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Abstract

The presence of carbapenem–resistant bacteria and carbapenem resistance genes

(CRGs) in livestock is increasing. To evaluate the presence of carbapenemase-producing

Enterobacteriaceae (CPE) and the main CRGs along swine food chains of the Marche

Region (Central Italy), samples of faeces, feed, and animal-food derived products were col-

lected from seven small/medium, medium, and large-scale pig farms. A total of 191 samples

were analysed using a culture-dependent method, with the aim of isolating CPE. Isolates

were analysed for their resistance to carbapenems using a modified Hodge test and the

microdilution method for the minimum inhibitory concentration (MIC) determination. More-

over, the extraction of microbial DNA from each sample was performed to directly detect

selected CRGs via qPCR. Among the 164 presumptive resistant isolates, only one strain

from a liver sample, identified as Aeromonas veronii, had an ertapenem MIC of 256 μg/mL

and carried a carbapenemase- (cphA) and a β-lactamase- (blaOXA-12) encoding genes. A

low incidence of CRGs was found; only nine and four faecal samples tested positive for

blaNDM-1 and blaOXA-48, respectively. Overall, the importance of monitoring CPE and CRGs

in livestock and their food chains should be stressed to control all potential non-human CPE

and CRGs reservoirs and to determine safety levels for human health.

1. Introduction

Resistance to carbapenems represents a current major public health risk worldwide, as this

class of antibiotics is used as the last therapeutic line of defence to treat human infections

caused by multidrug-resistant Gram-negative bacteria [1–3]. The main bacterial mechanism

of resistance to carbapenem is the production of carbapenemases, which are enzymes able to

hydrolyse carbapenems and almost all β-lactam antibiotics, thus seriously limiting the

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0296098 January 5, 2024 1 / 13

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Garofalo C, Cesaro C, Milanović V,

Belleggia L, Matricardi T, Osimani A, et al. (2024)

Search for carbapenem-resistant bacteria and

carbapenem resistance genes along swine food

chains in Central Italy. PLoS ONE 19(1): e0296098.

https://doi.org/10.1371/journal.pone.0296098

Editor: Nabi Jomehzadeh, Abadan University of

Medical Sciences, ISLAMIC REPUBLIC OF IRAN

Received: August 3, 2023

Accepted: December 5, 2023

Published: January 5, 2024

Copyright: © 2024 Garofalo et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: MFT This research was funded by “PSR

Marche 2014-2020” Misura16.1.A.2 (Project ID

#29054). The funder did not play any role in the

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0001-8548-366X
https://orcid.org/0000-0001-5191-3908
https://doi.org/10.1371/journal.pone.0296098
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0296098&domain=pdf&date_stamp=2024-01-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0296098&domain=pdf&date_stamp=2024-01-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0296098&domain=pdf&date_stamp=2024-01-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0296098&domain=pdf&date_stamp=2024-01-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0296098&domain=pdf&date_stamp=2024-01-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0296098&domain=pdf&date_stamp=2024-01-05
https://doi.org/10.1371/journal.pone.0296098
http://creativecommons.org/licenses/by/4.0/


therapeutic options to treat bacterial infections [4, 5]. This mechanism is worrisome, as the

genes that code carbapenemases are frequently located on mobile genetic elements that are

rapidly horizontally exchanged among commensal and pathogen bacteria, thus increasing

their dissemination in a wide variety of bacterial species and reservoirs [3–14]. The most com-

mon plasmid-mediated carbapenemase-encoding genes (or carbapenem resistance genes–

CRGs) include blaKPC, blaNDM, blaVIM, blaOXA-48-type, and blaGES; the primary bacterial mem-

bers involved in spreading carbapenemase genes are ascribed to Enterobacteriaceae, Pseudo-
monas spp., and Acinetobacter spp. [2, 6, 8, 13–20]. The well-documented involvement of

carbapenemase-producing Enterobacteriaceae (CPE) in community and health-care diseases

associated with high mortality rates justifies the need for surveillance of CRGs and CPE and

their spread into different environments [1, 4–6, 8, 13, 19, 21, 22]. It is also well-known that

the massive use and misuse of antibiotics in humans, agriculture, aquaculture, and livestock in

recent decades has led to selective pressure causing the rise of resistant bacteria [6]. Although

carbapenems are banned for veterinary treatment worldwide [23–25], the detection of CPE

and CRGs in animal husbandry is progressively increasing worldwide [6, 26–28]. It has been

hypothesized that exposure to antimicrobials used in livestock, as third generation cephalospo-

rins, may cause selection pressure favouring the development of cross-resistances to other

antimicrobials that are commonly used in human therapy as carbapenems [6, 23, 29]. Live-

stock may act as a source of CPE and CRGs, which can be disseminated by faecal contamina-

tion of the environment and introduced into human digestive tracts via human diets if a cross-

contamination of food products occurs (during the slaughter process, for instance) [29–33].

As reviewed by Bonardi and Pitino [6], the literature regarding the prevalence and transmis-

sion of CPE and CRGs in livestock remains inadequate and fragmented. Notwithstanding,

swine and poultry are the most studied livestock in which Enterobacteriaceae and non-fer-

menting species (such as Pseudomonas spp. and Acinetobacter spp.) expressing carbapenem

resistance have been most frequently detected [6]. Moreover, to the authors’ knowledge, to

date few studies have focused on investigating carbapenem-resistant bacteria in pig livestock

in Italy [34, 35], specifically in Central [7] and Northern Italy [36].

The present study aimed to draw a more complete picture of CPE occurrence using stan-

dard culture methods and the absolute quantification of blaKPC, blaOXA-48, blaNDM, blaGES, and

blaVIM genes using qPCR, along seven swine food chains in the Marche Region (Central Italy)

to identify possible non-human reservoirs of CPE and CRGs, and to better define the role of

animal-based products in the spread of such resistance via human diets.

2. Materials and methods

2.1. Sampling

Samples were collected from 7 small/medium, medium, and large-scale swine farms located in

the Marche Region (Central Italy) between May 2019 and July 2021. The farms investigated do

not benefit from the "antibiotic-free" certification. However, the survey shows that medicated

feeds are used only until weaning in finishing-cycle farms. The pigs were reared in pens with

paddocks and fed a commercial or self-produced diet based on barley, corn, and faba beans

(S1 Table). All pigs were slaughtered at 160 kg mean live weight. The 100 g aliquots of raw

pork meat, kidney, and liver samples (43 of each) were collected under sterile conditions at the

selected farms’ slaughterhouses, immediately stored at 4˚C, and processed within 24 h. To

monitor the whole swine supply chain, 43 samples of faeces were also collected; for each sam-

ple approximately 60 g was obtained from a mix of 3–5 subsamples collected from healthy fin-

ishing pigs. Finally, 7 samples of feed were collected from the pig farms involved in the study,
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together with 12 samples of cured meats (salami, pork neck, bacon, cheek lard, loin, and sop-

pressata-salami) that were collected from the same farms’ meat processing laboratories.

2.2. Detection of CPE using conventional methods

Aliquots of raw meat, kidney, liver, faeces, feed, and cured meat samples (~10 g) were homoge-

nized in 90 mL of sterilized peptone water (2.0 g/L) for 2 min at 260 rpm using the Stomacher

400 circulator machine (International PBI, Milan, Italy). Next, 100 μL of each homogenate was

inoculated onto MacConkey agar and incubated at 37˚C for 24 h for the enumeration of Enter-

obacteriaceae. Parallelly, the same aliquot of each homogenate was inoculated in 10 mL of

Luria–Bertani (LB) broth supplemented with 0.12 μg/mL ertapenem (Merck KGaA, Darm-

stadt, Germany) and incubated at 37˚C for 24 h. Tubes showing turbidity were ten-fold serially

diluted and 100 μL of the appropriate dilutions were spread on MacConkey agar containing

ertapenem (0.12 μg/mL). After incubation at 37˚C for 24 h, presumptive carbapenem-resistant

colonies were selected and analysed for their carbapenemase activity using a modified Hodge

test (MHT) [37] and for their resistance to carbapenems by minimum inhibitory concentra-

tion (MIC) determination, following the European Committee on Antimicrobial Susceptibility

Testing (EUCAST) guidelines (https://www.eucast.org/ast_of_bacteria). MIC50 and MIC90

were defined as the MIC values able to inhibit the growth of 50% or 90% of isolates, respec-

tively. Resistant isolates were evaluated for the class of carbapenemases they produced (KPC,

VIM, and OXA-48-like types) through standard PCR using specific primers [38].

2.3. Whole Genome Sequencing (WGS) analysis

Only isolates resistant to ertapenem (via MIC determination and via the carbapenemase-pro-

duction test, MHT), were identified to the species level using matrix-assisted laser desorption

ionization time-of-flight (MALDI-TOF) (Bruker Daltonics, Bremen, Germany) and subjected

to whole genome sequencing (WGS). WGS was performed by MicrobesNG Service (https://

microbesng.com/) using the Illumina Miseq short-read technology (2 x 250 paired-end). The

assembled and annotated draft genome provided by MicrobesNG Service was further analysed

using free online bioinformatic tools at the Center for Genomic Epidemiology (CGE) (https://

www.genomicepidemiology.org/). This Whole Genome Shotgun project has been deposited at

DDBJ/ENA/GenBank under the accession JAULJM000000000.

2.4. DNA extraction and purification

A 1.5 mL aliquot of each sample homogenate (10−1 dilution) was processed for direct extrac-

tion of bacterial DNA using a commercial kit suitable to the sample type under examination.

In detail, bacterial DNA from raw and cured meat, kidney, and liver was extracted using a

PowerFood microbial DNA isolation kit (MoBio Laboratories, Carlsbad, California, USA); for

animal faeces and feed samples an E.Z.N.A. soil DNA kit (Omega Bio-tek, Norcross, Georgia,

USA) and DNeasy1 PowerSoil1 Pro kit (Qiagen, Hilden, Germany) were used, respectively,

following the manufacturers’ instructions. DNA purity and yield were assessed spectrophoto-

metrically (Nanodrop, Thermo Fisher Scientific, Waltham, MA, USA) and fluorometrically

(Qubit, Thermo Fisher Scientific, Waltham, MA, USA).

2.5. qPCR

Absolute quantification of each carbapenemase gene (blaNDM-1, blaVIM, blaGES, blaOXA-48-, and

blaKPC) in raw and cured meat, kidney, liver, faeces, and feed was carried out using the CFX
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Connect Real-Time PCR System (Bio-Rad, Hercules, California, USA) following the protocol

previously described by Milanović et al. [12].

3. Results and discussion

All samples collected along the food chains of seven pig farms were screened for the presence

of CPE and CRGs. Viable counts varied in different samples, as reported in Fig 1.

As expected, faecal samples had the highest Enterobacteriaceae loads, with a mean value of

7.25 Log CFU/g; these data were in line with those reported in the literature for finishing pig

faeces and human faeces with between 5 and 9 Log CFU/g [39, 40]. Feed samples showed aver-

age counts of 5.80 Log CFU/g, which were comparable to those reported in the literature for

hay (4–6 Log CFU/g) used as cattle feed [41] and for wheat (approximately 4–5.6 Log CFU/g)

used as pig feedstock [42, 43]. Values of approximately 4 Log CFU/g, related to presumptive

Enterobacteriaceae load, were registered in raw meat, liver, and kidney samples. These loads

were probably due to Enterobacteriaceae contamination between meat and the environment

or between meat and animals’ intestinal content during the slaughtering process. Indeed, the

meat, and in particular the muscle, of slaughtered animals was sterile; however, during skin-

ning and evisceration processes meat may contact the skin and/or the gastrointestinal tract

content, which could lead to an increase in the bacterial load, specifically Enterobacteriaceae

[44]. Therefore, great attention should be paid to these processes as key points for Enterobac-

teriaceae contamination [44]. The viable counts of Enterobacteriaceae were under the detec-

tion limit (< 1 Log CFU/g) of experimental conditions for some meat, kidney, and liver

samples, as well as for all cured meat samples analysed in the present study, including salami,

pork neck, bacon, cheek lard, loin, and soppressata-salami. For these processed and fermented

products, Enterobacteriaceae presence and growth may have been inhibited by different fac-

tors, including the addition of salt and ripening, which reduce water activity, or by competi-

tion with other microorganisms added as starter cultures or naturally present in the raw

material [45]. Therefore, the transformation processes justify the low number of

Enterobacteriaceae.

Subsequently, after enrichment in broth containing ertapenem, 164 presumptive carbape-

nem–resistant isolates were collected from all sample types, except cured meat. However, MIC

Fig 1. Mean values ± standard deviation of the viable counts obtained on MacConkey agar for each sample type.

https://doi.org/10.1371/journal.pone.0296098.g001
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determination showed that all isolates, except one, were not resistant to carbapenems

(Table 1). This result was related to the low concentration of ertapenem used for the primary

screening of resistant isolates. However, we have not used concentration higher than 0,12 μg/

mL not to exclude strains carrying resistance genes but phenotypically susceptible.

Only an isolate from a liver sample had a positive MHT result, with a 256 μg/mL MIC for

ertapenem. The strain was also resistant to imipenem (4 μg/mL MIC), but susceptible to mero-

penem (1 μg/mL MIC). PCR assays confirmed the presence of a blaOXA-48-type gene encoding

an OXA-48 family carbapenemase in the strain. The isolate was identified as an Aeromonas
veronii by MALDI-TOF and its genome was completely sequenced. The assembled genome

was submitted to the Aeromonas MLST database (https://pubmlst.org/bigsdb?db=pubmlst_

aeromonas_isolates) to identify its sequence type (ST); it was assigned to the new ST2217, as

sequences of all six loci were new alleles (gltA_1006, groL_917, gyrB_1003, metG_1047,

ppsA_1159, and recA_1090). The phylogenetic tree of all A. veronii (n = 627) deposited in the

PubMLST database is depicted in Fig 2.

The new ST2217 identified in this study showed phylogenetic correlations with the clonal

complex formed by the ST609. According to the database (https://pubmlst.org/bigsdb?db=

pubmlst_aeromonas_isolates), the ST609 corresponds to an A. veronii strain isolated in China

from poultry in 2018. Although the strain was positive in PCR assays for blaOXA-48-type genes,

WGS followed by ResFinder analysis demonstrated the presence of two beta-lactamase genes

(cphA and ampS) located on the chromosome. The species-specific cphA gene [46], mainly

found in Aeromonas hydrophila, A. veronii, and Aeromonas jandae isolates, encodes a metallo-

β-lactamase active only on carbapenems. Our isolate carried a cphA showing 96% identity with

the cphA4 variant of an environmental A. veronii strain reported in the literature [47]. The

ampS gene, encoding a class D β-lactamase, showed 99% coverage and 99% nucleotide identity

with an OXA-912 enzyme included in the OXA-12 family, originally described in Aeromonas
sobria [48].

A. veronii belong to the family Aeromonadaceae that contains members of the genus Aero-
monas, which are Gram-negative rods and facultative anaerobes ubiquitous in nature, com-

monly isolated from water, soil, and food animals (shellfish, poultry, cattle, and pigs).

Moreover, members of Aeromonas have been associated with a broad range of human infec-

tions (biliary tract infections, gastrointestinal tract syndromes, wound and soft tissue infec-

tions, and secondary bacteraemia) and several opportunistic diseases in animals [49–51].

Faecal carriage by healthy humans and animals has also been reported [50, 52, 53]. Thus, in

the present study, the recovery of an Aeromonas strain in a single liver sample was likely

Table 1. Susceptibility to ertapenem of 164 isolates grown on MacConkey agar supplemented with ertapenem.

Sample type

(total n = 191)

Number of presumptive resistant isolates

(total n = 164)

Number of isolates positive to MHTa MICb range

(μg/mL)

MIC50
c

(μg/mL)

MIC90
c

(μg/mL)

Faeces (n = 43) 43 0 <0.25–1 0.25 1

Raw meat (n = 43) 36 0 <0.25–1 0.5 1

Kidney (n = 43) 37 0 <0.25–2 0.25 1

Liver (n = 43) 41 1 <0.25–256 0.5 1

Cured meat (n = 12) 0 - - - -

Feed (n = 7) 7 0 <0.25–1 0.25 1

aMHT, Modified Hodge Test
bMIC, Minimum Inhibitory Concentration
cMIC50 and MIC90, the lowest concentration of the antibiotic at which 50 and 90% of the isolates were inhibited, respectively

https://doi.org/10.1371/journal.pone.0296098.t001
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Fig 2. Phylogenetic tree created (https://online.phyloviz.net/) by multi-sequence alignment of six alleles’ FASTA input of all

Aeromonas veronii isolates (n = 627) deposited in PubMLST. The Aeromonas strain of this study is identified by the green node. The

ST609 (blue node) is also evidenced as the putative founder of the clonal complex in which our strain is included.

https://doi.org/10.1371/journal.pone.0296098.g002
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correlated to faecal contamination of the sample during its handling. Previously, five strains of

A. veronii harbouring the chromosomally encoded blaImiS were isolated from cattle faeces at a

slaughterhouse in Switzerland [54]. Moreover, Zurfluh et al. [54] reported that this gene is gen-

erally co-transcribed with other β-lactamases located on chromosomes with overexpression

induced by β-lactam or carbapenem antibiotics. Hence, using β-lactams in veterinary therapy

could lead to selective pressure for naturally occurring chromosomal carbapenemases [1].

Therefore, using β-lactam antimicrobials to treat animals may be associated with the rise and

dissemination of carbapenem–resistant A. veronii from animals to humans [54]. Among Aero-
monas species, an overall increase in resistance to antibiotics, such as third generation cephalo-

sporins, ampicillin, tetracycline, and ciprofloxacin (all commonly used/overused in clinical

settings, agriculture, and fisheries) has been noted, thus suggesting that these bacteria could

represent a potential environmental reservoir for antibiotic resistance genes [49, 51, 55]. Of

note, food preservation techniques, such as cooling and vacuum packing, could promote Aero-
monas spp. growth, as it has been reported that Aeromonas spp. have the capability to grow in

anaerobic conditions at 4˚C [54].

Regarding the qPCR analysis, efficiencies of 97.3%, 96.6%, 94.5%, 94.1%, and 93.15% were

obtained for blaOXA-48, blaKPC, blaNDM-1, blaVIM, and blaGES genes, respectively. The R2 values

were>0.99, whereas the detection limit was <1 Log gene copies per reaction for all CRGs

tested.

No CRGs were detected in raw and cured meat, kidney, liver, and feed samples; the faecal

samples’ results are reported in Table 2. No samples were positive for blaKPC, blaVIM, or blaGES

genes; however, a very few faecal samples tested positive for blaNDM-1 and blaOXA-48 genes. In

detail, blaNDM-1 was detected in 9 faecal samples (21%), ranging from 3.75 to 5.85 Log gene

copies/g, with an average 5.04±0.83 Log gene copies/g, whereas blaOXA-48 was detected in the

only 4 of 43 faecal samples (11%) with between 3.53 and 3.98 Log gene copies/g, with an aver-

age 3.75±0.19 Log gene copies/g.

As recently reviewed by Bonardi and Pitino [6] and Hayer et al. [27], pig farms are among

the most studied worldwide regarding carbapenem resistances assessment, as over 40% of

meat consumed worldwide derives from domestic pigs that represent one of the main food-

producing species [56]. Most of these studies are related to culture-dependant analysis aiming

to isolate and identify CPE and non-Enterobacteriaceae-carrying carbapenemase genes.

Although in the present study no CPE have been isolated, the culture-independent approach

using qPCR demonstrated qPCR’s usefulness in detecting the presence of blaNDM-1 and

blaOXA-48 genes. Both these genes encoded for common carbapenemases belonging to the plas-

mid-acquired class B NDM (New Delhi metallo-beta-lactamase, 10 variants) and class D ser-

ine-β-lactamases, including OXA carbapenemases (carbapenem-hydrolyzing oxacillinase)

such as OXA-48 [12]. The overall prevalence of blaNDM-1 and blaOXA-48 (only detected in faecal

samples) was low, accounting for 5% of all samples, thus indicating a low risk level concerning

the diffusion of such resistances along swine food chains in our study area. Furthermore, the

absence of CRGs within the meat and cured meat products under study confirmed a high

safety level for consumers. Very recently, Hayer et al. [27] analysed the literature to identify

the global distribution of CRGs in carbapenem-resistant or extended-spectrum β-lactamase

(ESBL)-producing Escherichia coli isolates in pigs; they reported that blaNDM-1 and blaOXA-48

have been widely distributed with low frequency, mainly in Asian countries such as China,

India, and South Korea, since 2001. Concerning Europe, as was found in the present study,

CPE were absent from German pig farms, whereas blaOXA-48 has been detected in 1 of 318 ana-

lysed stool samples [57]. In addition, blaOXA-48 was harboured by two E. coli isolates from fae-

cal samples from an Italian pig farm in coexistence with blaOXA-181, and was located on a

51.5-kb non-conjugative plasmid [35]. In contrast, Carelli et al. [7] reported a high frequency
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Table 2. Results from qPCR for carbapenemase-encoding genes using DNA directly extracted from faecal samples.

Carbapenemase resistant genes (gene copies/g ± standard deviation)

Swine farm Sample blaGES blaKPC blaOXA-48 blaNDM-1 blaVIM

A 1 n.d. n.d. n.d. n.d. n.d.

2 n.d. n.d. n.d. n.d. n.d.

3 n.d. n.d. n.d. 3.97±0.07 n.d.

4 n.d. n.d. n.d. 4.23±0.03 n.d.

5 n.d. n.d. n.d. 3.75±0.06 n.d.

B 6 n.d. n.d. n.d. n.d. n.d.

7 n.d. n.d. 3.53±0.07 n.d. n.d.

8 n.d. n.d. 3.67±0.05 n.d. n.d.

9 n.d. n.d. 3.82±0.08 5.61±0.03 n.d.

10 n.d. n.d. 3.98±0.06 5.59±0.09 n.d.

11 n.d. n.d. n.d. n.d. n.d.

12 n.d. n.d. n.d. n.d. n.d.

13 n.d. n.d. n.d. n.d. n.d.

14 n.d. n.d. n.d. n.d. n.d.

15 n.d. n.d. n.d. n.d. n.d.

C 16 n.d. n.d. n.d. n.d. n.d.

17 n.d. n.d. n.d. 5.32±0.09 n.d.

18 n.d. n.d. n.d. 5.21±0.06 n.d.

19 n.d. n.d. n.d. n.d. n.d.

20 n.d. n.d. n.d. n.d. n.d.

21 n.d. n.d. n.d. n.d. n.d.

22 n.d. n.d. n.d. n.d. n.d.

23 n.d. n.d. n.d. n.d. n.d.

D 24 n.d. n.d. n.d. 5.85±0.06 n.d.

25 n.d. n.d. n.d. n.d. n.d.

26 n.d. n.d. n.d. n.d. n.d.

27 n.d. n.d. n.d. 5.84±0.07 n.d.

28 n.d. n.d. n.d. n.d. n.d.

E 29 n.d. n.d. n.d. n.d. n.d.

30 n.d. n.d. n.d. n.d. n.d.

31 n.d. n.d. n.d. n.d. n.d.

F 32 n.d. n.d. n.d. n.d. n.d.

33 n.d. n.d. n.d. n.d. n.d.

G 34 n.d. n.d. n.d. n.d. n.d.

35 n.d. n.d. n.d. n.d. n.d.

36 n.d. n.d. n.d. n.d. n.d.

37 n.d. n.d. n.d. n.d. n.d.

38 n.d. n.d. n.d. n.d. n.d.

39 n.d. n.d. n.d. n.d. n.d.

40 n.d. n.d. n.d. n.d. n.d.

41 n.d. n.d. n.d. n.d. n.d.

42 n.d. n.d. n.d. n.d. n.d.

43 n.d. n.d. n.d. n.d. n.d.

Average n.dr. n.dr 3.75±0.19 5.04±0.83 n.dr

n.d., not detected; n.dr., not determined

https://doi.org/10.1371/journal.pone.0296098.t002
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of blaOXA-48-type genes in faeces (72.5%) and meat (26%) of livestock animals (pigs and cattle)

within the Marche Region identified using Droplet Digital PCR (ddPCR). This result could be

explained by different detection methods, PCR protocols, and primers used that spanned all

OXA-48-related variants, including OXA-48 and OXA-181, as well as different samples,

including cattle in addition to pigs. Therefore, developing a stable monitoring system with sen-

sitive and harmonized CPE- and CRGs-detection programmes for livestock and food products

is of great importance to detect both bacteria and genes responsible for carbapenem-resis-

tances, and to prevent their increased diffusion into the environment and subsequently into

human food chains.

4. Conclusions

Monitoring CPE and CRGs occurrence in pig livestock using culturable and sensitive molecu-

lar methods is crucial to identify potential reservoirs of transferable carbapenems resistances

and to try to avoid the active transmission of CPE and CRGs from animals to humans through

diet. Despite the absence of CPE isolates and the low overall CRGs prevalence at pig farms

sampled during 2019–2021 within the Marche Region in Italy, it is necessary to intensify live-

stock carbapenem resistance surveillance programs, as underlined by the EFSA BIOHAZ

Panel [1], as well as to apply a prudent use of antibiotics and control measures to prevent the

spread of carbapenemase-producing bacteria in food-producing animals and the human food

chain.
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