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Abstract: The relevant growth of the wood pellet market in Europe in the last decade led to an
increased focus on solid biofuel as a necessary and available renewable resource for energy production.
Among biofuels, wooden pellets are among the most widespread for domestic heating. Therefore,
monitoring the qualitative properties of commercialized pellets is crucial in order to minimize the
amount of harmful emissions in residential areas. Standard ISO 17225 sets threshold values for the
chemical and physical properties that commercialized biofuels must fulfil. Specifically, ISO 17225-2
defines that pellets for residential use must be produced from virgin wood, but no method is proposed
to assess the actual origin of the material, leading to the risk of the commercialization of pellets
made up from chemically treated materials. This study proposes a model obtained via near infrared
spectroscopy analyses and chemometrics methods, such as classification, to rapidly assess whether
pellets are made up of virgin or chemically treated wood. The result suggests the effectiveness of NIRs
for the detection of non-virgin pellets with an accuracy greater than 99%. Furthermore, the model
appeared to be accurate in the assessment of both milled and intact pellets, making it a potential
in-line instrument for assessments of pellets’ quality.

Keywords: chemically treated pellets; NIRs; emissions; classification; PLS-DA; NOx

1. Introduction

Over the last decade, there has been a noticeable growth in Europe’s wood pellet
market [1–3]. The growth is reflected by the increased production, which has reached an
average of 18,178 thousand tons between 2020 and 2023, compared with the 2013–2019
average production of 14,960 thousand tons. Specifically, since 2013, the Italian pellet
market has been characterized by an increase in production and imports by 13% and 10%,
respectively [4].

Whilst European green policies have contributed to the shift towards renewable
energies and the increased use of wood pellets [5], it is acknowledged that solid biofuels
can contribute to the production of gaseous and particulate emissions [6–8]. For example,
Bäfver et al. investigated the amount of particulates emitted by pellet stoves and residential
wood stoves during combustion, recording up to 82 mg/MJ of particulate matter [9].

The quality of the emissions and flue gases is affected by the way in which the
heating systems are used [10] (e.g., adjusting the combustion air inlets) and by the biofuel’s
quality [11–13]. In fact, a number of studies have highlighted the significant impact of
wooden pellets’ properties, such as length, moisture and bulk density, on the efficiency
of combustion in pellet stoves [14–16], whilst Mack et al. assessed the potential negative
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effects of organic additives used during pelletization on particulate emissions [17]. For
this reason, the use of high-quality materials for producing pellets is of crucial importance.
Therefore, as the biofuel market has developed, so has the focus on pellet quality. To this
end, ISO standards have been introduced.

Standard ISO 17225-2 defines quality classes for pellets and the threshold values for
the chemical, energetical and physical parameters [18]. The aforementioned standard
states that commercialized wooden pellets for residential applications should originate
exclusively from virgin wood or chemically untreated wood. Furthermore, given the effects
that chemical and physical parameters have on the quality of emissions, the thresholds for
the quality parameters have been set to be particularly restrictive (i.e., those for nitrogen
and ash content).

However, in accordance with the principle of recycling and ennoblement of waste
materials, a number of studies have investigated the use of chemically treated wood for pro-
ducing pellets. Risholm-Sundman et al. and Jiang Jinrui et al. investigated and compared
the quality of emissions during the combustion of wooden materials containing adhesives
and untreated pellets, recording an increase in nitrogen oxide (NOx) emissions from the
combustion of the former [19,20]. A number of studies have explored the possibility of
reusing waste from the engineered wood industry, such as medium-density fiberboard
(MDF) and oriented strand board (OSB) waste. These materials are composed of wood
pulp mixed with adhesives or resins. MDF, for instance, is made by blending wood powder,
which is then mixed and compacted with adhesives such as urea–formaldehyde (UF) [21].
However, adhesives such as UF are nitrogen-based polymers and therefore contribute to
increased levels of NOx in flue gases when combusted [19,22].

Over the last few years, Italy implemented a policy which only allows the use of
certified pellet-fueled domestic heating systems with extremely low NOx and particulate
emissions [23,24]. Whilst emissions can be affected by the usage of heating systems, it is
clear that monitoring the quality of the pellets used in these systems is crucial.

Laboratory analyses are an effective method to assess biofuels’ quality; however, they
are both costly and time-consuming. Therefore, innovative rapid systems are required to
enable the detection of the features of pellets that are not suitable for domestic combustion.
Among the innovative technologies used in the field of biomasses, spectroscopy is one of the
most widely applied. Several studies have investigated the use of infrared spectroscopy (IR)
to assess the overall quality of pellets [25–27]. However, the application of IR is not limited
to biofuels; in fact, spectroscopy, combined with the application of chemometrics, is also
broadly used in quality control for food [28,29]. So far, the application of near infrared (NIR)
spectroscopy is regulated by the technical standard UNI/TS 11765-2019, which, however,
acts only as a guideline. One of the most applied and studied chemometric methods paired
with NIR are principal component analysis (PCA), partial least squares regression (PLS)
and PLS discriminant analysis (PLS-DA) [30–32]. In particular, PCA and PLS-DA allow the
investigation and classification of materials according to their chemical and, consequently,
physical properties, enhancing the evaluation of their intrinsic compositional characteristics,
thus becoming a support tool for the monitoring of biomasses’ source materials [33–35].
For instance, Lixourgioti et al. applied chemometric methods to detect adulterations in
commercialized cinnamon [36], whilst Dupuy et al. investigated the use of IR modelling to
assess the quality of virgin olive oil [37]. Furthermore, the organoleptic properties of coffee
can be controlled to enhance the quantification of adulterated matrices [38]. IR and PCA
can also be used to investigate wood’s quality traits by assessing the effects of physical
characteristics on the discrimination of species. This approach offers the advantage of
significant time and cost savings [39,40]. Additionally, softwoods and hardwoods can be
distinguished by applying PCA based on the main chemical differences between the two
macro-groups [41]. Classification models could provide a deep knowledge about the source
origin and chemical components, promoting immediate and non-invasive investigations
directly in field because they are easily implemented along the production and supply
chain [27]. Within the field of biomasses, it can be implemented in heating systems,
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allowing for a continuous monitoring of the efficiency of combustion [42]. PLS-DA has been
successfully used by Nascimbem et al. to determine and classify wood chips’ quality [43],
and also to improve qualitative assessments of the separation between sapwood and
heartwood according to evaluations of the density of the species [44]. A number of studies
proposed using PLS-DA classification models to discriminate wood species, according
to their similar chemical and physical features [45], but also to discriminate pure species
and hybrids, providing higher quality control in breeding and plantation programs [46].
Moreover, the classification of solid biofuels according to their origin and species is a
fundamental key to improving the performance of energy production, due to the different
calorific values, improving the combustion control and the technical efficiency of heating
systems [47].

Classification also aims to support the detection of the illegal use of waste materials,
which can be difficult to identify in densified and homogenous products such as pellets.
This helps to reduce the negative environmental impacts caused by the combustion of
unsuitable materials [48,49]. Identification of both the treated components and the origin is
crucial to ensure continuous and direct control of commercialized pellets and guarantee
compliance with the environmental and safety requirements set by the standards [50].

Acknowledging the previous applications and the need to monitor the presence of
treated material during pelletization, this study proposes the use of an NIR chemometrics
method of PLS-DA to develop a classification model for laboratory-produced pellets. To
classify virgin and treated wood pellets, woody materials were processed and tested at
every production step, starting from the raw materials. This was carried out to assess
whether and how the pelletization process could affect the chemical structure of the wood
under different physical conditions. Furthermore, the use of a benchtop NIR spectropho-
tometer allowed the simulation of an in-line system, leading to a huge number of replicates
and a more representative dataset. Therefore, the laboratory production of pellets using
different virgin and treated materials allowed the evaluation of NIR’s ability to identify
illegal components, providing an intuitive and faster screening tool to prevent the trading
and usage of unsuitable pellets.

2. Materials and Methods

The research was carried out in two stages. The former involved the gathering of
virgin and chemically treated wood, followed by grinding and pelletization; the latter
involved a spectroscopic analysis via NIR of the ground raw materials (with the code GR0),
pellets (with the code IN) and the dust obtained by grinding the pellets (with the code GR1)
in order to assess whether pelletization process might influence the spectral response of
materials. The NIR data were processed to develop statistical models for the identification
and classification of virgin untreated and chemically treated wood. Detailed descriptions
of each step of the methodology are presented in the following sections.

2.1. Gathering of the Raw Materials

Both untreated (V) and chemically treated wood (T) residues were obtained from
wood-processing companies across Italy during 2023, thus constituting 2 distinct groups of
samples. T materials were primarily treated with UF adhesive. Both the V and T groups
consisted of samples with at least 2 kg of material. The materials were cut and ground
to a particle size of 5 mm using a SM300 cutting mill produced by Retsch (Düsseldorf,
Germany). The different materials were separated and distinguished by the suppliers. As a
result, 45 samples in total were obtained, specifically 14 from V and 31 from T (Table 1).

2.2. Pelletization of Samples

V and T samples were pelletized using a Ceccato pelletizer with nominal power of
4 kW and a maximum production capacity of 60–70 kg/h. The pelletizer was equipped with
a 6 mm flat die model for the production of pellets with a length of 30 mm (±5 mm). Before
production, the pelletizer was warmed up at an optimal temperature of 70 ◦C by pelletizing
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fir wood that was not part of the samples. Once the optimum temperature was reached,
indicated by the outflow of durable pellets, the residual fir wood was removed, then the
production of samples started. The production cycle was monitored by maintaining a
variable temperature range between 60 and 100 ◦C. The die was cleaned with compressed
air between each sample, along with each tool used during production, thus avoiding
contamination. In addition, at the start of production of each sample, the first part of the
raw material was used to prime the pelletizer, discarding the first pellet produced, to ensure
the purity of each sample. Furthermore, additional moistening was carried out to the raw
materials, ensuring a better pelletization process. In total, 2 kg of pellets was produced for
each sample.

Table 1. Type and number of samples analyzed.

Origin Type No. of Samples

T Multilayer board 9
T Block board 4
T Medium-density fiberboard 3
T Particle board 11
T Oriented strand board 4
V Coniferous virgin wood 1
V Fir wood 11
V Beech wood 1
V Oak wood 1

T: chemically treated wood; V: virgin or untreated wood.

2.3. NIR Analysis

NIR analysis was performed using a NIRMasterTM instrument distributed by Buchi
Italia S.r.l. (Cornaredo, Italy). The spectrophotometer, abbreviated as Buchi, works in the
range between 800 and 2500 nm, and it is equipped with twin tungsten halogen lamps as
the source and an extended-range indium gallium arsenide (InGaAs) photodiode array
detector. The benchtop spectrophotometer (weighing about 40 kg) is provided in a compact
case, in which the illumination spot, 9 mm in diameter, is placed in the upper part and
covered by an unbreakable cup of hardened glass that spins around the spot for a minimum
time of 4 to a maximum of 16 s for each replicate, collecting 2–4 scans/s. The sample-
placing plate, which has a circular motion, must be adequately filled with the sample
material to avoid the interference of external light and the occurrence of scattering effects.
The plate (with a diameter of 10 cm) allows for the analysis of a substantial amount of
material, improving the representativeness of the data. The circular motion simulates
in-line acquisition, facilitating the collection of a large number of scans and reducing errors
in the analysis. The acquisition was performed in reflectance mode, with both internal (gold
plate) and external (Spectralon) reference measurements acquired at the start and every
hour of analysis. The analysis was conducted at each stage (GR0, IN and GR1) and repeated
nine times after proper mixing of the sample. The final dataset consisted of 45 samples for
9 replicates each, thus there were 405 spectra × 1501 variables.

2.4. Data Processing

Various chemometric methods were applied to examine the spectral dataset prior
to class modelling. Several spectral pretreatments have been developed to enhance the
information responsible for the classification of samples and to remove the noise mainly
caused by the scattering effect. Specifically, scatter-correction pretreatment techniques
such as SNV (standard normal variate) and MSC (multiplicative scatter correction) were
considered, as well as derivative techniques (first- and second-order with a Savitzky–Golay
filter and using different window points) [51,52].

PCA was carried out to assess the visual separation between V and T, and it was
performed on mean-centered data. Specifically, the graphical visualization of the samples’
separation and the assignment of the influence of chemical components were shown in
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the score plot and loading plot of the best pretreated model. Subsequently, PLS-DA was
performed as the classification method, which was based on the relationship between
the spectral data and the dependent variable, namely, a binary dummy variable that
specified whether the sample belonged (value 1) or did not belong (value 0) to a specific
group [43,44]. A confusion matrix (Table 2) was developed to assess the number of correctly
and incorrectly classified samples. The sum of correctly classified samples is expressed as
TP (true positive) and TN (true negative) samples, whilst the sum of FN (false negatives)
and FP (false positives) represent the incorrectly classified fraction. The plot of sensitivity
(true positive rate or TPR) versus 1-specificity (false positive rate or FPR) was used to
construct the receiver operating characteristics (ROC) curve, where the area under the
curve showed the accuracy of classification, and thus the model’s ability to discriminate
between two different classes. Accuracy was also calculated as the sum of TN and TP
samples (correctly classified samples) divided by the total of the dataset. The ROC curve’s
value was considered as the threshold of decision, so when ROC = 0.5, the model was not
able to divide the samples into classes and only random separation occurred. The closer
the curve was to the upper lefthand corner in the space (TPF = 1 and FPR = 0), the greater
the discriminant capacity [45].

Table 2. General structure of the confusion matrix developed according to the application of PLS-DA.

Predicted

POS NEG

Actual
POS TP (true positive) FN (false negative)
NEG FP (false positive) TN (true negative)

POS: positive classification corresponding to a value of 1; NEG: negative classification corresponding to a value
of 0.

The dataset was divided into the training and test sets using a duplex algorithm [46],
so 70% was used in the development of the classification model, while the remaining 30%
was used for the validation of the model. The statistics of the best model were recorded
using the R2p (determination coefficient of prediction), RMSEP (root mean square error
of prediction), RER (range to error ratio) and RPD (ratio of prediction deviation). These
values permitted us to define the applicative degree of the model. As stated by different
authors [47–49], RER should be between 7 and 20 for quality screening, and above 20 for
quality control applications, while RPD should be above 3 for screening use and above 5 for
control applications. All the computations were performed in MATLAB (ver. 7.10.0, The
MathWorks, Natick, MA, USA) using iN–House functions based on existing algorithms.

3. Results and Discussion
3.1. Spectra (PCA)

A prior spectral analysis was performed to detect the differences in the spectral
responses the between samples at each process step (according to the definitions of GR0, IN
and GR1). To provide a better visualization, the entire spectral range (4000–10,000 cm−1)
was cut at 7500 cm−1 due to the presence of noise in the last part. As shown in Figure 1,
the IN spectra revealed higher scattering related to the cylindrical shape, which led to
the greater interference of light. The GR0 and GR1 spectra revealed homogeneous and
grouped spectra, due to the dry and ground physical conditions. Furthermore, little spectral
differences could be detected between 5000 and 5200 cm−1, where the O–H bonds, related
to water content, were concentrated. This assumption supported the use of NIR to detect
the relationship between physical and chemical characteristics [53], explaining the slightly
higher moisture content in the IN samples than in the ground ones due to moistening
before pelletization. No evident differences between the spectra were detected between the
V and T groups.
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Figure 1. Averaged spectra colored according to the different processes: red lines have been used to
express the GR0 spectra, black lines for the IN spectra and blue lines for the GR1 spectra.

PCA was carried out to investigate the separation between V and T according to the
spectral data. The spectra were pretreated to remove scattering effects and to enhance the
useful information. Two different separations were considered according to (i) the physical
conditions (GR0, IN and GR1) and (ii) the classification of the origin (V and T); for both,
the spectral range was cut at 7500 cm−1. The results of the separation according to the
physical condition are presented in the score plot (Figure 2) and the loading plot (Figure 3).
The best model was developed only with the average of the spectral replicates. In fact,
the first principal component (PC) explained the highest variance (97.10%) related to the
main physical difference between the IN and GR groups, and the consequent interaction
between the light source and the cylindrical shape of the pellets, which could favor the
penetration of external light during the NIR analysis. The second PC only explained a
limited residual part (1.28%) that could be related to the chemical differences of the samples
(wood components and the presence of glue). Nevertheless, the chemical separation was
almost completely hidden by the physical features.

Energies 2024, 17, x FOR PEER REVIEW 6 of 17 
 

 

content in the IN samples than in the ground ones due to moistening before pelletization. 
No evident differences between the spectra were detected between the V and T groups. 

 
Figure 1. Averaged spectra colored according to the different processes: red lines have been used to 
express the GR0 spectra, black lines for the IN spectra and blue lines for the GR1 spectra. 

PCA was carried out to investigate the separation between V and T according to the 
spectral data. The spectra were pretreated to remove scattering effects and to enhance the 
useful information. Two different separations were considered according to (i) the physi-
cal conditions (GR0, IN and GR1) and (ii) the classification of the origin (V and T); for 
both, the spectral range was cut at 7500 cm−1. The results of the separation according to 
the physical condition are presented in the score plot (Figure 2) and the loading plot (Fig-
ure 3). The best model was developed only with the average of the spectral replicates. In 
fact, the first principal component (PC) explained the highest variance (97.10%) related to 
the main physical difference between the IN and GR groups, and the consequent interac-
tion between the light source and the cylindrical shape of the pellets, which could favor 
the penetration of external light during the NIR analysis. The second PC only explained a 
limited residual part (1.28%) that could be related to the chemical differences of the sam-
ples (wood components and the presence of glue). Nevertheless, the chemical separation 
was almost completely hidden by the physical features. 

 
Figure 2. Score plot of the first and the second principal components (PCs) that explained the 97.1%
and 1.28% of the variance, respectively. Spectra were averaged before the PCA computation.



Energies 2024, 17, 825 7 of 16

Energies 2024, 17, x FOR PEER REVIEW 7 of 17 
 

 

Figure 2. Score plot of the first and the second principal components (PCs) that explained the 97.1% 
and 1.28% of the variance, respectively. Spectra were averaged before the PCA computation. 

The positive peaks detected in Figure 3 suggested that the separation may be related 
to the main wood components. Specifically, the peak at 4520 cm−1 (1) and the peak at 4952 
cm−1 (2) are both associated with holocellulose, specifically to the C–H bonds [49,54]. As 
mentioned previously and confirmed by the few and broad peaks detected, the interfer-
ence of light was probably involved in the increase in noise due to the scattering effect 
related to the physical shape of the intact pellets (IN), but this could be considered to be 
the only source of separation from the ground pellets (GR). 

 
Figure 3. Loading plot of the first PC. PC2 was not considered because of the low additional variance 
explained. The most important discriminative wavenumbers for discrimination of the physical con-
dition are labelled with numbers in the boxes and indicated with dashed lines. 

The PCA results based on the separation of V and T are presented in a score plot (Figure 
4) and a loading plot (Figure 5). The best PCA model was developed by pretreating the 
spectra with the first derivative (Savitzky–Golay filter, second-order polynomial, 21 smooth-
ing points) after averaging of the spectral replicates. The sum of the two PCs explained 85% 
of the dataset’s variance, related to the main wood components and to the presence of a glue 
additive (industrially treated wood). Specifically, the T group spread along the positive and 
negative PC1 and positive PC2, while the V group mainly grouped in the negative PC1, 
except for the presence of few samples in the positive PC1 and negative PC2. The visual 
formation of little groups inside V and T are most likely related to the separation between 
softwood and hardwood (V), and to the degree of treatment and the amount of additives 
present (T). 

In this separation, different components could be involved, as shown in Figure 5. The 
peak at 4532 cm−1 of PC1 (1) is probably the same shared with the peak at 4528 cm−1 of PC2 
(5) and associated with the C–H stretching bond and C=O bonds [55]. A spectral shift also 
occurred for the peak at 4768 cm−1 of PC1 (2) and the peak at 4752 cm−1 of PC2 (6), both of 
which are associated with cellulose, and thus to C–H and O–H deformation and to O–H 
stretching vibrations [56]. Lastly, the peak at 4916 cm−1 (3) and the one at 5196 cm−1 (4), 
both for PC1, are associated with C–H deformation and the O–H stretching of lignin and 
cellulose, and water (O–H bonds), respectively [49,57]. In PC2, the peak at 5068 cm−1 (7) is 
associated with water, and thus with O–H stretching and deformation bonds [56]. Water’s 
presence was confirmed as one of the main discriminative parameters due to the relevant 
difference between the ground material, considered to be dry, and the IN samples, where 

Figure 3. Loading plot of the first PC. PC2 was not considered because of the low additional variance
explained. The most important discriminative wavenumbers for discrimination of the physical
condition are labelled with numbers in the boxes and indicated with dashed lines.

The positive peaks detected in Figure 3 suggested that the separation may be related
to the main wood components. Specifically, the peak at 4520 cm−1 (1) and the peak at
4952 cm−1 (2) are both associated with holocellulose, specifically to the C–H bonds [49,54].
As mentioned previously and confirmed by the few and broad peaks detected, the inter-
ference of light was probably involved in the increase in noise due to the scattering effect
related to the physical shape of the intact pellets (IN), but this could be considered to be the
only source of separation from the ground pellets (GR).

The PCA results based on the separation of V and T are presented in a score plot
(Figure 4) and a loading plot (Figure 5). The best PCA model was developed by pretreat-
ing the spectra with the first derivative (Savitzky–Golay filter, second-order polynomial,
21 smoothing points) after averaging of the spectral replicates. The sum of the two PCs
explained 85% of the dataset’s variance, related to the main wood components and to the
presence of a glue additive (industrially treated wood). Specifically, the T group spread
along the positive and negative PC1 and positive PC2, while the V group mainly grouped
in the negative PC1, except for the presence of few samples in the positive PC1 and negative
PC2. The visual formation of little groups inside V and T are most likely related to the
separation between softwood and hardwood (V), and to the degree of treatment and the
amount of additives present (T).

In this separation, different components could be involved, as shown in Figure 5. The
peak at 4532 cm−1 of PC1 (1) is probably the same shared with the peak at 4528 cm−1 of
PC2 (5) and associated with the C–H stretching bond and C=O bonds [55]. A spectral shift
also occurred for the peak at 4768 cm−1 of PC1 (2) and the peak at 4752 cm−1 of PC2 (6),
both of which are associated with cellulose, and thus to C–H and O–H deformation and to
O–H stretching vibrations [56]. Lastly, the peak at 4916 cm−1 (3) and the one at 5196 cm−1

(4), both for PC1, are associated with C–H deformation and the O–H stretching of lignin
and cellulose, and water (O–H bonds), respectively [49,57]. In PC2, the peak at 5068 cm−1

(7) is associated with water, and thus with O–H stretching and deformation bonds [56].
Water’s presence was confirmed as one of the main discriminative parameters due to the
relevant difference between the ground material, considered to be dry, and the IN samples,
where the addition of water (up to about 12%) permitted cohesion of the fine particles
during the pelletization process. This result also corroborated the IN spectral peak around
5000 cm−1, as shown in Figure 1.
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3.2. Classification Models (PLS-DA)

The results of the classification method of PLS-DA are presented in Table 3. The
computation was developed for each processing stage of the samples, including grinding
and pelletization. As for the PCA methods, different spectra pretreatments were developed,
based on the average of the spectral replicates to remove potential noise and scattering
effects, and to enhance the useful information. Confirming the PCA computation, the
spectral range (4000–10,000 cm−1) was cut at 7500 cm−1 due to the presence of evident
noise in the last part.
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Table 3. Results of the classification model for each processing step. Only the performance of
validation has been shown.

GR0 (p) IN (p) GR1 (p)

Pretreatment Mean SNV Mean 9der1 Mean 21der2

R2 0.82 0.37 0.70
RMSEP 0.25 0.35 0.29

ROC 0.5780 0.5440 0.6240
Sensitivity TP/(TP + FN) 1.00 1.00 1.00
Specificity TN/(TN + FP) 1.00 1.00 1.00

Accuracy 1.00 1.00 1.00
Error 0.00 0.00 0.00

Precision 1.00 1.00 1.00
Misclassification 0 0 0

GR0: ground pellet before pelletization; GR1: ground pellet after pelletization; IN: intact pellet; T: chemically
treated wood; V: virgin or untreated wood; R2: determination coefficient; RMSEP: root mean square error
of prediction.

Although the same highest value of accuracy was obtained for each classification
model at each step (accuracy = 1 and misclassification = 0), the best one was with the GR0
dataset according to the model’s results and the error. The spectra were pretreated with
SNV after averaging of the spectral replicates. The lower performance of IN models was
related to the higher scattering effect due to the cylindrical shape of the intact pellets, which
facilitated the formation of random holes during the placement of the sample in the spec-
trophotometer’s cup. The physical condition of ground pellets led to a more homogeneous
distribution, avoiding the interference of external light. Moreover, Figure 6a,b shows the
score plot and the regression vector plot of the GR0 model. The PC1 mostly explained the
dataset’s variability, related to the degree of industrial treatment. The samples’ distribution
revealed a net separation between virgin wood, which was more homogenous, and the
treated group, which varied along PC1. Furthermore, test samples were correctly classified
following the distribution of each group, confirming the model’s results. One virgin sample
(oak) was detected and removed as an outlier, while the mixed softwood sample was
placed close to the treated group, confirming the chemical differences between hardwood
and softwood and the use of residual fir in the wood industry [33,54]. The main peaks
detected in the regression vector plot (Figure 6b) revealed that the wood component and
the influence of water were involved in the separation. Specifically, the peak at 4328 cm−1

of PC1 (1) is associated with the C–H bonds of holocellulose [49], and the peak at 5776 cm−1

(3) is related to cellulose and associated with the first overtone of the C–H stretching bonds.
Nevertheless, the difficulties of interpretation in the range of 5000–4000 cm−1 could lead
to improper identification of the components [56] but could be related to N–H vibrations
associated with formaldehyde [58]. The effect of water is related to the peak at 5144 cm−1

(2), and thus to the stretching and deformation of O–H bonds [55], despite it being less
evident due to the dry condition of the GR samples.

According to the GR1 and IN classification models, lower classification performances
were obtained for the IN dataset, due to the higher spectral noise. Averaged spectra
replicates of GR1 were pretreated with second derivatives (Savitzky–Golay filter, second-
order polynomial, 21 smoothing points). Figure 7a,b shows the score plot and the regression
vector plot of the GR1 model. PC1 explained 53.35% of the variance, followed by 23.43%
explained by PC2. The samples’ distribution revealed an unclear separation between virgin
wood, located in the negative PC1 but also the positive PC2, and treated group, which
showed the formation of smaller groups of samples, probably related to different degrees
of industrial treatment. The test samples also showed a similar distribution, confirming the
good performance of the model and its classification accuracy, which was similar to that of
GR0. For this reason, no outliers could be clearly detected. The main peaks detected in the
regression vector plot (Figure 7b) revealed the influence of the main wood components but
also of the water at 5056 cm−1 (7), associated with O–H stretching and deformation [56],
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while the peak at 5908 cm−1 (8) is related to the first overtone of C–H bonds, probably
associated with lignin [55]. The peak at 4076 cm−1 (1) is associated with the C–H and C-C
bonds of carbohydrates [56], while the peak at 4152 cm−1 (2) and at 4872 cm−1 (6) is related
to cellulose, and thus to O–H and C–H stretching and deformation bonds [54]. The peak
at 4352 cm−1 (3) is associated with C-O, C–H2 and also O–H vibrational bonds [57]. The
peaks detected at 4436 cm−1 (4) and 4616 cm−1 (5) were noteworthy, probably related to
the presence of glue; therefore, they are associated with N–H and C–H2 bonds, confirming
the presence of industrially treated material [49].
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The best IN model was developed with the first derivative (Savitzky–Golay filter,
second-order polynomial, nine smoothing points) after averaging of the spectral replicates.
Figure 8a,b shows the score plot and the regression vector plot of the IN model, where,
as for the GR1 model, PC1 explained almost half of the variance (54.42%), followed by
the remaining 37.43% being explained by PC2. The samples’ distribution revealed that
both groups varied along PC2, despite their scattered positioning, but treated group also
varied along PC1, which confirmed the creation of smaller sub-groups. The test samples
led to a similar distribution to the training set, confirming the good validation results
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despite the lower performance with the lower R2 and the higher error. Extreme virgin
samples could be detected and were considered as outliers. The main peaks detected in
the regression vector plot (Figure 8b) are mostly related to lignin, cellulose and water.
Specifically, the peaks at 4144 cm−1 (1), at 4520 cm−1 (3) and at 4760 cm−1 (4) are related to
cellulose and holocellulose, associated with C–H, O–H and C=O stretching and bending
vibrations [54–56]. Great importance is related to the detection of lignin at the peak at
5980 cm−1 (7) and 6920 cm−1 (8), respectively, associated with the first overtone of the
stretching of the carbonyl group [56] and with the C–H vibrational bonds, and also with
the first overtone of O–H bonds [55], confirming the relevance of lignin in the intact pellets.
Furthermore, water was also clearly detected at 5044 (5) and 5212 cm−1 (6) due to the
O–H stretching and deformation bonds [54,56]. Lastly, the peak at 4336 cm−1 (2) could be
compared with the peaks detected at 4328 cm−1 in the GR0 model, so they are presumably
related to formaldehyde’s presence due to the N–H bonds associated with NIR detection in
that range [58].

Summarizing the results, the spectral peaks detected in the interval of lignin’s wave-
lengths highlight the effect of the thermo-chemical transformation occurring during pel-
letization. Namely, the meltdown of lignin improved its natural “adhesive” function [59]
and, in fact, it was mainly detected in the IN samples. Nevertheless, the relevant difference
between ground and intact pellets related to their physical condition could conceal spectral
information about the chemical features. Thus, specific chemical investigations could be
necessary to further explore the alteration of lignin in terms of the concentration and/or
modification. Moreover, the cylindrical shape of the pellets could facilitate the presence of
gaps, thus leading to negative interactions with light during the NIR analysis; therefore,
additional devices to avoid the influence of external variations should be considered. Fur-
thermore, the proposed models only identified the presence of glue and did not provide
any information about the presence of other materials such as plastics or inert components.
Further tests using specific plastic constituents and non-woody elements could support the
development of more elaborate models, leading to a wider investigation.

The process of pelletization implies high temperatures and pressures, leading to
thermo-chemical reactions that could lead to unusual reactions of the chemical components
in non-virgin materials. Therefore, compared with the spectral response of glue in the
GR0 samples, the glue portion in GR1 could be potentially highlighted by the loss of O–H
bonds produced by the heating during pelletization, allowing for clearer detection of the
N–H bonds. Instead, the reduced evidence of glue bonds in IN could be covered by the
noise produced by the scattering effect, confirming by the spectral peaks and the lower
classification performance.

Lastly, expanding the dataset by increasing the number of analyzed samples could sup-
port the development of more reliable classification models and provide robust information
about the main chemical features.
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4. Conclusions

The separation between virgin and treated wood is a crucial step in monitoring the
quality of densified biofuels, such as pellets. The physical compactness and homogene-
ity of densified materials leads to the impossibility of identifying the source materials,
facilitating the illegal addition of waste and environmentally harmful materials, such as
glue-treated wood. Near infrared spectroscopy (NIR) could be considered a valid alterna-
tive to standard analyses for the qualitative assessment of solid biofuels, being time-efficient,
non-destructive, and cost-effective. Furthermore, the application of chemometrics and
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classification methods (PLS-DA) could support NIR analyses in determination of the origin
of woody components, allowing the detection of fraudulent biofuels.

Thus, as shown through this study, discrimination between virgin and chemically
treated pellet appears to be feasible, both in intact and ground pellets, despite the lower
performance detected for the non-ground pellets due to the higher scattering effect. Water
bonds, cellulose and lignin are mainly responsible for the identification of the two groups,
while glue bonds were detected in specific conditions due to the potential effect of thermo-
chemical processes occurring during pelletization, which might lead to the alteration of
woody and non-woody components. Lignin, in particular, can act as an adhesive under
high temperatures and pressures, confirming its influence in the process of pelletization.

According to the current results, the alternative method of NIR can be considered a
reliable tool for real-time applications and continuous monitoring. Although its usability
could improve with the help of portable instruments, benchtop spectrophotometer can
simulate an in-line approach, resulting in higher representativeness of the analysis accord-
ing to the larger testing spot and the large number of scans. Implementing NIR in in-line
systems can also facilitate the detection of irregularities directly in power plants, thereby
enhancing the production of quality products and the overall quality of the market.
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