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Abstract: The combustion efficiency of wood pellets is partly affected by their average length. The
ISO 17829 standard defines the methodology for assessing the average length of sample pellets,
but the method does not always lead to representative data. Furthermore, a standard analysis is
time-consuming as it requires manual measurement of the pellets using a caliper. This paper, whilst
evaluating the effect of pellet length on combustion efficiency, proposes a pending-patented dimen-
sional image processing method (DIP) for assessing pellet length. DIP allows the dimensional data
of grouped and stacked pellets to be obtained by exploiting the shadows produced by pellets when
exposed to a light source, assuming that different-sized pellets produce different shadows. Thus,
the proposed method allows for the extraction of dimensional information from non-distinct objects,
overcoming the reliance of classical image processing methods on object distance for effective segmen-
tation. Combustion tests, carried out using pellets varying only in length, confirmed the influence
of length on combustion efficiency. Shorter pellets, compared to longer ones, significantly reduced
CO emissions by up to 94% (mg/MJ). However, they exhibited a higher fuel mass consumption
rate (kg/h), with an increase of up to 22.8% compared to the longest sample. In addition, longer
pellets produced fewer but larger shadows than shorter ones. Further studies are needed to correlate
the number and size of shadows with samples’ average length so that DIP could be implemented in
stoves and programmed to communicate with the control unit and automatically optimize the setting
in order to improve combustion efficiency.

Keywords: solid biofuel; stove emissions; low-cost sensor; image processing; binarization; pellet
length; precision bioenergy

1. Introduction

The European interest in renewable energy, reflected by EU Directive 2009/28/EC
and, today, renewed through the update of the Green Deal, has led to an expansion of the
market of renewable energies and solid biofuels [1,2]. Among them, wood pellets have
been one of the most successful and most used in household heating [3,4]. In fact, although
some countries experienced a decrease in pellet production, such as Italy, which saw a
4.4% drop from 450 thousand tons to 430 thousand tons between 2014 and 2023, the overall
pellet production in Europe increased significantly by 79.2%, rising from 484 thousand tons
to 867 thousand tons [5].

However, whilst representing an important energy source, solid biofuels are well
known as the cause of significant emissions of air pollutants in urban and rural areas [6].
For this purpose, many experimental and modelling studies have been conducted to
obtain information on pollutant dispersion for monitoring and assessing possible long-term
strategies to reduce air pollution in cities. Over the years, worldwide regulations have
imposed progressively restrictive thresholds for atmospheric pollutant concentrations [7].
Therefore, in the context of the development of the biomass market, there also has been an
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increased focus on the monitoring of biomass quality parameters, specifically of pellets’
overall quality.

The ISO 17225-2 standard defines the pellet quality classes and thresholds for chemical,
energetic, and physical parameters [8]. The latter include geometric parameters such as
diameter and length. Specifically, ISO 17225-2 indicates that pellets should not be shorter
than 3.15 mm and longer than 40 mm. ISO 17829 outlines the procedure for measuring
the diameter and length of pellet samples using a caliper [9]. However, the standard
methodology is time-consuming, therefore leading to the analysis of a limited number of
pellets, which may result in non-representative data [10,11].

Geometrical parameters have numerous effects on pellets’ overall quality. Gilvari et al.
and Lisowski et al. investigated the effect of length on pellets’ durability [12,13], whilst
Pradhan et al. found an inverse relation between pellet’s length and its bulk density [14]. A
number of studies focused on the assessment of pellet length’s influence on combustion
efficiency, the latter playing a crucial role in the quality of flue gas emissions from domestic
heating systems [15]. Wöhler et al. highlighted a correlation between pellet length, and car-
bon monoxide (CO) and particulate (PM) emissions [16]. Moreover, Mack et al. found that
longer pellets lead to a reduction in fuel mass flow and an increase in lambda values, and
hence lower combustion efficiency [17]. Therefore, monitoring pellet’s overall quality and
geometrical parameters is a key element in optimizing its use and reducing environmental
impacts [18].

In recent years, studies have been proposing alternative methods to those defined by
the standard for rapid and accurate monitoring of solid biofuel’s overall quality. For densi-
fied biofuels, such as briquettes and pellets, computer vision and image processing are some
of the most widely used alternative methods. For instance, Igathinathane et al. developed
thresholding image processing software to assess the fine content in industrial environ-
ments during pellet production [19], while Chaloupková et al. applied image processing
techniques to assess the size and densification of particles composing briquettes [20].

A number of studies have also researched the application of image processing tech-
niques for monitoring pellet length [10,21,22]. However, to the best of author’s knowledge,
there are no studies suggesting methods to assess the size of pellets placed in bulk. When
using traditional segmentation and thresholding methods, bulk analysis appears difficult
and unreliable, as pellets placed transversely within the bulk lead to length measurement
errors, making this method not applicable on production lines or within heating systems.
In this context, the proposed principle addresses the limitations of segmentation techniques
for objects that are not clearly separated or parallel to the camera by analyzing shadows
cast by pellets and establishing a reliable correlation between shadow size and pellet size.

In this regard, this paper analyses the effect of pellets differing only in length on
combustion quality and proposes an innovative approach based on image processing, which
allows for the dimensional analysis of unsorted pellets, placed in bulks. The proposed
method is currently undergoing patenting.

2. Materials and Methods

This research consists of two separate lines of work. The former aimed to assess the
influence of pellet length on combustion efficiency, as suggested in prior papers [16,17],
whilst the latter evaluated a prototypal system which allows for the measurement of pellet
length in bulk via image processing.

The prototypal system differs significantly from the standard measuring methodology
for pellet length, which involves the use of a caliper [9]. Specifically, the principle behind
the prototype is to obtain dimensional data of the samples by exploiting the shadows
generated by the pellets when subjected to a light source, assuming that different-sized
pellets generate different shadows.

Therefore, pellets of different lengths were produced using the same raw material,
thus attempting to limit the variables which affect combustion efficiency [23]. Prior to the
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combustion tests and measurement by the prototype system, the chemical, physical, and
energetical parameters of the pellet samples were assessed.

Detailed descriptions of each methodology step are presented in the following sections.

2.1. Sample Preparation

The production of wooden pellets took place at Enerlegno (Forlì, FC), a local Italian
pellet company equipped with a horizontal die pelletizer. The raw material used throughout
the production process was spruce (Picea abies) sawdust, being one of the most widely
available and used species in pellet production.

Using the same raw material whilst varying the distance between the horizontal die
and the pelletizer’s knives allowed pellets which mostly differed in length to be obtained.
Specifically, the knives were placed at a distance of 25, 35, and 45 mm from the die, produc-
ing three types of samples: predominantly short pellets (Sp), medium-length pellets (Mp),
and predominantly long pellets (Lp). About 50 kg of each type of pellet was produced.
Knife distances were chosen according to previous experimental tests.

To assess the geometrical parameters of Sp, Mp and Lp, sample homogenization and
reduction were carried out according to the ISO 21945 methodology [24], producing three
sub-samples, 5 kg each. Thus, a total of 300 randomly selected pellets from each sub-sample
were measured through the use of a digital Maurer caliper (accuracy 0.01 mm), according
to the ISO 17829 methodology.

Furthermore, the overall quality of Sp, Mp and Lp was assessed by measuring the
following parameters: moisture content (MC, ISO 18134-2 [25]); ash content (ISO 18122 [26]);
net, higher, and lower heating values (NCV, HCV, and LCV respectively, ISO 18125 [27]);
chemical composition (C, H, N content—ISO 16948 [28]); chlorine and sulfur content
(Cl, S—ISO 16994 [29]); durability (ISO 17831-1 [30]); and fine content (ISO 18846 [31]).

Lastly, further sample reduction was carried out on Sp, Mp, and Lp by manually
selecting pellets in order to obtain sub-samples (Sp2, Mp2, and Lp2) with distinctly different
average lengths. The latter sub-samples were used to test the prototypal dimensional image
processing measuring system (DIP). Lastly, 150 pellets randomly selected from Sp2, Mp2,
and Lp2 were measured using a caliper.

2.2. Combustion Tests

The combustion efficiency of Sp, Mp, and Lp was evaluated through the use of a pellet
stove with 10 kW nominal heating capacity (mod. 6000 Caminetti Montegrappa, Pove
del Grappa, Italy) and an emission analyzer (Vario plus, MRU, Humble, TX, USA). The
emission analyzer was connected directly to the chimney at a distance of 1.5 m from the
stove exhaust pipe, allowing for continuous monitoring of the flue gases’ composition
and temperature. Furthermore, the stove was placed upon an industrial scale (accuracy
5 g) to assess the samples’ mass flow rate (MFR, kg/h) during each combustion test. The
experimental setup is shown in Figure 1.

Trends in the emissions of carbon monoxide (CO), nitrogen oxides (NOx), lambda (λ)
and flue gas temperature (◦C) were measured via the MRU analyzer, while varying
the stoves’ default programs (F3, F2, and F1), which affect the flue gas extraction rate
whilst maintaining the same intermediate auger speed. Furthermore, the flue gas flow
rate (Nm3/h) was calculated via Equation (1):

MFR ×
[
Air stoichiometry × (λ − 0.21) +

(1.85 × C + 11.09 × H + 1.24 × MC + 0.80 × N + 0.68 × S)
100

]
(1)

where C, H, N, S, and MC refer to the samples’ values, and λ corresponds to the ratio of sup-
plied air to the stoichiometry air, with higher values suggesting less efficient combustion.
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Figure 1. Diagram of the experimental combustion test system.

The amount of combustion air which flows in the combustion chamber is greater
in F3 (60% of maximum rpm), intermediate in F2 (53% of maximum rpm), and lower in
F1 (47% of maximum rpm). Starting from the NCV and flue gas rates, both the CO and
NOx data were normalized to the fuel’s input energy (MJ).

Whilst NOx mainly depends on two factors, specifically the amount of N in the fuel
and the temperature in the combustion chamber that allows for the oxidation of atmospheric
nitrogen, CO is a key parameter in the assessment of the combustion efficiency given its
correlation with the oxidation of organic carbon in biofuel [32,33]. Therefore, the monitoring
of CO and the temperature of flue gasses is crucial in evaluating combustion efficiency.

Preliminary tests were performed to define the optimal timing for proper combustion
tests. Specifically, it was found that 45 min allows for stable temperature to be reached
inside the combustion chamber, evaluated on the basis of the constancy of the flue gas
temperature. Furthermore, it has been observed that the emission trends stabilized about
20 min after switching stove programs.

Each type of pellet was combustion-tested 5 times, following the same procedure
throughout each test, specifically, 1 h of pre-heating with F3; 1 h of data acquisition with F3;
30 min of stabilization with F2; 1 h of data acquisition with F2; 30 min of stabilization with
F1; and lastly, 1 h of data acquisition with F1.

2.3. Dimensional Image Procesing Analysis

The prototypal DIP system (Figure 2) is made up of (i) a 64 Mp camera placed on
a tripod at a height of 150 mm, (ii) a flat 250 × 300 mm container for sample placing,
(iii) a 250 lm light source positioned at a 45-degree angle to the sample at 300 mm distance
from the sample container, (iv) a Python-based image processing script. The distance of the
camera from the sample and camera settings (ISO 400, shutter speed 1/10, focus 0.7 mm)
were chosen in order to allow only the sample to be included in the picture, which also had
to be as sharpest as possible. The angle and distance of the light source were chosen by
observing that a 45-degree angle led to more shadows being cast.
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The DIP analysis requires approximately 2 kg of pellets to be placed in the container,
filling the view of the camera completely. Next, the pellets need to be leveled, ensuring that
shadows are generated solely by pellet size rather than the samples’ bulk height differences.

Subsequent to image acquisition, shadows are highlighted as a result of the application
of Otsu’s threshold value [34] and binarization of the image. Shadows in contact with the
boundaries of the image are excluded given that their exact size cannot be calculated [35].
Data regarding the number and shape of shadows are therefore acquired.

Three pictures were taken for each sub-sample, stirring the pellets in between. Thus,
the average data for the Sp2, Mp2, and Lp2 samples were obtained.

2.4. Statistical Analysis

The data obtained from the 5 combustion test replicates conducted with each program
were averaged and examined by means of descriptive statistics.

The data collected via DIP analysis were analyzed by means of descriptive statistics,
Pearson correlation analysis, and principal component analysis (PCA).

3. Results and Discussions
3.1. Sample Characteristics

The average length and quality parameters of Sp, Mp, and Lp are shown in Table 1.

Table 1. Average data for Sp, Mp, and Lp, where MC corresponds to moisture values; NCV, HCV, and
LCV correspond, respectively, to net, higher, and lower calorific values; and Db and L correspond,
respectively, to sample durability and average length.

Sample MC Ash NCV HCV LCV C H N Cl S Db Fines L
% w.b. % d.b. J/g w.b. J/g d.b. J/g d.b. % d.b. % d.b. % d.b. % d.b. % d.b. % % mm

Sp 9.6 0.4 16,200 19,488 18,188 50.1 6.0 0.2 0.0 0.1 96.4 0.7 10.7
Mp 8.1 0.4 16,403 19,461 18,067 49.9 6.6 0.1 0.0 0.0 98.6 0.1 15.9
Lp 10.3 0.5 15,569 19,029 17,635 49.8 6.4 0.1 0.0 0.1 92.7 1.3 21.1

Distancing the knives from the die successfully led to the production of samples with
different length class distributions (Figure 3a). Whilst knife–die distances of 25 mm and
35 mm led to homogeneous samples, increasing the distance to 45 mm led to a more
heterogeneous length class distribution. The latter occurrence may be due to the intense
vibrations of the pelletizer, which, if the pellets coming out of the die are not durable
enough, lead to premature breakage of the pellets.

Energies 2024, 17, x FOR PEER REVIEW 6 of 13 
 

 

Table 1. Average data for Sp, Mp, and Lp, where MC corresponds to moisture values; NCV, HCV, 
and LCV correspond, respectively, to net, higher, and lower calorific values; and Db and L corre-
spond, respectively, to sample durability and average length. 

Sample 
MC Ash NCV HCV LCV C H N Cl S Db Fines L 

% w.b. % d.b. J/g w.b. J/g d.b. J/g d.b. % d.b. % d.b. % d.b. % d.b. % d.b. % % mm  
Sp 9.6 0.4 16,200 19,488 18,188 50.1 6.0 0.2 0.0 0.1 96.4 0.7 10.7  
Mp 8.1 0.4 16,403 19,461 18,067 49.9 6.6 0.1 0.0 0.0 98.6 0.1 15.9  
Lp 10.3 0.5 15,569 19,029 17,635 49.8 6.4 0.1 0.0 0.1 92.7 1.3 21.1  

 

  
(a) (b) 

Figure 3. (a) Length class distribution of Sp, Mp, and Lp. (b) Boxplots of Sp2, Mp2, and Lp2. 

3.2. Combustion Tests’ Results 
Using the same intermediate auger speed for combustion tests demonstrated the in-

verse relationship between samples’ length and MFR (R2 = 0.95). Specifically, the Sp sam-
ple was characterized by an average consumption of 1.71 kg/h, whilst Mp and Lp were 
characterized, respectively, by average consumptions of 1.59 kg/h and 1.32 kg/h. 

Table 2 displays the average data obtained from the five combustion test replicates 
prior to normalization, whilst average normalized trends in CO (mg/MJ) observed during 
the F3, F2, and F1 programs are shown in Figure 4.  

Table 2. Averaged data from 5 combustion test replicates prior to normalization. Standard devia-
tions are given in brackets. 

Sample 
F3 F2 F1 

Gas λ CO NOx Gas λ CO NOx Gas λ CO NOx 
°C  mg/m3 mg/m3 °C  mg/m3 mg/m3 °C  mg/m3 mg/m3 

Sp 
179  4.4 230.5 129.1 173.6 3.7 217  147.3 165.1  3.2 209.6  159.5 
(2.3)  (73) (13.5) (1.6)  (58.5) (15.4) (1.3)  (51.7) (18.9) 

Mp 
174.9 4.8 225.9 77.9  168.9  4 215.9  87.8  161.5  3.5 215.8  93.8  
(2.7)  (122.8) (11.1) (2)  (90.9) (12.4) (2.0)  (76.9) (13) 

Lp 
169.8 5.6 354.4 73.8  165.5 4.8 336.4  81.4  159.7  4 324.2 90.9  
(3.6)  (190.1) (13.1) (2.9)  (178) (14.3) (2.3)  (122.2) (14.9) 

 

Figure 3. (a) Length class distribution of Sp, Mp, and Lp. (b) Boxplots of Sp2, Mp2, and Lp2.

The sample analyses highlighted some qualitative differences, such as in MC and
mechanical durability. While the former may depend on the different degrees of MC
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in the pile from which the material was taken for pellet production [11], the latter may
depend on both the MC itself and the average length, which, if excessive, makes the pellets
fragile [36,37]. Furthermore, lower durability values lead to a higher fine content [12,38].
No differences in chemical composition and energetic content have been observed.

Lastly, boxplots of Sp2, Mp2, and Lp2 are shown in Figure 3b, highlighting the clear
difference in lengths between the samples used for the DIP analysis. Specifically, their
average lengths were 13.8 mm for Sp2, 23.7 mm for Mp2, and 33.3 for Lp2.

3.2. Combustion Tests’ Results

Using the same intermediate auger speed for combustion tests demonstrated the
inverse relationship between samples’ length and MFR (R2 = 0.95). Specifically, the Sp
sample was characterized by an average consumption of 1.71 kg/h, whilst Mp and Lp were
characterized, respectively, by average consumptions of 1.59 kg/h and 1.32 kg/h.

Table 2 displays the average data obtained from the five combustion test replicates
prior to normalization, whilst average normalized trends in CO (mg/MJ) observed during
the F3, F2, and F1 programs are shown in Figure 4.

Table 2. Averaged data from 5 combustion test replicates prior to normalization. Standard deviations
are given in brackets.

Sample
F3 F2 F1

Gas λ CO NOx Gas λ CO NOx Gas λ CO NOx
◦C mg/m3 mg/m3 ◦C mg/m3 mg/m3 ◦C mg/m3 mg/m3

Sp 179 4.4 230.5 129.1 173.6 3.7 217 147.3 165.1 3.2 209.6 159.5
(2.3) (73) (13.5) (1.6) (58.5) (15.4) (1.3) (51.7) (18.9)

Mp 174.9 4.8 225.9 77.9 168.9 4 215.9 87.8 161.5 3.5 215.8 93.8
(2.7) (122.8) (11.1) (2) (90.9) (12.4) (2.0) (76.9) (13)

Lp 169.8 5.6 354.4 73.8 165.5 4.8 336.4 81.4 159.7 4 324.2 90.9
(3.6) (190.1) (13.1) (2.9) (178) (14.3) (2.3) (122.2) (14.9)
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during (a) program F3, (b) program F2, and (c) program F1.

When compared to the other samples, Sp led to lower CO production for each stove
program. In fact, the average Sp data between programs highlighted 12% and 94% lower
production of CO (mg/MJ) when compared to Mp and Lp, respectively. Furthermore,
a better combustion efficiency of Sp was also highlighted by the lower λ values, which
indicates less excess air and, thus, more efficient combustion [32]. For example, during
program F3, Lp led to 5.6 λ and Mp to 4.8 λ, while Sp led to 4.4 λ. An overall reduction in
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CO and λ values was observed by decreasing the combustion-air inlet (switching from F3
to F2 and lastly to F1).

Thus, increasing pellet length affected not only MFR but also combustion efficiency [16].
This might be because less of the surface area of longer pellets is in direct contact with
combustion air compared with that in shorter pellets. Additionally, the more uniform
spatial arrangement of the shorter pellets in the brazier could have improved the mixing
between fuel and combustion air, resulting in more efficient oxidation of CO [17,39,40]. On
the contrary, a more heterogeneous spatial arrangement of pellets, which could occur with
irregular samples such as Lp (Figure 3a), might have generated voids in the brazier, leading
to an excessively rapid flow of combustion air through the fuel bed. This condition leads to
shorter residence time of the gaseous combustion products in the high-temperature zone
of the flame, negatively affecting the combustion kinetics and carbon oxidation [32]. This
could explain the reason why program F1 (Figure 4c) with lower combustion-air flow led
to less overall CO emissions.

Flue gas temperatures followed the same trend in all programs. Sp produced higher
temperatures when compared to Mp and Lp, given its higher MFR [41]. The highest gas
temperatures were obtained during program F3 (Figure 4a), and it may have been due
to the shorter residence time of the flue gasses in the system, which allowed for less heat
exchange with the system’s components and greater heat loss in the chimney. Further
studies should investigate thermal trends directly in the combustion chamber.

The average trends in NOx (mg/MJ) observed during the F3, F2, and F1 programs are
shown in Figure 5. Whilst CO emissions are related to the stoichiometry of combustion [32],
NOx emissions strongly depend on the biomasses’ N content [42–44] and MFR (i.e., on the
N-fuel fed to the combustion process). The Sp sample, being the one with higher MFR
and N contents (0.2% d.b.), led to higher NOx emissions compared to Mp and Lp. Sp’s
higher NOx emissions might also depend on the higher temperatures generated during
combustion. That is, at temperatures greater than 1300 ◦C, which could occur in some areas
of the flame, thermal NOx is generated via the oxidation of atmospheric N [32,45,46].
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The F1 program led to a slight decrease in NOx emissions, whilst however representing
the program with the most variable NOx emissions (Figure 5c).

3.3. DIP Analysis

An extract of the processed images obtained via the DIP analysis are shown in Figure 6,
whilst Table 3 reports the average data and descriptive statistics of the processed images,
specifically the number of shadows or objects detected (Obj), the number of pixels contained
in the objects (Area), the number of pixels contained in the bounding box tangent to the
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outermost pixels of objects (Bbx), the solidity or ratio of pixels in the region to pixels in the
convex hull image (Sol), and the eccentricity or elongation of the objects (Ec) [47–49].
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Figure 6. An extract of the images taken via DIP. The shorter pellet, Sp2, produced more but smaller
shadows compared to the longer pellet Lp2.

Table 3. Average DIP data indicating the number of shadows or objects detected (Obj), the number of
pixels contained in the objects (Area), the number of pixels contained in the bounding box tangent
to the outermost pixels of objects (Bbx), the solidity or ratio of pixels in the region to pixels in the
convex hull image (Sol), and the eccentricity or elongation of the objects (Ec).

Sp2 Mp2 Lp2
Obj Area Bbx Sol Ec Obj Area Bbx Sol Ec Obj Area Bbx Sol Ec

N. 879 669 643
Mean 276 632 0.87 0.80 321 702 0.89 0.83 502 1236 0.87 0.85

St. Dev. 305 1062 0.11 0.14 342 985 0.09 0.14 598 1892 0.11 0.14
Min 30 35 0.38 0.15 30 35 0.42 0.27 30 35 0.35 0.17

Q1 25% 79 120 0.84 0.73 92 143 0.86 0.75 106 168 0.83 0.78
Q2 50% 169 285 0.91 0.83 201 364 0.92 0.87 285 532 0.90 0.88
Q3 75% 351 725 0.94 0.91 436 819 0.94 0.94 661 1458 0.94 0.95

Max 1961 11,252 1.00 0.99 2841 8586 1.00 0.99 4410 17,018 1.00 0.99

A negative correlation was observed between the average length of the samples and
Obj (R2 = −0.91). In contrast, positive correlations were found between length and Area
(R2 = 0.94) and length and Bbx (R² = 0.90). The strongest correlation was between length
and Ec (R2 = 0.99), while the weakest was between length and Sol (R2 = −0.22).

Interquartile ranges (IQR) indicate a less spread-out middle half distribution of Area in
Sp2 (IQR = 272), compared to Mp2 (IQR = 344) and Lp2 (IQR = 555). Furthermore, a positive
correlation between IQR and average samples’ length (R2 = 0.92). Sp2 also led to a smaller
range, the difference between the maximum and minimum Area values (range = 1931),
compared to Mp2 (range = 2811) and Lp2 (range = 4380).
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Figure 7 highlights the distribution of Area data grouped by area class of each sample.
Among the classes, the first and smallest appear to be the most distinctive. Specifically, the
averaged data of Sp2 led to more than 531 objects falling within the first class (30–230 Area),
compared to Mp2 and Lp2 with, respectively, 362 and 284 objects falling within the first class.
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PCA’s biplot further emphasized the inverse relation between sample length and Obj,
as well as the positive relation between length and Ec (Figure 8).
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Lastly, a Pearson analysis (Table 4) indicated Ec as most related output variable to
sample length (r = 1). However, all other variables appear to be highly correlated with
average sample length.
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Table 4. Pearson analysis shows a strong correlation between length and Obj, Area, and Ec, with the
latter being the most strongly correlated.

Length Obj Area Bbx Ec Sol

Length 1
Obj −0.92 1
Area 0.94 −0.73 1
Bbox 0.91 −0.67 1.00 1
Ec 1.00 −0.95 0.91 0.87 1
Sol −0.22 −0.19 −0.54 −0.61 −0.14 1

4. Conclusions

By producing pellet samples from the same raw material taken from the same pile,
whilst varying the distance of the knife from the die during production, it was possible to
obtain samples that were qualitatively similar but with different dimensional parameters.
Thus, three pellet samples with different average lengths (short—Sp, medium—Mp, and
long—Lp) were produced and tested in a domestic pellet stove in order to confirm the
effect of pellet length on combustion efficiency [16,17].

Under equal stove conditions (auger feeding rate and flue gas extractor rate), Lp
emitted up to 83% more CO mg/MJ than Mp and 99% more CO mg/MJ compared to Sp.
On the contrary, pellet length appeared to be negatively correlated with NOx emissions
(Sp produced up to 29% more NOx when compared to Lp). Specifically, different pellet
lengths are associated with different mass flow rates with the same auger feed rate, leading
to a variation in lambda values (less efficiency and higher CO emissions) and amount of
N-fuel supplied to the combustion process (NOx emissions) [32].

Furthermore, sample length and MFR also affected the temperatures of flue gasses,
being higher in Sp compared to Mp and Lp, regardless of the combustion-air inlet.

Given the high importance of pellet length in combustion quality and the impractica-
bility of ISO 17829 outside laboratory measurements, an innovative prototype based on
image processing (DIP) to assess samples’ average length has been developed. The DIP
method assumes that larger pellets, when subjected to transversal illumination, generate
geometrically and quantitatively different shadows from shorter pellets. By analyzing
shadows rather than applying segmentations directly on pellets, DIP provides a solution
to measurement errors caused by the inability of image processing techniques to easily
detect objects that are not perpendicular to the camera. Furthermore, image processing
methods generally require a metric reference with which to make a comparison between
the photographed object and the reference with known dimensions.

An inverse relation between sample length and the number of detected shadows has
been found. Specifically, Sp2 led to the formation of 24% more shadows compared to
Mp2 and 26% more than Lp2. In contrast, the average size of the shadows appeared to be
inversely correlated with sample length. Lastly, a Pearson analysis highlighted eccentricity,
which is the ratio of the distance between furthest pixels that make up objects, as the
variable most correlated with sample length.

Currently, domestic stoves do not have an automatic system to control combustion
due to the high cost of components (e.g., lambda sensors), which would make the system
non-competitive on the market. The proposed approach could potentially translate into
the implementation of a simple and low-cost camera that communicates with the pro-
grammable control unit (already installed in commercialized stoves) and automatically sets
the auger speed or flue gas extractor to reduce emissions and increase thermal efficiency.
Furthermore, a camera installed on the stove could also have other valuable applications
for processing pellets, such as detecting hazardous objects on the auger or monitoring the
number of pellets left in the hopper.

This paper lays the groundwork for future research, which should test DIP on a
larger number of samples and model the relationship between the shadows and sample
length class distributions. Furthermore, it may be necessary to test the effect of different
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light angles on the formation of shadows. Lastly, by extensively assessing DIP perfor-
mance, it could also be used as a viable alternative to the traditional system for the online
measurement of bulk density in pellet production plants.

5. Patents

The method for analyzing the dimensional class of objects by examining the shadows
cast by objects arranged in groups or in bulk (referred to in this document as DIP) is the sub-
ject of a pending patent. The pending patent No. 102024000017878 dated 31/07/2024 has
been submitted to the Italian Patent and Trademark Office—UIBM and is titled “Computer-
implemented method for the analysis of the dimensional class of objects”.
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