
26 December 2024

UNIVERSITÀ POLITECNICA DELLE MARCHE
Repository ISTITUZIONALE

SPECTRE: a deep learning network for posture recognition in manufacturing / Ciccarelli, M; Corradini, F;
Germani, M; Menchi, G; Mostarda, L; Papetti, A; Piangerelli, M. - In: JOURNAL OF INTELLIGENT
MANUFACTURING. - ISSN 0956-5515. - 34:8(2023), pp. 3469-3481. [10.1007/s10845-022-02014-y]

Original

SPECTRE: a deep learning network for posture recognition in manufacturing

Springer (article) - Postprint/Author's accepted Manuscript
Publisher copyright:

This version of the article has been accepted for publication, after peer review (when applicable) and is
subject to Springer Nature’s AM terms of use https://www.springernature.com/gp/open-
research/policies/accepted-manuscript-terms, but is not the Version of Record and does not reflect post-
acceptance improvements, or any corrections. The Version of Record is available online at:
10.1007/s10845-022-02014-y.

Publisher:

Published
DOI:10.1007/s10845-022-02014-y

Terms of use:

(Article begins on next page)

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. The use of
copyrighted works requires the consent of the rights’ holder (author or publisher). Works made available under a Creative Commons
license or a Publisher's custom-made license can be used according to the terms and conditions contained therein. See editor’s
website for further information and terms and conditions.
This item was downloaded from IRIS Università Politecnica delle Marche (https://iris.univpm.it). When citing, please refer to the
published version.

Availability:
This version is available at: 11566/326178 since: 2024-10-30T12:10:49Z

This is the peer reviewd version of the followng article:



Springer Nature 2021 LATEX template

SPECTRE: a Deep Learning network for

Posture Recognition in Manufacturing

Marianna Ciccarelli2, Flavio Corradini1, Michele
Germani2, Giacomo Menchi2, Leonardo

Mostarda1, Alessandra Papetti2 and Marco Piangerelli1*

1Computer Science Division, University of Camerino, via
Madonna delle Carceri, Camerino, 62032, Italy.

2Department of Industrial Engineering and Mathematical
Sciences, Poytechnic University of Marche, via Brecce Bianche,

Ancona, 60131, Italy.

*Corresponding author(s). E-mail(s):
marco.piangerelli@unicam.it;

Contributing authors: m.ciccarelli@staff.univpm.it;
flavio.corradini@unicam.it; m.germani@staff.univpm.it;
g.menchi@staff.univpm.it; leonardo.mostarda@unicam.it;

a.papetti@staff.univpm.it;

Abstract

Work-related musculoskeletal disorders are a very impactful problem,
both socially and economically, in the manufacturing sector. To con-
trol their effect, standardised methods and technologies for ergonomic
assessment have been developed. The main technologies used are inertial
sensors and vision-based systems. The former are accurate and reliable,
but invasive and not affordable for many companies. The latter use
machine learning algorithms to detect human pose and assess ergonomic
risks. In this paper, using data collecting by reproducing the work-
ing environment in LUBE, the major Italian kitchen manufacturer, we
propose SPECTRE (Sensor-independent Parallel dEep ConvoluTional
leaRning nEtwork): a fully sensor-independent learning model based on
convolutional networks to classify postures in the workplace. This system
assesses ergonomic risks in major body segments through Deep Learn-
ing with a minimal impact. SPECTRE’s performance is evaluated using
established metrics for imbalanced data (precision, recall, F1-score and
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area under the precision-recall curve). Overall, SPECTRE shows good
performance and, thanks to an agnostic explainable machine learning
method, is able to extrapolate which patterns are significant in the input.

Keywords: Computer Vision, Deep Learning, Ergonomic Risks,
Human-Centered Manufacturing, Posture Recognition, Work-related
musculoskeletal disorders.

1 Introduction

One of the major challenges for health in manufacturing environments is find-
ing ways to prevent musculoskeletal disorders. Work-related musculoskeletal
disorders (WMSDs) are the most prevalent occupational health problem affect-
ing roughly three out of every five workers in the EU-28 of all sectors and
occupations [1]. Its incidence is rapidly increasing due to workforce ageing.
WMSDs have a multifactorial nature (i.e., physical, organisational, and psy-
chosocial risk factors) and affect several anatomical regions such as the back,
neck, shoulder, and wrist. In addition to pain, functional limitations, impair-
ment, absence from work, etc. they have a significant socio-economic impact
on companies, society at large, and workers’ personal lives [2]. In particular,
the manufacturing sector shows high levels of sick leave and an high rate of
absenteeism due to WMDS. The back and upper limbs (e.g. wrists and elbow)
are the most affected body areas. Moreover, according to data by economic
sectors, the manufacturing sector suffers the highest economic losses due to
MSDs. For instance in Germany, there are about EUR 6.45 million loss of
production and EUR 10.63 million loss of gross value added [1]. The need
for awareness, regulatory pressure, and workers’ complaints have led to the
development and spread of numerous standardised methods and tools (OWAS,
REBA, RULA, etc.) for assessing the risks of WMSDs. They were designed
for use by ergonomists, health and safety inspectors, occupational doctors,
etc. and they usually require the assignment of scores based on the direct
observation of workers while performing their work or video recordings. Some
methods also require a discussion with stakeholders to better interpret results,
understand the causes, hypothesise interventions, and define how to put them
into practice. However, they often need a discussion with workers to arrive
at the most objective scores possible [3]. The subjectivity or the evaluator
bias are the main limitations of these approaches, in addition to the monitor-
ing of limited periods of time (temporal instants or snapshots). From these
considerations arises the need for objective evaluation tools (i.e., direct mea-
surement), which allow for a long duration of data collection and are more
accurate. They could be used to improve human ergonomics in dynamic sce-
narios, providing real-time feedback to workers or adapting working conditions
(e.g., human-robot collaboration). They could be sensor-based or vision-based
systems. The former refers to the emerging use of wearable inertial sensing
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technology in occupational ergonomics. It includes several sensors such as
accelerometers, inclinometers, gyroscopes, magnetometers, and inertial mea-
surement units (IMUs). Their use in lab settings prevails, whereas applied
industrial settings still lag. Lim and D’Souza, in their review [4], point out
the following interesting issues to deal with: full-body measurement (17 body-
worn inertial sensors) can be obtrusive and affect wearability; inertial sensors
tend to lack the context of the performed tasks needing the incorporation of
additional methods (e.g., direct observations, self-reported measures); and few
studies offer real-time feedback functionality. Moreover, accurate and complete
motion capture systems, including the relative software, could be too expen-
sive to be affordable, for example, by small and medium-sized enterprises. The
latter include software (tools) that allow real-time detection of joints and body
parts from digital images and videos [5] and skeleton-free approaches that pre-
dict body joint angles from a single depth image [6]. These systems usually
employ Machine Learning (ML) or Deep Learning (DL) algorithms to predict
the human pose. Although these systems have proved to be less invasive and
energy-independent (no need for batteries), the accuracy of the calculation of
the joint angles is not adequate despite the initial promising results. To fur-
ther improve accuracy, researchers should enhance (vision-based) models and
look to implement personalised ML/DL models and support prevention activ-
ities [7]. Moreover, existing research works recognise vision system setup, data
fusion algorithms, and self or object occlusion as the main problems to be faced
when considering a real scenario [8, 9]. Occlusion cases are due to the worksta-
tion layout, the movement of operators and production systems (e.g., robots),
or their interaction. This issue can be partially overcome by multi-view capture
systems; however, they require a complicated cameras calibration and synchro-
nisation process, as well as high-performance computing. Despite the progress
and use of ML techniques for primary prevention of WMSDs will likely con-
tinue to increase at a rapid pace and the development of real-time worker risk
monitoring systems seems to be the most popular area of research [7], fea-
tures coming from vision-based systems are rarely fed to a ML algorithm for
assessing the risk related to WMSDs. In this context, the present work aims at
giving a further contribution to the state of the art by proposing SPECTRE
(Sensor-independent Parallel dEep ConvoluTional leaRning nEtwork): a com-
pletely sensor-independent learning model based on a parallel architecture for
identifying and classifying postures in working environments. SPECTRE uses
a vision library only to segment frames (in pre-processing) and, once trained,
it runs without special cameras thus being used by any company. The major
contributions are summarised as follows:

• the application of DL to data collected simulating a real manufactur-
ing scenario in a controlled environment, also addressing the problem of
occlusion

• the use of an agnostic explainable Machine Learning (xML) approach, during
the testing phase, to understand how the networks recognise the frame’s
labels, i.e. which are the significant/meaningful pixels
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• the assessment of DL-aided ergonomic risks related to the main body
segments, in addition to the global risk index

• the development of a low-cost smart enterprise system for WMSDs preven-
tion, enhancing its accessibility and applicability.

The paper is organised as follows. Section 2 provides an overview about the
state of the art of sensors-based and AI-based solutions for the WMSDs;
Section 3 presents the case study and the adopted solution; results are given in
Section 4 and, finally, Section 5 critically reviews the work highlighting both
strengths and weakness and suggesting future works.

2 Related work

The literature highlights that the adoption of objective evaluation methods
and tools for ergonomic risk assessment is increasingly needed. For this reason,
different solutions, in terms of hardware and software, have been investigated.

2.1 Sensor-based solutions

IMUs are one of the most common devices used in manufacturing contexts for
collecting data from workers. IMUs are wearable devices, composed of mul-
tiple sensors (i.e., tri-axial accelerometers, gyroscopes, and magnetometers),
that can capture and record movements and postures recreating the position
and the orientation of the body segments they are attached to. In the last few
years, these systems have improved in terms of accuracy and precision, so they
have been widely used for ergonomic assessment [10]. Several studies experi-
mented the use of inertial motion capture systems for ergonomic evaluation in
real work environments. [11] evaluated the musculoskeletal risks in a banana
harvesting activity through objective measures using inertial sensor motion
capture (Xsens). [12] presented an IMU-based system to assess ergonomic
risk in real-time according to RULA method, also providing visual and audi-
tory feedback to workers. [13] proposed a full-body integrated system for the
ergonomics evaluation in warehouse environments based on inertial sensors.
[14] developed a wearable system for ergonomic risk assessment for the upper
body part. The system is composed of IMUs and EMG sensors to calculate
both joint angles and muscles’ strain. Thanks to the wide employment of iner-
tial motion capture systems, these devices can be considered reference systems
for ergonomic assessment. However, they are invasive and obtrusive for the
operator (thus they cannot be worn for the entire work shift) [15], they have
limited battery life, and their cost is not always affordable for companies [16].
Moreover, using the motion capture system in real working environments and
for dynamics tasks, recurring calibrations of IMUs may be necessary to assure
reliable and accurate measurements [17].



Springer Nature 2021 LATEX template

SPECTRE 5

2.2 Vision-based solution

In recent times, vision-based solutions are slowly starting to join the more
classic sensor-based methods. These solutions can be classified according to
different aspects such as space (2D and 3D), sensing-modalities, pipelines
(single-person and multi-person), learning methods, etc. Different technologies
are available to detect the human body from images or videos and esti-
mate skeleton and joints. [18] used OpenCV coupled with Haarcascade and
Adaboost to quickly evaluate human features. The result, in this case, is quite
accurate but only two-dimensional images can be elaborated. As such, the pos-
ture analysis proves rather difficult. One of the most common alternatives is
OpenPose, as described by [19]. OpenPose allows combining the output from
several cameras in order to obtain three-dimensional skeleton tracking. This
proves to be better than the previous method but occasionally it has some
flaws when coupling data from different cameras and the accuracy for assess-
ing human kinematics still remains unknown [20]. [21] achieved an improved
identification by using VoxelPose, which directly operates in a 3D space and as
such avoids the coupling problem described before. Nonetheless, the accuracy
still proves to be not good enough for a reliable ergonomic evaluation.

In addition, some works, developed recently, focused on the detection of
the user’s skeleton through video processing and DL. These works, based on
Convolutional Neural Networks (CNNs), aimed at designing a skeleton detec-
tion and tracking system and integrating it with a recommendation system for
postures [22–24]. However, video processing using CNNs requires significant
computational resources to provide a real-time response. Moreover, vision-
based approaches have been criticized due to limited site coverage by cameras
and the high likelihood of occlusions as pointed out by two recently published
works [25, 26].

Vision-based systems are becoming an advance for marker-less ergonomic
assessment, since they allow evaluating postures by images and videos taken
from common RGB cameras, enhancing their accessibility and feasibility. Both
motion capture systems based on RGB (e.g., standard webcams) and RGB-D
cameras are low cost if compared with marker and sensors solutions. Ergonomic
analyses do not require high accuracy for tracking the human body, since a
small deviation in detecting joint position generally does not change the cal-
culated index. For these reasons, vision-based systems could be sufficiently
accurate and affordable to perform an ergonomic assessment [27]. These sys-
tems mainly rely on an approach that combines the following steps to obtain
a full-fledged ergonomic evaluation:

• Skeleton identification, i.e., cameras use ML/DL to detect the human
skeleton and its joints locations

• Posture analysis, i.e., the detected skeleton and its joints angles are used for
the actual ergonomic evaluation.
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Table 1 summarizes the most interesting articles on the topic specifying
input modalities and methods. For example, [28] estimated RULA body pos-
ture scores from 2D kinematic joint locations obtained from a deep learning
algorithm using Euclidean distance and the cosine of the angle between 2D
vectors. Some papers perform pose estimation on the RGB images using Open-
Pose. [29] presented a framework for skeleton-based posture recognition by
applying a 3D CNN.

Other works focus on activity recognition using monocular RGB cameras,
which represent the most common approach. [30] developed a temporal CNN
that uses spatio-temporal features to analyze and recognize human activities
through a short video as input. Similaliry, [31] proposed a fast model that
fuses spatial and temporal features to recognize human action. Their system
extracts temporal information using RGB images achieving high performance.
The rapid development of 3D data capture devices (RGB-D cameras) is leading
to testing their application even for action recognition. [32] proposed a system
of skeletal data-based CNN classifiers for action recognition. The system is
composed of six 1-channel CNN classifiers and each is built with one unique
posture-related feature vector extracted from the time series skeletal data,
recorded by the Microsoft Kinect.

As shown in Table 1 most of the articles mainly concern activity recogni-
tion and pose estimation, without carrying out the ergonomic evaluation. The
works that consider the ergonomic risk index (e.g., RULA, REBA, OWAS)
use body points’ positions and joint angles. The proposed approach wants
to stand out by adopting a skeleton-free approach for ergonomic evaluation,
without the joints angles calculation. Based on the classification proposed by
[33], SPECTRE can be defined as a one-stage 3D pose estimation approach,
which regresses the 3D pose directly from the image through a parallel CNN
architecture.

Table 1 Comparison of vision-based systems for different applications

Article Input Method Application

[29] RGB videos +
OpenPose

3D CNN Writing posture recognition

[31] RGB images CNN Activity recognition
[30] RGB video frames CNN Activity recognition
[34] RGB videos,

depth videos, 3D
joints coordinates

Multi-stage adaptive regression Activity recognition

[35] RGB CNN with OFF Activity recognition
[36] RGB camera +

OpenPose
CNN Tool-dependent activity recognition Pose estimation

[32] Microsoft Kinect CNN Assembly activity recognition
[8] Microsoft Kinect

+ 3 RGB camera
+ OpenPose

Joints angles RULA/REBA scores

[37] RGB images +
OpenPose

CNN + DNN Pose estimation RULA scores

[5] RGB camera CNN + Joints angles Pose estimation RULA scores
[28] Video images CNN + Joints angles Pose estimation RULA scores
[16] Microsoft Kinect Joint angles OWAS score
[24] Webcam CNN Upper body posture recognition
[26] Video images SVM Posture classification
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3 Case study scenario

Our approach has been developed considering the main manual activities that
characterise the working environment in LUBE, the major Italian kitchen man-
ufacturer. Specifically, in this case study, some manual operations that the
worker generally carries out in a collaborative robotics cell were reproduced
in the laboratory: manual handling of products, assembly, and quality inspec-
tion. The goal was to collect data and then use it to train the neural network.
This approach allows considering different scenarios in LUBE workplaces and
also generalising the method to use it in multiple working environments.

3.1 Dataset images (frames) acquisition and labelling

Firstly, the neural network needs to be trained using a wide dataset of different
human postures. For this reason, two different recordings were captured at the
same time: a motion capture system for movements acquisition that operates
as a ground reference, and a camera for video recording to provide data to
the neural network. Fig. 1 shows the labelling process for the classification
of collected postures. During the acquisition, the user was equipped with 18

Fig. 1 Frame labelling process

Xsens MTw (Wireless Motion Tracker) for full-body monitoring. The Xsens
MVN inertial motion capture system allows recording the movements of the
user and exporting anthropometric measures, body segments, and joint angles.
This way, it is possible to evaluate the movements of the body for each recorded
frame (60 fps) in an accurate and objective manner. Indeed, all the output
data is functional for the main anatomical joint angles calculation, which are
used for the ergonomic assessment. Specifically, the following body parts have
been chosen, considering left and right body sides separately:

• Upper Arm: considering flexion and abduction
• Lower Arm: considering flexion and hand position related to the body’s
midline

• Wrist: considering flexion, deviation, and rotation
• Neck: considering flexion, lateral bending, and rotation
• Trunk: considering flexion, lateral bending, and rotation.
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These angles and positions were calculated using specifically developed algo-
rithms that allow elaborating data recorded by the motion capture system. For
example, the hand location is determined by calculating the position of the
wrist related to the shoulder. This is achieved by using the composition of the
joint angles rotation matrices of shoulder and elbow and the measures of the
related segments. For each body part, a specific threshold has been defined to
evaluate the related ergonomic risk according to the RULA method. The body
part is classified as “KO”/“OK” if the score is higher/lower than the following
thresholds:

• Upper arm: 4
• Lower arm: 3
• Wrist: 4
• Neck: 4
• Trunk: 4

Simplifying, “OK” means “ergonomic position” and, on the contrary, “KO”
means “non-ergonimic position”. The classification resulting from the RULA
assessment has been coupled with each video recorded frame in order to
have an image data-set of which postures are correct and which are not. The
classification process, which has been scripted, is divided in five parts:

1. Each video frame is extracted from the video itself.
2. The initial and final video frames in which no posture is performed are

removed.
3. The corresponding frame row from the Xsens output file is selected.
4. The video frame is saved as picture with the frame number and the Xsens

output (OK or KO) in its name.
5. The operation is repeated for each body parts, which are supposed to have

different classifications.

As such, eight classification groups are created (shown in table 2) and each of
them will be used to train a separate DL network.

3.2 SPECTRE architecture

SPECTRE, the architecture we propose in this paper, is fully shown in Fig. 2.
As shown in Fig. 2-a we see two sequentially connected layers: the first layer,
or segmentation layer, is given by the Python library Mediapipe and repre-
sent the network for pre-processing the frame, the second layer, or parallel
convolutional layer, consists of 8 parallel CNNs - one for each body part we
want to monitor - and is used for binary posture classification, see Fig. 2-b.
Each network in the parallel CNN architecture, shown in Fig. 2, is made by 5
convolutional layers (CONV), five max-pooling layers (MAX POOL) and six
dense layers (DENSE). CONV layers are described by a triple N @ W × H
and by a 2D vector (kx, ky). N is the number of kernels, W the layer width, H
is its height and kx and ky are the kernels size; MAX POOL layers are char-
acterised only by the above triple whereas DENSE layer only by its number
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Parallel convolutional Layer
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TRUNK

LUA

RUA

LLA

RLA

LEFT WRIST

RIGHT WRIST

OK 

KO

OK 

KO

OK 

KO

OK 
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OK 
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OK 
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OK 
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Segmentation Layer

Segmentation Layer Parallel Convolutional Layer

OK 

KO

(a)

(b)

Fig. 2 SPECTRE architecture.

of neuron X. Rectified linear unit (Relu) activation functions are used in each
layer, but in the last one (DENSE), where a sigmoid activation function is
used. Networks were implemented using Python 3.8 and TensorFlow 2.7. Each
network is trained separately for 50 epochs using a batch of 32 images and a
binary cross-entropy as loss function. Tests were performed in a platform using
6 GPUs NVIDIA A100 with 1TB RAM.

4 Results

In this section, we present the results of our work both in terms of evaluation
metrics and xML for all CNNs in SPECTRE.

4.1 Data and Evaluation Metrics

The labelling system in Fig. 1 produced a dataset consisting of 4601 frames
(size 500 × 300), labelled “OK” or “KO” depending on the score and on the
body part being considered. Hence, it is worth noticing that for each body
part we have an unbalanced distribution between the two classes.
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(a)

(b)

Fig. 3 (a). A frame extracted by the video. (b). The same frame after the segmentation
procedure

CONV 
32@500x300 

(6,6) 

MAX POOL 
32@500x300 
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(6,6) 
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CONV 
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(2,2) 

CONV 
512@8x5 

(3,3) 
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DENSE 
1024 

DENSE 
512 

DENSE 
256 

DENSE 
128 DENSE 

64 
DENSE 

32 

MAX POOL 
512@2x1 

Fig. 4 CNN architecture. Three types of layer are present: convolutional (CONV), max-
pooling (MAX POOL) or fully connected (DENSE). A CONV layer is described by a tuple
N@widthxheight and by a
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Fig. 5 (a)-(h). Confusion Matrices for each convolutional neural network in SPECTRE.
(i)-(p) PR Curves for each convolutional neural network in SPECTRE.

Each frame is then segmented in order to avoid possible interference of
the background in the training phase; at the same time skeleton is extracted
and superimposed to the segmented area. The result of described procedure
is shown in Fig. 3. When the segmentation procedure is not successful in
recognising the human figure in the picture or to superimposed the skeleton
we discard that frame. The final data-set consists in 4527 frames. We used
a stratify 5-fold validation for checking the network model chosen. Then, the
data-set is splitted in two parts: the 75% is used for training whereas the
remaining 25% for testing. The split is done for each body part in a stratified
fashion, i.e. the proportion between the two classes is preserved both in training
and in testing.
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Fig. 6 LIME explanation of predictions. Each picture shows which part (which pixels)
is important for the final prediction. Green pixels represent those pixels that increase the
probability for that picture to be classifies as “OK”, on the contrary red pixels are involved
in the decreasing of the probability for the “OK” postures. For instance, by looking at the
LEFT WRIST frame it is possible to infer that those pixels increase the probability for the
picture to be classified as “OK” that, actually means the picture is representing a correct
position. On the contrary in TRUNK picture, the red pixels decrease the probability for
that picture to be classified as a correct position.

In order to evaluate our model we referred to the classical confusion matrix
containing the the numbers of True positives (TP), False Positives (FP), True
Negatives (TN), False Negatives (FN) obtained during the test phase; however,
such an unbalanced scenario, given its criticality, need more specific metrics
as shown in [38–40]:

• Precision = TP/(TP + FP )
• Recall = TP/(TP + FN)
• F1-score = 2 · (Precision · Recall)/(Precision + Recall)
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Table 2 Precision, Recall and F1-Score for each body area

Body part Class Precision Recall F1-score

LUA OK=0 0.92± 0.09 0.97± 0.016 0.94± 0.046
KO=1 0.96± 0.017 0.89± 0.138 0.92± 0.078

LLA OK=0 0.98± 0.014 0.94± 0.045 0.96± 0.019
KO=1 0.84± 0.113 0.92± 0.09 0.88± 0.055

LW OK=0 0.87± 0.086 0.96± 0.035 0.91± 0.037
KO=1 0.91± 0.07 0.66± 0.268 0.73± 0.193

RUA OK=0 0.96± 0.055 0.9± 0.107 0.9± 0.052
KO=1 0.83± 0.152 0.9± 0.156 0.84± 0.085

RLA OK=0 0.88± 0.083 0.98± 0.022 0.9± 0.04
KO=1 0.89± 0.086 0.53± 0.373 0.59± 0.359

RW OK=0 0.87± 0.062 0.99± 0.022 0.92± 0.027
KO=1 0.16± 0.253 0.18± 0.402 0.17± 0.376

NECK OK=0 0.99± 0.008 0.95± 0.047 0.97± 0.024
KO=1 0.90± 0.074 0.98± 0.016 0.94± 0.042

TRUNK OK=0 0.98± 0.01 0.96± 0.022 0.97± 0.01
KO=1 0.93± 0.032 0.96± 0.021 0.94± 0.019

LLA = Left Lower Arm, LUA = Left Upper Arm, LW = Left Wrist, RUA = Right Upper Arm;
RLA = Right Lower Arm, RW = Right Wrist

Moreover we used Area Under the Precision-Recall Curve (AUPRC). The PR
Curve shows the trade-off between precision and recall for different thresholds
(of class prediction). A high area under the curve represents both high recall
and high precision. High scores for both show that the classifier is returning
accurate results (high precision), as well as returning a majority of all positive
results (high recall). Table 2 and Fig. 5 show the values of the above metrics:
the former reports the results for the 5-folds validation whereas the latter
displays the results of the best model. Table A general look shows that all
body parts on the right side of the body (RUA, RLA, RW). Going into more
detail, RW is the body part with lowest scores; on the contrary, LUA is the
one with the highest scores.

4.2 Trusting the ML

xML is used in order to gain awareness of the obtained results and to
check if SPECTRE learnt spurious associations or the information content is
really related to the posture of the subject in the frame. We used the Local
Interpretable Model-Agnostic Explanations (LIME) method for explaining
SPECTRE [41].

4.3 LIME

Probably, “why such a prediction? and which variables are mostly involved the
prediction?” are the FAQs about ML model results. LIME was developed for
attempting to answer such questions. It is model-agnostic, meaning that it can
be applied to any machine learning model. The technique aims at “reading”
(explaining) the model by perturbing the input of data samples, by tweak-
ing the feature values, and understanding how the predictions change (impact
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on the output). Those models are called surrogate models. LIME focuses on
training local surrogate models to explain individual predictions thus provid-
ing local model interpretability. Other model interpretability techniques only
answer the question above taking into account the entire data-set. For instance,
feature importance explains on a data-set level which features are important
but it is hard to diagnose specific model predictions. The idea behind LIME
is quite intuitive. First of all, one needs to forget about the training data and
imagine to have a black box model to be fed by input data points thus get-
ting the predictions of the model. The final goal is to understand why the
machine learning model made a certain prediction. LIME tests what happens
to the predictions when one perturbs data into the machine learning model,
e.g. modifying numerical values in tabular data or varying the pixels in images.
In order to do that, LIME generates a new data-set consisting of perturbed
samples and obtains the corresponding predictions of the black box model. On
this new data-set LIME then trains an interpretable model (a linear model or
a decision tree) approximating the black-box one and which is weighted by the
proximity of the sampled instances to the instance of interest.

The intuition is that it is less complicated to approximate a black-box
model by a simple model locally, i.e. in the neighborhood of the prediction we
want to explain, instead of approximating a model globally. In particular, the
use of LIME to explain image predictions is based on creating image variations,
not at pixel-level, but using ”superpixels”. Superpixels are groups of pixels
grouped according to their color and obtained by segmenting the picture. The
variations are created by randomly excluding some of superpixels, i.e. turning
them off simply by replacing them using gray pixels.

4.4 Explaining SPECTRE

Fig. 6 shows the explanation of the predictions made by each CNN in SPEC-
TRE. Green means that part of the image increases the probability for the
label and red means a decrease.

The first achievement is given by the groups of pixels (superpixels) involved
in the predictions: only the areas belonging to the segmented visible figure
contribute to predict the status of the considered body part (excluding the
environment). Green pixels indicate that the position of the considered body
part increases the probability for the “OK”, on the contrary red pixels mean
a decrease for the same probability. The second noteworthy result is that the
system also infers the condition of one body part by taking advantage of the
position of the other body parts. This condition is visible, for example in
RUA, LUA, NECK, TRUNK, as depicted in Fig. 6. The most controversial
results are those concerning RW. In fact, the system is not able to identify
RW’s position properly, even by deriving it from the positions of other areas
of the body. This is probably due to the fact that, while the other joints are
somewhat dependent, the posture of the wrists depends less on the relative
position of the elements of the joint chain.
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5 Discussion and Conclusions

SPECTRE, a parallel CNN for identifying and classifying postures in working
environments, is presented. The proposed solution does not rely on ML/DL
for identifying body joints and anatomical angles but it exploits the power of
DL to recognise patterns in data able to directly check whether the workers’
posture is correct or not. SPECTRE works independently for each body part of
interest. This way, it is possible to identify which body part is mainly exposed
to risk and suggest a healthier posture. Moreover, the chosen body parts are
the same as those used for assessing the ergonomic overall risk according to the
RULA method, that is why using SPECTRE it is also possible to obtain an
overall risk score. The usage of LIME is extremely interesting since it allows to
be aware what the system is looking at and trust the prediction. Indeed, other
methodologies exist but they are not designed to deal with a large number
of features [42]. Our solution is designed to be easy to use and affordable for
small and medium companies. Indeed, the absence of wearable sensors and the
possibility to use SPECTRE in any working environment increase usability
and lead to a reduction in instrumentation costs (hardware and software).
According to our knowledge, this is the first attempt to use DL for preventing
WMSDs in manufacturing environments. Moreover, it is worth mentioning that
the unbalanced data-set is an intrinsic condition in such a scenario: it is much
more likely for a person to be in an ergonomic position than in a non-ergonomic
one. Given that, we chose to not balance the two classes (“OK” and “KO” using
methods such as SMOTE [43], but we managed the unbalancing using suitable
metrics as described in 4.1. At the moment, our approach is deliberately not
in real-time because we focused on long-lasting postures that are potentially
more dangerous. Nonetheless, in the future, a real-time solution could be of
interest, as reported in [24]. Finally, we are aware that some limitations emerge
in our study; albeit the experiments were designed to be as realistic as possible,
they were done in controlled environments, hence testing SPECTRE on the
field, i.e. a real working environment could be important for increasing the
performance; likewise, the possibility to overcome the limitation of single figure
detection and allow our system for multiple subjects detection could be a
valuable improvement especially for crowded working places.
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