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Over the past 70 years, the world has witnessed extraordinary growth in crop productivity, enabled by a 1 

suite of technological advances, including higher yielding crop varieties, improved farm management, 2 

synthetic agrochemicals, and agricultural mechanization. While this “Green Revolution” intensified crop 3 

production, and is credited with reducing famine and malnutrition, its benefits were accompanied by 4 

several undesirable collateral effects (Pingali, 2012). These include a narrowing of agricultural 5 

biodiversity, stemming from increased monoculture and greater reliance on a smaller number of crops and 6 

crop varieties for the majority of our calories.  This reduction in diversity has created vulnerabilities to 7 

pest and disease epidemics, climate variation, and ultimately to human health (Harlan, 1972). 8 

The value of crop diversity has long been recognized (Vavilov, 1992). A global system of genebanks (e.g. 9 

www.genebanks.org/genebanks/) was established in the 1970s to preserve the abundant genetic variation 10 

found in traditional “landrace” varieties of crops and in crop wild relatives (Harlan, 1972). While 11 

preserving crop variation is a critical first step, the time has come to make use of this variation to breed 12 

more resilient crops.  The DivSeek International Network (https://divseekintl.org/) is a scientific, not-for-13 

profit organization that aims to accelerate such efforts. 14 

 15 

Crop diversity: value, barriers to use, and mitigation strategies 16 

There are >1750 national and international genebanks worldwide. They house ~7 million crop germplasm 17 

accessions ( http://www.fao.org/3/i1500e/i1500e00.htm), including samples of diverse natural 18 

populations, with many more managed in situ. These accessions arguably represent one of humanity’s 19 

greatest treasures, as they contain genetic variation that can be harnessed to create better tasting, higher 20 

yielding, disease/pest resistant, and climate resilient cultivars that require fewer agricultural inputs (Figure 21 

1). 22 

Unfortunately, most genebank accessions are poorly characterized, and few have been utilized in 23 

breeding. Yet when a serious effort has been made to search genebanks for traits of interest, the effort has 24 

been highly rewarded. Examples include the discovery of a submergence-tolerant landrace used to breed 25 

new, high-yielding, submergence-tolerant rice varieties currently grown on tens of millions of acres 26 

(Mackill et al., 2012) and durable resistance to late blight, a devastating pathogen of potato, derived from 27 

a wild relative (Bernal-Galeano, 2020). Given the high value of the genetic diversity found in crop wild 28 

relatives and traditional landraces, why are these genetic resources not more widely employed in breeding 29 

programs? 30 

One reason for the limited use of genebank holdings is the paucity of information about them, which 31 

increases the time, expense, and risk associated with mining genebank diversity. To address this 32 
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deficiency, we support the development of digital catalogs that provide essential information about the 33 

genetic composition, phenotypic diversity and phylogenetic relationships of genebank holdings, along 34 

with traditional passport data, images of whole plant morphology, growth habit, physiological data 35 

showing response to biotic/abiotic stress, nutrient profiles, and other information where available.  Some 36 

genebanks have already begun building catalogs of their collections to improve the efficiency of 37 

genebank management, as well as to permit users to pre-screen for traits of interest, thereby facilitating 38 

variety development (König et al., 2020).   39 

Another challenge to widespread use of genebank materials is the nature of genetic variation itself. Exotic 40 

germplasm often contains valuable cryptic variation, which is revealed only after crosses have been made 41 

with cultivated and elite breeding lines (Tanksley and McCouch, 1997). For example, wild populations 42 

frequently carry alleles that increase seed/ fruit/ tuber size or disease resistance when introduced into 43 

cultivars, but these are often masked by genes with opposing effects. Also, some traits that look 44 

promising in wild or landrace populations may not be expressed in adapted genetic backgrounds due to 45 

quantitative inheritance.  46 

In addition, strategies are needed to overcome crossing barriers and to ameliorate the impacts of genetic 47 

material that is inadvertently introduced into cultivars along with traits/alleles of interest (i.e. linkage 48 

drag). Even when crosses are successful, specific chromosomal segments may fail to introgress if they 49 

underlie hybrid incompatibilities or experience reduced recombination, further exacerbating linkage drag 50 

(Canady et al., 2006). Lastly, traits and alleles introgressed from wild germplasm may exhibit incomplete 51 

penetrance or unexpected epistatic interactions, forfeiting expected gains from introgressions (Lippman et 52 

al., 2007).   53 

Sorting through the myriad combinations of alleles generated in wild x elite crosses requires a systematic 54 

approach if it is to be productive. The use of structured populations, appropriate experimental designs, 55 

and effective use of reference varieties in combination with cost-effective genotyping, high throughput 56 

phenotyping, automated data capture and appropriate analyses make it possible to link genotype with 57 

phenotype, identify valuable haplotypes, drive recombination, and make predictions about offspring 58 

phenotypes. Techniques that enhance recombination and mitigate crossability barriers offer additional 59 

means for accessing diversity from divergent wild relatives while reducing linkage drag (Fernandes et al., 60 

2018).  61 

To address these challenges, we encourage communities of researchers to undertake systematic pre-62 

breeding efforts to generate recombinant populations of introgressed lines in adapted cultivated 63 

backgrounds, evaluate them in diverse environments, and share the lines and associated information with 64 

breeders, farmers, researchers, and policy makers. The long time horizon and uncertainties associated 65 
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with “pre-breeding” often impede investment from private breeding programs. Therefore, we urge 66 

increased investment from foundations and the public sector to support such efforts across major crop 67 

families, expanding on recent efforts by the Global Crop Diversity Trust, CGIAR, and other 68 

organizations. As products of pre-competitive research, pre-bred lines could be deposited into genetic 69 

stock centers and made available to both public and private breeding programs with explicit procedures to 70 

fulfill access and benefit sharing obligations (see below). 71 

An alternative approach to pre-breeding involves the use of genome editing, which can be used to re-72 

introduce favorable alleles from wild and exotic relatives into crop plants, purge deleterious alleles, break 73 

linkage drag, or create new alleles designed to enhance plant performance and resilience (Johnsson et al., 74 

2019; Zsögön et al., 2018). This approach allows researchers to explore natural variation as a key to 75 

resilience, and its application rests on a deep knowledge of the genetics and evolution of key traits and 76 

alleles. The use of genome editing also introduces a need for community discussion about regulatory 77 

requirements and international agreements to address the complex political, social, legal and economic 78 

concerns surrounding the use of this technology (Lassoued et al., 2019). 79 

Lastly, national and international policies related to benefit sharing derived from the use of plant genetic 80 

resources impact how such resources and associated information are collected, stored, shared, studied, 81 

and used, creating additional obstacles to research and the utilization of crop diversity (Marden 2018; 82 

McCouch et al., 2013). The International Treaty for Plant Genetic Resources in Food and Agriculture 83 

facilitates multi-lateral access to plant genetic resources under mutually agreed-upon terms. It currently 84 

covers 64 crops, but ambiguity regarding benefit-sharing requirements impedes the use of genebank 85 

holdings by many plant breeders, researchers, and farmers (Sherman and Henry, 2020). There also are 86 

concerns that the benefit sharing provisions of the Treaty conflict with the long-accepted practice of 87 

providing open access to genetic sequence data (Marden 2018). In our view, open sharing of information 88 

about plant genetic resources, represents an essential form of benefit-sharing and provides a critical 89 

foundation for capacity building strategies that help address UN sustainable development goals. It is 90 

important that those employing genomic and phenomic information for crop research and breeding are 91 

fully aware of international treaties and comply with their requirements.  92 

Mission of DivSeek International Network 93 

The DivSeek International Network is a global, community-driven organization that facilitates the 94 

generation, integration and sharing of information related to plant genetic resources, thereby empowering 95 

genebank managers, researchers, breeders, and farmers to more effectively utilize genetic variation for 96 

research, accelerated crop improvement, and sustainable production.  DivSeek comprises ~65 members 97 

from >30 countries, and includes a broad array of academic and research institutions, government 98 
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agencies, and inter-governmental organizations (https://divseekintl.org/members/).  To help achieve its 99 

goals, DivSeek has established several Working Groups to engage members and assist them in addressing 100 

issues of importance to the DivSeek Community. The activities undertaken by DivSeek’s three current 101 

Working Groups are summarized below. 102 

Genomics for Plant Genetic Resources: DivSeek supports open-source genomic-assisted germplasm 103 

management and breeding, which represents a decentralized form of empowerment for genebanks and 104 

national breeding programs (Santantonio et al., 2020). Similar to the revolution in information technology 105 

that invented the internet and put cell phones in the hands of people throughout the world, open-source 106 

genomics tools, strategies and datasets are being developed and shared internationally. The tools provide 107 

data and information to support decisions about germplasm management and variety development, and 108 

the use and iterative improvement of these tools by communities of practice has the power to accelerate 109 

the deployment of crop diversity in farmers’ fields, helping to address several of the UN’s Sustainable 110 

Development Goals.   111 

Phenomics, ontologies and standards: DivSeek promotes the use of new technologies for quantitative 112 

phenotypic evaluation of plant genetic resources across a network of test environments, and the 113 

application of community-based standards, ontologies and data management practices that help make data 114 

findable, accessible, interoperable and reusable (FAIR) (Pommier et al., 2019). Utilizing efficient and 115 

affordable technologies will be key to engaging genebanks and plant breeders in modern phenomics-116 

based screening (Mir et al., 2019). Integration of diverse datasets boosts the power of global efforts to 117 

document phenotypic variation found in both genebank accessions and in breeding populations (Roitsch 118 

et al., 2019), and can greatly improve the accuracy of predictions about plant performance across 119 

environments. This is especially critical for accelerating the breeding of climate-resilient varieties in 120 

vulnerable environments.  121 

International Policies: DivSeek aims to help members of the international plant community to understand 122 

the legal and policy framework for sharing information about plant genetic resources, lead discussions 123 

about the technological requirements for data-sharing across constituencies, and share perspectives on 124 

benefit sharing practices that are aligned with international treaties. All international agreements 125 

governing the utilization of plant genetic resources share the same basic objectives: conservation and 126 

sustainable use of resources, ease of access to them, and fair and equitable sharing of benefits derived 127 

from their use (https://www.cbd.int/; http://www.fao.org/plant-treaty/en/). However, rapid technological 128 

developments are changing the way scientists explore, utilize, and exchange information about plant 129 

genetic resources, creating new value for the information itself, and new opportunities for access and 130 

benefit-sharing, while at the same time challenging existing agreements (Marden 2018). In particular, new 131 
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breeding techniques that can take advantage of genomic and phenotypic data without accessing physical 132 

germplasm have led to a debate about open access to sequence data and the best ways to implement 133 

benefit-sharing requirements (Laird et al., 2020).  134 

  135 

Call for Global Participation 136 

International collaborative partnerships are essential for addressing global challenges, ranging from 137 

climate change to the control of pests and diseases to the conservation of biodiversity. DivSeek represents 138 

one such global partnership, focusing on the characterization and utilization of agricultural biodiversity 139 

and its impact on food and nutritional security.   140 

The success of DivSeek will depend on attracting a broad coalition of members, observers, and 141 

stakeholders dedicated to discussion and constructive exchange of ideas, perspectives, and expertise. We 142 

are pleased to invite the global agricultural science community to join the DivSeek International Network, 143 

either as members or observers (https://divseekintl.org/apply-to-join/). By joining forces, we can mobilize 144 

the value of crop diversity to sustainably improve yields in farmers’ fields and ensure that the benefits of 145 

our efforts are equitably distributed across the globe.    146 
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Figure 1.  Sunflower pre-bred line containing introgressions from wild Helianthus annuus performing 

well in drought stress trial in Uganda.  Pre-bred lines developed by Greg Baute and Loren Rieseberg at 

the University of British Columbia.  Drought stress trial performed by Walter Anyanga, National Semi-

Arid Resources Research Institute, Uganda.  Photo Credit: Walter Anyanga. 
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