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Abstract: We present a theoretical model of a cylindrical tunable liquid crystal lens based on the
modulation of anchoring energy. The latter can be easily obtained using photoalignment techniques.
The liquid crystal cell we propose exhibits strong anchoring at the top substrate and anchoring energy
with a parabolic profile at the bottom substrate. The model describes the dependence of the focal
length on the applied voltage and presents a theoretical study of the lens aberrations. The results
obtained are of general relevance and can be used to optimize the performances of every type of
liquid crystal lens with a parabolic profile.

Keywords: liquid crystal lenses; modulated anchoring energy; spherical aberration; tunable
focal length

1. Introduction

Conventional lenses are based on the radial shaping of materials, like glass or plastic,
that exhibit a constant refractive index. These optical components typically have one fixed
focal length. The standard method of varying the focal length of an imaging system is to use
a certain number of lenses such that the focus position is changed by mechanically adjusting
their mutual distance. This approach makes the system bulky and unsuitable for certain
applications. Compact and lightweight optical systems, where the focal length can be varied
without moving parts, are clearly very attractive. The fluid nature of the director field in
liquid crystals (LC), combined with their high sensitivity to external stimuli, enables lenses
based on liquid crystalline materials to fulfill the above requirements. The focal length of
LC lenses is typically electrically tunable, and since the first report dated back to 1979 [1],
several different structures have been proposed, mainly based on patterned electrodes [2–7].
In these systems, a lens-like refractive index profile is realized by pixelated electrodes with
a proper distribution. LC cells with pixel-free electrodes have also been proposed [8]. The
LC lens described in [8] consists of a sandwich LC planar cell with uniform ITO-coated
substrates and is based on the light-induced reduction of the Fredericks threshold in LC
cells doped with azo dyes [9]. Indeed, a Gaussian beam incident on an azo-dye-doped
LC cell gives rise to the adsorption and desorption of dye molecules on the irradiated cell
surface; the dominant effect is dependent on both light intensity and polarization [10].
Since dye doping forms charge complexes in LC [11], the light-induced adsorbed layer
affects the surface charge density and, as a consequence, the effective internal voltage felt
by the LC molecules. This means that the Fredericks threshold is modulated and, due
to the dependence of the density of adsorbed and desorbed molecules on light intensity,
the threshold electric field required to reorient the LC molecules follows a Gaussian beam
profile. Therefore, the applied dc field produces a director distortion that gives rise to a
lens-like refractive index distribution [8].
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Despite being more than 40 years old and a large number of existing literatures, LC
lenses continue to attract the interest of the scientific community due to the great number of
possible applications. Some new devices, such as head-mounted displays, mobile cameras,
and contact lenses, have indeed demonstrated the need for novel adaptive lenses [12], and
non-conventional solutions have recently been proposed [13–16]. In addition, different
driving methods for controlling LC microlens arrays to be used in switchable displays [17]
and hyperspectral imaging [18] are currently being investigated. The design, fabrication,
and characterization of an ultrathin, polarization-insensitive focus-tunable LC diffractive
lens with a large aperture, low weight, and low operating voltage have also been proposed
and used for the realization of augmented reality glasses [19].

With the aim of contributing to the recent efforts, we propose a theoretical study
of LC lenses based on a parabolic profile of the anchoring energy that can easily be pro-
duced by photoalignment of proper transparent surface coatings [20–23]. Specifically,
photoalignment consists of coating the LC cell substrates with a UV-curable polymer trans-
parent to VIS light, which is then exposed to a linearly polarized UV light beam. The
polarized exciting light initiates orientationally selective photoexcitation of the molecules
of the aligning material, leading to their bulk and surface orientational ordering. The
order induced in the aligned film and the characteristics of the LC-substrate interaction
determine the orientation of the LC easy axis. The photoaligning effect occurs due to the
anisotropic interaction of LC molecules with the orientationally ordered alignment polymer.
Reversible LC photoalignment has also been demonstrated by the proper selection of
aligning layers [24,25].

Our simulations show that the application of an external voltage V in a range of
0.7–1 V produces a tunable parabolic modulation of the LC birefringence. Both the phase
delay and focal length are calculated for different values of V and the lens aberrations are
estimated.

It should be noted that LC lenses with parabolic phase profiles have recently been
proposed [7]. In the study, a parabolic profile was obtained using a proper electrode pattern
that gave rise to a parabolic distribution of the applied voltage. Our approach, on the
contrary, is based on photoalignment and does not require any electrode patterning. The
advantages of photoalignment over electrode patterning are manyfold. One is related to
the absence of mechanical rubbing, which is critical for many applications that require LC
alignment with high microscopic uniformity and fine alignment patterning. Moreover,
photoalignment allows easier alignment on relief, curved, and flexible substrates, as well as
in confined volumes. Overall, strong anchoring, stable pretilt, and negligibly weak image
sticking are possible with these techniques [26].

2. Modeling the LC Lens

Let us consider a nematic liquid crystal (LC) cell of thickness L and width D with
spatially modulated anchoring. Specifically, we assume strong planar anchoring at the top
substrate and an anchoring energy dependent on the distance from the center of the cell
at the bottom substrate [27]. A sketch of the cell is shown in Figure 1. In this figure, the
OZ axis passing through the cell center and perpendicular to the plane of the cell is shown
together with the lens width D and the lens aperture R.

When a proper external voltage V is applied to the cell along Z, the LC director n
reorients by an amount that depends on both the value of V and the value of the anchoring
energy W(x). As the anchoring spatially is modulated, this reorientation is also modulated,
thus giving rise to a lens-like refractive index profile. The focal length of the resulting lens
depends on the applied voltage and is thus electrically tunable.
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Table 1. Values of the parameters used in the calculation. 
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2 𝑅 6 × 103μm Aperture of the lens 

3 𝑊1 10−6  
𝐽

𝑚2
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4 K11 6 ∙ 10−12 N Splay elastic constant  

5 K33 25 ∙ 10−12 N Bend elastic constant 
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7 𝜔 103 Hz AC electric field frequency 

Figure 1. Scheme of the LC cell giving rise to the proposed LC lens. The four vertical arrows represent
a test light beam impinging on the cell.

We assumed an anchoring energy profile W(x) at the bottom substrate of the cell using
the following formula:

W(x) =


W1, 0 ≤ x ≤ (D− R)/2

2W1 −
W1(x− D

2 )
2

( R
2 )

2 , (D− R)/2 ≤ x ≤ (D + R)/2

W1, (D + R)/2 ≤ x ≤ D

(1)

where D is the lens width, R is the lens aperture, and W1 is the constant minimum anchoring
energy (see Table 1). W(x) is shown in Figure 2. The value of W1 has been chosen based on
previous investigations [22,23,28].
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Figure 2. Spatial profile of anchoring energy W(x) at the bottom substrate.
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Table 1. Values of the parameters used in the calculation.

1 D 12× 103 µm Lens Width

2 R 6× 103 µm Aperture of the lens

3 W1 10−6 J
m2 Minimum anchoring energy

4 K11 6× 10−12N Splay elastic constant

5 K33 25× 10−12N Bend elastic constant

6 L 50 µm LC cell thickness

7 ω 103 Hz AC electric field frequency

8 σ 10−8 S
m LC electric conductivity

9 ε⊥ 5.1 LC dielectric constant in the direction
perpendicular to n

10 ε0 8.8542× 10−12 F
m Vacuum dielectric constant

11 ε|| 23.9 LC dielectric constant in the direction
parallel to n

12 n0 1.529 Refractive index of ordinary way

13 ne 1.946 Refractive index of extraordinary way

14 θ2
π

180 rad Direction of easy axis at the top substrate
(pretilt angle)

15 V (0.7− 1)V Applied voltage to the cell

16 θ1
π

180 rad Direction of easy axis at the bottom
substrate (pretilt angle)

We modeled a cylindrical lens, which simplifies the problem to the 2D case with
respect to the 3D approach required for conventional spherical lenses.

3. Director Reorientation under Action of Externally Applied Voltage in the Cell with
Modulated Anchoring Energy

To investigate the electro-optical properties of the proposed LC lens, one needs to
determine the director reorientation angle θ(x, z). It is noteworthy that we assumed the
voltage induced LC reorientation to be confined in the XY plane; therefore, this is the only
angle that needs to be calculated.

The director field has the form n = (cos θ(x, z), 0, sin θ(x, z)), and the total free energy
density F is calculated as follows:

F = Felasic +Felectric +Fsur f ace, (2)

where

Felastic =
∫

V

(
K11

2
div(n)2 +

K22

2
(n · curl(n))2 +

K33

2
[n× curl(n)]2

)
dV, (3)

is the elastic free energy density,

Felectric = −
1
2

∫
V
(D · E)dV, (4)

represents the dielectric coupling with the external electric field, and the surface of the total
free energy density is calculated as follows [29]:

Fsur f ace = −
1
2∑

Si

∫
Si

Wi(d · n)2dSi, (5)
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Kii is the LC elastic constant, D is the electric displacement vector, E is the externally applied
electric field, d is the easy axis direction, and Wi (i = 1,2) is the anchoring energy of the LC
cell bounding substrates.

Substituting Equations (3)–(5) into Equation (2) and minimizing F, one obtains the
following Euler–Lagrange equation for θ(x, z):

θxx

(
K11sin2θ + K33cos2θ

)
+ θzz

(
K11cos2θ + K33sin2θ

)
+(K33 − K11)

[(
θ2

z − θ2
x
)
sin θcos θ + θxzsin 2θ + θxθzcos 2θ

]
+ε0εα

(
sin θcos θ

(
E2

z − E2
x
)
+ EzExcos 2θ

)
= 0

(6)

where εa = ε || − ε⊥ is the LC dielectric anisotropy, i.e., the difference between the dielectric
constants in the directions parallel and perpendicular to n.

Considering finite director anchoring at the bottom substrate and strong anchoring at
the top substrate, the boundary conditions take the following form:{[(

K33sin2θ + K11cos2θ
)

θz

]∣∣∣
z=0
−W(x)sin(θ(0)− θ1)cos θ(0)− θ1 = 0,

θ(z = L) = θ2
(7)

Equations (6) and (7) should be accompanied by the Poisson equation for the electric
field potential U, defined by the relation E = −
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(∼
ε ε0
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(11)U(x, z)
)
= 0, (8)

where
∼
ε ε0 = ε̂ε0 + i σ

ω , with
∼
ε as the permittivity tensor, ω as the AC electric field frequency,

σ as the LC electric conductivity, and ε̂ as the LC dielectric tensor. In our case, the latter has
the following form:

ε̂ =

ε⊥ + εacos2 θ 0 εasin θcos θ
0 ε⊥ 0

εasin θcos θ 0 ε⊥ + εasin2 θ

 (9)

The electric field potential U(x, z) obeys the following boundary conditions:{
U| z=0 = 0
U| z=L = V

(10)

where V is the voltage applied to the cell at z = L. In this way, one obtains the following
system of equations for the director field θ(x, z) and for the electric field potential U(x, z)
with the following boundary conditions:

θxx

(
K11sin2θ + K33cos2θ

)
+ θzz

(
K11cos2θ + K33sin2θ

)
+(K33 − K11)

[(
θ2

z − θ2
x
)
sin θcos θ + θxzsin 2θ + θxθzcos 2θ

]
+ε0εα

(
sin θcos θ

(
E2

z − E2
x
)
+ EzExcos 2θ

)
= 0
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(∼
ε ε0
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(11)U(x, z)
)
= 0[(

K33sin2θ + K11cos2θ
)

θz

]∣∣∣
z=0
−W(x)sin(θ(0)− θ1)cos(θ(0)− θ1) = 0

θ(z = L) = θ2
U| z=0 = 0
U| z=L = V

(11)

The system of Equation (11) has no analytical solution. To solve this, it is necessary
to perform computer calculations. The parameters we used in the calculations are shown
in Table 1. The values selected for the splay, K11, and bend, K33, elastic constants are of
the order of the most common thermotropic LCs [27,30]. An example of a nematic LC
exhibiting similar elasticity, dielectric constants, and birefringence as those reported in
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Table 1 is provided by the two mixtures 1825 and 1852 described in [31,32], both exhibiting
a nematic phase at room temperature.

By solving Equation (11) with numerical calculations, we obtained the reorientation
angle of the director θ(x, z) and the electric potential U(x, z) at different values of the
external voltage.

The electric field potentials calculated for V = 1 V and V = 0.8 V in the middle of the
cell z = L/2 as a function of x are reported in Figure 3a,b, respectively. Figure 4 shows the
LC director profile for different values of V and at different positions in the cell. Specifically,
Figure 4a,b,e,f show θ(x, z) at z = L/2 as a function of x for different voltages; in Figure 4c,d,
θ(x, z) is instead shown as a function of z at x = D/2 for V = 0.8 V (c) and V = 1 V (d). As
expected, the director followed the profile of the electric field potential.
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4. Light Propagation through LC Cell Subjected to Externally Applied Voltage

In the previous section, we calculated the spatial profile of the LC director subjected to
an externally applied voltage. The refractive index for an extraordinary beam propagating
in the LC cell is given by the following relation:

ne f f (ψ) =
n0ne√

n2
e · cos2 (ψ) + n2

0 · sin2(ψ)
(12)

where ψ is the angle between the LC director (which defines the optical axis) and the light
wave vector. In our case, ψ = π

2 − θ.
We treated the LC cell with a lens-like director distribution as a thin phase plate.

The phase retardation φ experienced by a test light beam propagating through the cell is
defined as

φ =
2π

λ

L∫
0

ne f f (θ)dz (13)

and depends on the distance x from the center of the cell. This is shown in Figure 5
for different values of the applied voltage V. This dependence determines the focusing
properties of the LC lens.
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Figure 5. Dependence of the phase retardation φ(x) on the distance x for different values of the
applied voltage V.

To evaluate the focal length of the LC lens, we fitted the curves φ = φ(x) in Figure 5 to
a parabola according to the paraxial approximation [33,34] using the following equation:

φ(x) = a− kx2

2 f
, (14)

where a = φ(0) is the phase shift at the center of the LC cell, f is the focal length of the LC
lens, and k is the modulus of the test beam wave vector.

The inverse of the obtained focal length is shown in Figure 6 as a function of the
applied voltage V for a lens aperture of R = 1 mm. The electrical tunability of the lens focus
is well represented by this curve.
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5. Aberration of LC Lens with Modulated Anchoring Energy

Optical lenses and LC lenses do not make exceptions and are not ideal optical systems.
Indeed, there is always some degree of aberration introduced by the lens, which causes
the image to be an imperfect replica of the object. Thus, aberration plays an important role
in the formation of images; among them, spherical aberration is the most common when
dealing with monochromatic light.

Figure 7 shows the definition of spherical aberration. A spherically aberrated lens does
not have a well-defined focus. The distance along the optical axis between the intercept of
the rays that are near the optical axis (paraxial rays, point F) and the rays that pass through
the edge of the lens (marginal rays, point F1) is called the longitudinal spherical aberration
(LSA, F− F1) [34].
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Figure 7. Illustration of the spherical aberration.

Theoretically, to obtain the LSA in an LC lens, it is necessary to determine the beam
trajectory in an inhomogeneous liquid crystal cell [35–37]. In this study, we propose a
simpler and quicker approach.

In the previous section, to determine the focal length of the LC lens, we used the
paraxial approximation, which holds for a beam that is as close as possible to the optical
axis of the lens [33], as well as for an ideal spherical wavefront. However, as the aperture
of the lens R increases, this approximation becomes increasingly less fulfilled.

In Figure 8, one can see the phase retardation (Equation (13)) compared to the one
modeled using the paraxial approximation (Equation (14)) for different lens apertures
R = 1 mm (a) and R = 3 mm (b), for an applied voltage V = 0.7 V. As R increases from
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1 to 3 mm, the quality of the approximation worsens, indicating an imperfect lens and that
aberrations must be estimated.
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Figure 8. Comparison between the phase retardation given by Equation (13) and that modeled by
Equation (14) for different values of the lens aperture: R = 1 mm (a) and R = 3 mm (b).

To estimate the LSA, we determined the location of the beam from the edge of the
lens aperture. To this end, we used the paraxial approximation (14) to describe the beam
wavefront near the lens aperture point. Mathematically, this means that we approximated a
part of the wavefront near the lens aperture and found the approximation coefficients. Next,
we found a point on the axis of this parabola, where the rays from the edge of the aperture
converge. Using mathematical formulas, we projected it onto the axis of the lens. Thus, we
obtained the point from where the rays came from the edge of the lens (lens aperture).

Figure 9 shows the relative longitudinal spherical aberration, defined as the ratio
between the LSA and the focal length, versus the lens aperture R, for V = 0.8 V (black line)
and V = 1 V (red line).
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and V = 1 V (black line).

The relative longitudinal spherical aberration as a function of the applied voltage at
fixed values of R (R = 1.5 mm and R = 2 mm) is shown in Figure 10a,b.
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and R = 2 mm (b).

The relative LSA increased with R, as expected, and slightly decreased with increasing
V, which we understand as a voltage-induced change in the phase profile. The increasing
voltage makes the phase profile “more parabolic”.

6. Conclusions

We proposed a theoretical model that describes the properties of a cylindrical LC
lens with a parabolic phase profile induced by spatially modulated anchoring energy. We
calculated the director profile, the electric field potential in the LC cell, and the phase delay
experienced by a light beam propagating through the cell. Moreover, we estimated the focal
length and the longitudinal spherical aberration of the LC lens. The dependence of the focal
length on the applied voltage demonstrates the electrical tunability of the modeled lens.

The observed dependence of the lens aberration on the external voltage and the lens
aperture allows for optimizing the lens features to obtain the best image quality. As an
example, by combining f and LSA, it is possible to look for the conditions that provide
the highest optical power with the lowest aberrations. The obtained results can easily
be applied to experimentally developed LC lenses. Indeed, in principle, photoalignment
allows obtaining different profiles of the anchoring energy so that the phase retardation can



Crystals 2023, 13, 1104 13 of 14

become closer to the parabolic profile in a wide range of externally applied voltages, thus
reducing the aberrations. We expect that AI or machine learning can also help determine
the optimal profile of the anchoring energy.

Proper experiments will be conducted soon to validate the above predictions.
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