
𝑁𝑐,max and the standard deviation indicated with 𝜎𝑁𝑐 . Since 𝑁𝑐 can-
not be negative, the average para-crystal structure factors, as well as 
the average number of platelets, 𝑁𝑐,0, are calculated by integrating the 
Gaussian distribution function only in a positive range of 𝑁𝑐 , as de-
tailed in the Sect. S6 of the SM.
(vii) The CP molecules in the innermost cylinder (Fig. 3C) are orga-
nized into three groups, two of which correspond to two nano-sized 
lamellar domains (Fig. 3D and E) and the third group forming an amor-
phous domain. The molar fraction of CP in the three groups are named 
𝑦𝑘, with the obvious condition 

∑3
𝑘=1 𝑦𝑘 = 1. The lamellar orders of the 

domains (ld) are described by the para-crystal scheme of Frühwirth et 
al. [49], defined by the repetition distance 𝑑𝑘 (Fig. 3D and E, red ar-
rows), the distortion 𝑔ld,𝑘 and the average repeat number 𝑁ld,𝑘, with 
𝑘 = 1, 2. In turn, the repetition distance is 𝑑𝑘 = 2(𝛿𝑘,1+𝛿𝑘,2+𝛿𝑘,3), where 
𝛿𝑘,𝑖 is the thickness of the 𝑖-layer of ED corresponding to the carboxyl 
group, the middle, and the terminal chains of the CP molecules, with 
𝑖 = 1, 2, 3, respectively (see arrows with decreasing intensity of blue in 
Fig. 3D and E). Smooth transitions from 𝑖-layer to (𝑖 −1)-layer are mod-
eled based on the error function with standard deviation 𝜎𝑘,𝑖. To note, 
the 0-layer has the ED corresponding to the average of the EDs of the 
three layers, as shown in Fig. S5 and Eq. S61 of the SM and Ref. Spinozzi 
et al. [48].
(viii) The P80 molecules are divided into two groups. Those in the first 
group (with molar fraction 𝑦P80) are distributed on the platelets’ sur-
face, with their large polar head in the layer 𝑗 = 1 and their hydrophobic 
chain in the intermediate layer (𝑗 = 2), among the CP molecules con-
sidered in amorphous configuration (Fig. 3B). The polar heads of P80
molecules are hydrated by bound water in the 𝑗 = 1 layer. As discussed 
in Sect. 3.3.2, the bound water is responsible for the collapse of the 
platelets. The second group of P80 molecules, with a molar fraction 
1 −𝑦P80, consists of all the molecules forming end-cap cylinder micelles, 
according to the model described in the Sect. 2.2.4, paragraph “SAXS of 
growing and interacting end-capped cylindrical micelles”. However, as 
discussed in Sect. 3.3, we found that 𝑦P80 = 1. Hence, there are no end-
cap cylinder micelles in the LNPs, although the general theory includes 
them.
(ix) Both the height of the barrel, 𝐻 = 𝑐𝑁𝑐 , and the circular cross-
section radius of the barrel, 𝑅, are considered larger than ≈ 1∕𝑞min, 
𝑞min being the minimum modulus of the scattering vector detectable by 
SAXS experiments. Hence, the contribution of the whole barrel to the 
SAXS signal depends on the average surface of the barrel and is due to 
the excess ED of all the molecules within the barrel (CP, P80 and bound 
water between the platelets) with respect to the bulk water, a case simi-
lar to that described by Porod’s law. To note, in the case of a barrel-like 
LNP that interacts with other molecules, such as proteins, the SAXS con-
tribution of the barrel surface will be approximated by the form factor 
of 𝑁𝑠 layers of different EDs in planar geometry, with possible smooth 
transitions, according to the classical scattering theory [46]. The distri-
bution function of 𝐻 corresponds to 𝑝(𝐻) = (1∕𝑐)𝑝𝑁𝑐 (𝐻∕𝑐). We have 
also developed a simple Monte Carlo method to derive the distribution 

function of the center-to-border distance of the barrel, 𝑝(𝑅c), by com-
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bining the distributions functions 𝑝(𝑅𝑀 ) and 𝑝(𝐻). Details are given in 
the Sect. S7 of the SM.

We will now derive the SAXS differential macroscopic cross section 
of platelets according to all these assumptions, from (i) to (ix). Accord-
ing to scattering theory [46], the SAXS differential macroscopic cross 
section of flat (fl), thin and not interacting (ni) platelet with surface 𝑆f l
and number density 𝑛pl is

𝑑Σ
𝑑Ωf l,ni

(𝑞) = 𝑛pl𝑟2e
2𝜋
𝑞2
𝑆f l|𝐴f l(𝑞)|2 (16)

where 𝐴f l(𝑞) = ∫ 𝛿𝜌(𝑧)𝑒𝑖𝑞𝑧𝑑𝑧 is the Fourier transform the excess ED 
profile 𝛿𝜌(𝑧) along the direction 𝑧 perpendicular to the platelet. The 
number density of platelets, 𝑛pl, with inner radius 𝑅, half-inner length 
𝑡 and shell thicknesses 𝑡1 and 𝑡2 can be calculated considering the CP
w/v concentration, 𝑐CP, by 𝑛pl = 𝑁𝐴𝑐CP∕(𝑀CP𝑁CP,pl), where 𝑀CP is 
the CP molecular weight and 𝑁CP,pl is the number of CP molecules in 
the platelet, which can be derived on the basis of the mass balance, as 
shown in Eq. S105 of the SM. By referring to assumption (v), since for 
platelets we have three ED profiles along 𝑧 (𝑓 = 1, 2, 3), the differential 
macroscopic cross section of the platelets is

𝑑Σ
𝑑Ωpl,ni

(𝑞) = 𝑛pl𝑟2e
2𝜋
𝑞2

[
𝜋((𝑅+ 𝑡2 + 𝑡1)2 − (𝑅+ 𝑡2)2)𝐴2

f l,1(𝑞)

+𝜋((𝑅+ 𝑡2)2 −𝑅2)𝐴2
f l,2(𝑞) + 𝜋𝑅

2𝐴2
f l,3(𝑞)

]
(17)

The real functions 𝐴f l,𝑓 (𝑞) for specular layers with smooth transitions 
based on error functions are reported in Eq. S44 of the SM. By sub-
stituting the expression of 𝑁CP,pl shown in Eq. S105 of the SM and 
considering both the polydispersion model described in assumption (ii) 
and the stacking correlation described in assumption (vi), the differen-
tial macroscopic cross section of interacting (in) polydisperse platelets, 
averaged over 𝑅 and 𝑡 (av), is

𝑑Σ
𝑑Ωpl,in,av

(𝑞) = 𝑟2e𝜙CP

(
1 +

𝜈P80,hyd𝑦P80

�̄�CP𝑟CP,P80𝑘𝑟CP,P80

)
× 𝜋
𝑞2

(
<𝑡1(𝑡1 + 2(𝑅+ 𝑡2))(𝑅+ 𝑡2)−2>𝑅< (𝑡+ 𝑡2)−1𝐴2

f l,1(𝑞) >𝑡

+ <𝑡2(𝑡2 + 2𝑅)(𝑅+ 𝑡2)−2>𝑅< (𝑡+ 𝑡2)−1𝐴2
f l,2(𝑞) >𝑡

+ <𝑅2(𝑅+ 𝑡2)−2>𝑅< (𝑡+ 𝑡2)−1𝐴2
f l,3(𝑞) >𝑡

)
𝑆pl(𝑞) (18)

where 𝜙CP =𝑁𝐴𝑐CP�̄�CP∕𝑀CP (see Eq. S109 of the SM) is the overall CP
volume fraction, 𝑟CP,P80 is the nominal molar ratio between CP and P80
molecules, with an eventual correction factor and 𝑘𝑟CP,P80 . The terms 
𝜈P80,hyd and �̄�CP are the volumes of the hydrophobic tail of P80 and 
the mean volume of CP, as detailed in Eq. S66 and S108 of the SM, 
respectively. The radial averages (<⋯ >𝑅) are calculated on the basis 
of the function 𝑝(𝑅), as shown in Eq. S52 of the SM. The 𝑡-averages <(𝑡 +
𝑡2)−1𝐴2

f l,𝑓 (𝑞) >𝑡 are determined as fully described in Eq. S47 of the SM. 
The factor 𝑆pl(𝑞) in Eq. (18) represents the platelet-platelet structure 
factor, which is calculated according to para-crystal order along the 𝑧
direction. The expressions can be found in literature [49,48].

Regarding the SAXS differential macroscopic cross sections of the 
two groups of randomly oriented nano-sized lamellar domains (ld) of
CP within the inner cylinder, foreseen by assumption (vii), according to 
scattering theory it can be shown that they are two terms that add up to 
the one due to the platelets since the average cross-terms between the 
cylindrical layer of the platelets, and the nano-domains drop to zero. 
Considering the stacks of flat bilayers, as shown in Fig. 3D and E, their 
differential macroscopic cross section is

𝑑Σ 2 2𝜋
2∑ 𝑦𝑘 2
452

𝑑Ωld,in
(𝑞) = 𝑟e𝜙CP,3 𝑞2

𝑘=1 𝑑𝑘
𝐴ld,𝑘(𝑞)𝑆ld,𝑘(𝑞) (19)
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where 𝜙CP,3 is the volume fraction of CP in the inner region of the 
platelets (see Eq. S110 of the SM) and 𝐴ld,𝑘(𝑞) is the Fourier transform 
of the excess ED profile of the 3-specular layers of the 𝑘-nano-domain 
calculated with respect to the average ED of the CP molecules (repre-
sented in blue in Fig. 3). Its expression is given in Eq. S62 of the SM. 
The stacking between CP 𝑘-domains is described by the para-crystal 
structure factor 𝑆ld,𝑘(𝑞).

The SAXS contribution due to the overall barrel-like surface, based 
on the assumption (ix), is
𝑑Σ
𝑑Ωbrl

(𝑞) = 𝑛brl𝑟2e
2𝜋
𝑞2
<𝑆brl> |𝐴brl(𝑞)|2 (20)

where 𝑛brl is the average number density of barrels (see Eq. S123 of 
the SM), <𝑆brl> is the average barrel surface (calculated according to 
Eq. S132 of the SM) and 𝐴brl(𝑞) is the Fourier transform of the excess 
ED profile along the direction perpendicular to the barrel surface, fully 
described in Eq. S138 of the SM. It can be easily shown that the scat-
tering cross-term between the barrel and the platelets has a mean value 
that tends to be zero.

The final equation used to fit the SAXS data of LNP samples, which 
includes all the assumptions (i)-(ix) is the sum of Eqs. (18), (19), (20)
and (10),

𝑑Σ
𝑑ΩLNP

(𝑞) = 𝑑Σ
𝑑Ωpl,in,av

(𝑞) + 𝑑Σ
𝑑Ωld,in

(𝑞) + 𝑑Σ
𝑑Ωbrl

(𝑞) + 𝑑Σ
𝑑Ωec

(𝑞) (21)

where in the term 𝑑Σ
𝑑Ω ec

(𝑞) (Eq. (10)), which accounts for the SAXS 
contribution of P80 molecules that are not involved in the platelets, 
the number density of end-cap cylindrical micelles, 𝑛ec, is calculated as 
widely described in Sec. 2.2.4, paragraph “SAXS of growing and inter-
acting end-capped cylindrical micelles”, and considering the available 
molar concentration of P80 as large as 𝐶P80 = 𝑐P80(1 − 𝑦P80) 𝑑wat ∕𝑀P80.

Global-fit Considering the interplay between the SAXS models intro-
duced in Sect. 2.2.4, paragraphs “SAXS of growing and interacting end-
capped cylindrical micelles” and “SAXS of stacked polydisperse platelets 
in the form of barrel”, all SAXS curves of samples containing only P80
and samples of LNP (containing both P80 and CP) can be analyzed by a 
unique optimization procedure, referred to as global-fit [25]. All model 
parameters are divided into two classes: the first-class includes the com-
mon parameters, such as the volumes of chemical groups, which are 
optimized to a single value for all curves; the second-class includes 
single-curve parameters, which can assume an independent value for 
each curve. The merit function to be minimized is

 = 𝜒2 + 𝛼𝐿. (22)

In this equation, the term 𝜒2 is the standard reduced chi-square of all 
the 𝑁𝑣 experimental SAXS curves,

𝜒2 = 1
𝑁𝑣

𝑁𝑣∑
𝑣=1

1
𝑁𝑞,𝑣

𝑁𝑞,𝑣∑
𝑗=1

⎛⎜⎜⎝
𝑑Σ
𝑑Ω 𝑣,ex

(𝑞𝑗 ) −
𝑑Σ
𝑑Ω 𝑣,th

(𝑞𝑗 )

𝜎𝑣(𝑞𝑗 )

⎞⎟⎟⎠
2

, (23)

where 𝑁𝑞,𝑣 is the number of 𝑞-points of the 𝑣-curve, 𝑑Σ
𝑑Ω 𝑣,ex

(𝑞𝑗 ), 𝜎𝑣(𝑞𝑗 ) is 

the experimental standard deviation and 𝑑Σ
𝑑Ω 𝑣,th

(𝑞𝑗 ) is the fitting curve 
calculated based on either Eq. (10) or Eq (21), depending on the kind of 
sample (𝑠 = P80 or 𝑠 = LNP). The second term, 𝐿, is the regularization 
factor aimed to reduce unlikely oscillations of single-curve parameters 
related to samples with the closest chemical-physical conditions (com-
position, concentration, and temperature). The term 𝐿 is indeed defined 
by

𝐿 =
∑

𝑠=P80,LNP

𝑁𝑝,𝑠∑
𝑝=1

𝑁𝑣∑
𝑣=1

(
1 −

𝑋𝑝,𝑣

𝑋𝑝,𝑣′

)2
, (24)

where the index 𝑠 in the first sum distinguishes the kind of sample, the 

index 𝑝 is the label of the 𝑝th of the 𝑁𝑝,𝑠 single-curve fitting parameters, 
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Fig. 4. DLS results of LNPs. A) Auto-correlation functions of LNP recorded at 0 (red), 2 (green), 6 (blue), 15 (magenta) and 30 (cyan) days after the sample 
preparation with corresponding best fits (solid black lines). A factor of 0.1 vertically scales data for clarity. B) Distribution functions of the hydrodynamic radius 
𝑅𝐻 obtained by the best fit of DLS auto-correlation functions. C) Mean particle hydrodynamic radius of the distributions shown in panel B. The color code used in 
panel B and C is as in panel A.
𝑋𝑝,𝑣 is the value of the parameter used to fit the 𝑣-curve and 𝑋𝑝,𝑣′ is 
the value of the parameter used to fit the 𝑣′ curve, which is one of 
the samples with the closest chemical-physical conditions to the sample 
of the 𝑣-curve. The closest curve is the one that minimizes the term 
(1 − 𝐶𝑣∕𝐶𝑣′ )2 + (1 − 𝑇𝑣∕𝑇𝑣′ )2, where 𝐶𝑣 is the concentration of either
P80 or CP. The minimization of the merit function and the evaluation 
of the uncertainties of fitting parameters are achieved according to a 
combination of Simulated Annealing and Simplex methods, as detailed 
described by Moretti et al. [50]. The constant 𝛼 in Eq. (22) is fixed 
to ensure that, at the end of the minimization, the factor 𝛼𝐿 does not 
overcome ≈ 10% of the merit function . The present model has been 
integrated into the GENFIT software [25].

3. Results and discussion

3.1. DLS

In Fig. 4A, we report the second-order intensity autocorrelation 
functions of a solid LNP dispersion measured on different days after it 
was prepared. These functions exhibit a single exponential decay, sug-
gesting that the sample primarily comprises particles of the same size. 
Accordingly, we analyzed the data with a single Gaussian distribution 
function of the solid LNP’s hydrodynamic radius, 𝑅𝐻 , as in Eq. S9 of 
the SM, and achieved optimal fits (black solid lines in Fig. 4A, with 
fitting parameters in Table S2 of the SM). We show the resulting hy-
drodynamic radius distributions in Fig. 4B, and the histogram of the 
average values <𝑅𝐻 > as a function of time from sample preparation 
in Fig. 4C. These results indicate that the solid LNP size is stable, with 
an average hydrodynamic radius of <𝑅𝐻>≈ 950 Å, with rather limited 
temporal variations (in the order of 2%), and with a dispersion index 
𝜉𝑅𝐻 ≈ 0.3. Additionally, we found that the particles were slightly neg-
ative with a 𝜁 potential of −6.5 ± 0.6 mV, which remained relatively 
constant throughout the investigation.

3.2. AFM

In Fig. 5A, we show a representative image of tens non-contact 
mode AFM observations obtained from a solid LNP dispersion diluted 
to 0.1 g/L. The particles show an elongated, barrel-like shape and are 
noticeably polydisperse. In Fig. 5B-I, we show magnifications of the im-
ages centered on the single particles. The jagged morphology in the 
region close to the border of AFM images (e.g., Fig. 5G and I) is consis-
tent, at least to some extent, with the presence of an internal structure 
formed by parallel sheets. As described in the Sect. 2, we determined 
the distribution function of the center-to-border distance 𝑅c, along dif-
ferent straight lines passing from the center, of ∼ 50 particles directly 
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observed by AFM (Fig. 5J). The mean value of 𝑅c is ≈ 912 Å, with a 
Fig. 5. AFM results for LNPs. Panel A: example image of a sample recorded in 
non-contact mode. Panels B-I: square magnifications of single LNPs. The bottom 
horizontal bars span 1000 Å. Panel J: distribution function of the center-to-
border distance obtained with ImageJ software [23] by selecting 300 distances 
measured in random directions passing through the center of 50 individual 
LNPs. The grid size was 50 Å, and the error bars were assigned according to 
Poisson statistics. The solid red line represents the best fit through a Gaussian, 
with the center at 912 ± 6 Å and dispersion 0.100 ± 0.006.

dispersion as large as 0.1, in excellent agreement with the mean hydro-
dynamic radius <𝑅𝐻> measured by DLS.

3.3. SAXS

SAXS curves recorded at the ID02 beamline of ESRF for water dis-
persion for P80 in different concentrations and temperatures are shown 
in Fig. 6A (semi-logarithmic plot) and B (logarithmic plot), whereas 
SAXS curves of solid LNPs formed by CP and stabilized by P80 are pre-
sented in Fig. 6C (semi-logarithmic plot) and D (logarithmic plot). We 
show in Fig. S7 of the SM additional SAXS curves, recorded at Austrian 
SAXS beamline of ELETTRA, for P80 and solid LNPs samples of a sec-
ond preparation batch but in a more limited number of conditions in 

terms of concentration and temperature. We analyzed simultaneously 
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Fig. 6. Synchrotron SAXS curves recorded at the ID02 beamline at ESRF for P80 (panels A-B) and LNP (panels C-D) samples reported in semi-logarithmic plots 
(panels A and C) and in logarithmic plots (panels B and D), respectively. For a better visualization, curves have been stacked by multiplying for a factor 10𝑚−1 , 
where 𝑚 is the index of the row from the bottom. In panels A-B, red and green points refer to 13.3 and 1.7 g/L P80 concentration, respectively. In panels C-D, red, 
green, and blue points refer to 80.0, 40.0, and 1.0 g/L LNP concentration, respectively. Solid black lines are the best fits obtained with the global-fit method.
by a unique calculation, according to the SAXS models fully described 
in the Sect. 2.2.4, all the P80 and the solid LNP sets of curves recorded 
at ESRF and ELETTRA. We find that the results for each experimental 
campaign are very similar. Therefore, we present and discuss here only 
those from ESRF, while those from ELETTRA are included in the SM.

First, to reduce the number of free fitting-parameters, we duly ex-
ploited all the information related to the composition of the molecules
P80 and CP, including the volume of the different chemical groups and 
their dependence on the temperature, to calculate the electron densi-
ties of the domains in each of the regions that constitute the end-capped 
cylindrical micelles (Sect. S11.2 of the SM) and the platelets (Sect. S11.3 
of the SM). The parameter 𝑦P80, which represents, for the solid LNP 
samples, the mole fraction of P80 bound to the platelets, was always 
found equal to 1, indicating that, for these samples, there are no P80 
molecules available to form end-cap micelles. To note, the global fit of 
21 SAXS curves was obtained by optimizing 16 first-class (common) fit-
ting parameters and 280 second-class (single-curve) fitting parameters 
(controlled by the regularization method), with an average of 14 pa-
rameters per curve. It should be noted that, despite the large number 
of parameters, the validity range of many of them have been delimited 
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very carefully around known literature values to ensure physical mean-
ing. The first-class fitting parameters, shared among all SAXS curves, 
and their uncertainties are reported in Table 2.

We show the second-class fitting parameters, together with derived 
parameters, as a function of temperature for P80 samples (Fig. 7) and 
solid LNP samples (Fig. 9). The merit function  at the end of the 
minimization, resulted 6.4, corresponding to a total reduced 𝜒2 of 6.1.

3.3.1. Polysorbate 80
The quality of the fits throughout the whole range of 𝑞 can be appre-

ciated by observing Fig. 6A and B. Considering the single-curve fitting 
parameters (Fig. 7), we first observe that the inner radius of the two 
end-caps is ≈ 18 Å (Fig. 7A), slightly depending on temperature and 
concentration. We find that the parameter ℎ (Fig. 7B) is negative, with 
a value ≈ −10 Å, and the thickness of the end-cap shell (Fig. 7C) is 
around 34 Å. These values, the fitted thermodynamic parameters Δ and 
𝛿 (Table 2) lead to a very spheroidal shape of P80 micelles (Fig. 8).

The derived parameter 𝑚0 (Fig. 7G), corresponding to the number of
P80 molecules in the end-cap region, is ≈ 14, very close to the average 
value <𝑚 > from Eq. S10 of the SM. Indeed, the probability densities 
𝑝(𝑚) of finding micelles with 𝑚 molecules (Fig. S11 of the SM) is low 
for 𝑚 > 𝑚0. Therefore, the cylindrical region of the micelles is almost 

negligible, and the micelle in Fig. 8A is the most representative.
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Fig. 7. Second-class fitting parameters (panels A-F) and derived fitting parameters (panels G-O) as from ESRF-SAXS data for P80 (Fig. 6A-B). The parameters and 
symbols are defined in SM. Red and green points refer to 𝐶P80 = 13.3 and 1.7 g/L, respectively. The validity ranges of the fit parameters shown in the panels are: A) 
[6,30] Å; B) [-30,30] Å; C) [6,50] Å; D) [0,100] Å; E) [0,500] kJ/mol; F) [0.1,10] Å.
Table 2

First-class fitting parameters for the SAXS data recorded by the ID02 beam-
line at ESRF. The parameters and symbols are defined in SM. The units of
length and volume are Å and Å3, respectively. Validity ranges of fitting param-
eters: a [−1000, 1000]; b [−50, 50]; c [12.0, 15.0]; d [11.0, 14.0]; e [14.0, 17.0]; 
f [14.0, 17.0]; g [19.8, 23.0]; h [26.2, 27.5]; i [48.0, 54.0]; j [29.8, 30.0]; k

[0.95, 1.00]; l [0.95, 1.00]; m [7.1, 7.8]; n [0.97, 1.15]; o [0.97, 1.15]; p [0.97, 1.15].
Δ (kJ/mol) a −352 ± 4
𝛿 (kJ/mol) b −24.8 ± 0.2
𝜈◦
>C= (Å3) c 13.0 ± 0.1
𝜈◦=O (Å3) d 12.0 ± 0.1
𝜈◦−O− (Å3) e 16.0 ± 0.2
𝜈◦OH (Å3) f 16.0 ± 0.2
𝜈◦CH (Å3) g 20.9 ± 0.2
𝜈◦CH2

(Å3) h 26.5 ± 0.3
𝜈◦CH3

(Å3) i 50.0 ± 0.5
𝜈◦H2O

(Å3) j 30.0 ± 0.3
𝛽CH2

k 0.97 ± 0.01
𝛽CH3

l 1.00 ± 0.01
𝛼lip (10−4 K−1) m 7.20 ± 0.07
𝑑wat,cyl

n 0.99 ± 0.01
𝑑wat,cap

o 1.01 ± 0.01
𝑑wat,pl

p 1.00 ± 0.01

SAXS results for the micelles’ size and shape agree well with those 
estimated by coarse-grained (MARTINI) Molecular Dynamics (MD) sim-
ulations [38]. Nevertheless, the SAXS measure for the thickness of the
P80 hydrophilic shell, made of the very large three-branched molecule’s 
headgroup, is larger, suggesting a higher degree of disorder than that 
estimated by MARTINI.

In particular, the number of bound molecules per polar head in the 
end-cap regions is large, ≈ 950 (Fig. 7H), corresponding, for the Eq. S73 
of the SM, to a hydration level of ≈ 94% (Fig. 7J), in agreement with 
SANS experiments by Nayem et al. [51]. On the contrary, the number 
of bound water molecules in the cylindrical region per P80 and the 
hydration level are much lower, ≈ 110 and ≈ 66%, respectively (Fig. 7I 
and K).

We observe that the corresponding mass densities, 𝑑wat,cap and 
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𝑑wat,cyl, of bound water embedded in the 1-domain of end-cap and cylin-
Fig. 8. Schematic representation of the P80-micelles shapes as from the ESRF-
SAXS data analysis. The shapes A-D are for micelles formed by 𝑚 = 14, 19, 
24, and 29 self-assembled molecules, respectively. The inner azure regions 
represent the hydrophobic tails, while the pink regions represent the bulky hy-
drophilic side.

der regions are ≈ 1 (Table 2). Therefore, water near the end-cap areas, 
bound to polar heads, has a density similar to bulk water.

We report the trend of the area per polar head (Fig. 7L-O), that, as 
expected, displays differences among regions and interfaces within the 
same region. For example, the area between 1- and 2-domains in the 
end-cap region, ≈ 130 Å2, almost doubles that in the cylinder region, 
≈ 62 Å2, (Fig. 7N and O).

Next, we calculate the concentration 𝐶1 of free P80 molecules in 
solution as 𝐶1 = 𝛼1𝐶P80, where 𝛼1 results from the numerical solution of 
Eq. (2) and 𝐶P80 is the total concentration of P80. In particular, we find 
that at the reference temperature 𝑇◦ (Fig. S13 of the SM) the P80 critical 
micellar concentration (cmc) is 0.014 ± 0.003 g/L, fully in agreement 
with literature [52].

3.3.2. Solid lipid nanoparticles
We find that the SAXS curves of our solid LNPs are fitted very well 

in the whole 𝑞 range by the model described in Sect. 2.2.4, paragraph 
“SAXS of stacked polydisperse platelets in the form of barrel” (Fig. 6C-
D). The values of the first-class fitting parameters for the chemical 
groups have a level of uncertainty ≪ 1 Å3 within reasonable validity 
ranges (Table 2). The mass density of bound water, relative to bulk, in 
contact with the P80 polar heads is 𝑑wat,pl = 1.00 ± 0.01. The number 
of bound water molecules per P80 around the platelets is 𝑟wat,P80 ≃ 100
(Fig. 9A), much lower than the one found in P80 micelles, and the thick-
ness of the polar head domain is very low, 𝑡1 ≈ 5 Å (Fig. 9E). Therefore, 
SAXS data show that the bulky P80 polar heads are well attached to the 

platelet surface. Indeed, the average distance between two adjacent P80
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Fig. 9. Second-class fitting parameters (panels A, B, C, D, F, G, H, I, J, K, L, M, N, O, Q, R, S, T, U, V) and derived fitting parameters (panels E, P, W, X, Y) as from 
ESRF-SAXS data for LNPs (Fig. 6C-D). The parameters and symbols are defined in SM. Red, green and blue points refer to LNP concentration 𝐶LNP = 80.0, 40.0, and 
1.0 g/L, respectively. The validity ranges of the fit parameters shown in the panels are: A) [35,500]; B) [10,500]; C) [2,100]; D) [0,2]; F) [4,20] Å; G) [600,3000] Å; 
H) [100,400] Å; I) [0,5]; J) [0,1]; K) [3,40] Å; L) [0,10]; M) [0,30] Å; N) [0,1]; O) [0,1]; Q) [30,65] Å2; R) [30,65] Å2; S) [1,20]; T) [1,20]; U) [0,1]; V) [0,1].
molecules, Eq. S112 of the SM, is quite large, 𝑑P80,P80 ≃ 30 Å (Fig. 9Y) 
as necessary to get a narrow coating of P80 polar heads.

The fitting parameters allow us to evaluate that the average platelet 
surface associated with each P80 molecule, Eq. S113 of the SM, is 
946 ± 6 Å2, of which 325 ± 2 Å2 is occupied by the P80 polar head 
and 622 ± 5 Å2 by bound water. Furthermore, according to Eqs. S124-
S126 of the SM, we find that the barrel is consisting of 66.1 ± 0.1% CP, 
11.41 ± 0.02% P80 and 22.5 ± 0.2% bound water. In particular, we find 
that the small thickness of the layer between two platelets, is almost 
negligible (Δ𝑡 ≈ 1 Å, Fig. 9M). Considering that a water molecule’s size 
is approximately 3 Å, this finding reveals that the thickness Δ𝑡 ≈ 1 Å 
must be considered as split between two stacked P80 layers. Therefore, 
the bound water molecules share this layer with P80 molecules and 
bridge their polar heads, as seen in phospholipid membranes [47,53]. 
Hence, two adjacent platelets collapse one on top of the other in a 
stacked conformation and comprise P80 polar heads, each hydrated by 
≃ 100 bound water molecules. Without stacking, bound water within 
the P80 layer would form an interface with unbound water that would 
separate it from bulk water, as seen in phospholipid membranes [47]. 
When the platelets’ surface is large enough instead, the system elimi-
nates this interface, which would have a free energy cost, and reduces 
the total free energy by stacking the platelets into a barrel shape. 
Therefore, the platelets stacking is an enthalpy-driven process with an 
energy-favorable mechanism provided by the bound water. The fitting 
parameters allow us to evaluate the fraction of platelets’ surface cov-
ered by P80 polar heads, Eq. S114 of the SM, as 𝜙𝑆,P80 = 0.343 ± 0.002, 
weakly dependent of temperature and solid LNP concentration. There-
fore, ≈ 65% of the platelet surface is covered by water bound to P80 
and in contact with the layer of amorphous CP.

We estimate that the platelet has an inner radius, i.e. the radius 
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of the maximum circular cross-section of the barrel, with a maxi-
mum value 𝑅𝑀,max ≈ 1500 Å (Fig. 9G), with a polydispersion index of 
𝜉𝑀,max ≈ 0.06 (Fig. 9I), and minimum value 𝑅𝑀,min ≈ 130 Å (Fig. 9H), 
with a bulging parameter 𝜈 ≈ 0.2 (Fig. 9J). Accordingly, the probabil-
ity density, 𝑝(𝑅), of the platelet radius 𝑅 assumes a peculiar shape 
(Fig. 10A), almost independent on temperature and solid LNP concen-
tration.

The platelet core (made of CP) has a maximum half-thickness 𝑡max ≈
8 Å (Fig. 9K), with a high level of polydispersion 𝜉𝑡,0 ≈ 0.5 (Fig. 9L). 
Moreover, the thickness of P80 hydrophobic chains, embedded in the 
platelet, is small 𝑡2 ≈ 5 Å (Fig. 9F). These values allow us to calculate 
the probability density of the whole platelet thickness, 2(𝑡 + 𝑡1 + 𝑡2). 
This density (Fig. 10D) is related to the probability density of the half-
thickness core, 𝑝𝑡(𝑡), as 𝑝(2(𝑡 + 𝑡1 + 𝑡2)) = (1∕2)𝑝𝑡(𝑡).

The distribution of the number of platelets forming a barrel-like 
particle has a maximum at 𝑁𝑐,max ≈ 13 (Fig. 9B), with a very large stan-
dard deviation 𝜎𝑁𝑐 ≈ 100 (Fig. 9C) and distortion parameter, 𝑔𝑐 ≈ 0.8
(Fig. 9D). The CP amorphous domain occupies a negligible part of the 
platelets, 𝑦3 ≈ 10−5 (Fig. 9P), whereas the CP 1-domain accounts for 
almost 58% of them, 𝑦1 ≈ 0.58 (Fig. 9N), with an area per molecule 
𝑎CP,1 ≈ 41.5 Å2 (Fig. 9Q), a repeat distance 𝑑1 ≈ 43 Å (Fig. 9W), slightly 
increasing with temperature, and a repeat number 𝑁ld,1 ≈ 3 (Fig. 9S). 
The CP 2-domain occupies only ≈ 42% of each platelet, 𝑦2 ≈ 0.42
(Fig. 9O), with an area per molecule 𝑎CP,2 ≈ 45 Å2 (Fig. 9R) and a re-
peat distance 𝑑2 ≈ 39.5 Å (Fig. 9X), both increasing with temperature, 
and a repeat number 𝑁ld,2 ≈ 8 (Fig. 9T).

Despite the low repeat numbers 𝑁ld,1 and 𝑁ld,2, the order degree 
of both lamellar domains 1 and 2 is high, with distortion parameters 
𝑔ld,1 ≈ 𝑔ld,2 ≈ 10−2 (Fig. 9U and V). The two lamellar orders agree with 
similar results found by Barbosa et al. [42], Lukowski et al. [54], and 

by Jenning and Gohla [55] for LNPs composed of cetyl palmitate.
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Fig. 10. Probability densities of the barrel circular cross-section radius 𝑅 (panel A), the barrel height 𝐻 (panel B), the total thickness of the platelets 2(𝑡 + 𝑡1 + 𝑡2)
(panel D), and of the center-to-border distance 𝑅c (panel E), as from ESRF-SAXS data for LNPs. Red, green, and blue lines refer to 𝐶LNP = 80.0, 40.0, and 1.0 g/L. 
Solid, dotted, and dashed lines refer to temperatures 20, 25, and 37 ◦C. In all panels, the dark-gray vertical lines indicate the median at 𝐶LNP = 80.0 g/L and 20 ◦C. 
The shaded areas mark the ranges between the 1st and the 3rd quartile in each distribution. Panel C represents three characteristic LNPs at 80.0 g/L and 20 ◦C, 
all with 𝑅𝑀 , the maximum radius of the circular cross-section, corresponding to the 2nd quartile of 𝑝(𝑅𝑀 ) distribution (𝑅𝑀 = 1520 Å) and with total height 𝐻
corresponding to the three quartiles of the 𝑝(𝐻) distribution (from left to right, 1860 Å, 3390 Å and 5740 Å) indicated by the three dotted-lines.
The fitting parameters also allow us to calculate the probability 
densities 𝑝(𝐻) and 𝑝(𝑅c) of the whole barrel height 𝐻 and the center-
to-border distance 𝑅c, respectively (Fig. 10B and E). We find that 𝐻
has a broad distribution, with the median at 3390 Å, and the 1st and 
the 3rd quartile at 1860 Å and 5740 Å, respectively, corresponding to 
shapes (Fig. 10C) that resemble those observed by AFM (Fig. 5).

Nevertheless, it is essential to exercise caution when consider-
ing 𝑝(𝐻) because data on 𝐻 ≥ 104 Å are not directly accessible 
from the experimental 𝑞 range. This information is derived from var-
ious constraints, such as concentrations and molecular volumes, and 
the approximations adopted in the model, e.g., the paracrystal the-
ory.

The distribution 𝑝(𝑅c) from our SAXS data is asymmetric and shifted 
toward large values, at variance with that derived from our AFM data 
(Fig. 5J) and the 𝑝(𝑅𝐻 ) from our DLS measurements (Fig. 4B). The 
median value is at 𝑅c = 1600 Å, the 1st and the 3rd quartiles are at 
1150 Å and 2100 Å, respectively. To comprehend the inconsistencies, 
it’s essential to consider that the three methods have varying degrees 
of sensitivity regarding size. Specifically, SAXS measurements are ob-
tained by averaging over a significant number of solid LNPs of the order 
of Avogadro’s number, while AFM does not. As a result, SAXS data are 
considered to be more dependable than AFM. Therefore, we conclude 
that a representative shape for the LNPs (Fig. 11) corresponds to the 
medians of the distributions for 𝐻 , 𝑅𝑀 , and platelet thickness derived 
from SAXS data (Fig. 10).

From the SAXS measurements, we calculate, using Eq. S39 of the 
SM, the LNP’s excess electron-density (ED) profile along the direction 𝑧
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(LNP’s main axis) perpendicular to three subsequent platelets with split 
Fig. 11. Panel A: Representation of a LNP with external and internal dimensions 
corresponding to the medians of the distributions derived from the analysis of 
SAXS data at 𝐶LNP = 80.0 g/L and 20 ◦C. (Fig. 10, 𝑅𝑀 = 1520 Å, 𝐻 = 3390 Å, 
2(𝑡0 + 𝑡1 + 𝑡2 + Δ𝑡∕2) = 39 Å). Panel B: three platelets in the core, with layers 
schematically representing hydrated P80 polar heads (green), mixed P80 hy-
drophobic chains (cyan) embedded in amorphous CP (cyan) and lamellar CP 
(blue)). The thicknesses of the blue layers were sampled from the derived 𝑝𝑡(𝑡)
distribution.

distance Δ𝑡 (Fig. 12A). We set the half-thickness of the CP domain to its 
average value 𝑡0, Eq. S31 of the SM. To note, the volume distribution 
functions of the hydrated P80 polar heads of a platelet, shown in green 
in Fig. 12B, are merged with that of the two adjacent platelets, indi-
cating that the bound water acts as glue between the P80 polar heads 
belonging to two subsequent platelets. Sharp transitions in the profile 
between the P80 polar-head domain and the mixed P80 hydrophobic 
domain embedded in CP (shown in cyan) mark the thicknesses 𝑡1 and 
𝑡2, respectively. Finally, a smoother transition indicates the interface 

between the latter and the CP domain (shown in blue).
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Fig. 12. Panel A: Excess ED profile of three subsequent platelets with split-
thickness Δ𝑡 within a LNP calculated from the global fit of the ESRF-SAXS data 
at 𝑇 = 20 ◦C and 𝐶LNP = 80 g/L (bottom curve in Fig. 6C-D). From right to left, 
the size of the shaded gray bands represents the standard deviation 𝜎pl,𝑗 , with 
the indexes 𝑗 = 1, 2, 3 corresponding to outer, middle and inner domain, respec-
tively, within the region 𝑓 = 3 in Fig. 3B. Panel B: Volume fraction distributions 
𝜙𝑗 (𝑧), calculated according to Eq. S41-S43 of the SM, for the hydrated P80 po-
lar head domain (green), the mixed P80 hydrophobic chain domain embedded 
in amorphous CP (cyan), and the crystalline CP domain (blue).

4. Conclusions

Through synchrotron light small-angle X-ray scattering measure-
ments at varying temperatures and concentrations, we studied the solid 
LNPs formed by CP and stabilized by P80. To analyze our SAXS data, we 
created a novel structural model based on data gathered from dynamic 
light scattering (DLS) and atomic force microscopy (AFM) measure-
ments. Our model effectively fits all SAXS curves in the full scattering 
vector range.

Based on our findings, the shape of our LNPs is polydisperse and 
barrel-like (Fig. 3A). This shape is achieved by stacking platelets 
(Fig. 3B). Each platelet contains a core with small crystalline domains 
of CP molecules. These molecules are elongated on the platelet surface 
and randomly rotated around the normal to the surface (Fig. 3C). The 
thickness of the CP core is also polydisperse, with an average thickness 
of around 8 Å.

Our study indicates that there are two different lamellar crystal 
structures in roughly equal proportions. These structures have charac-
teristic (repetition) distances of approximately 43 and 39.5 Å, respec-
tively, with repeat numbers of around 3 and 8 (Fig. 3D and E).

In contrast to the standard core-shell model, we discovered that the
P80 molecules surround each platelet (Fig. 3B) and intercalate between 
them. Their polar heads are separated by an average distance of around 
30 Å, occupying a layer of approximately 5 Å with roughly 100 water 
molecules bound to each head and bridging between them, with ≈ 1 Å 
between two stacked platelets. Instead, the P80 apolar tails are em-
bedded within the amorphous CP portion, creating a layer roughly 5 Å 
thick.

According to our estimations, around 35% of the LNP’s external sur-
face and the surface of the internal platelets are hydrophilic, made up of
P80 polar heads, with approximately 65% of bound water, which favors 
the platelets stacking. As a result, about 65% of the barrels’ volume frac-
tion is occupied by CP, 11% by P80, and the remaining is bound water.

We believe that these findings, based on our SAXS data and the new 
structural model for solid LNPs, are of paramount importance for creat-
ing effective devices to load and deliver therapeutics to their intended 
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targets with improved accuracy and precision.
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sada, & Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Mart́ı i Franquès 1,

Barcelona, 08028, Spain

g Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy

S1 Analysis of DLS measurements

According to Siegert’s relationship, the second-order auto-correlation function of the light intensity

measured by a DLS experiment for a suspension of monodisperse particles is

g2(τ)− 1 = e−2Dq2τ , (S1)

where q = (4π/λ)n0 sin(θ/2) is the modulus of light scattering vector, λ, n0 and θ being the light

wavelength, the solvent refraction index, and the scattering angle, respectively. By assuming a

Brownian motion of the particles caused by the movement of solvent molecules that surround them,

the translational diffusion coefficient, D, can be approximated by the Stokes-Einstein equation,

D =
kBT

6ηRH
(S2)

S1



where kB is Boltzmann’s constant, T the absolute temperature, η the viscosity of the solvent at T

and RH is the radius of sphere that best approximates the hydrated particle shape (hydrodynamic

radius). In the case of particles with polydisperse dimensions and assuming a simple Gaussian

distribution function of RH , the auto-correlation function becomes

g2(τ)− 1 =

∫ RH,ub

RH,lb

e−2Dq2τp(RH)dRH (S3)

where

p(RH) =
1

ZRH
e
−(RH−RH,max)2/(2ξ2RH,max

R2
H,max)

(S4)

In this equation, RH,lb = max{RH,max(1−pGξRH,max
), RH,min} and RH,ub = RH,max(1 +pGξRH,max

)

are the lower and the upper bounds of the integrals calculated on the basis of the dispersion ξRH,max
.

Notice that in these equations, RH,min is the minimum allowed value of the lower integration bound,

which cannot be negative. In our case we fixed RH,min = 50 Å. The normalization factor ZRH is

determined by the following equation

ZRH =

∫ RH,ub

RH,lb

e
−(RH−RH,max)2/(2ξ2RH,max

R2
H,max)

dRH

= (
√

2π(erf((RH,ub −RH,max)/(
√

2ξRH,max
RH,max)))

−erf((RH,lb −RH,max)/(
√

2ξRH,max
RH,max)))/2. (S5)

The integral in Eq. S3 is numerically calculated with Simpson’s rule by using 100 points. The

average of the k-power of the hydration radius is defined as

<RkH>=
1

ZRH

∫ RH,ub

RH,lb

RkHe
−(RH−RH,max)2/(2ξ2RH,max

R2
H,max)

dRH (S6)

S2



The average hydration radius, corresponding to k = 1 in Eq. S6, is

<RH> = − exp(−R2
H,max/s

2 −R2
H,ub/s

2 −R2
H,lb/s

2)(s2 exp(R2
H,ub/s

2

+(2RH,maxRH,lb)/s2)− s2 exp((2RH,maxRH,ub)/s2 +R2
H,lb/s

2)

−
√
πsRH,maxerfc((RH,ub −RH,max)/s) exp(R2

H,max/s
2

+R2
H,ub/s

2 +R2
H,lb/s

2)

+
√
πsRH,max exp(R2

H,max/s
2 +R2

H,ub/s
2

+R2
H,lb/s

2)erfc((RH,lb −RH,max)/s))/
√
π. (S7)

where s2 = 2R2
H,maxξ

2
RH,max

. The second moment of the distribution is the case k = 2, which reads

<R2
H> = − exp(−R2

H,max/s
2 −R2

H,ub/s
2 −R2

H,lb/s
2)(2s2RH,max exp(R2

H,ub/s
2

+(2RH,maxRH,lb)/s2) + 2s2RH,lb exp(R2
H,ub/s

2

+(2RH,maxRH,lb)/s2)− 2s2RH,max exp((2RH,maxRH,ub)/s2

+R2
H,lb/s

2)− 2s2RH,ub exp((2RH,maxRH,ub)/s2 +R2
H,lb/s

2)

−
√
πs3erfc((RH,ub −RH,max)/s) exp(R2

H,max/s
2

+R2
H,ub/s

2 +R2
H,lb/s

2)

−2
√
πsR2

H,maxerfc((RH,ub −RH,max)/s) exp(R2
H,max/s

2

+R2
H,ub/s

2 +R2
H,lb/s

2) +
√
πs3 exp(R2

H,max/s
2 +R2

H,ub/s
2

+R2
H,lb/s

2)erfc((RH,lb −RH,max)/s)

+2
√
πsR2

H,max exp(R2
H,max/s

2 +R2
H,ub/s

2

+R2
H,lb/s

2)erfc((RH,lb −RH,max)/s))/2. (S8)

The dispersion of RH is calculated as

ξRH = (<R2
H> / <RH>

2 −1)1/2. (S9)
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S2 Average micelle aggregation number

<m> =
z

CP80
eδ/(RT )

+e−(∆−m0δ)/(RT )zm0
z2(m0 − 1)2 + z[1− 2m0(m0 − 1)] +m2

0

CP80(1− z)3
(S10)
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Figure S1: Size distribution of a cylinder with spherical end-caps according to the ladder model
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S3 SAXS amplitude of the core-shell end-cap cylinder

The SAXS amplitude of the core-shell end-cap cylinder formed by m P80 molecules reads1

Aec,m(q) = G sin
(
q‖B(m−m0)

)
+ F cos

(
q‖B(m−m0)

)
(S11)

G =
2∑

k=1

4π

q‖
(ρk,cyl − ρk−1,cyl)R

2
k,cyl

J1(q⊥Rk,cyl)

q⊥Rk,cyl

−
2∑

k=1

∫ 1

−h/Rk,cap
dX Hk(X) sin(q‖[X Rk,cap + h]) (S12)

B =
νhyd,cyl

2πR2
2,cyl

(S13)

F =

2∑
k=1

∫ 1

−h/Rk,cap
dX Hk(X) cos(q‖[X Rk,cap + h]) (S14)

Hk(X) = 4πR3
k,cap(ρk,cap − ρk−1,cap)(1−X2)

J1(q⊥Rk,cap

√
1−X2)

q⊥Rk,cap

√
1−X2

(S15)

where J1(x) is the Bessel functions of the first order, R1,cyl = R2,cyl +δcyl and R1,cap = R2,cap +δcap.

Moreover, ρ0,cyl ≡ ρ0,cap ≡ ρ0 is the ED of bulk water.

The corresponding orientational average squared amplitude (the so-called form factor) and the

average amplitude of the m-micelle are the following integrals

Pec,m(q) =

∫ π/2

0
dβq sinβqA

2
ec,m(q) (S16)

P (1)
ec,m(q) =

∫ π/2

0
dβq sinβqAec,m(q) (S17)

The numerical calculus of these integrals is realized with the 32-point Gauss-Legendre quadrature

method. The working factors appearing in Eqs. 8 and 9 are:

N2 = 2q2
‖B

2(F 2 +G2) + EF (EF + 2q‖BG) (S18)

D2 = E2 + 4q2
‖B

2 (S19)

N1 = E(EF + q‖BG) (S20)

D1 = E2 + q2
‖B

2 (S21)

All the electron densities are calculated based on the volumetric properties of each group forming

the P80 molecule and considering the number of water molecules embedded among the polar heads
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Figure S2: Distribution function of the circular cross-section radius of a barrel with an elliptical
radial profile (Eq. 11). Parameters are Rm = 300 Å and RM = 1000 Å.

in the k = 1 domain of both the end-cap and the cylinder regions. Detailed expressions are reported

in the Sect. S11.2 (Eqs. S65, S68, S69, S70, S71 and S72).

S4 Distribution function of the circular cross-section radius of a

polydisperse barrel shape with smooth radial elliptical profile

The normalization factor ZRM , seen in Eq. 13, is given by

ZRM =

∫ RM,ub

RM,lb

e
−(RM−RM,max)2/(2ξ2RM

R2
M,max)

dRM

= (
√

2π(erf((RM,ub −RM,max)/(
√

2ξRMRM,max)))

−erf((RM,lb −RM,max)/(
√

2ξRMRM,max)))/2. (S22)

The average platelet radius and its dispersion, defined in Eqs. 14-15, are

R0 = G1/ZRM ((4− π)ν + π)/4 (S23)

ξR =
√
<R2> /R2

0 − 1 (S24)

<R2> = G2/ZRM ((10− 3π)ν2 + (3π − 8)ν + 4)/6 (S25)
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where

G1 = ((ξRMRM,max) exp((−(R2
M,lb/(ξRMRM,max)2)/2)

−(R2
M,ub/(ξRMRM,max)2)/2− (R2

M,max/(ξRMRM,max)2)/2)(2(ξRMRM,max)

exp((RM,maxRM,lb)/(ξRMRM,max)2 + (R2
M,ub/(ξRMRM,max)2)/2)

−2(ξRMRM,max) exp((R2
M,lb/(ξRMRM,max)2)/2 + (

RM,maxRM,ub)/(ξRMRM,max)2)−
√

2
√
πRM,maxerfc((RM,ub −RM,max)/(

√
2

(ξRMRM,max))) exp((R2
M,lb/(ξRMRM,max)2)/2 + (R2

M,ub/(ξRMRM,max)2)/2

+(R2
M,max/(ξRMRM,max)2)/2) +

√
2
√
π

RM,maxerfc((RM,lb −RM,max)/(
√

2(ξRMRM,max)))

exp((R2
M,lb/(ξRMRM,max)2)/2 + (R2

M,ub/

(ξRMRM,max)2)/2 + (R2
M,max/(ξRMRM,max)2)/2)))/2 (S26)
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G2 = ((ξRMRM,max) exp((−(R2
M,lb/(ξRMRM,max)2)/2)

−(R2
M,ub(ξRMRM,max)2)/2− (R2

M,max/(ξRMRM,max)2)/2)(2RM,max

(ξRMRM,max) exp((RM,maxRM,lb)/(ξRMRM,max)2

+(R2
M,ub/(ξRMRM,max)2)) + 2RM,lb(ξRMRM,max) exp((

RM,maxRM,lb)/(ξRMRM,max)2 + (R2
M,ub/(ξRMRM,max)2)/2)

−2RM,max(ξRMRM,max) exp((R2
M,lb(ξRMRM,max)2)/2 + (

RM,maxRM,ub)/(ξRMRM,max)2)− 2RM,ub(ξRMRM,max)

exp((R2
M,lb/(ξRMRM,max)2)/2 + (RM,maxRM,ub)(ξRMRM,max)2)−

√
2
√
πR2

M,maxerfc((RM,ub −RM,max)/(
√

2(ξRMRM,max)))

exp((R2
M,lb/

(ξRMRM,max)2)/2 + (R2
M,ub(ξRMRM,max)2)/2 + (R2

M,max/(ξRMRM,max)2)/2)

+
√

2
√
πR2

M,maxerfc((RM,lb −

RM,max)/(
√

2(ξRMRM,max))) exp((R2
M,lb(ξRMRM,max)2)/2

+(R2
M,ub/(ξRMRM,max)2)/2 + (R2

M,max(ξRMRM,max)2)/2)−
√

2
√
πerfc((RM,ub −RM,max)/(

√
2(ξRMRM,max)))(ξRMRM,max)2 exp((R2

M,lb/

(ξRMRM,max)2)/2R2
M,ub/(ξRMRM,max)2)/2 + (R2

M,max/(ξRMRM,max)2)/2)

√
2
√
πerfc((RM,lb −RM,max)/(

√
2

(ξRMRM,max)))(ξRMRM,max)2 exp((R2
M,lb/(ξRMRM,max)2)/2

+(R2
M,ub/(ξRMRM,max)2)/2 + (R2

M,max/(ξRMRM,max)2)/2)))/2 (S27)
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Figure S3: p(R) of the circular cross-section radius of a polydisperse barrel shape. RM,max =
1800 Å, RM,min = 500 Å, pG = 3.

S5 Averages of the half thickness of the core of the platelet and

its square over a Gaussian distribution comprised between two

bounds

The distribution function of t (the half thickness of the core of the platelet) is

pt(t) =
1

Zt
e−(t−tmax)2/(2ξ2tmax

t2max) (S28)

The normalization factor Zt is determined by the following equation

Zt =

∫ tub

tlb

e−(t−tmax)2/(2ξ2tmax
t2max)dt

= (
√

2π(erf((tub − tmax)/(
√

2ξtmaxtmax)))− erf((tlb − tmax)/(
√

2ξtmaxtmax)))/2. (S29)

where tlb = max{tmax(1− pGξtmax), tmin} and tub = tmax(1 + pGξtmax) are the lower and the upper

bounds of the integrals calculated based on the dispersion ξtmax . In these equations, tmin is the

minimum allowed value of the lower integration bound, which cannot be negative. In our case we

fixed tmin = 1 Å.
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The average of the k-power of the half thickness of the platelet core is defined as

<tk>=
1

Zt

∫ tub

tlb

tke−(t−tmax)2/(2ξ2tmax
t2max)dt (S30)

The average thickness, corresponding to k = 1 in Eq. S30, is

t0 = − exp(−t2max/s
2 − t2ub/s

2 − t2lb/s2)(s2 exp(t2ub/s
2

+(2tmaxtlb)/s2)− s2 exp((2tmaxtub)/s2 + t2lb/s
2)

−
√
πstmaxerfc((tub − tmax)/s) exp(t2max/s

2

+t2ub/s
2 + t2lb/s

2)

+
√
πstmax exp(t2max/s

2 + t2ub/s
2

+t2lb/s
2)erfc((tlb − tmax)/s))/

√
π. (S31)

where s2 = 2t2maxξ
2
tmax

. The second moment of the distribution is the case k = 2, which reads

<t2> = − exp(−t2max/s
2 − t2ub/s

2 − t2lb/s2)(2s2tmax exp(t2ub/s
2

+(2tmaxtlb)/s2) + 2s2tlb exp(t2ub/s
2

+(2tmaxtlb)/s2)− 2s2tmax exp((2tmaxtub)/s2

+t2lb/s
2)− 2s2tub exp((2tmaxtub)/s2 + t2lb/s

2)

−
√
πs3erfc((tub − tmax)/s) exp(t2max/s

2

+t2ub/s
2 + t2lb/s

2)

−2
√
πst2maxerfc((tub − tmax)/s) exp(t2max/s

2

+t2ub/s
2 + t2lb/s

2) +
√
πs3 exp(t2max/s

2 + t2ub/s
2

+t2lb/s
2)erfc((tlb − tmax)/s)

+2
√
πst2max exp(t2max/s

2 + t2ub/s
2

+t2lb/s
2)erfc((tlb − tmax)/s))/2. (S32)

The dispersion of t is calculated as

ξt = (<t2> /t20 − 1)1/2. (S33)
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S6 Average number of stacked platelets over a Gaussian distribu-

tion comprised between two bounds

The Gaussian distribution function of the number Nc of stacked platelets is

pNc(Nc) =
1

ZNc
e−(Nc−Nc,max)2/(2σ2

Nc
) (S34)

The normalization factor Zt is determined by the following equation

ZNc =

∫ Nc,ub

Nc,lb

e−(Nc−Nc,max)2/(2σ2
Nc

)dNc

= σNc

√
π

2

[
erf

(
Nc,ub −Nc,max√

2σNc

)
− erf

(
Nc,lb −Nc,max√

2σNc

)]
. (S35)

where Nc,lb = max{Nc,max − pGσNc , Nc,min} and Nc,ub = Nc,max + pGσNc are the lower and the

upper bounds of the integrals and Nc,min is the minimum allowed value of the lower integration

bound, which was fixed to Nc,min = 1. The average number of stacked platelets is

Nc,0 =

∫ Nc,ub

Nc,lb

Nc pNc(Nc) dNc =
G5

ZNc

G5 =
√

2πNc,maxσNc

+σ2
Nc

(
e−(Nc,lb−Nc,max)2/(2σ2

Nc
) − e−(Nc,ub−Nc,max)2/(2σ2

Nc
)
)

+Nc,maxσNc

√
π

2

[
erfc

(
Nc,lb −Nc,max√

2σNc

)
− erfc

(
Nc,ub −Nc,max√

2σNc

)]
(S36)

S7 Distribution function of the center-to-border distance of a

polydisperse barrel

For a barrel with minimum and maximum circular cross-section radius νRM and RM , respectively,

and with height H, the distance from the center and the border taken along a direction that forms

an angle β with the barrel axis is given by the function

fc(β) =


H

2 cosβ 0 ≤ β ≤ tan−1
(

2νRM
H

)
HRM

[
Hν tanβ+(1−ν)

√
4(1−2ν)R2

M+H2 tan2 β
]

cosβ[4(1−ν)2R2
M+H2 tan2 β]

0 < β < tan−1
(

2νRM
H

)
RM β = π

2

(S37)
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Hence, the average center-to-border distance is the zenith integral

Rc =

∫ π/2

0
dβ sinβ fc(β) (S38)

For a polydisperse barrel over both RM and H, the probability density of the center-to-border dis-

tance, p(Rc), is obtained by sampling RM and H over the two corresponding distribution functions

p(RM ) and p(H) determined by the analysis of SAXS data. A simple Monte Carlo method that

samples 300000 values of Rc has been developed for this aim.

S8 SAXS amplitude of 3 specular layers of electron densities with

smooth transitions

The excess ED profile, relative to the average ED of the entire barrel (ρbrl, see Eq. S122), of 3

specular layers with smooth transitions along the z direction perpendicular to the layers is2

δρf (z) =

3∑
j=1

(ρf,j − ρf,j−1)E(z, zj , σpl,j) (S39)

where ρf,0 = ρbrl, the indexes j = 1, 2, 3 correspond to the outer, middle, and inner domains, the

z levels are zj = t + τj , with, by definition, τ1 = t1 + t2, τ2 = t2 and τ3 = 0. The smoothness

parameter on going from the j-layer to the (j−1)-layer is σpl,j . The function E(z, z0, σ) represents

a combination of two symmetrical error functions3,

E(z, z0, σ) =
1

2

[
erf

(
z + z0

21/2σ

)
− erf

(
z − z0

21/2σ

)]
(S40)

A representative plot of δρf (z) is shown in Fig. S4. To note, the volume fraction distributions along

z of the three domains are,

ϕ1(z) = E(z, z1, σpl,1)− E(z, z2, σpl,2) (S41)

ϕ2(z) = E(z, z2, σpl,2)− E(z, z3, σpl,3) (S42)

ϕ3(z) = E(z, z3, σpl,3) (S43)

Details on the calculation of the electron densities ρf,j in Eq. S39 on the basis of the composition
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of the platelet are shown in Sect. S11.3.2 (Eqs. S65, S115, S116, S117).

The one-dimensional Fourier transform of Eq. S39 reads

t2 t1t

σpl,3 σpl,2 σpl,1δ
ρ

f (
z)

z

ρ3-ρ0

ρ2-ρ0

0

ρ1-ρ0

-z1 -z2 -z3 0 z3 z2 z1

Figure S4: Excess ED calculated with Eq. S39.

Afl,f (q) = 2

3∑
j=1

zj(ρf,j − ρf,j−1)
sin(qzj)

qzj
e−q

2σ2
pl,j/2 (S44)

Eq. S44 can be re-written in the more useful complex space according to

Afl,f (q) = − i
q

3∑
j=1

(ρf,j − ρf,j−1)e−q
2σ2

pl,j/2(eiqzj − e−iqzj ) (S45)

The squared amplitude is

A2
fl,f (q) =

1

q2

3∑
j1=1

3∑
j2=1

(ρf,j1 − ρf,j1−1)e
−q2σ2

j1
/2

(ρf,j2 − ρf,j2−1)e
−q2σ2

j2
/2

(eiq(2t+τj1+τj2 ) − eiq(τj1−τj2 ) − e−iq(τj1−τj2 ) + e−iq(2t+τj1+τj2 )) (S46)
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The averages <(t+ t2)−1A2
fl,f (q)>t, which enter into Eq. 18, read

<(t+ t2)−1A2
fl,f (q)>t =

1

q2

3∑
j1=1

(ρf,j1 − ρf,j1−1)2e
−q2σ2

j1

(ei2qτj1 <(t+ t2)−1e2iqt>t −2 <(t+ t2)−1>t

+e−i2qτj1 <(t+ t2)−1e−2iqt>t)

+
2

q2

2∑
j1=1

3∑
j2=j1+1

(ρf,j1 − ρf,j1−1)(ρf,j2 − ρf,j2−1)e
−q2(σ2

j1
+σ2

j2
)/2

(eiq(τj1+τj2 ) <(t+ t2)−1e2iqt>t −(eiq(τj1−τj2 )

+e−iq(τj1−τj2 )) <(t+ t2)−1>t

+e−iq(τj1+τj2 ) <(t+ t2)−1e−2iqt>t) (S47)

We have calculated the term < (t + t2)−1eiqkt >t by sampling the Gaussian distribution seen

in Eq. S30 over nt points and by performing an analytical integration over the piecewise lines

according to

<(t+ t2)−1eiqkt>t=
1

Zt

∫ tub

tlb

(t+ t2)−1eiqkte−(t−tmax)2/(2ξ2tmax
t2max)dt

≈ 1

Zt

1

q2k2∆t

nt−1∑
j=1

((1− iqk∆t)eiqktj+1 − eiqktj )(tj+1 + t2)−1e−(tj+1−tmax)2/(2ξ2tmax
t2max)

+((1 + iqk∆t)eiqktj − eiqktj+1)(tj + t2)−1e−(tj−tmax)2/(2ξ2tmax
t2max) (S48)

where the sampled points are tj = tlb + (j − 1)∆t, with ∆t = (tub − tlb)/(nt − 1).

S9 Calculation of the radial averages of Eq. 18

The three radial averages shown in Eq. 18, which involve the following three functions,

F1(R) = t1(t1 + 2(R+ t2))(R+ t2)−2, (S49)

F2(R) = t2(t2 + 2R)(R+ t2)−2, (S50)

F3(R) = R2(R+ t2)−2, (S51)
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are defined by the following integral

<Fk(R)>R =

∫ RM,ub

νRM,lb

Fk(R) p(R)dR

=
1

ZRM

∫ RM,ub

RM,lb

Fk,a(RM ) e
−(RM−RM,max)2/(2ξ2RM

R2
M,max)

dRM , (S52)

where, considering the definition of p(R,RM , νRM ) (Eq. 11), we have introduced the following

functions

Fk,a(RM ) =

∫ RM,ub

νRM,lb

Fk(R)p(R,RM , νRM )dR

=

∫ RM

νRM

Fk(R)p(R,RM , νRM )dR (S53)

We have been able, by exploiting the computer algebra system Maxima4, to analytically solve the

integrals shown in Eq. S53. Results, for the case RM (2ν − 1) + t2 ≥ 0, are given by the following
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relationships:

F1,a(RM ) = −(
√
RM + t2

√
2RMν −RM + t2(2π

t32t1 + (πt21 − 2πt2t1)R2
M + ((−2πt1

R3
M ) + (4πt2t1 − 2πt21)R2

M + 6πt22t1

RM )ν + (4πt1R
3
M + (4πt2t1 + πt21)

R2
M )ν2 + (((2t21 + 8t2t1)R2

M + 8t1R
3
M )ν2 + (12t22

t1RM + (8t2t1 − 4t21)R2
M − 4t1R

3
M )ν + (2t21 − 4

t2t1)R2
M + 4t32t1) sin−1((RMν −RM )/(t2 +RM

ν))) + ((4t2t
2
1 − 8πt22t1)R2

M + (4t21 − 16πt2

t1)R3
M − 8πt1R

4
M )ν2 + ((2t22t

2
1 − 8πt32

t1)RM + ((−4t2t
2
1)− 8πt22t1)R2

M + (8πt2

t1 − 6t21)R3
M + 8πt1R

4
M )ν − 2πt1R

4
M + 2

t21R
3
M + 4πt22t1R

2
M − 2t22t

2
1RM − 2π

t42t1)/((−2t42RM ) + 4t22R
3
M − 2R5

M + (10R5
M + 8t2R

4
M − 12

t22R
3
M − 8t32R

2
M + 2t42RM )ν + ((−16R5

M )− 24t2R
4
M + 8

t32R
2
M )ν2 + (8R5

M + 16t2R
4
M + 8t22R

3
M )ν3) (S54)
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F2,a(RM ) = −(
√
RM + t2

√
2RMν −RM + t2(2π

t42 − 3πt22R
2
M + ((−2πt2R

3
M ) + 6πt22R

2
M + 6

πt32RM )ν + (4πt2R
3
M + 3πt22R

2
M )

ν2 + ((6t22R
2
M + 8t2R

3
M )ν2 + (12t32RM + 12t22R

2
M − 4

t2R
3
M )ν − 6t22R

2
M + 4t42) sin−1((RMν −RM )/(t2 +

RMν))) + (((−8π)− 4)t32R
2
M + ((−16π)− 4)t22R

3
M − 8πt2

R4
M )ν2 + (((−8π)− 2)t42RM + (4− 8π)t32R

2
M + (8π + 6)t22

R3
M + 8πt2R

4
M )ν − 2πt2R

4
M − 2t22R

3
M + 4

πt32R
2
M + 2t42RM − 2πt52)/((−2t42RM ) + 4t22

R3
M − 2R5

M + (10R5
M + 8t2R

4
M − 12t22R

3
M − 8t32R

2
M + 2t42

RM )ν + ((−16R5
M )− 24t2R

4
M + 8t32R

2
M )ν2 + (8R5

M + 16t2

R4
M + 8t22R

3
M )ν3) (S55)

F3,a(RM ) = (
√
RM + t2

√
2RMν −RM + t2(2π

t42 − 3πt22R
2
M + ((−2πt2R

3
M ) + 6πt22R

2
M + 6

πt32RM )ν + (4πt2R
3
M + 3πt22R

2
M )

ν2 + ((6t22R
2
M + 8t2R

3
M )ν2 + (12t32RM + 12t22R

2
M − 4

t2R
3
M )ν − 6t22R

2
M + 4t42) sin−1((RMν −RM )/(t2 +

RMν))) + ((−8t22R
3
M )− 16t2R

4
M − 8R5

M )ν3 + (((−8π)− 12)t32

R2
M + ((−16π)− 4)t22R

3
M + (24− 8π)t2R

4
M + 16R5

M )ν2 + (((−8π)− 4)

t42RM + (12− 8π)t32R
2
M + (8π + 18)t22R

3
M + (8π − 8)t2

R4
M − 10R5

M )ν + 2R5
M − 2πt2R

4
M − 6t22R

3
M + 4π

t32R
2
M + 4t42RM − 2πt52)/((−2t42RM ) + 4t22R

3
M − 2

R5
M + (10R5

M + 8t2R
4
M − 12t22R

3
M − 8t32R

2
M + 2t42RM )

ν + ((−16R5
M )− 24t2R

4
M + 8t32R

2
M )ν2 + (8R5

M + 16t2R
4
M + 8

t22R
3
M )ν3) (S56)
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On the other hand, for RM (2ν − 1) + t2 < 0, the functions Fk,a(RM ) are:

F1,a(RM ) = −(
√
RM + t2

√
(−2RMν) +RM − t2((−2i

πt32t1) + (2iπt2t1 − iπt21)

R2
M + (2iπt1R

3
M + (2iπt21 − 4iπ

t2t1)R2
M − 6iπt22t1RM )ν + (((−4i

πt2t1)− iπt21)R2
M − 4iπt1

R3
M )ν2 + ((((−t21)− 4t2t1)R2

M − 4t1R
3
M )ν2 + ((−6t22

t1RM ) + (2t21 − 4t2t1)R2
M + 2t1R

3
M )ν + (2t2

t1 − t21)R2
M − 2t32t1) log(RMν + t2) + (((t21 + 4

t2t1)R2
M + 4t1R

3
M )ν2 + (6t22t1RM + (4t2

t1 − 2t21)R2
M − 2t1R

3
M )ν + (t21 − 2t2t1)R2

M + 2

t32t1) log(
√
RM + t2

√
(−2RMν) +RM − t2 +

RMν −RM ))) + ((2t2t
2
1 − 4πt22t1)R2

M + (2

t21 − 8πt2t1)R3
M − 4πt1R

4
M )ν2 + ((t22

t21 − 4πt32t1)RM + ((−2t2t
2
1)− 4πt22t1)

R2
M + (4πt2t1 − 3t21)R3

M + 4πt1R
4
M )ν −

πt1R
4
M + t21R

3
M + 2πt22t1R

2
M − t22

t21RM − πt42t1)/((−t42RM ) + 2t22R
3
M −R5

M + (5

R5
M + 4t2R

4
M − 6t22R

3
M − 4t32R

2
M + t42RM )ν + ((−8

R5
M )− 12t2R

4
M + 4t32R

2
M )ν2 + (4R5

M + 8t2R
4
M + 4t22R

3
M )ν3) (S57)
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F2,a(RM ) = −(
√
RM + t2

√
(−2RMν) +RM − t2((−2i

πt42) + 3iπt22R
2
M + (2iπt2R

3
M − 6

iπt22R
2
M − 6iπt32RM )ν + ((−4i

πt2R
3
M )− 3iπt22R

2
M )ν2 + (((−3t22R

2
M )− 4

t2R
3
M )ν2 + ((−6t32RM )− 6t22R

2
M + 2t2R

3
M )ν + 3

t22R
2
M − 2t42) log(RMν + t2) + ((3t22R

2
M + 4t2

R3
M )ν2 + (6t32RM + 6t22R

2
M − 2t2R

3
M )ν − 3t22

R2
M + 2t42) log((

√
RM + t2

√
(−2RMν) +RM − t2 +

RMν −RM ))) + (((−4π)− 2)t32R
2
M + ((−8π)− 2)t22R

3
M − 4

πt2R
4
M )ν2 + (((−4π)− 1)t42RM + (2− 4π)t32R

2
M + (4

π + 3)t22R
3
M + 4πt2R

4
M )ν − πt2R4

M −

t22R
3
M + 2πt32R

2
M + t42RM − πt52)/((−t42

RM ) + 2t22R
3
M −R5

M + (5R5
M + 4t2R

4
M − 6t22R

3
M − 4t32

R2
M + t42RM )ν + ((−8R5

M )− 12t2R
4
M + 4t32R

2
M )ν2 + (4

R5
M + 8t2R

4
M + 4t22R

3
M )ν3) (S58)
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F3,a(RM ) = (
√
RM + t2

√
(−2RMν) +RM − t2((−2i

πt42) + 3iπt22R
2
M + (2iπt2R

3
M − 6

iπt22R
2
M − 6iπt32RM )ν + ((−4i

πt2R
3
M )− 3iπt22R

2
M )ν2 + (((−3t22R

2
M )− 4

t2R
3
M )ν2 + ((−6t32RM )− 6t22R

2
M + 2t2R

3
M )ν + 3

t22R
2
M − 2t42) log(RMν + t2) + ((3t22R

2
M + 4t2

R3
M )ν2 + (6t32RM + 6t22R

2
M − 2t2R

3
M )ν − 3t22

R2
M + 2t42) log((

√
RM + t2

√
(−2RMν) +RM − t2 +

RMν −RM ))) + ((−4t22R
3
M )− 8t2R

4
M − 4R5

M )ν3 + (((−4

π)− 6)t32R
2
M + ((−8π)− 2)t22R

3
M + (12− 4π)t2R

4
M + 8R5

M )

ν2 + (((−4π)− 2)t42RM + (6− 4π)t32R
2
M + (4π + 9)t22R

3
M + (4

π − 4)t2R
4
M − 5R5

M )ν +R5
M − πt2R4

M − 3t22

R3
M + 2πt32R

2
M + 2t42RM − πt52)/((−t42RM ) + 2

t22R
3
M −R5

M + (5R5
M + 4t2R

4
M − 6t22R

3
M − 4t32R

2
M +

t42RM )ν + ((−8R5
M )− 12t2R

4
M + 4t32R

2
M )ν2 + (4R5

M + 8

t2R
4
M + 4t22R

3
M )ν3) (S59)

Notice that Eqs. S57-S59 have been solved in the complex space so that, for example, the logarithmic

functions are applied to negative numbers. However, we have checked that the imaginary part of

all the expressions is zero. Finally, the integral averages <Fk(R)>R over a Gaussian (shown in

Eq. S52) are numerically calculated with the Simpson’s rule by using 10 points.

S10 SAXS amplitude of 3-electron density levels of CP bilayers

with smooth transitions

The excess ED profile of 3 specular layers of EDs with smooth transitions along the z direction

perpendicular to the layers, representing the k-th nano-crystal region of CP (see Fig. 3, panels C
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and D), is2

δρk(z) =
3∑
i=1

(ρk,i − ρk,i−1)E(z, zk, σk,i) (S60)

where ρCP,0 is the average CP ED, according to

ρk,0 =

∑3
i=1 νCP,iρCP,i∑3

i=1 νCP,i

(S61)

In this equation, νCP,i and ρCP,i are the molecular volume and the ED of the carboxyl group

(i = 1), the middle (i = 2) and the terminal (i = 3) chains of the CP molecules, respectively. The

z levels are zi =
∑3

i′=i δk,i′ and σk,i is the smoothness parameter on going from the i-layer to the

(i − 1)-layer. A representative plot of δρk(z) is shown in Fig. S5. The one-dimensional Fourier

transform of Eq. S60 reads

Ald,k(q) = 2
3∑
i=1

zi(ρk,i − ρk,i−1)
sin(qzi)

qzi
e−q

2σ2
k,i/2 (S62)

δk,1δk,2δk,3

dk

σk,1
σk,2

σk,3

δ
ρ

k 
(z

)

z

ρ3-ρ0

ρ2-ρ0

0

ρ1-ρ0

-z1 -z2 -z3 0 z3 z2 z1

Figure S5: Excess ED calculated with Eq. S60.

Electron densities ρk,i and thicknesses δk,i are calculated according to the physical-chemical

characteristics of the groups forming the CP molecule, shown in Table 2. Explicit equations are

reported in the Sect. S11.3.1, Eqs. S85, S86, S90, S91, S92, S93, S94, S96, S97, S98, S99, S100 and

S101.
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S11 Volumetric constraints and calculation of electron densities

S11.1 Water and thermal expansivities

The relative mass density of bulk water is calculated as a function of T with the following expression

dwat = e−αwat(T−T◦)−βwat(T−T◦)2/2, (S63)

where the thermal expansivity of water at T◦ and its first derivative are αwat = 2.5 · 10−4 K−1 and

βwat = 9.8 · 10−6 K−2, respectively5. Conversely, the temperature dependency of the relative mass

density of both CP and P80 molecules is expressed as a function of the thermal expansivity αlip of

lipids, according to

dlip = e−αlip(T−T◦), (S64)

αlip being considered an adjustable parameter.

The bulk water electron density is

ρ0 = eH2O/(ν
◦
wat/dwat) (S65)

S11.2 End-capped cylindrical micelles

The molecular volume of the hydrophobic region of P80 is

νP80,hyd = (14νCH2 + 2νCH + νCH3)/dlip. (S66)

The molecular volume of the dry polar region of P80 is written as

νP80,pol,dry = ((2νCH2 + ν−O−)20 + ν>C= + 2ν−O− + νO= + 2νCH2 + 4νCH + 3νOH)/dlip. (S67)

The number of water molecules per molecule of P80 in (k = 1) domain (see Eq. S12, here
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referred to as 1-domain) of the end-cap region of the micelle is derived by the following equation

rwat,cap = (2δ3
capνP80,hyd + 6R2,capδ

2
capνP80,hyd

+3hδ2
capνP80,hyd + 6R2

2,capδcapνP80,hyd

+6hR2,capδcapνP80,hyd − 2R3
2,capνP80,pol,dry

−3hR2
2,capνP80,pol,dry + h3νP80,pol,dry)/

((h+R2,cap)2(2R2,cap − h)ν◦wat/dwat/d̂wat,cap) (S68)

The number of water molecules per molecule of P80 in 1-domain of the cylinder region of the micelle

is derived by the following equation

rwat,cyl =
δ2

capνP80,hyd + 2R2,capδcapνP80,hyd −R2
2,capνP80,pol,dry + h2νP80,pol,dry

(R2,cap − h)(h+R2,cap)ν◦wat/dwat/d̂wat,cyl

(S69)

Accordingly, the electron densities of the 1-domain of the end-cap and of the cylinder regions of

the micelle are

ρ1,cap = ((2eCH2 + e−O−)20 + e>C=

+2e−O− + eO= + 2eCH2 + 4eCH + 3eOH + rwat,capeH2O)

/(νP80,pol,dry + rwat,capν
◦
wat/dwat/d̂wat,cap) (S70)

ρ1,cyl = ((2eCH2 + e−O−)20 + e>C=

+2e−O− + eO= + 2eCH2 + 4eCH + 3eOH + rwat,cyleH2O)

/(νP80,pol,dry + rwat,cylν
◦
wat/dwat/d̂wat,cyl) (S71)

In Eqs. S68-S71, d̂wat,cap and d̂wat,cyl represent the relative mass density of water molecules embed-

ded in the 1-domain of the end cap and the cylinder regions, respectively.

The electron density of the hydrophobic domain of the P80 molecule is

ρP80,2 = (14eCH2 + 2eCH + eCH3)/νP80,hyd (S72)

This ED corresponds to the ED of the 2-domain of both end-cap and cylinder regions of the micelle,

ρ2,cap and ρ2,cyl, respectively (see Eq. S12). The hydration of the 1-domain is calculated by the
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ratio between the volume occupied by water and the total volume of the 1-domain, in both regions

χcap =
rwat,capν

◦
wat/dwat/d̂wat,cap

νP80,pol,dry + rwat,capν◦wat/dwat/d̂wat,cap

(S73)

χcyl =
rwat,cylν

◦
wat/dwat/d̂wat,cyl

νP80,pol,dry + rwat,cylν
◦
wat/dwat/d̂wat,cyl

(S74)

The area that each P80 molecule faces towards the water in the end-cap and the cylinder region

can be calculated by the following expressions

aP80,ec,cap,1 = 3
νP80,hyd

R2,cap

(
1 +

δcap

R2,cap

)2 1 + h
R2,cap

1 + 3
2

h
R2,cap

− 1
2

(
h

R2,cap

)3 (S75)

aP80,ec,cyl,1 = 2
νP80,hyd

R2,cyl

(
1 +

δcyl

R2,cyl

)
(S76)

We can also calculate the corresponding areas at the interface between 1-domain and 2-domain in

both regions. They are

aP80,ec,cap,1,2 = 3
νP80,hyd

R2,cap

1 + h
R2,cap

1 + 3
2

h
R2,cap

− 1
2

(
h

R2,cap

)3 (S77)

aP80,ec,cyl,1,2 = 2
νP80,hyd

R2,cyl
(S78)

S11.3 Platelets

The molecular volume of CP, seen as a function of T , in the amorphous region (disordered chains,

α) is

νCP,α = (29νCH2 + 2νCH3 + ν>C= + ν−O− + νO=)/dlip. (S79)

In the lamellar phases (ordered chains, β), the volume becomes

νCP,β = (29νCH2βCH2 + 2νCH3βCH3 + ν>C= + ν−O− + νO=)/dlip, (S80)

where βCH2 and βCH3 are, respectively, the reduction factors of volumes of the groups CH2 and

CH3 in the ordered chains relative to the values they have in disordered chains.
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S11.3.1 Lamellar domains

The number of CH2 groups of CP that are considered to be part of the i = 1 domain (see

Eq. S60, shortly referred to as 1-domain) of each of the two lamellar phases are NCH2,CP,pol,1

and NCH2,CP,pol,2, respectively.

The fractions of CH2 and CH3 that occupy the i = 2 domain (see Eq. S60, shortly referred

to as 2-domain) of the first lamellar phase are xCP,CH2,1 and xCP,CH3,1, respectively, where the

fractions of CH2 and CH3 that occupies the 2-domain of the second lamellar phase are xCP,CH2,2

and xCP,CH3,2, respectively.

The number of correlated bilayers of the first and the second lamellar phase are NCP,1 and

NCP,2, respectively, and the corresponding distortion factors are gCP,1 and gCP,2, respectively.

The areas associated with each CP molecule in the two lamellar phases are aCP,1 and aCP,2,

respectively. These values allow us to calculate the repetition distance of two lamellar phases

according to

d1 = νCP,β/aCP,1 (S81)

d2 = νCP,β/aCP,2. (S82)

The volumes of the 1-domain of the CP molecule in the first and the second lamellar phase are,

νCP,1,1 = (1/dlip)(ν>C= + ν−O− + νO= +NCH2,CP,pol,1νCH2βCH2) (S83)

νCP,2,1 = (1/dlip)(ν>C= + ν−O− + νO= +NCH2,CP,pol,2νCH2βCH2) (S84)

and the two corresponding thicknesses are

δ1,1 = νCP,1,1/aCP,1 (S85)

δ2,1 = νCP,2,1/aCP,2 (S86)

The total volume of the CH2 groups in both the 2-domain and the 3-domain of the CP in the

first and in the second lamellar phases are

νCP,1,CH2,2,3 = (29−NCH2,CP,pol,1)νCH2βCH2/dlip (S87)

νCP,2,CH2,2,3 = (29−NCH2,CP,pol,2)νCH2βCH2/dlip (S88)
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The total volume occupied by the CH3 groups in the CP molecule is

νCP,CH3 = 2νCH3βCH3/dlip (S89)

The thicknesses of the 2-domain the CP molecule in the first and in the second lamellar phase

are

δ1,2 = (νCP,1,CH2,2,3xCP,CH2,1 + νCP,CH3xCP,CH3,1)/aCP,1 (S90)

δ2,2 = (νCP,2,CH2,2,3xCP,CH2,2 + νCP,CH3xCP,CH3,2)/aCP,2 (S91)

The thicknesses of the 3-domain the CP molecule in the first and in the second lamellar phase

are

δ1,3 = (νCP,1,CH2,2,3(1− xCP,CH2,1) + νCP,CH3(1− xCP,CH3,1))/aCP,1 (S92)

δ2,3 = (νCP,2,CH2,2,3(1− xCP,CH2,2) + νCP,CH3(1− xCP,CH3,2))/aCP,2 (S93)

The average electron density of the CP molecule is

ρCP,0 =
eC + 2eO + 29eCH2 + 2eCH3

ν̄CP,3
, (S94)

where we have introduced the mean molecular volume of CP for ordered and disordered regions of

the inner part of the platelet,

ν̄CP,3 = y3νCP,α + (1− y3)νCP,β (S95)

The electron densities of the 1-domain of the first and the second lamellar phase are

ρCP,1,1 = (eC + 2eO + eCH2NCH2,CP,pol,1)/νCP,1,1 (S96)

ρCP,2,1 = (eC + 2eO + eCH2NCH2,CP,pol,2)/νCP,2,1 (S97)
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The electron densities of the 2-domain of the first and the second lamellar phase are

ρCP,1,2 =
xCP,CH2,1(29−NCH2,CP,pol,1)eCH2 + xCP,CH3,12eCH3

νCP,1,CH2,2,3xCP,CH2,1 + νCP,CH3xCP,CH3,1
(S98)

ρCP,2,2 =
xCP,CH2,2(29−NCH2,CP,pol,2)eCH2 + xCP,CH3,22eCH3

νCP,2,CH2,2,3xCP,CH2,2 + νCP,CH3xCP,CH3,2
(S99)

The electron densities of the 3-domain of the first and the second lamellar phase are

ρCP,1,3 =
(1− xCP,CH2,1)(29−NCH2,CP,pol,1)eCH2 + (1− xCP,CH3,1)2eCH3

νCP,1,CH2,2,3(1− xCP,CH2,1) + νCP,CH3(1− xCP,CH3,1)
(S100)

ρCP,2,3 =
(1− xCP,CH2,2)(29−NCH2,CP,pol,2)eCH2 + (1− xCP,CH3,2)2eCH3

νCP,2,CH2,2,3(1− xCP,CH2,2) + νCP,CH3(1− xCP,CH3,2)
(S101)

S11.3.2 Entire platelet

The nominal w/v concentration (in g/L) of nanoparticles, corresponding to both CP and P80

molecules in the sample, is indicated as cLNP and the nominal molar ratio between CP and P80

molecules as rCP,P80. To each of these two parameters, we associate two correction factors, kcLNP

and krCP,P80 . Hence, the w/v concentration of CP in the sample is

cCP =
kcLNPcLNPMCP

MCP +MP80/(krCP,P80rCP,P80)
. (S102)

The mass balance of CP and P80 is combined with the structural parameters of the platelet as

follows. By referring to Fig. 3, the volumes of the platelet’s core and the second (or intermediate)

platelet’s shell (labeled with j = 2, 3 and f = 2, 3) are related to the number of CP and P80

molecules in the platelet (NCP,pl and NP80,pl, respectively) using

3∑
f=2

3∑
j=2

Vf,j = 2π(t+ t2)(R+ t2)2

= NCP,plν̄CP +NP80,plνP80,hyd (S103)

where ν̄CP is the average molecular volume of CP in the platelet’s core and the second platelet’s

shell. The number of P80 in the platelet can be expressed as a function of the fraction of P80

molecules embedded into the platelet, yP80, and the nominal molar ratio between CP and P80
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molecules, rCP,P80 (a parameter known by the composition of the sample),

NP80,pl = yP80
NCP,pl

rCP,P80krCP,P80

. (S104)

Combining Eqs. S103-S104, we find NCP,pl

NCP,pl =
2π(t+ t2)(R+ t2)2

ν̄CP +
νP80,hydyP80

rCP,P80krCP,P80

(S105)

The average value of NCP,pl over both the radial distribution p(R) (Eq. 13) and the distribution of

the half-thickness pt(t) (Eq. S28) is

<NCP,pl>=
2π(t0 + t2)(R2

0(1 + ξ2
R) + 2t2R0 + t22)

ν̄CP +
νP80,hydyP80

rCP,P80krCP,P80

(S106)

Moreover, by considering only the volume of the second (intermediate) shell of the platelet, the one

that contains the hydrophobic domain of P80 molecules embedded in the CP region (represented

in cyan in Fig. 3 panel B), we can write

3∑
f=2

5−f∑
j=2

<Vf,j> = 2π(t0 + t2)(R2
0(1 + ξ2

R) + 2t2R0 + t22)− 2πt0R
2
0(1 + ξ2

R)

= <NP80,pl> (νP80,hyd + r̂CP,P80ν̄CP) (S107)

where r̂CP,P80 represents the average number of CP molecules per P80 molecule in the second

platelet shell. This definition allows to calculate the average molecular volume of CP in the whole

platelet,

ν̄CP = ν̄CP,3 +
yP80r̂CP,P80

rCP,P80krCP,P80

(νCP,α − ν̄CP,3) (S108)

where we have assumed that in the second platelet’s shell, all CP molecules are in the amorphous

configuration. Combining Eqs. S103-S108 it is easy to analytically find out r̂CP,P80 as well as

<NCP,pl>, <NP80,pl> and ν̄CP. We can also calculate both the overall volume fraction of CP and
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the volume fraction of CP in the inner part of the platelets, according to,

φCP =
NAcCPν̄CP

MCP
(S109)

φCP,3 = φCP

(
1−

yP80r̂CP,P80νCP,α

ν̄CPrCP,P80krCP,P80

)
(S110)

The average area of the platelet associated with each P80 molecule can be calculated by referring

to the second layer of the platelet and considering the ratio between the sum of the volume occupied

by the hydrophobic domain of P80 and the one occupied by r̂CP,P80 molecules of CP and the

thickness of this layer,

aP80,pl =
νP80,hyd + r̂CP,P80νCP,α

t2
(S111)

To note, by assuming an average hexagonal displacement of the P80 molecules on the platelet

surface, the average distance between the nearest neighbor P80 molecules is

dP80,P80 =

√
2aP80,pl/

√
3 (S112)

We also consider the number of water molecules associated with each P80 molecule occupying the

first layer region of the platelet (shown in green in Fig. 3), indicated with rwat,P80. On the other

hand, the thickness of the first layer of the platelet can be calculated by taking into account the

volume occupied by the polar head of P80 and the one due to rwat,P80 water molecules, supposed

to have a relative mass density d̂wat,pl in respect to the bulk water mass density

t1 =
νP80,pol,dry + rwat,P80

ν◦wat

d̂wat,pldwat

aP80,pl
(S113)

Therefore, we can calculate the fraction of the platelet surface occupied by the polar head of P80

φS,P80 =
νP80,pol,dry

t1aP80,pl
(S114)
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The electron density of the 1-domain of the platelet results,

ρf,1 = (eC + 2eO + 29eCH2 + 2eCH3 + rwat,P80eH2O)

/(νP80,pol,dry + rwat,P80
ν◦wat

d̂wat,pldwat

) (S115)

The electron density of the 2-domain of the platelet results,

ρf,2 = (14eCH2 + 2eCH + eCH3 + r̂CP,P80(eC + 2eO + 29eCH2 + 2eCH3))

/(νP80,hyd + r̂CP,P80ν̄CP) (S116)

Finally, the third ED values correspond to the average electron density of the CP molecule, given

in Eq. S94.

ρf,3 = ρCP,0 (S117)

S11.3.3 Barrels with shells

The average volume of the region between two subsequent platelets (represented in white in Fig. 3

panel B) is

V0 = 2π∆t[R2
0(1 + ξ2

R) + t22 + t21 + 2R0(t2 + t1) + 2t2t1] (S118)

The average volume of the first shell region of platelets (represented in green in Fig. 3 panel B) is

V1 = = 2πt1[R2
0(1 + ξ2

R) + t2(2R0 + t2) + (t0 + t2 + t1)(2R0 + 2t2 + t1)] (S119)

The average volume of the second shell region of platelets (represented in cyan in Fig. 3 panel B)

is

V2 = 2πt2[R2
0(1 + ξ2

R) + (t0 + t2)(2R0 + t2)] (S120)

The average volume of the core region of platelets (represented in blue in Fig. 3 panel B) is

V3 = 2πt0R
2
0(1 + ξ2

R) (S121)

S30



The average ED of barrels is

ρbrl =
ρwatV0 + ρf,1V1 + ρf,2V2 + ρf,3V3

V0 + V1 + V2 + V3
(S122)

The average number density of barrels is

nbrl =
NAcCP

MCP <NCP,pl> Nc

=
φCP

ν̄CP <NCP,pl> Nc
(S123)

The volume fractions of CP, P80 and water in the barrel are

φbrl,CP =
<NCP,pl> ν̄CP

D
(S124)

φbrl,P80 =
<NP80,pl> (νP80,hyd + νP80,pol,dry)

D
(S125)

φbrl,wat =
(<NP80,pl> rwat,P80/d̂wat,pl + V0)ν◦wat/dwat

D
(S126)

where

D = (<NP80,pl> rwat,P80/d̂wat,pl + V0)ν◦wat/dwat

+ <NP80,pl> (νP80,hyd + νP80,pol,dry)+ <NCP,pl> ν̄CP (S127)

S11.3.4 Average surface of the barrel

The surface of a barrel with height H, major and minor radii νRM and RM , respectively, results

Sbrl = 2πR2
M (ν + 2)f(ε, ν) (S128)

where ε = 2RM/H and the function f(ε, ν), corresponds to the following integral

f(ε, ν) =
1

ε

∫ 1

0

[
ν + (1− ν)

√
1− φ2

]√
1 +

ε2φ2(1− ν)2

1− φ2
dφ (S129)

that can be easily derived in the framework of the revolution solid theory. We have solved numer-

ically the integral in Eq. S129 in a two-dimensional grid of ε and ν in the corresponding ranges

1
5 ≤ ε ≤ 5 and 0 ≤ ν ≤ 1. Subsequently, we have expanded the results in power series of ν up to
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j b0,j b1,j c1,j b2,j c2,j b3,j c3,j

0 0.5382 -0.0739 0.1724 -2.9555 6.0253 1.3475 2.3820

1 0.8831 0.3803 -0.6286 2.3728 -9.8397 -8.1622 -3.6075

2 -0.8858 -0.6223 -0.2495 -0.2482 -0.3393 -0.0033 -0.3686

3 11.0761 2.8980 0.2566 -0.5802 1.1276 -1.1853 0.4495

4 -12.0772 -11.3033 -5.5527 -4.6906 -5.6968 -4.7512 -6.1686

5 3.5727 0.9426 0.2049 1.0701 3.0945 7.7301 0.9234

6 -3.6432 -3.0487 -1.2873 -0.2511 -0.5396 -0.2639 -0.5900

Table S1: Expansion coefficients according to Eqs. S130 and S131.

the 6th degree

f(ε, ν) ≈
6∑
j=0

aj(ε)ν
j (S130)

We have then approximated the coefficients aj(ε) with a combination of three exponential functions

over a background,

aj(ε) = b0,j +
3∑

k=1

bk,je
ck,jε (S131)

Best fitting parameters are shown in Table S1 The comparison between the integrals and their

approximations due to Eqs. S130 and S131 is shown in Fig. S6. The double expansion allows an

analytical calculation of the mean barrel surface, according to Gaussian distributions of both RM

and e,

<Sbrl> = 2π <R2
M >RM (ν + 2) <f(ε, ν)>ε . (S132)
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Figure S6: Best fit of the integral expressed in Eq. S129 according to Eqs. S130 and S131.

The first average is given by
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where ZRM is calculated with Eq. S22. The second average depends on the mean value of ε,

ε0 = 2RM,0/H0, and its variance σ2
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As a result, we have obtained the following analytical expression for the average <f(ε, ν)>ε
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(S136)

where the two integral bounds are εlb = max{1/5, ε0 − pσε} and εub = min{5, ε0 + pσε}.
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S12 SAXS amplitude of Ns layers of electron densities with smooth

transitions

The excess ED profile of Ns layers with smooth transition in respect to the bulk water ED ρ0 is

δρbrl(z) =
1

2

Ns∑
j=0

(ρj+1,brl − ρj,brl)

[
1 + erf

(
z − zj,brl

21/2σj,brl

)]
(S137)

where zj,brl =
∑j

k=1 τk,brl is the z coordinate of the plane that separates the (j + 1)-layer (with

ED ρj+1,brl) and the j-layer (with ED ρj,brl) with the assumption z0,brl = 0, τk,brl is the thickness

of the k-layer, σj,brl is the smooth parameter between (j + 1)-layer and the j-layer and with the

assumption ρ0,brl ≡ ρ0. To note, in the case of Ns = 0, there is only a smooth transition between

0-layer (bulk) and 1-layer (overall barrel). The Fourier transform of Eq. S137 is

Abrl(q) =
i

q

Ns∑
j=0

(ρj+1,brl − ρj,brl)e
− 1

2
(qσj,brl)

2
eiqzj,brl (S138)

To note, in the case Ns = 0 and for σ0,brl = 0 we have |Abrl(q)|2 = q−2(ρ1,brl−ρ0)2, which, combined

with Eq. 20, leads to the typical q−4 Porod behaviour.
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Time from preparation <RH> ξRH
(days) (Å)

0 939±6 0.29±0.02
2 988±8 0.32±0.02
6 963±7 0.31±0.02
15 938±9 0.29±0.02
30 959±5 0.28±0.01

Table S2: Mean hydrodynamic radius of the LNS and associated dispersion obtained from the
analysis of the second-order autocorrelation functions measured by DLS.
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Table S3: Common fitting parameters obtained by the analysis of SAXS curves as recorded at
the Austrian SAXS beamline at ELETTRA. The unit of length is Å. Validity ranges of fitting
parameters: a [−1000, 1000] (kJ/mol); b [−50, 50] (kJ/mol); c [12.0, 15.0]; d [11.0, 14.0]; e [14.0, 17.0];
f [14.0, 17.0]; g [19.8, 23.0]; h [26.2, 27.5]; i [48.0, 54.0]; j [29.8, 30.0]; k [0.95, 1.00]; l [0.95, 1.00]; m

[7.1, 7.8] (10−4 K−1); n [0.97, 1.15]; o [0.97, 1.15]; p [0.97, 1.15]

∆ a −348±3
δ b −24.7±0.2
ν◦>C=

c 13.0±0.1
ν◦=O

d 12.0±0.1
ν◦−O−

e 15.5±0.2
ν◦OH

f 14.0±0.1
ν◦CH

g 20.4±0.2
ν◦CH2

h 26.5±0.3

ν◦CH3

i 50.1±0.5

ν◦H2O
j 29.8±0.3

βCH2
k 0.97±0.01

βCH3
l 0.97±0.01

αlip
m 7.22±0.07

d̂wat,cyl
n 1.12±0.01

d̂wat,cap
o 1.01±0.01

d̂wat,pl
p 0.99±0.01

S13 SAXS analysis of the data recorded at ELETTRA
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Figure S7: Synchrotron SAXS curves recorded the Austrian SAXS beamline of ELETTRA of P80
(panels A-B) and LNP (panels C-D) samples reported in semi-logarithmic plot (panels A, C) and
in logarithmic plots (panels B and D), respectively. For a better visualization, curves have been
stacked by multiplying for a factor 10m−1, m being the index of the row from the bottom. In panels
A-B, data refer to 13.3 g/L P80 concentration. Green and blue points in panels C-D refer to 80.0
and 40.0 g/L LNP concentration, respectively. Solid black lines are the best fits obtained with the
global-fit method.
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Figure S8: Second-class fitting parameters (panels A-F) and derived fitting parameters (panels G-
O) obtained by the analysis of SAXS data recorded at the Austrian SAXS beamline at ELETTRA
of P80 shown in Fig. S7 (panels A-B). Points refer to 13.3 g/L P80 concentration. The validity
ranges of the fit parameters shown in the panels are: A) [6,30] Å; B) [-30,30] Å; C) [6,50] Å; D)
[0,100] Å; E) [0,500] kJ/mol; F) [0.1,10] Å.
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Figure S9: Second-class fitting parameters (panels A, B, C, D, F, G, H, I, J, K, L, M, N, O, Q, R,
S, T, U, V) and derived fitting parameters (panels E, P, W, X, Y) obtained by analyzing SAXS
data recorded at the Austrian SAXS beamline at ELETTRA of LNP shown in Fig. 3 (panels C-D).
Green and blue points refer to 80.0 and 40.0 g/L LNP concentration, respectively. The validity
ranges of the fit parameters shown in the panels are: A) [35,500]; B) [10,500]; C) [2,100]; D) [0,2];
F) [4,20] Å; G) [600,3000] Å; H) [100,400] Å; I) [0,5]; J) [0,1]; K) [3,40] Å; L) [0,10]; M) [0,30] Å;
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Figure S10: Probability densities of the circular cross-section barrel radius (panel A), of the total
thickness of the platelets (panel B), of the barrel height (panel C) and of the center-to-border
distance (panel D) obtained by the analysis of SAXS data recorded at the Austrian SAXS beamline
of ELETTRA. Green and blue lines refer to 80.0 and 40.0 g/L LNP concentration. Solid, dotted,
and dashed lines refer to the temperature of 20, 25, and 37 ◦C. In all panels, the dark-gray vertical
lines indicate the median at 80.0 g/L and 20 ◦C, and the shaded area indicates the corresponding
range between 1st and 3rd quartile.
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Figure S12: Size distribution of a cylinder with spherical end-caps micelle resulting from the fit of
SAXS data recorded at the Austrian SAXS beamline of ELETTRA on P80 samples.
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