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1 Introduction

Whether or not school spending has an impact on student outcomes is a highly de-
bated issue in economics (Card & Krueger, 1996). The contemporary literature has
been pioneered by Coleman (1966) in a prominent report published by the US Gov-
ernment in 1966, whose main conclusion is that school funding does not play a central
role in determining students’ achievement. A wealth of studies follow in the foot-
steps of Coleman (1966) and explore the relation between resources and educational
outcomes (see e.g., Neilson & Zimmerman, 2014; Jackson et al. , 2016). Whereas
in a meta-analysis Greenwald et al. (1996, p.384) conclude that “school resources
are systematically related to student achievement and that these relations are large
enough to be educationally important,” subsequent studies find little or no effect (see
e.g., Hanushek, 1996; Card & Krueger, 1996). More recently, however, Hyman (2017)
shows that school funding can boost students’ college enrollment and the likelihood to
earn a postsecondary degree. And in a recent study, which is closely related to ours,
Lafortune et al. (2018) use an event study framework and convincingly demonstrate
that school finance reforms, by increasing spending in low-income school districts,
caused an important increase in students’ achievements.1

Most of these studies face severe difficulties in attempting to unravel a causal rela-
tionship between school spending and educational outcomes. Counterfactual outcomes
are sensitive to the choice of the estimator and the identification strategy to address
the endogeneity of school resources. Although previous studies have made a good deal
of progress in dealing with the joint determination of educational inputs and outputs,
modest estimated effects of school spending could be a consequence of unresolved
endogeneity biases (see Jackson et al. , 2016).

Against this background, we explore whether spending on physical infrastructure
affects student outcomes by focusing on test scores in Mathematics and Italian lan-
guage using data on Italian state high schools and contribute to this debate in two
ways. To handle endogeneity concerns, the majority of previous studies exploit bond
elections, and compare school districts where bond referenda narrowly pass to those
that narrowly fail (e.g., Cellini et al. , 2010; Martorell et al. , 2016). Yet, they suffer
from relative scarcity of observations around the cutoff and it is unclear how their
estimates generalize to an average school district distant from the cutoff, particularly
when districts that approve bonds are wealthier (Goncalves, 2015). We employ a
quasi-experimental design and make use of information on exogenous extra funds that
a specific group of schools received in the aftermath of the 2012 Northern Italy earth-
quake that generates geographical differences in the damage and in the allocation of
fundings. In fact, in May 2012, the seismic events in Northern Italy caused consider-
able damages to state buildings and prompted specific interventions for the mitigation
of the seismic risk, even in locations not affected by the earthquake but close enough
to its epicenter, i.e., where the earthquake originated. As a result, a large number of
undamaged schools received large extra funds to modernize and improve the quality
of their buildings as well as to mitigate their vulnerability to future — and potentially

1Interestingly, they also find no evidence of an effect of reforms on achievement gaps between high-
and low-income students and between white students and those belonging to minority groups.
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more intense — earthquakes. We compare the relative change of students’ test score
in the post-earthquake period (relative to the pre-earthquake period) between undam-
aged schools in the earthquake-affected area, that were awarded special funding, (i.e.,
the treatment group) and a control group of schools in neighboring municipalities that
did not receive any extra-funds. The schools in the control group are in areas suffi-
ciently far from the earthquake epicenter and are therefore both undamaged as well
as unfunded.

The issue of school capital funding features prominently in the public debate
and in many countries the lack of investment remains a pressing priority for state
schools, where many governors believe that schools are not “fit for purpose” (Guardian,
27/01/2015).2 Italy is a particularly interesting case, as school principals have long
lamented that poorly maintained school facilities and a lack of funding to conduct
essential repairs prevent schools from delivering their curriculum (Corriere della Sera,
18/07/2017). This squares with the theoretical arguments put forward by educational
researchers, social psychologists and sociologists on the importance of the physical
environment of schools and the condition of their facilities in explaining variation in
students’ learning across schools (Earthman, 2002; Mendell & Heath, 2004; Bakó-Biró
et al. , 2012; Haverinen-Shaughnessy et al. , 2015). Yet, previous studies often ex-
plore very heterogeneous inputs of the educational production process that are also
driven by different regional and institutional characteristics. Jones & Zimmer (2001)
note that most of the literature focuses on school-specific local inputs, local school
organization inputs (e.g., class size), local environmental characteristics and socioeco-
nomic (family) characteristics but neglects capital inputs such as school infrastructure.
Moreover, and perhaps more crucially, whereas there are only a handful of studies on
the school infrastructure-students’ learning relationship, they focus preponderantly on
the US School System (Aaronson & Mazumder, 2011; Neilson & Zimmerman, 2014;
Cellini et al. , 2010; Goncalves, 2015; Martorell et al. , 2016; Conlin & Thompson,
2017).3

In terms of the specific mechanism mapping school infrastructure onto students’
learning, this literature has stressed the role of social norms, conformity and social
signaling in the school environment (Branham, 2004). On the one hand, a safe and

2For example, in 2017, the Australian government aimed at bringing forward $200 million in
capital investment to fast track state school infrastructure throughout Queensland (https://goo.
gl/GGe1Pf). In 2015-16, the UK Department for Education spent GBP 4.5 billion in capital funding
and the National Audit Office has predicted that it will take a further GBP 6.7 billion investment
to bring all schools up to scratch (https://goo.gl/SQzHDE). In Germany, Martin Schulz, leader of
the Social Democrats, vowed to pour billions into crumbling schools infrastructure in campaigning
for 2017 September’s election (see FT, 17/07/2017).

3Aaronson & Mazumder (2011) investigate the impact of the “Rosenwald initiative” in the US be-
tween 1914 and 1931 and find that substantial improvements to school quality and access in relatively
deprived environments are followed by large productivity gains. Neilson & Zimmerman (2014) find
that school construction programs led to sustained gains in reading scores for elementary and middle
school students. Conlin & Thompson (2017) investigates the effect of a capital subsidy program for
Ohio school districts and find that test scores improve once construction on the new and renovated
buildings is completed. Yet, Cellini et al. (2010) and Martorell et al. (2016) find little evidence
that school facility investments improves student achievement. Similarly, Goncalves (2015) explores
the effect of a large-scale construction program in Ohio and finds no evidence of positive returns to
students.
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clean school environment provides important signals to students that the school is well
managed, that teachers enforce discipline in the classroom and that antisocial behav-
iors are not tolerated. On the other hand, unhealthy and unsafe buildings, with e.g.,
broken windows, graffiti, nonfunctioning toilets, poor lighting, inoperative heating and
cooling systems, leaking roofs, signal a lack of attention and respect for the students,
who either put less efforts or distract colleagues and disrupt the learning environment,
as they perceive lower costs and risks of detection. Furthermore, older buildings have
usually worse air quality, poor lighting and are less likely to handle state-of-art edu-
cation technologies (see e.g., Lemasters, 1997; Goncalves, 2015; Conlin & Thompson,
2017). This so-called “broken windows theory” (Wilson & Kelling, 1982) is based on
the premise that the school environment “communicates” to students and that “good
signals” correlate with a more efficient learning process. Students in well-maintained
schools are therefore more likely to focus on academic challenges than those who are
distracted or depressed by poorly maintained facilities. By the same token, physical
conditions also affect teachers’ feelings of effectiveness and sense of personal safety in
the classrooms. Lawrence (2003) reviews a number of studies showing how the con-
dition of the school facility affects the health and morale of staff. This interpretation
identifies a potential pathway to explain the direction of educational outcome’s change
in response to infrastructure spending.

We find that being a recipient of funding increases students’ achievement. As the
amount of funds received by each school might be driven by potential unobservable
characteristics, we implement an instrumental variables (IV) strategy. In particular,
we use seismic hazard maps and exploit exogenous values of peak ground acceleration
(henceforth PGA), which explain substantial variation in the amount of funds received.
Our 2SLS estimates are positively signed and statistically significant and predict that
transferring an extra 100 euro per student to a school increases, on average, test
score by about 4.6% in the Mathematics test and 1.2% in the Italian test. This
corresponds to about 10% and 2% increase relative to the sample mean in Mathematics
and Italian, respectively. As such, these effects are not only statistically significant
but also meaningful and support a number of psychological studies that document
how a renewed, well-maintained school may explain a more efficient learning process
in mathematics, relative to reading.4

Furthermore, and perhaps more importantly, we find that this effect is more pro-
nounced among the students more in need of academic support. Specifically, our
results suggest that allocating 100 euro more per student increases, on average, the
test score of the students belonging to the 5th percentile of the school distribution
(i.e., the low-achieving students) by 12.6% in Mathematics and by 2.3% in the Italian
test. The effect is substantially smaller for the high-achieving students, those in the
95th percentile of the school test score distribution: their test scores in Mathematics
and Italian language increase only by 1.5% and 1%, respectively, when an additional
100 euros are spent in their schools.

4Using data on Italian high school students, Primi et al. (2014) document how students’ anxiety
in mathematics is substantially higher than in reading. Other studies have pointed to the role of
a more orderly learning environment in explaining more efficient learning processes in mathematics,
relative to reading (Jehng et al. , 1993).
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We provide a number of extensions to demonstrate the robustness of our main
conclusions to changes in model assumptions. In particular, we check the robustness
of our empirical results in six directions. First, we show that our estimates are not
driven by the migration, reassignment and change in composition of students. Sec-
ond, we explore variations across municipalities and show that e.g., our results are not
sensitive to the exclusion of schools in particular locations, such as large municipal-
ities or small villages or that other characteristics at the municipality-level, such as
population density, height, and number of schools, do not drive our results. Third,
we document that our findings are not driven by specific schools that received an un-
usual high amount of funds per students, we show that funding are not picking up
non-linearities in school quality and we show that results are robust to the exclusion
of relevant covariates. Fourth, show that our results are robust to alternative defini-
tions of our control group. Fifth, we demonstrate that cheating is not a confounding
mechanism and, finally, we take into account the renovation of private buildings, and
show that this does not change our results. Taken together, our evidence suggests that
improving the quality of school buildings has a positive effect on students’ achieve-
ments. Moreover, students more in need of support are those that benefit the most
from improved physical infrastructure.

2 Data

2.1 The 2012 Northern Italy earthquake and school funding

Deciphering the impact of school resources on achievements is complicated by the fact
that students’ performance and the selection of funded schools, or the spending levels,
are potentially simultaneously determined. We address this issue by using data on
school funding provided after a natural disaster. On May 20, 2012 an earthquake of
magnitude 6.1, followed by a second one on May 29, hit a territory of 3.5 thousands
squared kilometers in the Northern part of Emilia-Romagna, an Italian region near
the borders with Veneto and Lombardia. Before the 2012 seismic events, this area was
generally not considered at risk of seismic activities.5

In the aftermath of the earthquake, the Italian government made available more
than 24.4 millions of euros to several state buildings in the affected municipalities,
including 276 high schools, with the aim of reconstructing damaged buildings, renewing
and maintaining all school buildings as well as keeping undamaged buildings safe from
future seismic threats. In fact, this extra funding was given to both damaged schools
as well as to schools considered at risk for earthquakes in the future. We use several
legislative acts to assemble data on the amount of extra funding to state schools in the
region.6 As the earthquake could have had a direct effect on the learning environment

5With the exception of the seismic sequence of Ferrara in 1570, Argenta in 1624 and Bologna
in 1929 (Vannoli et al. , 2015), few other small intensity earthquakes had had an impact on its
inhabitants’ collective memory. As a result, the perception of a seismic risk was comparably very
small relative to the rest of Italy. In fact, PGA values in this area are, on average, only 20% of those
characterizing the nearby Apennine mountain chain. See http://zonesismiche.mi.ingv.it/

6Starting from June 2012, the deputy commissioner enacted a series of legislative acts with specific
guidelines for securing school buildings as well as the criteria for assigning available funds. See
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and on students’ performances, we use information on the volume of damaged buildings
in each municipality, estimated by the INGV (National Institute of Geophysics and
Volcanology) in the aftermath of the seism using a macroseismic survey. For our
empirical analysis, we only select municipalities where the level of damage of their
buildings was assessed by the INGV as “negligible” (D1) or lower.7

In more details, we collect data for a total of 236 municipalities, as shown on the
map in Figure 1. Out of 236, 69 are discarded as they had a level of damage greater
than D1 (see grey shaded areas in Figure 1). Out of the 167 remaining municipalities,
only 43 have at least one high school, for a total of 173 schools (white dots in Figure
1). The treated schools are those located in treated municipalities (shaded areas in
Figure 1) and make up a good portion of the total number of schools, 39% (68).
Although these schools reported no damage, they received about 3.6 millions of euros
to improve the quality of their buildings. Our control group is made up of 105 schools
that received no extra-funding and were not affected by the earthquake, but they are
located in neighboring municipalities, proximate to the treated areas. We consider the
second-order contiguity definition for neighbors: two municipalities are neighbors if
they directly share a border or if they have a common neighbor with which they share
a border (see dashed areas in Figure 1).8

The map also contains information on the peak ground acceleration (PGA) values,
gathered from the INGV database. The color bar shows the gradient of PGA for each
municipality, from low to high. PGA is the maximum ground acceleration during
earthquakes and it is commonly used as an index for seismic hazard intensity, i.e., the
higher the PGA the larger will be the intensity of a possible earthquake in a specific
geographic area. Therefore, areas with higher PGA have a higher probability to suffer
a damage on physical infrastructures and buildings whenever an earthquake occurs.
In our sample, the PGA varies between 0.09 and 0.21, with an average intensity of
0.16. As we explain in Section B, in Appendix, where we provide information on the
reconstruction, the damage assessment and the eligibility to funding, the amount of
extra funding per student in the treated areas was driven by the necessity to safe-
guard school buildings from future seismic threats and minimize potential damages to
school infrastructure, on the basis of the reported damage assessment;9 hence, this is
a function, among other things, of PGA levels.

—— Figure 1 here ——

Summary statistics, reported in Table 1, show that these schools received on av-
erage an extra 389 euros per student, about 200% of the annual amount in capita
expenditure in Italy in 2013 (OECD, 2016). According to the OECD report, the aver-
age total spending per student in Italy in 2013 was 9,174 euros; but only 2% (i.e., 184

https://goo.gl/Lqm8Uk.
7In Section C of the Appendix we provide a through description of the macro-seismic survey and

the classification of the damages.
8In Section 6 we propose several other definitions of the control group and check whether our

results are sensitive to it.
9See the first decrees enacted by the deputy commissioner, i.e., ODC #2 (16 June 2012) and the

ODC #4 (3 July 2012). For a more extensive explanation, see Appendix B.3
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euros) was devoted to school capital. As such, capital spending tripled in the treated
schools.10

—— Table 1 here ——

2.2 Test scores and control variables

Information on test scores is taken from the Italian National Institute for the Eval-
uation of the Educational System (INVALSI). Since the academic year 2010/2011,
tenth graders in Italian high schools take standardized assessments on the same day
(May 9). In these tests, questions capture the same dimensions over time and across
schools, making possible to compare the relative performance of schools across aca-
demic years. The participation of all state schools is compulsory and the assessment
encompasses only Mathematics and Italian language skills in the tenth grade.11 Our
dependent variable is the percentage of correct answers for each high school. From
the same database, we also take information on cohort size (i.e., the number of 10th
grade students in each school) and on the shares of male and native students in each
school. We refer the interest reader to the Invalsi online user’s guide for a thorough
description of the test and a more comprehensive overview than we can possibly give
here.12

Table A2 provides balance tables to check for systematic differences across treated
and control schools. In particular, Panel D shows that there are virtually no differences
in average observable characteristics (percentage of males, natives and cohort size)
and we have a very good covariate balance, indicated by the p-values across t tests
on the difference of means. Furthermore, Table A6 shows that treatment did not have
any significant effect on these school-specific characteristics. We return to this issue
in the following sections to show that the earthquake did not displaced students in
areas hit by the event in significant ways. For each school, we also compute average

10This amount is very small if one compares it with the funding transferred to schools in other
European countries of the same size: capital expenditure in Germany, for example, was about 1,300
euros, and about 1,200 euros in France in the same year.

11Only the tenth grade is assessed in the secondary school. Our sample is an unbalanced panel of
692 observations (i.e., school × year) for the Mathematics test and 696 for the Italian language test.
In Table A1 we illustrate the distribution of schools per year in our sample. The distribution shows a
general slow increase in their number over time, although no discontinuity at any date. Regarding the
differences in the number of schools between the Italian language tests sample and the Mathematics
test sample, INVALSI (2016) says that no results are provided when less than 50% of eligible students
take the test. In principle, students could, in fact, after having completed the Italian language test,
decide not to take the Mathematics test and leave the room for serious reasons.

12Available at https://invalsi-dati.cineca.it/2017/docs/Tutorial_Invalsi/guida_

invalsi.html. See also Battistin & Meroni (2016) and Angrist et al. (2017) for additional
discussions. Battistin & Meroni (2016) in particular offer a novel study on instruction time and
students’ performance in Italy, using the same data. Finally, Brunello & Checchi (2005) offer a
comprehensive study of school quality and educational attainment in Italy using historical data.
Note that, to the best of our knowledge, there are no other available school-level characteristics that
can be included. Yet, on the one hand, note that we use school and time fixed effects, which absorbs
school-specific or slow-moving characteristics; on the other hand, in Section 6 we include a battery of
robustness checks where we exploit important differences across municipalities to increase confidence
in our results
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test scores for low-achieving and high-achieving students, the fraction of students
in the 5th/10th percentile of the score distribution and in the 90th/95th percentile,
respectively. We assemble school-level annual data over six academic years, from
2010/2011 to 2015/2016.

3 Empirical strategy

3.1 Extensive margin

To get a handle on the direction of causation in the infrastructure spending – stu-
dents’ achievement relationship, we begin by exploiting the quasi-experimental setting
induced by the 2012 Northern Italy earthquake. To this aim we use two sources of
variation: i) the timing of the earthquake and the subsequent intervention (see Figure
2); and ii) the allocation of additional funding across space (see map in Figure 1).

—— Figure 2 here ——

Taken together, they allow us to measure the impact of receiving additional re-
sources on test scores by comparing the difference in test scores in years following the
allocation of funding to years when there was no funding available, in municipalities
that are recipient of funding relative to municipalities that are not eligible to receive
extra-funds. We start with a simple empirical research design, a difference-in-difference
estimation strategy, which takes the following form:

log yit = α1(Di × Pt−1) +X ′itα2 + µi + ηp × Pt + θTrend+ εit, (1)

where the outcome variable yit denotes the average test score in either Mathematics or
Italian language in school i in year t;13 Di is a dummy that takes value one if the school
has received extra-funds; Pt is a dummy that takes value one if the observation is in
the post-treatment period (i.e., post 2012); we lag the treatment by one year to allow
time for the funding to be invested. Xit is a vector of school covariates which includes
the cohort size, the share of males as well as the share of native students in each school;
µi is the school fixed effect, which absorbs school-specific constant (or slow-moving)
features; as provinces could have implemented local interventions after the earthquake,
we interact province fixed effect ηp with Pt to control for province-specific policies after
2012;14 θ is the coefficient of a school-specific time trend variable and εit is an error
or disturbance term. Di × Pt−1 is the interaction between the treatment schools Di

and Pt−1, the dummy variable equal to one in the post-treatment period; therefore,
α1 is our parameter of interest, the difference-in-difference estimates of the impact of
receiving funding on students’ achievement. For small values of the coefficient, 100×α1

can be interpreted as the percentage increase in the test score when schools receive
extra funding.

13We use a logarithmic transformation to scale down the variance and lower the impact of potential
outliers as well as to facilitate the interpretation of our estimates.

14A province is an administrative division between a municipality and a region, and constitute the
third NUTS administrative level. Provinces have, among other functions, the local planning and the
coordination of schools activities. In our sample, we have a total of 10 provinces.
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3.2 Intensive margin

Our main analysis — the one we mostly rely on to draw conclusions — exploits vari-
ation in the amount of funds allocated to estimate the elasticity of test scores with
respect to spending per capita. Yet, as noted above, idiosyncratic changes in school
spending are likely endogenous as the amount of funding allocated to each school can
be correlated with unobservable school-level characteristics. To quantify this relation,
we estimate 2SLS models where we instrument for school spending with the values of
peak ground acceleration (PGA), the maximum ground acceleration during the earth-
quakes. Recall that funding was allocated to schools to reduce the vulnerability of
their buildings to earthquakes and more funding per capita was granted to schools in
municipalities with higher earthquake risks. The proposed instrument is thus expected
to be strongly correlated with school funding.

We capture this process by modeling, in the first stage, funding per capita as a
function of PGA values, as follows:

FUNDit−1 = π1(PGAi × Pt−1) +X ′itπ2 + µi + ηp ∗ Pt + θTrend+ εit, (2)

where FUNDit is the amount of funding per student received by school i after 2012.

In the second stage of the IV estimation we use F̂UNDit, the exogenous variation
in extra-funds per student, predicted by Equation (2), to explain changes in students’
test scores after funding was allocated to their schools:

log yit = β1F̂UNDit−1 +X ′itβ2 + µi + ηp ∗ Pt + θTrend+ εit, (3)

where the outcome variable yit, the vector of controls at the school level, the trend
variables and the fixed effects are the same as in Equation (1). Given the log-linearity
of the model, the interpretation of β1 is that of a proportional change in the test score
given a unit change in funding, holding all else constant.

Our exclusion restriction holds if variation in the PGA affects students’ test score
only through the funding enacted after the 2012 earthquake. It could be, however,
that differences in PGA levels underline economic differences across municipalities
(such as local income, environment, or level of urbanization) that, in turn, may affect
students’ outcomes. We argue that this is unlikely. Our analysis holds these effects
fixed by solely exploiting within-school variation across years. Indeed, we compare
same schools, before and after the earthquake, and test whether variation in funds
received (explained by differences in PGA) moves students’ test score, keeping fixed
any municipal characteristics. Nonetheless, it could be that these underlined differ-
ences (correlates of PGA) may in turn explain variation in the time-variant school
characteristics. To rule out these potential concerns we proceed in two ways. First,
we show that schools in areas below and above PGA median values have very similar
observable features. In Table 2, we regress each control (% males, % native students,
and the cohort size) on a dummy variable equals to 1 if located in an area with a
PGA level above the median. We find no statistical difference regardless of the char-
acteristics employed in the left hand side. Second, in Table 3 we show that in the
post-earthquake period (relative to the pre-period) schools located in an area with a
higher PGA level do not record statistically significant changes in the percentage of

9



males (column a), percentage of native students (column b), and in the cohort size
(column c).

—— Table 2 and 3 here ——

4 Results

In Table 4 we present the relation between funding and student scores in Mathematics,
whereas in Table 5 we focus on Italian language. We start with column (a), where
we present our difference-in-difference estimates (i.e., the extensive margin). Here,
we uncover a positive effect of receiving extra funding on test scores in Mathematics,
which will increase by 10% if a school is a recipient of funding. However, the relation
is not significantly different from zero for Italian language.15 Yet, recall that the
assumption needed for our identification strategy to work is that, in the absence of
the extra-funding, scores in all classes would have presented parallel trends. To assess
whether this assumption holds and thus to evaluate the validity of the design, in
Figure 3 we check whether the coefficients of interest in Equation 1 are statistically
different from zero in the pre-treatment period, relative to the baseline category year
2011.16 Two clear patterns emerge. First, the plot suggests that the parallel trend
assumption holds when we look at the Mathematics test scores, as the coefficients in
the pre-treatment period are never statistically different from zero. The treatment i.e.,
being a recipient of extra-funding, induces an immediate deviation from the common
trend for Mathematics in the academic year 2013/14. This is encouraging as a sudden
increase in test scores after the treatment makes us more confident that this change is
indeed the effect of extra-funding rather the result of unobservables. The effect is quite
short-lived and, though positive, its magnitude decreases after one year. Second, when
we focus on Italian language, the treatment seems to have an effect before it actually
occurs, thus the key identifying assumption that test scores in Italian language would
be the same in both groups in the absence of treatment is violated. As such, results
in column (a) of Table 3 should be treated with caution.17

—— Figure 3 here ——

Turning to the elasticity of student outcomes with respect to the amount of re-
sources devoted to school infrastructure (i.e., the intensive margin), we move to our

15Note that all models include the share of males, of native students and the total number of
students in the tenth grade in each school as well as school fixed effects, time trends and interactions
between province fixed effects and post-treatment period dummy. Using linear trends, quadratic
trends, cubic polynomial in time (i.e., t, t2, and t3) or year dummies produce similar results.

16Formally, Figure 3 plots the estimated coefficients α1t of the following flexible estimation of
Equation 1:

log yit =

2016∑
t=2012

α1t(Di × µt) +X ′itα2 + µi + ηp × Pt + θTrend+ εit,

where µt is a dummy equals to 1 for the year t.
17Recall however that we also rely on an instrumental variable strategy, where we use an exogenous

source of variation in funding, which is immune from this issue.
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main research design, the IV strategy. In Tables 4 and 5, column (b), we show a
naive OLS estimation, which reveals a positive correlation between funding per pupil
and test scores. If for purely illustrative purposes one interprets the OLS estimates as
causal, then, according to the estimates, a one-unit increase in school infrastructure
spending per student (that is, 100 euros) is associated with an estimated increase in
test scores in Mathematics of 0.3%, holding all else constant. The relation is insignif-
icant at conventional levels when we replace test scores in Mathematics with those in
Italian language (column (b), Table 5).

Yet, recall that in column (b) our main coefficients of interest are most certainly
contaminated by endogeneity from uncontrolled confounding variables. Therefore in
column (c) we turn to the estimated coefficient of school funding in the second stage
of our 2SLS. We use the PGA, an index of seismic hazard, as exogenous instrument.
As we can see, the coefficients are now substantially larger than those of the naive
regressions in column (b) and they are all statistically different from zero. Distributing
an extra 100 euros per pupil to schools will produce an estimated test score gain of
4.6% in Mathematics and 1.2% in Italian language.18

To better appreciate the magnitude of our 2SLS estimation, it is worth noting
that our β̂1 captures a local average treatment effect (LATE), which is not informative
about the effect of extra-funds on always-takers — that is, on schools that have received
funds even if they are located in low risk areas. This has important implications for our
2SLS estimates that, unlike the OLS ones, are likely to be upward biased. For example,
renovation works, after the earthquake, to secure school buildings in areas at relatively
high seismic risk (i.e., the compliers) were likely to provide a relatively stronger signal
to students — by e.g., lowering students’ anxiety — compared to interventions in
low-risk areas (i.e., the always-takers).

Finally, in columns (d) and (e) we show the first stage estimates and the reduced
form, respectively. As expected, we find that an increase in the PGA level has a sizable
impact on students’ scores. At the same time, the first stage reveals that the PGA
level leads to a higher amount of infrastructure funding received by the school, as
one would expect. We report the Kleibergen-Paap F-Statistic, which is similar to the
conventional F-statistic, but takes into account the clustering of the standard errors.
The values are all above conventional levels characterizing weak instruments.

—— Tables 4 and 5 here ——

There are two important concerns that can potentially undermine our identification
strategy. First, it could be that the first stage coefficient, π̂1 in Equation 2, is by a
large extent explained by the discontinuity between unfunded and funded schools and
not by a genuine variation in the amount of funds received. To mitigate this concern
we reestimate the difference-in-differences model in the Appendix, Section D, by solely
examining funded schools. Our results do not change substantially. Remarkably, the
first stage estimation, reported in column (c) of Table D1, is three folds larger than
what we estimate when employing the full sample (i.e., Table 4).19

18These results are not driven by the upper tail of funds and are robust to the exclusion of the
schools that received more than 2,000 or 5,000 euros per student. See Section 6.

19Also the Kleibergen-Paap F Statistics is above the relevant threshold.
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Second, the amount of funding allocated to the schools can potentially depend
on the efforts that mayors exerted when the allocation of funds was determined. We
discuss this potential issue in Section E of the Appendix. There, we document that
mayors are not statistically different along relevant observable characteristics, that is
gender, education, age, number of years in office, affiliation to apolitical coalitions or
left wing coalitions, and a dummy for re-election after the mandate. This mitigates
concerns about the possibility that specific “political machine” mechanisms are driv-
ing our results. At the same time, in Section E, we also complement our previous
IV analyses using exogenous variation in the PGA levels to instrument the effect of
receiving funding on educational outcomes (in lieu of the sheer amount of funding).
Our results are robust to this alternative specification.

5 Heterogenous effects

Our previous models show that more capital spending can lead to high class achieve-
ment, but our estimates might conceal a degree of heterogeneity in students’ responses
to available funding. We could expect that students at various points of the test score
spectrum do not display a uniform response to increasing levels of funding. Are low-
achieving students more or less likely to benefit from extra-funding?

In Table 6 we represent the relation between funding and student scores in Math-
ematics, whereas in Table 7 we focus on Italian language. In column (a) of each table
we replicate the models presented in Tables 4 and 5, which use the average score for
all students as a dependent variable. In columns (b) and (c) the dependent variables
are the test scores for students in the 5th and 10th percentile of the score distribution
(i.e., low-achieving students), and in columns (d) and (e) the test scores for students
in the 90th and 95th percentile (i.e. high-achieving students). For each table, Panel
A presents the difference-in-difference estimates, panel B the naive OLS, panel C the
IV estimations and Panel D the corresponding reduced-form.20

Table 6 explores various estimation techniques and specifications and consistently
find that the marginal return to investment in school infrastructure is always greater
the lower the score of the students. The estimated magnitudes of the relationship
between funding and students’ achievement in Mathematics are statistically significant
and economically meaningful. On the one hand, distributing an extra 100 euros per
pupil to schools will produce an estimated test score gain in Mathematics among low-
achieving students in the range of 11% to almost 13% (see Panel C, columns b and
c). On the other hand, a school that is recipient of extra funding will see an average
increase in Mathematics test scores of high-achieving students between 1.5% and 1.9%
(see Panel C, columns d and e).

When we turn to test scores in Italian language (see Table 7), we obtain similar
results although of smaller magnitude. These results also confirm that students with
high class percentile ranks (high-achievers within classes) benefit less from an increase
in funding than their lower-achieving classmates. Yet, this last round of results are

20Note that we do not report in Tables 6 and 7 the first stage estimations of the effect of the PGA
values on the extra-funds per students as they are the same as the ones reported in column (d) of
Tables 4 and 5.
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only statistically significant for the IV estimation (second stage and reduced from),
which is not surprising as they mirror results in Table 5 (which are also reported in
column (a) of Table 7).

—— Tables 6 and 7 here ——

To dig deeper into the relationship between school funding and students’ standard-
ized test scores, we divide the sample by quantiles of baseline (pre-earthquake) test
scores and run the specification in Equation (1). Figure 4 shows the relation between
the estimated coefficient α1 and the full set of quantiles of the distribution of the test
scores. Note that while Figure 4a presents the test score in Mathematics, Figure 4b
shows the test score in the Italian language test. As the two figures clearly reveal,
gains are larger among students initially in the lowest quartiles of the test score dis-
tribution. Whereas in Italian language the pattern is less clear-cut, in Mathematics
the estimated effect decreases monotonically as we move from the 10th to the 90th
percentile of the standardized test score distribution. Results are overall similar when
we look at the relation between the estimated coefficient β1 in Equation (3) and the
quantiles of the distribution of test scores in Figure 5; the effect is again substantially
larger for low-achieving students. The effect of school funding on students’ achieve-
ment is overall quantitatively large, statistically significant and robust, in particular
in Mathematics and for low-achieving students.

—— Figures 4 and 5 here ——

6 Robustness checks

Overall, our results thus far show that an increase in capital spending improves the
performance of high school students. Our findings are subject to several potential
alternative mechanisms and concerns. In this section, we present several robustness
checks grouped into six macro categories. Due to the length of this section we report
regression tables and figures in the online Appendix and only for the test scores in
Mathematics.

6.1 Displacement, commuting and composition of students

We explore a number of issue related to the composition and potential displacement
of the students. First, we ask whether the earthquake has displaced students in some
areas hit by the event and forced them to switch to schools located in safer areas
(see e.g., Sacerdote, 2012; Tincani, 2017). Anecdotal evidence and qualitative back-
ground material suggest that this is unlikely as, immediately after the earthquake, the
government hastily provided temporary building to students before the new academic
year started, particularly in areas near to the epicenter, while waiting for temporary
structures to be completed.21 Yet, it could still be the case that parents of children

21The first decree that the deputy commissioner enacted was indeed on the organization of tempo-
rary schools around the epicenter. See decree #1 (20 July 2012).
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who previously attended schools in damaged areas managed to get their children as-
signed to schools in undamaged areas even in absence of tangible risks and despite the
provision of temporary buildings. This would be especially problematic for our study
if these parents were also those who cared relatively more about the education of their
offspring and if the students who moved were also more motivated than the average. If
this was the case, then, we should find a positive and significant effect of the treatment
on the cohort size in the schools in the treated group. Tables A3 shows that this is
not the case by presenting a model similar to the one in Equation (1) but with the
cohort size on the left-hand side. The difference between column (a) and (b) is that the
former does not include time-varying controls (i.e., share of males and native over the
total number of students), whereas the latter does include these additional controls.
In both cases the difference-in-difference coefficient is not statistically significant. In
addition, in Figure A1 we plot the flexible coefficient over time (relative to 2011), and
we further show that there is no difference in school population between treated and
control regions both before and after the treatment takes place.

Second, we note that students’ commuting in high schools is quite common, partic-
ularly from rural areas. A potential threat to our analysis is that a share of students
in our sample of schools come from the damaged area and may have experienced a
negative direct effect of the earthquake at home. Building on the prediction of gravity
models for commuting flows (e.g., Simini et al. , 2012), in this section we test whether
our results are robust to the exclusion of the municipalities closest and best connected
to rural areas. In Table A4 we exclude schools in municipalities that share one border
with the damaged zone. Column (c) replicates the 2SLS estimation, while column (d)
replicates the difference-in-difference estimation using the restricted sample. In Table
A5 we replicate our estimations by excluding schools in the most important towns in
our sample (i.e. the head of the Provinces): column (b) excludes schools from Bologna,
column (c) from Ferrara, column (d) from Ravenna, column (e) from Parma, column
(f) from Modena, column (g) from Reggio Emilia. Column (h) excludes all the schools
located in the provincial capitals. Overall, our results are unchanged and students’
commuting from rural, affected areas is unlikely to affect our results.

Third, it might be possible that student composition changed while cohort size
remained nearly the same. To rule out this alternative confounding mechanism, we
first replicate the difference-in-difference estimation but use the share of males or the
share of natives as the dependent variable. Table A6 shows that there is no difference
in school population in terms of student mobility as well as composition. We then
check whether sorting effects may have occurred within the same municipality across
school with substantially different state of maintenance of their buildings. In column 2
of Table A7, we restrict our main analysis (reported in column 1, DiD in Panel A and
2SLS in Panel B, for easiness of comparison) to schools located in municipalities where
no more than one school is located. In columns 3, we drop municipalities where no more
than one typology of school present (i.e., liceum, technical studies or professional), as
sorting may have occurred among schools of the same type. The results confirm that
sorting across schools in the same municipalities is unlikely to drive our results.
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6.2 Variations across municipalities

Our sample includes a variety of small, medium and large municipalities, and results
could be heterogenous across them. In Table A8 we thus group together municipalities
according to their size and probe the robustness of our results to the omission of each
group. Column (a) shows the baseline model; column (b) uses weighted least squares
(WLS) estimations with weights given by the population of the municipality where
the school is located; column (c) excludes the first decile; column (d) excludes the
second decile; column (e) excludes the first and the second top deciles; and column (f)
excludes the first top decile. Panel A of Table 9 displays that our baseline difference-
in-difference estimation for test scores in Mathematics (column (a) of Table 4) is not
sensitive to variations in the municipalities’ population. Similarly, Panel B shows the
robustness of our two-stages least squares estimation (column (c) of Table 4). In both
cases, the coefficients are always statistically significant across the columns and the
effect seems to increase slightly when we exclude the biggest municipality from the
sample.

Recall that in our analysis we control for a baseline set of school characteristics, in
particular the fraction of males, of native students, the number of students in the tenth
cohort as well as linear trend and province dummies interacted with the treatment
dummy. Nonetheless, alternative mechanisms working at the municipal level could
partially drive our results. For example, in the aftermath of the earthquake smaller
communities could have mobilized more vigorously, which, in turn, could have boosted
the motivations of both teachers and students. Our estimates could therefore pick up
this mechanism rather than the effect of school funding, per se. In columns (b) and
(c) of Tables A9 and A10 we show that there are no differences in test scores between
schools in small and large municipalities, and between schools in more and less densely
populated areas, relative to the pre-earthquake period. Similarly, municipalities in the
Po Valley could have been more effective in recovering than those in the mountains.
Yet, we find no differences in test scores between schools in mountainous regions and
schools in the plains in the post-treatment period (see column (d) of Tables A9 and
A10). Additionally, the local and national administration could have devoted relatively
more attention and time to students in municipalities with fewer schools after the
earthquake than to students in municipalities with a higher number of schools. In
column (e) of Tables A9 and A10 we show that our mechanism is robust to this
alternative explanation. Finally, in column (f) we show that our estimations are not
sensitive to the simultaneous inclusion of all these alternative mechanisms.

6.3 High vs small funding, non-linearities and relevant covari-
ates

Here, we show that our finding are not driven by schools that received unusual amount
of funds per students, we test whether funding might be picking up non-linearities in
school quality and we exclude relevant covariates. In Table A11, columns (b) and (c),
we exclude schools that received limited resources from the central government, less
than 100 euro and less than 200 euro, respectively. Both the difference-in-difference
estimation and the 2SLS estimation are not sensitive to their exclusion for both types
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of test. In a similar vein, in columns (d) and (e) we exclude schools that received a
disproportionately large amount of resources from the state. Recall that the average
amount transferred is 389 euro per student. Therefore, in column (d) we exclude
schools that received more than 2,000 euro, while in column (e) we drop those that
received more than 5,000 euro. As we can see, there are virtually no changes in the size
and statistical significance of our coefficients. We also compute the 5th, 10th, 90th,
and 95th percentile of the distribution of schools according to the pre-treatment test
score and check whether excluding schools at the top or bottom of the distribution
affects our results. The evidence, presented in Table A12, does not support this
alternative explanation and the effect of funding on mathematics test score is similar
across specifications. Finally, in Tables A13, we ask whether our main results are
sensitive to the inclusion/exclusion of school controls and the interaction between year
fixed effects and the province dummy. As we can see, neither the province-year fixed
effects nor the battery of control variables seem to significantly affect our estimates.
In fact, the magnitude of the coefficients is virtually the same or larger (compared to
the baseline presented in Tables 4).

6.4 Alternative definition of the control group

Recall that the schools in the control group are located in municipalities close enough
to the treated areas, and we use the second-order contiguity definition for neighbors,
i.e., the municipalities in the control group either share borders with the treated ar-
eas or there is no more than one municipality between them and the treated areas
(neighbors of neighbors). In other words, the neighborhood is defined in relation to
the two closest units. Therefore, we check the robustness of our estimates to the use
of alternative orders of contiguity using Equations 1 and 3. In column (b) of Table
A14 we use a more restricted definition of neighborhood, and we only take the schools
located in municipalities that share borders with the treated areas (first-order conti-
guity). In column (c), we relax the definition of neighborhood and use for our control
group municipalities that are at maximum third-order contiguous. Remarkably, the
substantive impact of receiving additional funding, or the elasticity of 100 euro, on
students’ performances in Mathematics is virtually the same across columns and it
does not depend on the choice of the control group.

6.5 Cheating

Cheating can also be a confounding mechanism if, after receiving the funding, teachers
may want to show that such resources effectively map into better educational achieve-
ments. We test this by using data on the cheating score, provided by INVALSI, that
ranges theoretically between 0, that indicating no cheating in the classroom, and 1,
when the entire test in the class is falsified (See, INVALSI, National Report, 2016).22

These data are available at the class-level, and we transform them at the school-level
by taking the average. Cheating is not a frequent phenomenon in our sample—the

22See also Bertoni et al. (2013) on how external monitoring in the class on the test day affects
cheating using similar data.
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score is 0.026 on average but it is higher than 0.10 in the highest fifth percentile. In
Table A15 we test whether our results pick up increasing cheating attitudes after 2012.
We also add an interaction term between the cheating score and the post-2012 dummy,
in both our difference-in-difference model (column b) and in our instrumental strategy
(column d). As we can see from Table A15, our main results are unaffected. Taken
together, they show that the increase in students’ achievements in recipient schools
(or in schools that have received more funding) is not explained by an increase in the
propensity to cheat during the examination.

6.6 Renovation of private building

In the aftermath of the earthquake the government financed private buildings renova-
tion. Although these renovations were not very frequent in the area under scrutiny, it is
still possible that they have (negatively) affected the learning process of the students.
In this section, we test the validity of our 2SLS estimation, i.e. whether, conditional
on the amount of resources spent on private buildings, variation in PGA levels explain
variation in students’ outcomes, through the quantity of funding allocated to school
buildings. To do so we gather additional available data on public resources that the
government has allocated to private citizens to modernize and improve the quality of
their buildings and thus mitigate their vulnerability to future earthquakes.23 On aver-
age 50000 euro have been allocated to private buildings in a municipality, but relevant
variation exists across them (the standard deviation is about 92705 euro). As we can
see in Table A16, neither our difference-in-difference results (column b), nor our OLS
and 2SLS estimates of the elasticity of funds on students’ outcomes (column d and f)
change when we control for the allocation of funding to private buildings.

7 Conclusion

In this article, we explore the impact of school infrastructure investments on students’
achievement. We use data on school funding provided after a natural disaster, a mag-
nitude 6.1 earthquake that hit the Northern part of Emilia Romagna region in May
2012, affecting an area of 3.5 thousands squared kilometers. We exploit plausibly ex-
ogenous variation in the allocation process (whether schools received funding or not)
and in the amount of funding that each school received (which is a function of pre-
determined seismic risks). This allows us to consider the responsiveness of students’
achievements to school infrastructure investments, along both the extensive and in-
tensive margin. We implement two intertwined yet different identification strategies,
a difference-in-difference approach and an instrumental variable strategy, so as to give
our regression estimates a causal interpretation. Given the size of the treatment and
the relatively low average capital spending in Italian state schools, our data allow us to

23This information is available at https://openricostruzione.regione.emilia-romagna.it/

open-data for the municipalities of the Region Emilia Romagna. It covers 83% of the total number
of schools.
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ask the following question: how much high-school students would gain in terms of test
scores if spending on school infrastructure tripled? Our empirical results suggest that
tripling school infrastructure spending corresponds to important increases in students’
test score, particularly in Mathematics and for low-achieving students. Our results
are robust to a variety of model specifications and do not depend on specific decisions
in the research design.

A set of facts, peculiar to the Italian school system, may help us reconciling our
findings with recent contributions that specifically use US data. Few resources are
spent in school capital in Italy, about 184 euros per student in 2013, which places Italy
near the bottom of school infrastructure spending among OECD countries, including
the US (OECD, 2016). Whereas the average condition of school infrastructure is quite
poor (more than 39% of school buildings need urgent maintenance, see e.g., Antonini
et al. , 2015) interventions on school facilities are likely to affect the health, safety and
morale of students and teachers and in turn their ability to learn and teach. Thus,
high class achievement is often thought to indicate better teaching or a more efficient
distribution of students.

We hope that this research provides important insights into the role of physical
capital spending in improving the learning environment of high schools. An important
avenue for further research might emerge from our work, particularly with regard to
the underlying transmission mechanism. In fact, we are largely agnostic about which
specific channel explains how better infrastructures improves student outcomes. Edu-
cation infrastructure of high quality means that students have adequate temperature,
lighting, and functional furniture that are likely to improve the quality of their learn-
ing experience. Certainly, basic safety and health standards are necessary for effective
learning environments. At the same time, improving the technical conditions of a
school can increase the student satisfaction while the characteristics of the learning
space can increase teachers’ motivation and retention, and provide important signals
to the quality and commitment of the institution. Identifying potential pathways is
therefore important in light of offering potential policy prescriptions for investing in
school infrastructure.
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Table 1: Summary Statistics

mean sd min max count
Panel A – Treatment and IV
Spending dummy 0.39 0.49 0.00 1.00 173
Funds per capita (× 100) 3.89 10.29 0.00 80.65 173
Seismic hazard (PGA) 0.16 0.03 0.09 0.21 173
Panel B – Mathematics
log Score (mean) 3.80 0.33 2.79 4.46 692
log Score (p5) 3.09 0.62 0.00 4.30 692
log Score (p10) 3.28 0.50 0.00 4.32 692
log Score (p90) 4.15 0.28 3.11 4.59 692
log Score (p95) 4.22 0.26 3.11 4.59 692
Panel C – Italian Language
log Score (mean) 4.10 0.27 1.59 4.50 696
log Score (p5) 3.57 0.60 0.00 4.39 696
log Score (p10) 3.73 0.47 0.00 4.44 696
log Score (p90) 4.34 0.20 1.59 4.58 696
log Score (p95) 4.38 0.18 1.59 4.59 696
Panel D – Controls
% Male 0.56 0.26 0.00 1.00 692
% Native 0.82 0.14 0.21 1.00 692
Cohort Size 88.57 77.39 3.00 372.00 692

Notes: Funds per capita are expressed in 100 euros. Test scores in Panel
A and B are transformed in logarithm. Cohort size is the number of
tenth grader. The unit of observation is school in Panel A, and school
× year in Panel B, C, and D.
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Table 2: Means of school characteristics below and above PGA median value

Below Above
(a) (b) (c) (d) (e)

mean mean Diff. Std. Error Obs.
% Male 0.55 0.54 -0.02 0.04 173
% Native 0.82 0.85 0.03 0.02 173
Cohort Size 81.17 89.92 8.75 11.34 173

Notes: Column (a) refers to the observations below the median
PGA value, while column (b) the ones above. Column (c) rep-
resents the difference between column (a) and column (b) and
column (d) the standard error of the estimate of the difference.
PGA values measure the seismic hazard. Cohort size is the num-
ber of tenth graders. The unit of observation is school.
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Table 3: Balance test

Dependent variable is:
% Male % Native Cohort Size

(a) (b) (c)
OLS OLS OLS

Seismic hazard × post2012 (lag) 0.059 -0.101 -22.745
(0.082) (0.070) (19.590)

Observations 692 692 692
R2 0.015 0.064 0.071

School Fixed-effect models. Each column includes the school-level controls.
Linear trend and province dummies interacted with post2012 are included in all
regressions. Standard errors are clustered at the school level. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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Table 4: Secondary School, Mathematics

(a) (b) (c) (d) (e)
OLS OLS 2SLS first stage reduced-form

Spending dummy × post2012 (lag) 0.099∗∗∗

(0.024)
Funding per capita (00) × post2012 (lag) 0.003∗∗∗ 0.046∗∗∗

(0.001) (0.011)
Seismic hazard × post2012 (lag) 26.128∗∗∗ 1.204∗∗∗

(6.070) (0.101)
Kleibergen-Paap F Statistics 18.522
Observations 692 692 692 692 692
R2 0.147 0.132 0.091 0.239 0.153

Notes: School Fixed-effect models. The dependent variable is the logarithm of the average test score in Math-
ematics. Funding per capita is expressed in 100 euros. Each column includes the cohort size, the percentage
of males, and the number of native students. Linear trend and province dummies interacted with post2012 are
included in all regressions. Standard errors are clustered at the school level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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Table 5: Secondary School, Italian

(a) (b) (c) (d) (e)
OLS OLS 2SLS first stage reduced-form

Spending dummy × post2012 (lag) 0.020
(0.022)

Funding per capita (00) × post2012 (lag) 0.001 0.012∗∗

(0.001) (0.005)
Seismic hazard × post2012 (lag) 27.413∗∗∗ 0.328∗∗∗

(6.887) (0.113)
Kleibergen-Paap F Statistics 15.841
Observations 696 696 696 696 696
R2 0.394 0.393 0.175 0.399 0.123

Notes: School Fixed-effect models. The dependent variable is the logarithm of the average test score in Italian.
Funding per capita is expressed in 100 euros. Each column includes the cohort size, the percentage of males,
and the number of native students. Linear trend and province dummies interacted with post2012 are included
in all regressions. Standard errors are clustered at the school level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 6: Secondary School, Mathematics: funding and students scores

(a) (b) (c) (d) (e)
Score (mean) Score (p5) Score (p10) Score (p90) Score (p95)

Panel A OLS Estimation.
Spending dummy × post2012 (lag) 0.099∗∗∗ 0.329∗∗∗ 0.262∗∗∗ 0.043∗∗ 0.040∗

(0.024) (0.094) (0.063) (0.021) (0.021)
Panel B OLS Estimation.
Funding per capita (00) × post2012 (lag) 0.003∗∗∗ 0.014∗∗ 0.010∗∗ 0.002∗∗ 0.003∗∗∗

(0.001) (0.005) (0.004) (0.001) (0.001)
Panel C IV Estimation – Second Stage.
Funding per capita (00) × post2012 (lag) 0.046∗∗∗ 0.126∗∗∗ 0.107∗∗∗ 0.019∗∗∗ 0.015∗∗∗

(0.011) (0.028) (0.023) (0.006) (0.005)
Panel D Reduced Form Estimation.
Seismic hazard × post2012 (lag) 1.204∗∗∗ 3.284∗∗∗ 2.803∗∗∗ 0.495∗∗∗ 0.381∗∗∗

(0.101) (0.441) (0.291) (0.093) (0.099)
Observations 692 692 692 692 692

Notes: School Fixed-effect models. The dependent variable is the logarithm of the average test score in Mathematics in
column (a), the logarithm of the 5th percentile of the test score in Mathematics in column (b), the logarithm of the 10th
percentile of the test score in Mathematics in column (c), the logarithm of the 90th percentile of the test score in Mathematics
in column (d), the logarithm of the 95th percentile of the test score in Mathematics in column (e). Funding per capita is
expressed in 100 euros. Each column includes the cohort size, the percentage of males, and the number of native students.
Linear trend and province dummies interacted with post2012 are included in all regressions. Standard errors are clustered at
the school level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

27



Table 7: Secondary School, Italian: funding and students scores

(a) (b) (c) (d) (e)
Score (mean) Score (p5) Score (p10) Score (p90) Score (p95)

Panel A OLS Estimation.
Spending dummy × post2012 (lag) 0.020 0.073 0.051 0.008 0.005

(0.022) (0.064) (0.042) (0.019) (0.019)
Panel B OLS Estimation.
Funding per capita (00) × post2012 (lag) 0.001 0.005 0.002 0.000 0.000

(0.001) (0.006) (0.003) (0.001) (0.001)
Panel C IV Estimation – Second Stage.
Funding per capita (00) × post2012 (lag) 0.012∗∗ 0.023∗ 0.017∗∗ 0.008∗ 0.010∗∗

(0.005) (0.012) (0.007) (0.004) (0.005)
Panel D Reduced Form Estimation.
Seismic hazard × post2012 (lag) 0.328∗∗∗ 0.623∗ 0.462∗∗ 0.218∗∗ 0.267∗∗

(0.113) (0.345) (0.197) (0.106) (0.109)
Observations 696 696 696 696 696

Notes: School Fixed-effect models. The dependent variable is the logarithm of the average test score in Italian in column (a),
the logarithm of the 5th percentile of the test score in Italian in column (b), the logarithm of the 10th percentile of the test
score in Italian in column (c), the logarithm of the 90th percentile of the test score in Italian in column (d), the logarithm
of the 95th percentile of the test score in Italian in column (e). Funding per capita is expressed in 100 euros. Each column
includes the cohort size, the percentage of males, and the number of native students. Linear trend and province dummies
interacted with post2012 are included in all regressions. Standard errors are clustered at the school level. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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Figure 1: Treated and control areas

Notes: The figure illustrates the spatial distribution of the maximum ground acceleration during
earthquakes (i.e., the PGA value) across municipalities. The color bar (in the top-right corner) shows
the gradient of PGA for each municipality, from low (light blue) to high (dark blue). Each white dot
indicates the geo-location of a state high school in the area. Schools that received extra-funds are
located in shaded municipalities (i.e., our treated group). Schools that have not received extra-funds
are located in neighboring municipalities (the dashed area), proximate to the treated areas up to a
second order of contiguity. Municipalities that experienced considerable damages, namely a level of
damage greater than D1, represent the ‘damaged area’ and are depicted in grey (dropped from our
analysis).

Figure 2: Timeline

Notes: The figure shows the timeline of events of our quasi-natural experiment. Every 9th of May
all the students in the tenth grade undertake the standardized test in Italian language and Mathe-
matics. On May 20, 2012, the earthquake hit the area and extra-funds were given immediately after.
Interventions were conducted with the beginning of academic year 2012/13.
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Figure 3: Flexible estimates of the relationship between test scores and funding
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Notes: The two Panels illustrate the effect of being a recipient of extra-funding in the test score
observed in year t relative to the baseline category, the year 2011. Vertical bars signify 95% confidence
intervals.
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Figure 4: Estimated impact of receiving extra-funding on test scores by quantiles of
the distribution of test scores: Extensive margin (Equation 1)
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Notes: The two Panels shows the effect of being a recipient of extra-funding (i.e., the estimated
coefficient α1 in Equation 1) when different quantiles of the distribution of the test scores are employed
in the right hand side. Dark lines delineate 95% confidence intervals.

Figure 5: Estimated impact of receiving extra-funding on test scores by quantiles of
the distribution of test scores: Intensive margine (Equation 3)
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Notes: The two Panels shows the effect of receiving 100 euros more (i.e., the estimated coefficient β1
in Equation 3) when different quantiles of the distribution of the test scores is employed in the right
hand side. Dark lines delineate 95% confidence intervals.
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Table A1: Distribution of schools per year

2012 2013 2014 2015 2016 total
# Schools 127 132 135 139 159 692
% Schools 18.35 19.07 19.50 20.08 22.97 100.00
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Table A2: Balance test between treated and control groups

Mean
(a) (b) (c) (d) (e)

Treated Control Diff. Std. Error Count
Panel A – Treatment and IV
Spending dummy 1.00 0.00 1.00 0.00 173
Funds per capita (× 100) 9.91 0.00 9.91∗∗∗ 1.42 173
Seismic hazard (PGA) 0.16 0.15 0.01∗ 0.00 173
Panel B – Mathematics
log Score (mean) 3.80 3.82 -0.02 0.03 692
log Score (p5) 3.13 3.01 0.12∗∗ 0.05 692
log Score (p10) 3.31 3.24 0.07 0.04 692
log Score (p90) 4.13 4.18 -0.05∗∗ 0.02 692
log Score (p95) 4.21 4.25 -0.04∗ 0.02 692
Panel C – Italian Language
log Score (mean) 4.11 4.08 0.03 0.02 696
log Score (p5) 3.60 3.50 0.10∗∗ 0.05 696
log Score (p10) 3.76 3.68 0.08∗∗ 0.04 696
log Score (p90) 4.34 4.34 0.00 0.02 696
log Score (p95) 4.39 4.38 0.01 0.01 696
Panel D – Controls
% Male 0.56 0.56 0.00 0.02 692
% Native 0.82 0.83 -0.00 0.01 692
Cohort Size 85.38 95.42 -10.04 6.31 692

Notes: Funds per capita are expressed in 100 euros. Test scores in Panel B and C are trans-
formed in logarithm. Cohort size is the number of tenth graders. The unit of observation
is school in Panel A, and school × year in Panel B, C, and D. The number of observations
are reported in column (e). Column (c) represents the difference between column (a) and
column (b), and column (d) the standard error of the estimate of the difference.
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Table A3: Sensitivity check: moving of the students

(a) (b)
OLS OLS

Spending dummy × post2012 (lag) -2.889 -2.689
(4.701) (4.630)

Controls No Yes
Observations 697 692
R2 0.059 0.070

Notes: School Fixed-effect models. The dependent variable
is the number of tenth graders. Column (b) includes the
percentage of males, and the number of native students as
controls. Linear trend and province dummies interacted
with post2012 are included in all regressions. Standard
errors are clustered at the school level. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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Table A4: Secondary School, Mathematics: Excluding schools near the damaged, rural
area

(a) (b)
Panel A OLS Estimation.
Spending dummy × post2012 (lag) 0.099∗∗∗ 0.057∗

(0.024) (0.033)
Panel B 2SLS Estimation.
Funding per capita (00) × post2012 (lag) 0.046∗∗∗ 0.050∗∗∗

(0.011) (0.013)
Observations 692 522

School Fixed-effect models. The dependent variable is the logarithm of the
average test score in Mathematics. Column (a) shows the baseline model; col-
umn (b) excludes schools near the damaged, rural area. Each column includes
the cohort size, the percentage of males, and the number of native students.
Linear trend and province dummies interacted with post2012 are included in all
regressions. Standard errors are clustered at the school level. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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Table A5: Secondary School, Mathematics: Excluding schools located in the provincial capitals

(a) (b) (c) (d) (e) (f) (g) (h)
Panel A OLS Estimation.
Spending dummy × post2012 (lag) 0.099∗∗∗ 0.133∗∗∗ 0.094∗∗∗ 0.103∗∗∗ 0.104∗∗∗ 0.099∗∗∗ 0.084∗∗∗ 0.117∗∗∗

(0.024) (0.028) (0.024) (0.024) (0.024) (0.024) (0.027) (0.037)
Panel B 2SLS Estimation.
Funding per capita (00) × post2012 (lag) 0.046∗∗∗ 0.110∗ 0.053∗∗∗ 0.044∗∗∗ 0.042∗∗∗ 0.046∗∗∗ 0.042∗∗∗ 0.180∗

(0.011) (0.057) (0.011) (0.011) (0.010) (0.011) (0.011) (0.107)
Observations 692 557 684 669 622 690 629 391

School Fixed-effect models. The dependent variable is the logarithm of the average test score in Mathematics. Column (a) shows the
baseline model; column (b) excludes schools from Bologna, column (c) from Ferrara, column (d) from Ravenna, column (e) from Parma,
column (f) from Modena, column (g) from Reggio Emilia. Column (h) excludes all the schools located in the provincial capitals. Each
column includes the cohort size, the percentage of males, and the number of native students. Linear trend and province dummies interacted
with post2012 are included in all regressions. Standard errors are clustered at the school level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

6



Table A6: Sensitivity check — changes in the students’ characteristics in the post-earthquake period relative to the pre-period

Cohort Size % Male % Native
(a) (b) (c) (d) (e) (f)

OLS OLS OLS OLS OLS OLS
Spending dummy × post2012 (lag) -2.889 -2.689 0.016 0.016 -0.001 -0.001

(4.701) (4.630) (0.015) (0.015) (0.011) (0.010)
Controls No Yes No Yes No Yes
Observations 697 692 693 692 696 692
R2 0.059 0.070 0.013 0.016 0.042 0.060

Notes: School Fixed-effect models. Column (b) includes the percentage of males and the percentage
of native students as controls. Column (d) includes the number of tenth graders and the percentage of
native students as controls. Column (f) includes the number of tenth graders and the percentage of males
as controls. Linear trend and province dummies interacted with post2012 are included in all regressions.
Standard errors are clustered at the school level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

7



Table A7: Secondary School, Mathematics: Within municipality sorting effects

(1) (2) (3)
Panel A OLS Estimation.
Spending dummy × post2012 (lag) 0.099∗∗∗ 0.499∗∗∗ 0.165∗∗∗

(0.024) (0.138) (0.052)
Panel B 2SLS Estimation.
Funding per capita (00) × post2012 (lag) 0.046∗∗∗ 0.076 0.070∗

(0.011) (0.085) (0.043)
Observations 692 46 194

School Fixed-effect models. The dependent variable is the logarithm of the average
test score in Mathematics. Column (1) shows the baseline model; column (2) restricts
the analysis to municipalities with at most one school located. Column (3) drops
municipalities where more than one typology of school is offered (i.e., liceum, technical
studies or professional). Each column includes the cohort size, the percentage of males,
and the number of native students. Linear trend and province dummies interacted
with post2012 are included in all regressions. Standard errors are clustered at the
school level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A8: Mathematics: Sensitivity on Municipalities’ population

(a) (b) (c) (d) (e) (f)
baseline weighted ≥ 10th pctile ≥ 20th pctile ≤ 80th pctile ≤ 90th pctile

Panel A OLS Estimation.
Spending dummy × post2012 (lag) 0.099∗∗∗ 0.105∗∗∗ 0.095∗∗∗ 0.101∗∗∗ 0.120∗∗∗ 0.133∗∗∗

(0.024) (0.027) (0.024) (0.029) (0.038) (0.028)
Panel B 2SLS Estimation.
Funding per capita (00) × post2012 (lag) 0.046∗∗∗ 0.019∗∗∗ 0.042∗∗∗ 0.027∗∗∗ 0.157∗ 0.110∗

(0.011) (0.004) (0.010) (0.007) (0.095) (0.057)
Observations 692 692 612 333 359 557

Notes: School Fixed-effect models. The dependent variable is the logarithm of the average test score in Mathematics. Column (a) shows the
baseline model; column (b) uses weighted least squares (WLS) estimations with weights given by the population of the municipality where the
school is located; column (c) excludes the first decile; column (d) excludes the second decile; column (e) excludes the first and the second top
deciles; and column (f) excludes the first top decile. Each column includes the cohort size, the percentage of males, and the number of native
students. Linear trend and province dummies interacted with post2012 are included in all regressions. Standard errors are clustered at the school
level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A9: Mathematics: Municipalities’ characteristics

(a) (b) (c) (d) (e) (f)
OLS OLS OLS OLS OLS OLS

Spending dummy × post2012 (lag) 0.099∗∗∗ 0.110∗∗∗ 0.106∗∗∗ 0.098∗∗∗ 0.109∗∗∗ 0.109∗∗∗

(0.024) (0.022) (0.022) (0.024) (0.022) (0.022)
Population × post2012 (lag) -0.000 -0.000

(0.000) (0.000)
Pop. Density × post2012 (lag) -0.000 0.000

(0.000) (0.000)
Height × post2012 (lag) -0.000∗∗∗ -0.000∗∗∗

(0.000) (0.000)
# Schools × post2012 (lag) -0.002 0.002

(0.002) (0.007)
Observations 692 692 692 692 692 692
R2 0.147 0.149 0.148 0.150 0.148 0.152

Notes: School Fixed-effect models. The dependent variable is the logarithm of the average test score in Math-
ematics. Each column includes the cohort size, the percentage of males, and the number of native students.
Linear trend and province dummies interacted with post2012 are included in all regressions. Standard errors are
clustered at the school level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

10



Table A10: Mathematics: Municipalities’ characteristics

(a) (b) (c) (d) (e) (f)
2SLS 2SLS 2SLS 2SLS 2SLS 2SLS

Funding per capita (00) × post2012 (lag) 0.046∗∗∗ 0.046∗∗∗ 0.046∗∗∗ 0.046∗∗∗ 0.046∗∗∗ 0.047∗∗∗

(0.011) (0.011) (0.011) (0.011) (0.011) (0.011)
Population × post2012 (lag) -0.000∗∗∗ -0.000∗∗∗

(0.000) (0.000)
Pop. Density × post2012 (lag) -0.000∗∗∗ 0.000

(0.000) (0.000)
Height × post2012 (lag) -0.000∗∗∗ -0.000

(0.000) (0.000)
# Schools × post2012 (lag) -0.010∗∗∗ 0.107∗∗

(0.003) (0.045)
Observations 692 692 692 692 692 692
R2 0.132 0.132 0.132 0.137 0.132 0.138

Notes: School Fixed-effect models. The dependent variable is the logarithm of the average test score in Mathematics.
Funding per capita is expressed in 100 euros. Each column includes the cohort size, the percentage of males, and the
number of native students. Linear trend and province dummies interacted with post2012 are included in all regressions.
Standard errors are clustered at the school level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A11: Mathematics: sensitivity on funding

(a) (b) (c) (d) (e)
baseline ≥ 100 Euro ≥ 200 Euro ≤ 2,000 Euro ≤ 5,000 Euro

Panel A OLS Estimation.
Spending dummy × post2012 (lag) 0.099∗∗∗ 0.117∗∗∗ 0.127∗∗∗ 0.090∗∗∗ 0.092∗∗∗

(0.024) (0.025) (0.028) (0.024) (0.023)
Panel B IV Estimation.
Funding per capita (00) × post2012 (lag) 0.046∗∗∗ 0.048∗∗∗ 0.048∗∗∗ 0.101∗∗∗ 0.056∗∗∗

(0.011) (0.011) (0.012) (0.022) (0.013)
Observations 692 623 585 664 685

Notes: School Fixed-effect models. The dependent variable is the logarithm of the average test score in Mathematics.
Funding per capita is expressed in 100 euros. In columns (b) and (c) we exclude schools that received limited resources from
the central government, less than 100 euro and less than 200 euro, respectively. In columns (d) and (e) we exclude schools
that received more than 2,000 Euros and more than 5,000 Euros, respectively. Each column includes the cohort size, the
percentage of males, and the number of native students. Linear trend and province dummies interacted with post2012 are
included in all regressions. Standard errors are clustered at the school level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A12: Secondary School, Mathematics: Non-linearities in school quality

(a) (b) (c) (d) (e)
baseline ≥ 5th perc. ≥ 10th perc. ≤ 90th perc. ≤ 95th perc.

Funding per capita (00) × post2012 (lag) 0.046∗∗∗ 0.040∗∗∗ 0.038∗∗∗ 0.043∗∗∗ 0.044∗∗∗

(0.011) (0.009) (0.009) (0.010) (0.011)
Observations 666 526 508 591 618

School Fixed-effect models. The dependent variable is the logarithm of the average test score in Mathematics. Each column
includes the cohort size, the percentage of males, and the number of native students. Linear trend and province dummies
interacted with post2012 are included in all regressions. Standard errors are clustered at the school level. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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Table A13: Secondary School, Mathematics — Alternative specifications

(a) (b) (c) (d) (e) (f)
OLS OLS OLS 2SLS 2SLS 2SLS

Spending dummy × post2012 (lag) 0.097∗∗∗ 0.096∗∗∗ 0.099∗∗∗

(0.024) (0.024) (0.024)
Funding per capita (00) × post2012 (lag) 0.047∗∗∗ 0.048∗∗∗ 0.046∗∗∗

(0.011) (0.011) (0.011)
School controls No Yes Yes No Yes Yes
Province × Year FE No No Yes No No Yes
Observations 697 692 692 697 692 692
R2 0.130 0.135 0.147 0.113 0.118 0.132

Notes: School Fixed-effect models. The dependent variable is the logarithm of the average test score in Mathematics.
Funding per capita is expressed in 100 euros. Each column includes a linear trend. Standard errors are clustered at
the school level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.14



Table A14: Sensitivity check, Mathematics: treatment dummy

(a) (b) (c)
2nd order contiguity (baseline) 1st order contiguity 3rd order contiguity

Panel A OLS Estimation.
Spending dummy × post2012 (lag) 0.099∗∗∗ 0.118∗∗∗ 0.100∗∗∗

(0.024) (0.026) (0.023)
Panel B 2SLS Estimation.
Funding per capita (00) × post2012 (lag) 0.046∗∗∗ 0.030∗∗∗ 0.084∗∗

(0.011) (0.007) (0.034)
Observations 692 439 774

Notes: School Fixed-effect models. The dependent variable is the logarithm of the average test score in Mathematics. Each column
includes the cohort size, the percentage of males, and the number of native students. Linear trend and province dummies interacted
with post2012 are included in all regressions. Standard errors are clustered at the school level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Figure A1: Difference in school population between treated and control areas
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Notes: The plot illustrates the effect of being a recipient of extra-funding on the cohort size of tenth
graders observed in year t relative to the baseline category, the year 2011. Vertical bars signify 95%
confidence intervals.
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Table A15: Secondary School, Mathematics: funding, cheating, and students scores

(a) (b) (c) (d)
OLS OLS 2SLS 2SLS

Spending dummy × post2012 (lag) 0.099∗∗∗ 0.098∗∗∗

(0.024) (0.022)
Funding per capita (00) × post2012 (lag) 0.046∗∗∗ 0.046∗∗∗

(0.011) (0.011)
Cheating score × post2012 (lag) 0.722∗∗∗ 0.172

(0.176) (0.382)
Observations 692 692 692 692
R2 0.147 0.181 0.091 0.094

School Fixed-effect models. The dependent variable is the logarithm of the average test score in
Mathematics. Each column includes the cohort size, the percentage of males, and the number
of native students. Linear trend and province dummies interacted with post2012 are included
in all regressions. Standard errors are clustered at the school level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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Table A16: Secondary School, Mathematics: Private houses reconstruction and students scores

(a) (b) (c) (d) (e) (f)
OLS OLS OLS OLS 2SLS 2SLS

Spending dummy × post2012 (lag) 0.096∗∗∗ 0.099∗∗∗

(0.026) (0.027)
Funding per capita (00) × post2012 (lag) 0.003∗∗ 0.003∗∗ 0.049∗∗∗ 0.049∗∗∗

(0.001) (0.001) (0.012) (0.012)
Funding for private renovation × post2012 (lag) -0.000 0.000 -0.000

(0.000) (0.000) (0.000)
Observations 570 570 570 570 570 570
R2 0.132 0.133 0.118 0.119 0.081 0.089

School Fixed-effect models. The dependent variable is the logarithm of the average test score in Mathematics. Each
column includes the cohort size, the percentage of males, and the number of native students. Linear trend and province
dummies interacted with post2012 are included in all regressions. Standard errors are clustered at the school level. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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B The Northern Italy earthquake overview

To investigate the effect of school capital spending on student outcome, we use infor-
mation on the extra funding that a group of schools received after the 2012 Northern
Italy earthquake. In the following, we give a brief sketch of the seismic-related events
and the post-quake interventions.

B.1 The May 2012 earthquake

On May 20, 2012, an earthquake of magnitude 6.1 hit a wide portion of the Po Valley
in the Northern part of Italy. The epicenter was located near the town of Finale
Emilia (MO), about 30 km west of the city of Ferrara, and the earthquake involved
exclusively an area of about 3.5 thousand square kilometers across the three regions
of Emilia Romagna, Veneto and Lombardy. The provinces affected by the earthquake
were those of Ferrara, Modena, Mantova, Bologna, Reggio Emilia, and Rovigo, as
officially stated in the law # 122/2012.

Modena, Bologna, and Ferrara, all in the Region of Emilia Romagna, were the
most affected provinces. In the first province nearly thousand square kilometers were
damaged by the earthquake (about 36% of its territory). In the province of Bologna
the area involved was 930 square kilometers (the 25% of the total). Finally, 31% of
the province of Ferrara reported damages, in a territory of 818 square kilometers. The
other three provinces were marginally impacted, with a total hit territory amounting
to a thousand square kilometers.

B.2 Perception of the risk and reconstruction

The region was not considered a highly exposed seismic zone until 2012. With the
exception of the seismic sequence of Ferrara in 1570, Argenta in 1624 and Bologna
in 1929 (Vannoli et al. , 2015), few other small intensity earthquakes have had an
impact on the collective memory of their inhabitants. As a result, the perception of
a seismic risk was really small in this area compared with the rest of Italy. In fact,
PGA values in this area are, on average, only 20% of those characterizing the nearby
Apennine mountain chain.24 Moreover, the INGV estimated the zone’s seismic hazard
to be about 0.05 and 0.15 in terms of maximum horizontal ground acceleration rate,
up to five times smaller than the one estimated in the Appenini zone in the rest of the
Italian peninsula.25 Accordingly, in this area housing construction was not subject to
any specific anti-seismic measure compared with the rest of the country.

In the aftermath of the earthquake the perception of the risk dramatically changed
and money has been sent to finance the reconstruction as well as to secure the whole
area.26

The intervention was implemented in two stages.

24See http://zonesismiche.mi.ingv.it/
25Source: INGV http://www.mi.ingv.it/pericolosita-sismica.
26On the whole, 11 million euros have been disposed in the province of Mantua, 122 millions in the

provinces of Bologna, Ferrara, Modena, and Reggio Emilia, and 8.8 in the province of Rovigo.
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A first phase, implemented in the very next days that followed the end of the
seismic sequence, concerned the urgent operations required to provide first aid, to
refurbish buildings and equipments, especially those related to water, electric and
drainage system.

A second phase aimed at financing a number of projects that were precisely targeted
to secure and refurbish buildings in accordance with the new seismic risk. Importantly,
fundings were not sent only to finance the reconstruction, but also to secure the whole
area and to reinforce the anti-seismic system of the buildings, sometimes also getting
the chance to make a better sustainability of the energy consumption so to ameliorate
the building system, while increasing the seismic safety and the urban quality.

In our analysis we select only schools with no or slight damage — hence, in the zone
we look at none of the emergency interventions have been put into action.27 In the
next section, we detailed the selection procedure of building eligible to be a recipient
of funding in low damaged zone.

B.3 The assessment of the damage and eligibility to funding

The main measures enacted to regulate the procedures for the intervention during
the reconstruction phase and the actors involved are detailed in the law # 122/2012.
According to it, the governors of the affected Regions were appointed to coordinate the
reconstruction activities of their respective administrative competencies. However, the
assessment of the damage was carried on by the Italian Civil Protection Department
(DPC). The DPC deployed more than 3,000 experts to inspect about 40,000 buildings
in the affected area in the first two months after the quake (Dolce and Di Bucci, 2014).

Inspections were aimed at assessing the damage and usability of the buildings. In
Figures B1 and B2 we illustrate two examples of assessment made in the aftermath of
the 2012 earthquake. Buildings were then classified in 7 classes of usability — from
usable to fully unusable. Importantly, as remarked by Dolce and Di Bucci (2014, p.
2246), the forms compiled by the DPC experts teams are administrative documents,
with legal effects; hence, they were the ground for the allocation of the resources aimed
at covering the costs of the damage.

Based on such assessment, technical commissions, chaired by the governors of the
Regions involved, evaluate the eligibility to receive funds building by building and
approve any program of reconstruction interventions, along with the relative financial
plan. Approved funding are then transferred to the involved administrative entities
(i.e., municipalities and Provinces) and finally to the eligible subjects. It is worthwhile
to remark that high school buildings are managed by Provinces that hence receive, with
no intermediation made by the municipalities, direct funds from the commissions.

27We remind the reader, interested in the first phase interventions, to a more compelling treatment
in Dolce and Di Bucci (2014).
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Figure B1: Example of the assessment of the damage in a building in damaged zone.
Source: Dolce and Di Bucci (2014, p. 2244)

Figure B2: Example of the assessment of the damage in a slightly damaged school
building. Source: Masi et al. (2016, p. 217)
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Figure C1: Vulnerability class and classification of damage to buildings.
Source: Grünthal (1998, pp. 14-15)

C The INGV macro-seismic survey

We compare the evolution of the test scores in Mathematics and Italian language
of students in undamaged schools located in the earthquake-affected area, that were
thus awarded special funding, with those of students in schools located in neighboring
municipalities, outside the earthquake area, that did not receive any extra-funds. As
we discussed in the paper, we select the first group of municipalities using information
from the INGV macroseismic survey. In this section, we illustrate how this survey was
implemented. For more details we refer to Galli et al. (2012).

The INGV macroseismic survey matches information from the macroseismic inten-
sity values, measured through the EMS-98 scale,28 and the level of vulnerability of the
buildings in the municipality, that varies across six classes of vulnerability (A, highest
vulnerability, to F, lowest vulnerability) in relation to the structural characteristics of
the buildings (e.g. typological and morphological information and age of construction
of the buildings). Figure C1(a), from Grünthal (1998), illustrates the likelihood that
a building lies in a given vulnerability class based on its structure, whose information
are gathered from the 2011 census.

Combining the macroseismic intensity values with the level of vulnerability of the
buildings, the INGV macroseismic survey provides estimations of the volume of build-
ings with a certain level of damage in a given municipality (see Meroni et al. (2017)

28As explained in Section B.3, the intensity values of the earthquake for the damaged localities are
collected by the Italian Civil Protection Department (DPC).
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for a technical description). As illustrated in Figure C1(b), the INGV macroseismic
survey classifies potential damage in 5 classes. Buildings with a damage of grade 1
(class D1) reported negligible or slight damages that, even in the worst scenario, have
not affected the structure of the building. These buildings counted one or two hair-line
cracks in the walls or small pieces of plaster broken off the wall. When the cracks in
the walls become numerous, or there are large pieces of plaster broken off from the
walls, buildings are classified as D2. Although the building does not have yet any
structural damage, its use becomes less appropriate for any activity. Buildings with
damages of grade higher than D2 feature heavy (and structural) damages. Those of
class D3 report moderate structural damage, whereas those of class D4 are seriously
damaged. Finally, buildings with a damage of class D5 are destroyed.

To give an example, if a municipality is given a macroseismic intensity value of IX
along the EMS-98 scale, it means that many buildings with medium vulnerability level
(class B) and few buildings of vulnerability level C are heavily damaged (D4) whereas
most buildings with higher vulnerability levels (e.g., class A) are completely collapsed
(D5). For each class of damage, the INGV macroseismic survey then provides the
percentages of buildings in each class in every municipality.

In our analysis, we keep only schoolhouses located in municipalities where the
percentage of buildings is classified at most as D1, as hair-line cracks in the walls or
broken off small pieces of plaster do not affect negatively the learning process of the
students.
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D Additional evidence on the first-stage relation-

ship between funds allocated and seismic haz-

ards

A potential concern is that the results from the 2SLS estimation, presented in Equation
3, are driven by the difference in PGA levels between unfunded schools (i.e., Di = 0),
located in areas with relatively low seismic risk, and funded schools (i.e., Di = 1),
located in areas with higher levels of seismic risk, and that little additional variation
is left within the latter group.

In this section, we show that our results are mostly driven by a genuine variation
in the (positive) amount of funds received. We re-estimate the difference-in-difference
models using only data on funded schools. This analysis, thus, relies on a restricted
panel of 68 schools.29

We present these results in Table D1. Specifically, in column 1 we estimate the
difference-in-difference model using OLS. In column 2, we employ plausible exogenous
variation in the PGA levels using 2SLS. Interestingly, although we only use data on
funded schools, 2SLS estimates are 4 times larger than when using the full sample.
The difference in magnitude between OLS and 2SLS is now smaller than in Table 4, yet
this cannot be ascribed to a weak first stage estimation. In fact, the Kleibergen-Paap
F Statistics is larger indicating a strong relationship between the amount of funds and
the “fragility” of the territory where the school is located. This first stage relationship
is also displayed in Figure D1, where we present the scatterplot of the residuals of the
amount of funds received (y-axis) versus the PGA levels of the municipality where the
school is located (x-axis).

29Since we cluster standard errors at school level, our inference is based on 68 clusters.
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Table D1: Secondary School, Mathematics – Only funded Schools

(a) (b) (c) (d)
OLS 2SLS first stage reduced-form

Funding per capita (00) × post2012 (lag) 0.004∗∗ 0.017∗∗∗

(0.001) (0.004)
Seismic hazard × post2012 (lag) 61.466∗∗∗ 1.021∗∗∗

(11.420) (0.175)
Kleibergen-Paap F Statistics 28.954
Observations 268 268 268 268
R2 0.119 0.022 0.433 0.174

Notes: School Fixed-effect models. The dependent variable is the logarithm of the average test
score in Mathematics. Funding per capita is expressed in 100 euros. Each column includes the
cohort size, the percentage of males, and the number of native students. Linear trend and province
dummies interacted with post2012 are included in all regressions. Standard errors are clustered at
the school level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Figure D1: PGA values and amount of funds received (estimation from column c of
Table D1). Only funded schools
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Notes: Unlike column c of Table D1, this relationship is estimated using school dummies in place of
school fixed effects — thus explaining the difference in the size of the estimated standard error.
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E Potential endogeneity of funding allocation

In Section B, we have explained how the assessment of the damage and the eligibility
to funding followed verifiable criteria made by the DPC and the governors of Regions.
This makes likely that our results do not pick up confounding, endogenous mechanisms
where mayors have put pressure to include in the list of recipients their municipalities.
However, our analysis cannot fully rule out the possibility that this has occurred ‘under
the table’. To address this potential concern in this section we provide additional
evidence against it. First, we show that mayors in municipalities that received funds
do not have specific characteristics relative to those ruling unfunded municipalities.
Second, we use plausibly exogenous variation in the PGA levels to instrument the
effect of receiving funding on educational outcomes.

E.1 Mayors’ characteristics

We gather first-hand information on mayors’ characteristics in 2012 scraping resumé
published in the council hall webpages. We obtained information on mayors’ gender
(1 if male), education (1 if the mayor holds the elementary degree and 5 if holds the
doctoral degree), age, number of years in office in 2012 (2012 minus the year of his or
her first appointment), whether he or she competed with an apolitical coalition (lista
civica), whether he or she is affiliated to a left wing coalition, and whether the mayor
gained reelection after his or her mandate in 2012. According to the literature on
political selection (e.g., Besley, 2006; Acemoglu, Egorov, and Sonin, 2010), these char-
acteristics may potentially make a politician more ‘skilled’ in influencing the inclusion
of schools in the recipient group.

To curb concerns on mayors having influenced the allocation of funding process,
one should ideally obtain that all these characteristics are orthogonal to the allocation
of funding. We test this hypothesis running a balance test between municipalities that
have received funding after the earthquake and municipalities that did not and illus-
trate the estimates in Figure E1 (where horizontal bars around the point estimation
indicate the 95% confidence interval).30 Point estimations that lie on the left of the
vertical line indicate that those characteristics are relatively more prominent in un-
funded municipalities; those stretched rightward indicate mayors’ characteristics that
are relatively more prominent in funded municipalities.

Setting our confidence level at 95%, we find that mayors are not statistically differ-
ent in the two samples of municipalities, except for the type of coalition they run for
mayorship in the elections. Specifically, we find that unfunded municipalities are rela-
tively more likely to be governed by a major that campaigned with a lista civica. This
is a systematic feature of the Italian administrative election system and likely to be
mechanical with respect to the population. Indeed, once we control for the population
of the municipality we cannot reject the null hypothesis.

30To improve the graphical presentation of the estimates in Figure E1 we divide both age and
tenure by 10.
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Figure E1: Balance test between municipalities recipient of funding and municipalities
that have not received funds — Mayors’ characteristics.
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E.2 2SLS estimation

There is a widespread consensus that political alignment between the National and
the local government is an element that facilitates top-down transfers of funds (e.g.,
Solé-Ollé and Sorribas-Navarro, 2008; Brollo and Nannicini, 2012; Arulampalam et
al., 2009). However, it is worth remarking that this is unlikely to occur in our analysis
as in the period under scrutiny Italy was governed by a government of technicians
(Governo Monti), that implemented austerity policies. Nonetheless, as we explained
in Section B.3, regional governors played a chief role in the selection of the eligible
projects and alignment between the Regional and the municipal governments can have
still played a role in influencing the decisions regarding the allocation of funding.

Our results illustrated in Figure E1 suggest that this can be a potential issue as
funded municipalities seem to be more likely to have mayors from a left-wing platform
— the same of the governor of the Region of Emilia Romagna. Yet, this relation is
not statistically significant at conventional levels.

To address this potential endogeneity issue we employ a 2SLS estimation using
plausibly exogenous variation in the PGA levels and present our 2SLS estimations in
Table E1. Second stage estimates are positive and statistically significant (column b)
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and so is the first stage estimation that captures the effect of a variation in the PGA
levels on the probability of being a recipient of funding (column c). Our results are
also robust to an alternative clustering strategy that capture intra-class correlation at
municipality level (in squared brackets).
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Table E1: Secondary School, Mathematics

(b) (c) (d)
OLS 2SLS first stage

Spending dummy × post2012 (lag) 0.099 0.507
(0.024)∗∗∗ (0.079)∗∗∗

[0.024]∗∗∗ [0.265]∗

Seismic hazard × post2012 (lag) 2.374
(0.297)∗∗∗

[1.081]∗

Kleibergen-Paap F Statistics 63.820
Observations 692 692 692
R2 0.147 0.033 0.463

School Fixed-effect models. Linear trend and province dummies interacted with
POST are included in all regressions. Standard errors clustered at school level in
rounded parentheses and at municipality level in squared parentheses.

30



Additional references (not cited in the article)

- Acemoglu, D., Egorov, G., & Sonin, K. (2010). Political selection and persistence of
bad governments. The Quarterly Journal of Economics, 125(4), 1511-1575.

- Arulampalam, W., Dasgupta, S., Dhillon, A., & Dutta, B. (2009). Electoral goals
and center-state transfers: A theoretical model and empirical evidence from India.
Journal of Development Economics, 88(1), 103-119.

- Besley, T. (2006). Principled agents? The political economy of good government.
Oxford University Press on Demand.

- Dolce, M., & Di Bucci, D. (2014). National Civil Protection Organization and
technical activities in the 2012 Emilia earthquakes (Italy). Bulletin of earthquake
engineering, 12(5), 2231-2253.

- Brollo, F., & Nannicini, T. (2012). Tying your enemy’s hands in close races: the
politics of federal transfers in Brazil. American Political Science Review, 106(4), 742-
761.

- Masi, A., Chiauzzi, L., Santarsiero, G., Liuzzi, M., & Tramutoli, V. (2017). Seismic
damage recognition based on field survey and remote sensing: general remarks and
examples from the 2016 Central Italy earthquake. Natural Hazards, 86(1), 193-195.
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F Data sources and description

School funding: The 2012 seismic events affected six provinces in three regions:
Bologna, Modena, Ferrara, Reggio Emilia (Emilia-Romagna), Rovigo (Veneto) and
Mantova (Lombardia). The Governors of the involved regions were appointed as
deputy commissioners to promote interventions to reconstruct and to secure the af-
fected areas. Accordingly, several legislative acts were enacted providing the guidelines
of such interventions and, among others, also those ones related to the school funding.
The funds were intended for reconstruction, securing the whole area and reinforcing
the anti-seismic system of the buildings, accompanied by an increase of the seismic
safety and urban quality in terms of energy consumption sustainability. With par-
ticular reference to areas with negligible damages, interventions to the schoolhouses
have been not invasive and funds have been mostly used for e.g., painting scratched
walls, improving the lightening of rooms, fixing the heating system etc. Money has
been used solely to support the school infrastructure and not to buy PCs or other
technological devices. Note also that teachers salaries are fixed in Italy and paid by
the Ministry of Education: they could not be possibly increased using funds for the
earthquake reconstruction.

The following websites list all the enacted laws related to the interventions after
the earthquake for each of the three regions:
http://www.regione.emilia-romagna.it/terremoto/gli-atti-per-la-ricostruzione
http://www.sismamantova.regione.lombardia.it
http://www.regione.veneto.it/web/guest/ordinanze-del-commissario-delegato

From the above legislative acts we assemble the information about the amount
of funding received by each school after the earthquake. These documents report
the name and the location of the school, the amount of funding received, and a short
description of the required intervention. Specifically, the following orders of the deputy
commissioner (ODC) have been considered:

[-] Emilia-Romagna: “attachment D/1” and “attachment D” in the ODC #111
(27 September 2013) and in the Committee resolution #1388 (30 September 2013);

[-] Lombardia: “attachment A” in the ODC #22 (24 June 2013), “attachment 1”
in the ODC #26 (30 July 2013), confirmed in the ODC #69 (5 November 2014);

[-] Veneto: “attachment A” in the ODC #2 (9 August 2012), “attachment A” in
the ODC #3 (20 August 2012), confirmed in the ODC #4 (19 November 2012).

We combine this data with the information about the school identification num-
ber and their address to geolocate each school in sub-municipal areas using the map
provided by the “Italian Revenue Agency” (see the following link: http://wwwt.

agenziaentrate.gov.it/geopoi_omi/index.php).

Damage evaluation: The INGV macroseismic survey is based on the same ter-
ritorial classification provided by Meroni et al. (2017). See Section C of the Online
Appendix for more information.

Seismic hazard: We collect the data for the variable “Seismic hazard (PGA)”
to measure the frequency of earthquake occurrence from the following INGV official
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website http://esse1-gis.mi.ingv.it/s1 en.php. The unit of measure is the gravity ac-
celeration and it refers to the maximum ground acceleration during the earthquakes at
municipality level. We match each school with the PGA score using the municipality
identification number provided by the Italian National Institute of Statistics (ISTAT).

Test scores: Since 2008, all the Italian students’ skills and achievements have
been evaluated by an independent public agency, namely the National Institute for
the Educational Evaluation of Instruction and Training, known by the Italian acronym
INVALSI. From the school year 2010/11, at the end of each year INVALSI administers
a standardized test of Mathematics and Italian language skills to state schools students.

The main advantage of such procedure is that those tests are administered at the
same time to all students of the same grade and, above all, they are standardized,
so that the comparison across students from different schools and academic years
is possible. The test results are publicly presented once a year, at the end of the
academic year, highly debated by the national media. Note, however, that these tests
have no implication at all for the allocation of public funding across schools. The
scores collected in those tests do not contribute in any way to the final grade assigned
to students either.

For an extensive number of state high schools we have data for both Mathematics
and Italian skills over six school years from 2010/11 to 2015/16, that is two years
before and four years after the earthquake. Each school has an identification number
through which we match the INVALSI test results with the schools of the sample
determined as explained above. The test scores range between a minimum of 10 and a
maximum of 100, when all the answers are correct. As the test scores are provided at
student level, we aggregate them so to construct several variables at the school level,
for both Mathematics and Italian test scores. The first variable is “Score (mean)”: it
is the average result of the tenth graders for each school. Then we measure the average
test scores of the low-achieving students by considering the fraction of students in the
5th and 10th percentile of the score distribution, so that we have respectively “Score
(p5)” and “Score (p10).” In a similar way, we measure the average test scores of the
high-achieving students by considering the fraction of students in the 90th and 95th
percentile of the score distribution, so that we have respectively “Score (p90)” and
“Score (p95).”

% Male, % Native and Cohort Size: We take data on the share of male and
native students and on the cohort size from INVALSI.

Cheating attitudes: We take data on the cheating scores on each class of students
from INVALSI.

Information on mayors: We scraped information on mayors in our sample mu-
nicipalities around 2012 using resumeón city hall webpages.

Funds on private buildings renovation: We gather additional data on pub-
lic resources that the government has allocated to private citizens to modernize and
improve the quality of their buildings and thus mitigate their vulnerability to future
earthquakes, from https://openricostruzione.regione.emilia-romagna.it/, for
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the municipalities of the Region Emilia Romagna. It covers 83% of the total number
of schools.
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