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temperature effects on radiated sound around bluff
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Abstract1

This work presents results of a direct computation of acoustic fields produced by2

several laminar flow configurations. A solver specifically developed for compress-3

ible mass, momentum and energy equations, named caafoam, is presented. Low–4

storage high-order Runge-Kutta schemes were used for time integration, and an un-5

structured colocated finite–volume method for space discretization. A sponge-layer-6

type non-reflective boundary treatment was adopted to avoid spurious numerical7

reflections at the far-field boundaries. These techniques were chosen and tested to8

see if they enable a broad range of physical phenomena, with a particular emphasis9

on aeroacoustic problems, to be solved. The reliability, efficiency and robustness of10

caafoam was demonstrated by computing several benchmarks concerning far-field11

aerodynamic sound. After proving the direct simulation capabilities of caafoam, it12

was used to analyze the effect of the wall temperature conditions on the aeroacoustic13

sound produced by laminar flows over bluff bodies.14
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1 Introduction18

The study of noise radiated from objects is a key engineering problem because19

the noise itself can have significant negative effects on our daily lives.20

From the engineering standpoint, it is essential to understand the mechanisms21

of aeroacoustic noise generation and propagation in order to achieve its con-22

trol/reduction. A number of experimental efforts have been devoted to this23

issue, but they have met with a few problems relating to aeroacoustic noise. It24

is really difficult, for instance, to remove background noise that contaminates25

the aeroacoustic field.26

Computational aeroacoustic (CAA) techniques can be a reliable way to study27

aerodynamically–produced sound [1]. They involve several approaches; how-28

ever our interests are devoted to the direct numerical simulation (DNS) of the29

aeroacoustic sound, where the flow generating the sound and its propagation30

are both solved computationally.31

DNS can encounter several difficulties, largely because the sound pressure32

is usually much smaller than the ambient pressure [2]. In addition, acous-33

tic waves are reflected at the far boundaries of the domain when standard34

boundary conditions are employed and, for DNS computations, ad hoc non–35

reflecting boundary conditions are needed to fix this issue [3]. To prevent36

numerical dissipation and dispersion from overshadowing sound production,37

DNS computations have traditionally been done using high-order methods,38

such as finite difference (FD) [4], finite volume (FV) [5] or, more recently, dis-39

continuous Galerkin (DG) methods [6]. For the same reasons, Runge-Kutta40

(RK) methods are used for time integration. It is worth noting that high–order41

FD (based on compact schemes) and FV methods carry a loss of parallel effi-42

ciency due to a non-compact stencil. On the other hand, the theoretical order43

of accuracy is not preserved when dealing with irregular grids, or at the phys-44

∗ Corresponding author.
Email address: v.dalessandro@univpm.it (Valerio D’Alessandro).
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ical boundaries. DG methods are more flexible than FV or FD approaches,45

but they carry a huge computational resource demand [7]. High–order meth-46

ods have been also employed by CAA investigators since they allow to resolve47

waves propagation phenomena with the minimum number of mesh points per48

wavelength [3]. Differently, standard second–order schemes require a grater49

number of mesh points per wavelength to ensure adequate accuracy. Thus,50

they are not considered as the cutting–edge solution strategy in CAA.51

All the above–mentioned high–resolution methods are typically adopted in52

academic codes with a very limited dissemination to the general public. That53

is why we have developed an open–source solver for aeroacoustic DNS to54

publicize the feasibility of performing such computations. Our CAA solver,55

named caafoam, is free to download on GitHub at the following address:56

https://github.com/vdalessa/caafoam. It employs low-storage high-order Runge-57

Kutta (RK) schemes for time integration, with an accurate artificial sponge-58

layer-type, non-reflective boundary treatment. The governing equations are59

space-discretized using an unstructured colocated FV method in order to ex-60

ploit the solver’s flexibility in handling complex geometries. Moreover, our61

second order approach is also intended as extending the OpenFOAM library62

capabilities for CAA and compressible flows and it is also conceived as a step-63

ping stone to higher order implementations in OpenFOAM.64

The solver has been validated, also by comparing its performance with other65

freely-available tools, to demonstrate its reliability, efficiency and robustness.66

Particularly, in the considered cases the sound radiated from bluff bodies in a67

uniform undisturbed flow is directly simulated.68

The impact of the thermal boundary conditions on sound propagation is also69

investigated. It was shown that the wall temperature increment can reduce70

the lift and drag pulsations and increase the drag generated by the Karman71

vortex street that is shed over bluff bodies in laminar flows. In the available72

literature, similar effects had already been noted by Lecordier et al. [8, 9]. In73

the present context, however, any reduction in lift pulsations is very important74
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because it leads to a decay in aeroacoustic perturbations.75

This paper is organised as follows: the governing equations are presented in76

Section 2, while the adopted numerical discretization techniques are discussed77

in Section 3; Section 4 is devoted to numerical results. Lastly, Section 5 con-78

tains the conclusions.79

2 Governing equations80

The flow model adopted in this work concerns the unsteady mass,momentum81

and energy equations. Let t ∈ [0, T ] be a given instant in the temporal domain,82

x ∈ Ω ⊂ Rd (with d = 2, 3) a given point in the spatial domain, and Q =83

Ω× [0, T ] ⊂ Rd×R+. The initial boundary values problem consists in finding84

the solution vector u : Q → Rd+2 that, for the given Dirichelet boundary85

conditions uD : ΓD × [0, T ] → Rd+2, Neumann boundary conditions hN :86

ΓN×[0, T ]→ Rd+2, and initial conditions u0 : Ω→ Rd+2, satisfy the governing87

equations:88

∂u

∂t
+
∂fc,j
∂xj

=
∂fv,j
∂xj

in Q,

u = uD on ΓD × [0, T ] ,

∂u

∂xj
nj = hN on ΓN × [0, T ] ,

u = u0 in Ω ⊂ Rd, t = 0,

(1)89

where Γ = ΓD
⋃

ΓN is the boundary of the domain Ω; ΓD and ΓN are the90

Dirichelet and Neumann boundaries, respectively; and nj are the components91

of the outward-facing unit normal vector on Γ.92

Relying on the vector u = (ρ, ρu1, ρu2, ρu3, ρE)T , the j–th component of the93
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convective and diffusive fluxes reads:94

fc,j =



ρuj

ρu1uj + pδ1j

ρu2uj + pδ2j

ρu3uj + pδ3j

ρujH



, fv,j =



0

τ1j

τ2j

τ3j

τjiui − qj



. (2)95

In these relations, ρ denotes the density, ui is the generic Cartesian component96

of the velocity vector v, and p is the pressure. E is the total internal energy,97

while the total enthalpy is obtained from H = E + p/ρ. The viscous stress98

tensor is computed using the standard constitutive relation for Newtonian99

fluids:100

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
µ
∂uk
∂xk

δij (3)101

and the heat flux vector components by means of the Fourier postulate:102

qi = −λ ∂T
∂xi

. Note that µ is the dynamic viscosity and λ the thermal con-103

ductivity which in this work are modeled as temperature independent. The104

fluid temperature, T , is measured starting from the total internal energy as105

follows: cvT = E − 1
2
v · v, where cv is the specific heat at constant volume.106

Lastly, the pressure is computed by adopting the ideal gas equation of state107

as a thermodynamic model: p = ρ (γ − 1)
(
E − 1

2
v · v

)
, where γ = cp/cv is108

the specific heat ratio of the fluid.109

2.1 Non-reflective boundary treatment110

As discussed in Section 1, to compute acoustic wave propagation phenom-111

ena we need to avoid spurious numerical sound waves produced by external112

boundaries of the domain. An artificial sponge layer [10, 11] is used for this113
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purpose. The sponge treatment has been widely used because it is simple, ro-114

bust and flexible in handling complex geometries [12]. Taking this approach,115

the governing equations are modified as follows:116

∂u

∂t
+
∂fc,j
∂xj

−
∂fv,j
∂xj

= σ (uref − u) in Q (4)117

The new non–physical term on the right-hand side of eq. 4 is only active118

near the external boundaries, where it dampens the flow variables to a known119

reference solution, uref . In eq. 4, the scalar field σ : Ω→ R is:120

σ = σ0

(
Lsp − d
Lsp

)n
(5)121

where Lsp is the thickness of the layer, d is the minimum distance from the122

nearest far-field boundary, σ0 is a constant value, and n is an integer parameter123

controlling the shape of the sponge’s profile. An optimal sponge layer design124

is not trivial: larger sponges perform better than equally-strong smaller ones.125

In other words, they dampen flow features more quietly [13]. Larger sponges126

demand larger computational domains; indeed they must be positioned far127

enough away from the sound sources to avoid interference phenomena with128

the flow/acoustic fields.129

Another possible non–reflective approach consists in the adoption of sponge–130

layers which exploit the numerical dissipation produced by the grid stretching.131

Despite its conceptual simplicity this technique poses difficulties with regard132

to the evaluation of the grid stretching entity and grid cells’ number needed133

to be applied in the buffer zone. The specific choice is often related to the134

computational experience gained on a particular code [14]. For this reason in135

the following we prefer polynomial sponge–layers.136

Mani [13] recently ran a theoretical and numerical analysis on non–reflecting137

boundary treatments based on polynomial sponge layers. The Author pro-138

vided several practical guidelines for CFD/CAA practitioners on how to avoid139

sponge failure. In particular, the non-reflective boundary implementation is140
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based on the following parameter:141

ηtarget = −40 log10 e

1−M2
∞

∫
Lsp

σdx, (6)142

where ηtarget is the sponge’s strength expressed in dB, and M∞ is the Mach143

number of the undisturbed flow. As an example, a sponge with a strength of144

40 dB would dampen the amplitude of an incident sound wave by a factor of145

100 under one-dimensional conditions. The sponge’s thickness must also be146

established with the following constraint:147

0.5 ≤ Lsp · f
c∞

≤ 2 (7)148

where f is the sound disturbance frequency, and c∞ is its phase speed [13].149

For all the computations presented in this paper, we have observed that150

ηtarget = 40 dB is needed, so n = 2 in eq. 5 has been selected. Indeed, Mani [13]151

investigated the effect of n on the sponge performance and it showed that152

quadratic sponge has best overall performance for ηtarget ranging from 20 dB153

to 60 dB. Lastly, the dimensionless parameter (Lsp · f) /c∞ , strictly needed to154

evaluate sponge width, is fixed equal to 0.5 to limit the computational load.155

2.2 Computing the distance from far-field boundaries156

For the purpose of establishing the distance from far-field (non-reflective)157

boundaries, we have solved the Eikonal differential equation:158

∂ϕ

∂xj

∂ϕ

∂xj
= 1 in Ω, (8)159

where ϕ : Ω → R is the distance field. A homogeneous Dirichelet condition160

is imposed on the non-reflective boundaries, and a homogeneous Neumann161

boundary condition elsewhere.162

The Eikonal equation computes the exact distance, defined as the distance163
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from the boundary normal direction. In other words, the distance can be seen164

as an advancing front with a unit velocity in the direction of the boundary165

normal. The main advantage of this technique is its good scalability on larger166

meshes.167

The solution for eq. 8 has thus been obtained by converting it into a hyperbolic168

problem, adding a pseudo-time term:169

∂ϕ

∂τ
+ uϕ,j

∂ϕ

∂xj
= 1 in Q (9)170

with uϕ,j = ∂ϕ/∂xj. The solver for computing far-field distance, named eikonal,171

is free to download at https://github.com/vdalessa/eikonal. It only has to be172

run once in the pre-processing stage because we rely on non-moving meshes.173

3 Numerical approximation174

3.1 Finite volume discretization175

In the unstructured, colocated, cell-centered FV method adopted in this work,176

the computational domain Ω is divided into a set of non–overlapping polyg-177

onal cells. Finite volume discretization is briefly recalled here as it is crucial178

to discussing the approximation techniques for each term appearing in the179

discrete equations. In the following expressions, the values of the variables at180

the center of the cell faces are indicated with the subscript (·)f . The term Sf181

is the surface area vector of each mesh face; see Fig. 1 for a schematic repre-182

sentation.183

Starting from the integration of eq. 4 over each mesh element, K (having184

boundary ∂K), we obtain:185

∫
K

∂u

∂t
dΩ +

∫
∂K

(
fc,j − fv,j

)
nj dΓ =

∫
K
σ (uref − u) dΩ. (10)186
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The non–linear convective term is discretized as follows:

∫
∂K

fc,jnj dΓ =
Nf∑
f=1

(
fc,j
)
f
nj |Sf | (11)

where Nf is the number of faces belonging to the mesh element K. Rewriting187

the Eulerian terms vector as:188

fc,j = uju + fcp ,j + fcE ,j (12)189

with fcp ,j = (0, pδ1j, pδ2j, pδ3j, 0)T and fcE ,j = (0, 0, 0, 0, ujp)
T , it can be ap-190

proximated as follows:191

Nf∑
f=1

(
fc,j
)
f
nj |Sf | =

Nf∑
f=1

φfuf +
Nf∑
f=1

Λ
(1)
f |Sf |+

Nf∑
f=1

φfΛ
(2)
f (13)192

where Λ
(1)
f = (0, p, p, p, 0)T and Λ

(2)
f = (0, 0, 0, 0, p)T . A first way to handle193

the three terms on the right-hand side of eq. 13 that we consider here follows194

the Kurganov-Noelle-Petrova (KNP) approach [15]:195

Nf∑
f=1

φfuf =
Nf∑
f=1

(ψφu)+f − (ψφu)−f
ψ+
f + ψ−f

+
ψ+
f ψ
−
f

ψ+
f + ψ−f

(
u+
f + u−f

)
,

Nf∑
f=1

Λ
(1)
f Sf =

Nf∑
f=1

ψ+
f

ψ+
f + ψ−f

|Sf |
(
Λ(1)

)+
f

+
ψ−f

ψ+
f + ψ−f

|Sf |
(
Λ(1)

)−
f
,

Nf∑
f=1

Λ
(2)
f Sf =

Nf∑
f=1

(
ψφΛ(2)

)+
f
−
(
ψφΛ(2)

)−
f

ψ+
f + ψ−f

.

(14)196

Note that the term φf in the above equation represents the velocity flux197

through the cells’ face, and it is evaluated as: φf = vf · Sf . In eq. 14, the198

superscript + denotes the face value of the element placed in the direction199

parallel to the Sf vector depicted in Fig. 1; and the superscript − the oppo-200

site direction. These values are obtained by means of a linear interpolation;201
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for example, the + interpolation for uf , i.e. u+
f , is simply:202

u+
f =

(
1− Sf · dfN
|Sf | |dfN |

)
uP +

Sf · dfN
|Sf | |dfN |

uN , (15)203

the meaning of dfN is depicted in Fig. 1. ψ+
f and ψ−f are associated with the204

local speed of propagation, and they are calculated as reported in Greenshields205

et al. [16]:206

ψ+
f = max

(
|Sf |

√
γRT+

f + φ+
f , |Sf |

√
γRT−f + φ−f , 0

)
,

ψ−f = max
(
|Sf |

√
γRT+

f − φ+
f , |Sf |

√
γRT−f − φ−f , 0

)
,

(16)207

where R is the gas constant.208

KNP scheme was selected since: (i) there are no Riemann solvers and charac-209

teristic decomposition involved [15]; (ii) it is was already implemented within210

OpenFOAM package and repeatedly tested; so it produces a reliable approxi-211

mate solution of the Riemann problem.212

In this paper, we also consider a second approach to approximating the Eu-213

lerian numerical flux in which we split fc,j into a convective and a pressure214

part:215

fc,j = fcH ,j + fcp ,j (17)216

with fcH ,j = uj (ρ, ρu1, ρu2, ρu3, ρH)T ; so FV approximation for fc,j is:217

Nf∑
f=1

(
fc,j
)
f
nj |Sf | =

Nf∑
f=1

(
fcH ,j

)
f
nj |Sf |+

Nf∑
f=1

(
fcp ,j

)
f
nj |Sf | . (18)218

The convective part of the Eulerian flux is computed here by following Piroz-219

zoli’s energy-conserving scheme [17]:220

fcH ,j =
1

8

(
ρ+ + ρ−

) (
u+n + u−n

) (
ϕ+ + ϕ−

)
(19)221

10



where ϕ = (1, u1, u2, u3, H)T and un = ujnj. The pressure flux is obtained222

from:223

fcp ,j =
1

2

(
fcp ,j

+ + fcp ,j
−
)

+ fcp
D
,j
. (20)224

The diffusive part in the numerical flux of eq. 20, fcp
D
,j
, is activated to increase225

the stability of the discretization technique in computations on unstructured226

or distorted meshes. In particular, to activate fcp
D
,j
we rely on a classical shock227

sensor, [18]:228

θ = max

− ∇ · v√
(∇ · v)2 + |∇ ∧ v|2 + u20/L

2
0

, 0

 θ ∈ [0, 1] (21)229

where u0 and L0 are suitable velocity and length scales [19]. In the cases230

considered in this paper, as in Modesti and Pirozzoli [20], the artificial diffusion231

term is designed to be proportional to θf = (θ+ + θ−) /2:232

(
fcp

D
,j

)
f

= αθf
(
fcp

AUSM
,j

)
f
. (22)233

Note that α is a flag controlling the activation of the diffusive pressure flux,234

while fcp
AUSM
,j

is obtained using the AUSM+–up formula (eqs. (69) to (77) of235

Liou [21]).236

We also wish to mention that the Courant number, Co, is computed in this237

work using the following equation:238

Co = max
(∣∣∣ψ+

f

∣∣∣ , ∣∣∣ψ−f ∣∣∣) δ∆t|Sf | (23)239

with:240

δ =
1

max
(
d · Sf

|Sf | , 0.05 |d|
) , (24)241

d as shown in Fig. 1.242

Standard approximation schemes are used for the diffusive fluxes, fv,j. Since243

discussing such techniques is beyond the scope of this manuscript, we refer244

11



readers to the textbook by Ferzinger and Peric [22] for more details.245

It is worth noting that flow problems with shock–waves are not considered in246

the presented numerical methodology. From here on, we refer to the KNP-247

based solver as caafoam-m1, while caafoam-m2 is used to indicate the solver248

based on Pirozzoli’s scheme.249

Lastly, we want to point out that Eikonal equation is solved in its hyperbolic250

form, eq. 9, using a fully explicit approach. Standard central schemes have251

been employed for this purpose for structured grids, while upwind techniques252

have been used for unstructured meshes since in this case the former approach253

is unstable.254

3.2 Time integration schemes255

For each FV, the interpolation coefficients obtained from the discretization256

process are used to form the following system of ODEs:257

dU

dt
= R (U) (25)258

where R is the residual of the space discretization including the convective,259

diffusive and source terms; and U is the degrees of freedom (DoFs) vector.260

Explicit Runge-Kutta (ERK) schemes were used to solve eq. 25 in the present261

work. The ERK Williamson formula [23] was implemented to contain memory262

usage. The integration strategy in the k-th RK stage can be summarized as:263

∆U(k) = Ak ∆U(k−1) + ∆t R
(
U(k−1)

)
,

U(k) = U(k−1) +Bk ∆U(k).
(26)264

In eq. 26, the Ak and Bk coefficients are functions of the standard Butcher265

matrix entries, R(k) is the residual at the k-th intermediate RK stage, and266

U(k) is the DoFs vector at the same RK stage. It is important to note that267

U(k), ∆U(k) and R(k) must be stored, so only three storage registers for each268
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variable are needed for this kind of scheme. This enables us to obtain a good269

performance in large-scale computations too [24].270

We considered ERK schemes having an order of accuracy ranging from 2 to271

4; the tables of the coefficients Ak and Bk are given below. For the 2nd-order272

scheme (with 2 stages), named RK 2-2 in the text, we have:273

Ak Bk

0 1.0

−1.0 0.5

274

The 3rd-order low-storage ERK scheme (with 4 stages), called RK 3-4 in275

the paper, is based on the following coefficients proposed by Carpenter and276

Kennedy [25]:277

Ak Bk

0 8/141

−756391/934407 6627/2000

−36441873/15625000 609375/1085297

−1953125/1085297 198961/526383

278
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Lastly, a 4th-order accurate approach (with 5 stages) was also adopted, as279

proposed by Kennedy et al. [24], and called RK 4-5 in our work:280

Ak Bk

0 0.1496590219993

−0.4178904745 0.3792103129999

−1.192151694643 0.8229550293869

−1.697784692471 0.6994504559488

−1.514183444257 0.1530572479681

281

3.3 Implementation aspects282

The solution algorithm is implemented in the OpenFOAM environment [26],283

which is an open-source library for numerical simulations in continuum me-284

chanics. Thanks to an object-oriented structure, the package is extremely flex-285

ible and it allows for outside users to develop complex physical models with286

relatively little effort.287

The basic OpenFOAM classes, i.e. scalarField, vectorField and tensorField,288

have been conceived to mimic the main mathematical tools needed in tra-289

ditional continuum mechanics. Data type can also be specified in the cells290

or face centers. We also have two different types of tensor-derivative class:291

finiteVolumeCalculus or fvc, and finiteVolumeMethod or fvm. The for-292

mer performs explicit estimates of tensorial operators, while the latter can293

return a matrix representation of a given operation. More details about the294

above-mentioned data types can be found in [26, 27, 28].295

In this paper, we only use the basic classes and the fvc-derived class because296

we opted for an explicit time integration approach. The hyperbolic version297
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of the Eikonal equation was also solved in a fully explicit way using the fvc298

class.299

3.4 Parallel performance300

To investigate the parallel scalability of caafoam, we considered a widely-used301

benchmark, i.e. the lid-driven cavity problem of a laminar flow with a low302

Mach number in a 3D cubic domain [29, 30, 31]. All the boundaries were303

treated as walls except for the top, which was a moving wall. The strong scal-304

ing tests were run on a suite of three evenly-spaced grids with a number of305

cells Nc amounting to: 3203, 2403 and 1603. We also set the Reynolds number306

at 20, and the Mach number relating to the wall velocity at 0.2.307

In our specific case, the simulations were conducted on two different super-308

computers: MARCONI–A2 hosted by CINECA; and MareNostrum hosted309

by BSC. MARCONI is a NeXtScale cluster consisting of 3600 nodes with310

a Knights Landing (KNL) 68–core, 1.40 GHz Intel processor. Each node is311

equipped with 96 GB of RAM and 16 GB of multi-channel dynamic ran-312

dom access memory (MCDRAM). MareNostrum comprises 3456 nodes with313

two Intel Xeon Platinum 24–core processors of the Skylake (SKL) generation314

operating at 2.1 GHz for each node. There are 96 GB of RAM available in315

standard nodes (as used in this work). Both systems are of the Tier-0 type316

forming part of the PRACE initiative, [32].317

The scalability tests discussed below were conducted as part of a prepara-318

tory PRACE project aiming to examine the parallel performance of caafoam319

on massively parallel supercomputers. Access to the machines was limited, so320

these tests could not be performed using all the solvers considered in this work.321

Only caafoam-m1 was therefore considered at this stage because it shares the322

same spatial discretization approach as standard OpenFOAM solvers.323

The tests were conducted without any I/O for 100 time-steps to cancel the324

starting overhead, and using 64 CPU cores for each MARCONI node, while 48325
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CPU cores were used for each MareNostrum node. The code was built using326

Intel compilers and the MPI library version developed by Intel.327

Fig. 2 shows the effect of grid size scalability in terms of speed-up and par-328

allel efficiency. It is worth noting that inter-node scalability is good on both329

systems until the latency due to node communications becomes predominant.330

It is also very obvious that, on MARCONI, smaller grids have a better par-331

allel performance with fewer cores, while grids with more cells perform better332

using a larger number of CPU cores. A clearly different trend is apparent on333

MareNostrum, where performance is almost always super-linear due to cache334

effects. In this case, smaller grids perform better than larger ones until com-335

munications issues override the parallel effects. A super-linear behavior is only336

achieved on MARCONI up to 2048 CPU cores, using the finest grid, on which337

we obtain a good parallel performance up to 8192 CPU cores. A good effi-338

ciency was achieved on MARCONI up to 4 · 103 cells for each core, while on339

MareNostrum we obtained an efficiency of about 88 % with 2250 cells per340

core.341

As concerns the above results, it is important to note that adopting an explicit342

time integration approach is particularly appealing from the parallel efficiency343

standpoint. Appropriately selecting the scheme coefficients also enables us to344

obtain good stability limits, as shown in Section 4.1.1. These are the reasons345

why we consider caafoam an appealing tool for massively parallel aeroacoustic346

simulations.347

4 Results348

Several literature benchmark problems were considered to test the reliability of349

the caafoam solver. We considered the far-field aerodynamic sound generated350

by bluff bodies in a flow with a uniform inlet velocity, in various arrange-351

ments, at low Mach numbers. The cases of a single circular cylinder and of352

two square cylinders placed side by side, as well as in a tandem configuration,353
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were analyzed to test the capabilities of our approach. Then a numerical study354

was conducted on the effect of the wall’s thermal boundary conditions on the355

aeroacoustic field by addressing the sound generated by the flow over isolated356

square and circular cylinders.357

In all the above-mentioned cases, the Mach number of the undisturbed flow358

was M∞ = 0.2, γ = 1.4, and the Prandtl number, Pr, was 0.75. We present359

the results below in terms of standard parameters relating to fluid dynamic360

and acoustic fields, i.e. (i) drag and lift coefficients; (ii) the Strouhal number;361

(iii) fluctuations in pressure and its root mean square; and (iv) dilatation rate362

field. The dimensionless drag and lift coefficients are given by eq. 27:363

CD =
2D′

ρu2∞Aref
, CL =

2L′

ρu2∞Aref
. (27)364

Standard statistics are used to analyze force coefficients behavior: the mean365

drag coefficient 〈CD〉, the root mean square of the lift coefficient CL,rms, and366

the amplitudes of oscillation of the force coefficients (∆CD = (CD,max −367

CD,min)/2, and ∆CL = (CL,max −CL,min)/2). The Strouhal number is defined368

as:369

St =
fLref
u∞

(28)370

where f is the vortex-shedding frequency found from spectral analysis of the371

time history of the fluctuating lift coefficient, and Lref is the reference length.372

The acoustic results are presented below in terms of dimensionless fluctuating373

pressure, defined as:374

p′ =
p− 〈p〉
ρ∞c2∞

(29)375

where 〈p〉 is the average pressure field and c∞ is the speed of sound of the376

undisturbed flow. Polar plots containing the root mean square of p′ are shown377

to elucidate the sound features in the far field. For the purpose of a comparison378

with the literature, the acoustic statistics were sampled over a dimensionless379

time u∞T/D = 100. Unless stated otherwise, the plots are built at r/D = 75.380

The dilatation rate field, ∂uj/∂xj, is also used to visualize the acoustic wave381
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because, taking the mass conservation equation into account, it equates to the382

negative rate of change of the density which is directly linked to p′.383

Finally, the acoustic power output, defined as the acoustic intensity flux through384

a closed circle surrounding the source and having a radius r′, is examined to385

estimate the wall heating effects on the sound produced. The analytical ex-386

pression of the acoustic power is as follows:387

W =
∫ 2π

0
Ia (r = r′, θ)Rdθ (30)388

where Ia = (p′rms)
2 /ρc accounts for the mean acoustic intensity in the far-field389

region. The sound power level is obtained as:390

Lw = 10log10
W

W0

(31)391

where W0 is the reference acoustic power.392

All the solutions were obtained on distributed-memory parallel machines: the393

computations requiring a lower load were run on a Linux Cluster, with 16 Intel394

Xeon E5-2603v3-based nodes, for a total of 192 CPU cores operating at 1.6395

GHz. Larger cases were run on a MARCONI-A2 system. Intel’s libhbm library,396

which can be downloaded from the OpenFOAM-dev-Intel branch on Github397

(https://github.com/OpenFOAM/OpenFOAM-Intel/tree/master/libhbm), was398

used to enable access to the MCDRAM. Adopting libhbm enabled us to speed399

up the computations by up to 20%.400

4.1 Validation cases401

4.1.1 Circular cylinder402

The first test case in this work concerns the sound generated by the Karman403

vortex street that is shed behind a circular cylinder. The Reynolds number404

based on the cylinder’s diameter is Re = 150. The problem had already been405
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considered in the context of sound generation computation [33, 34, 35, 36], so406

it is an appropriate benchmark for caafoam.407

Two different suites of computational meshes were generated to test the perfor-408

mance of caafoam. A first group included three fully-structured O-type grids.409

The coarser structured grid, named G1, was created with Nc = 3.5 ·105 (500×410

700); the G2 grid was generated by starting from G1 and increasing the num-411

ber of cells in the radial direction, Nc = 5.25 · 105 (750× 700). The last grid,412

G3, was the result of a further refinement in the radial direction: Nc = 7 · 105
413

(1000× 700). It is important to remark that the G series grids have a number414

of cells per wavelength equal to about: 90 for G1, 135 for G2 and 180 for G3.415

Note also that the previous data are compatible with recent literature refer-416

ences [36, 37, 38]. Our second set of computational meshes consisted of two417

fully-unstructured (triangular cells) grids: the U2 grid had about 2 · 106 cells418

and was obtained by refining a starting grid, named U1 with Nc ' 5.2 · 105,419

in order to have a wavelength resolution comparable to G2 grid. In all the420

above cases, the far-field boundaries were placed at 150 times the cylinder’s421

diameter, D, and the height of the first cell next to the wall, yc, was set at422

yc/D = 5 · 10−3. The sponge’s strength was set at 40 dB. The different space423

discretized domains were tested using both versions of caafoam, i.e. m1 and424

m2.425

An instantaneous representation of the pressure wave generated by vortex426

shedding, computed with our low-dissipation approach, is shown in Fig. 3.427

It contains the positive and negative pressure pulses, alternately produced428

from the upper and lower sides of the cylinder, as also noted by Inoue and429

Hatakeyama, [34].430

Fig. 4 shows the polar plots of the root mean square of the fluctuating pres-431

sure, p′rms, obtained using the RK 4-5 scheme and the maximum allowable Co432

number. The nature of the sound field clearly emerges, also confirming that433

the lift dipole dominates. Fig. 4(a) clearly shows that good reconstruction of434

the acoustic far field can be obtained with the G2 grid. In fact, solutions G2435
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and G3 are almost indistinguishable, while some little wiggles appear for in the436

case of G1. It is important to note that caafoam-m1 and caafoam-m2 (without437

the dissipative term on the pressure flux, i.e α = 0) produce very similar re-438

sults on the structured grids. On the other hand, caafoam-m1 proved unstable439

on our unstructured grids without any limiters on the interpolation schemes440

for the DoFs, which in turn cause acoustic wave depletion. Only caafoam-m2441

with α = 1 proved capable of directly simulating the acoustic field on the U1442

and U2 grids (see Fig. 4(b)). The main drawback of adopting unstructured443

grids, however, lies in the dramatic increase in the number of cells needed to444

obtain acceptable predictions. Our investigations were consequently limited to445

structured meshes from this point on.446

Fig. 5 is worthy of careful attention because it shows the comparison (per-447

formed on the G2 grid) between our approach and the results obtained with448

rhoCentralFoam. The solver is density-based and available in the official449

OpenFOAM release. It adopts the KNP scheme for the space discretization of450

the convective terms [16]. In this particular case, rhoCentralFoam was submit-451

ted to the non-reflective boundary treatment described in Section 2.1. Fig. 5452

shows that rhoCentralFoam is unable to properly reconstruct the acoustic453

field. This is due to the significant amount of numerical dissipation intro-454

duced by the solver, as also noted by Modesti and Pirozzoli [20] in a different455

context. We might also add that the “backward” scheme, available in the offi-456

cial OpenFOAM releases, was used in rhoCentralFoam for time integration.457

The RK-based approaches proposed in this work show a very good agree-458

ment with the reference data in both caafoam-m1 and caafoam-m2 modes (see459

Fig. 4). They also show a directivity of 83◦, which differs from Inoue and460

Hatakeyama, who found 78.5◦, by 5.7%. We can therefore conclude that, on461

structured grids, the space discretization needed to handle Eulerian numerical462

fluxes is not the crucial issue. Our results demonstrate that, in the FV frame-463

work, the solution strategy of space discretized equations has a central role464

in the correct prediction of acoustic waves. For the sake of completeness, we465

20



must add that applying rhoCentralFoam to unstructured grids suffers from466

the same problems as those described for caafoam-m1, which also use the KNP467

approach. In our computational experience, we found that a Comax of about 1468

can be used when the RK 4-5 technique was adopted. The RK 3-4 scheme only469

proved stable for Comax ' 0.6, whereas for RK 2-2 the maximum allowable470

Courant number was around 0.4. Fig. 5 suggests that the RK 2-2 approach is471

the best choice for solving the governing equations because, in both m1 and472

m2 modes, it enables us to obtain results comparable with the RK 3-4 and473

RK 4-5 schemes using only 2 stages. We have to emphasize, however, that the474

RK 2-2 and RK 4-5 schemes are less costly because they have the same ratio475

between the number of computational operations and the stability limits. In476

the following cases, we preferred to adopt the RK 4-5 technique because it477

provided slightly better results than the RK 2-2 method. As shown in Fig. 6,478

the increase in the size of the ∆t does not significantly affect the accuracy of479

the solution for either of the schemes for approximating the convective terms480

considered in this paper.481

Finally, we wish to confirm that a non-reflective boundary treatment is indis-482

pensable for DNS cases. Sponge-layer-free numerical solutions produce com-483

pletely nonphysical results (see Fig. 7). A sponge strength of 40 dB suffices, as484

also noted by Mani [13], to properly suppress spurious wave reflections near485

the boundary field. The sponge layer thickness was computed using the crite-486

rion discussed in Section 2.1.487

Table 1 and Table 2 show the aerodynamic parameters regarding the effect of488

the time-step’s size, including the rhoCentralFoam solutions. The maximum489

dimensionless time-step size, u∞∆t/D, was chosen in order to overcome the490

stability limit of the scheme considered. For rhoCentralFoam, Comax has to be491

less than 0.2 to avoid the computation blowing up. For the sake of compact-492

ness, the above-mentioned results only refer to the G2 grid, and they almost493

converge. The force coefficients established with caafoam are very consistent494

with the results reported by Inoue and Hatakeyama [34], and by Muller [33]495
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high–order finite difference data (see Table 3). The Strouhal number was also496

computed, obtaining St = 0.182 for all the cases considered. Here again, our497

results are very consistent with the main references in the literature. Com-498

pared with caafoam, the rhoCentralFoam solver slightly overestimates the499

amplitudes of the aerodynamic coefficients, but it has a good overall fit with500

the data in the literature.501

4.1.2 Square cylinders arranged side by side: L/D = 3502

In this subsection we discuss the results concerning the flow field and sound503

generation around two square cylinders placed side by side, as shown in Fig. 8.504

The ratio L/D was set at 3, where L is the spacing between the centers of505

the two cylinders and D is the diameter. The Reynolds number, based on a506

single cylinder’s diameter, is Re = 150. Depending on the initial condition,507

a bifurcation of the wake patterns appears for this flow configuration, as for508

circular cylinders [39]. Different sound patterns are generated in response to509

this phenomenon [40]. In this work, a symmetrical initial field (with respect to510

the y = 0 plane) was imposed by two vortices, one moving clockwise and the511

other counterclockwise, behind the upper and lower cylinders, respectively.512

The resulting flow field is described as in-phase because it exhibits synchro-513

nized lift coefficients (Fig. 9(b)). Fully–structured orthogonal computational514

grids were used, adopting a sponge layer with a strength of 40 dB. The grid515

cells were clustered near the cylinder walls, whereas the far field was placed516

at 200 D from the midpoint of the two cylinders (see Fig. 8). Nc was set at517

1.11 · 106. It should be noted that we had to extend the domain due to the518

lower frequency of vortices shed behind the square cylinders than behind the519

single circular one. For this reason, Lsp was increased to keep the dimension-520

less extent of the sponge layer, Lspf/c∞, at 0.5. The inflow/outflow conditions521

were consequently set at 200 D to avoid interference phenomena between the522

acoustic far field and the layer. A finer version of the grid was also generated:523
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it has a number of cells equating to half that of the previous grid, with a total524

number of 4.44 · 106, and the height of the dimensionless first cell bordering525

on the walls is 10−2. Note that the finest grid guarantees about 180 cells per526

wavelength. Time integration was performed using the RK 4-5 scheme and527

the size of the dimensionless time step was set at 1.8 ·10−3. This enabled us to528

obtain a maximum Courant number of around 1 for the finer grid. The larger529

case was run on the MARCONI-A2 system using 256 CPU cores.530

The main aims of this benchmark are to further validate caafoam, and also to531

investigate the role of the solution strategy involving space-discretized equa-532

tions in the context of the structured grids. We consequently limit our efforts533

to the m1 version of our code because it uses the same space discretization ap-534

proach as rhoCentralFoam, and it is equivalent to m2 in terms of the results535

on structured grids.536

Table 4 shows the aerodynamic parameters predicted from the above-mentioned537

computations. An overall good agreement emerged between our data and those538

in the literature. We might also add that it is hard to say whether the intrinsi-539

cally dissipative nature of rhoCentralFoam could affect the forces predicted.540

Finally, Fig. 10 shows the acoustic results. The overall results show a good541

agreement with the findings of Inoue et al. [40], but our grid refinement clearly542

improved the agreement between the data presented here and those in the lit-543

erature. Fig. 10(a) shows the p′rms polar plot, which is very similar to the544

case of the single circular cylinder: a directivity of 80.2◦ was obtained. It is545

important to note that the sound wave is always symmetrical to the y = 0546

plane, and of a similar nature to the longitudinal quadrupole, as discussed in547

Blake [41]. Once again, the non-reflective rhoCentralFoam version does not548

properly reconstruct the acoustic far field, as shown in Fig. 10.549

This confirms that, here too, the space discretization schemes adopted for the550

governing equations are not the main factor responsible for correctly predict-551

ing acoustic waves.552
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4.1.3 Square cylinders in tandem: L/D = 2553

With the same aims as for the side-by-side arrangement, we also considered554

the flow and sound generation around two square cylinders in a tandem config-555

uration with L/D = 2, where L and D have the meaning expressed in Fig. 11.556

The computational domain was generated to place the far field 200 D away557

from the origin of the Cartesian frame in Fig. 11. Quadrilateral orthogonal558

cells were used to discretize the flow domain. The total number of cells, Nc,559

was about 4.2 · 106, and a grid refinement was performed near the walls of560

the cylinders adopting yc/D = 10−2. This grid allow to have about 190 cells561

per wavelength for the specific configuration. As for the side-by-side config-562

uration, we tested a coarser grid with a quarter of the Nc of the finer one.563

The caafoam-m1 solutions are based on the RK 4-5 time integration scheme to564

obtain a maximum allowable Courant number of around 1. So u∞∆t/D was565

set at 9 ·10−3 for the finer grid. Acoustic wave reflections at the far boundaries566

were removed using a configuration derived from the previous test cases; the567

sponge layer’s strength was 40 dB, while its dimensionless thickness was 0.5568

to limit the computational resources required. Finer grid computations were569

run using 256 CPU-cores MARCONI-A2 HPC system.570

Table 5 shows the aerodynamic parameters for the square cylinders in tan-571

dem. The picture is similar to the one seen for the side–by–side cylinders. The572

features of the sound field generated by the interaction of the flow and the two573

cylinders are shown in Fig. 12. The p′rms plot in Fig. 12(a) refers to a circle574

having a r/D of 80. caafoam-m1 results, achieved with the finer grid, are con-575

sistent with the reference data in the literature [42], and reveal a directivity576

of 71.2◦. Lastly, we wish to add that, for this test case too, the non-reflective577

rhoCentralFoam is inappropriate for far-field sound computation. Fig. 12(a)578

clearly shows that, in the far zone of the acoustic field, rhoCentralFoam is579

not consistent with the data reported in [42].580
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4.2 Thermal effects on the aeroacoustic field581

Two different configurations were considered to analyze the effect of the ther-582

mal boundary conditions at the wall on the acoustic field generated by the583

laminar flows around bluff bodies: a single circular cylinder at Re = 150, and584

a single square cylinder at the same Re number. In both problems, the base-585

line configuration involved an adiabatic wall; then cases having Tw = 2T∞586

and Tw = 3T∞ were also investigated. M∞ = 0.2 was used to conduct this587

assessment. Given the results presented in the previous sections, the following588

data were based on caafoam-m1.589

The first case we mention, represented in Fig. 13, is the sound radiated by590

the Karman vortex street shed behind a square cylinder. A fully–structured591

orthogonal grid was used: the grid cells were clustered near the cylinder walls592

using a dimensionless first cell height, yc/D, of 5·10−3, and far-field boundaries593

placed at a distance of 200 D from the center of the cylinder. The resulting594

computational mesh had a total number of cells,Nc, amounting to 4.4·106 with595

about 170 cells per wavelength. The polar plot containing the p′rms is shown596

in Fig. 16(a). The data were collected over a circumference built around the597

square cylinder having a dimensionless radius r/D = 75, as in Inoue et al. [42].598

Our approach clearly ensures a good reconstruction of the acoustic far field. It599

is important to note that, for the flow regimes considered, the acoustic field is600

generated by periodical vortical structures shedding. This phenomenon causes601

a pressure fluctuation on the cylinder’s surfaces, leading to the generation an602

unsteady lift/downforce. The drag is influenced by the Karman vortex street603

as well, showing a downstream/upstream pulsation. These perturbations have604

a sound quadrupole nature, but the dominance of the lift fluctuation yields a605

typical dipolar acoustic field [43].606

Note that, due to thermal effects, in order to estimate the changes in the607

acoustic field we present our data on a circle having r = 40 D as this prevents608

an excessive sound wave decay in the far field. This condition enabled us to set609
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the extent of the computational domain at r = 150 D, reducing the number of610

cells to: Nc ' 3 · 106. Fig. 14 shows that the rise in wall temperature increases611

〈CD〉 and reduces CL,rms. Fig. 15 shows that the force coefficient pulsations,612

∆CD and ∆CL, are reduced as a result of the increase in wall temperature.613

These results are in agreement with the reports from Lecordier et al. [8, 9],614

who experimentally found vortex shedding dumping behind a heated circu-615

lar cylinder. Similar effects were also found on heated airfoils operating at low616

Re, [44, 45, 46], which revealed a higher drag force and lower lift force in steady617

conditions. Looking at the results in Fig. 15, it is easy to see that the sound618

sources, i.e. ∆CD and ∆CL, are damped, producing a far-field sound abate-619

ment at higher wall temperatures. It is worth noting that this phenomenon620

is not limited to a specific Re but holds throughout the range of 90-150, as621

shown in the figures from Fig. 16 to Fig. 19. The radiated sound decay is also622

less significant for higher Re numbers, as shown in Fig. 20(b). In particular,623

at Re = 90 the maximum sound power level decay (Tw = 3T∞) is slightly less624

than 5 dB, while at Re = 150 it is ∼ 3 dB, which is still significant. The St625

number is reduced by wall heating as well, as shown in Fig. 20(a), consistently626

with the findings of Lecordier et al..627

The second case considered in this context is the sound radiated by the Kar-628

man vortex street that is shed behind a circular cylinder. The fully-structured629

G2 grid was used for this analysis. All the numerical settings mentioned in630

Section 4.1.1 were confirmed here to investigate the effects of wall heating on631

the radiated sound. As for the square cylinder, we present the p′rms data on a632

circle having r = 40 D.633

In this case, increasing the wall temperature produced an evident reduction634

in CL,rms, while 〈CD〉 was increased up to Re = 130. Fig. 21 clearly shows,635

however, that the thermal boundary conditions at the wall have a more signif-636

icant effect on the lift coefficient in this flow configuration, whereas the effect637

on 〈CD〉 is almost negligible. As for the square cylinder, the force coefficient638

fluctuations are dumped.639
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In short, the aeroacoustic sound emitted in the far-field region is lower when640

the wall temperature is higher, as shown in Fig. 23 to Fig. 26. It is also im-641

portant to note that the sound decay is less significant at higher Re numbers642

in this configuration, as confirmed by Fig. 27(b). It is also worth noting that643

overall Lw abatement is greater for the circular cylinder than for the square644

one. In fact, we obtained ∆Lw ' 8dB at Re = 90, and ∼ 5dB at Re = 150.645

Lastly, the St number shows the same behavior vis–à–vis Re and wall temper-646

ature as for the square cylinder.647

At the time of writing this paper, there were no papers available in the open648

literature dealing with the reduction of emitted aeroacoustic sound based on649

wall heating. The above-mentioned phenomenon was analyzed on two com-650

pletely different geometries, showing that it is not limited to a particular flow651

configuration.652

5 Conclusions653

This paper addresses the development and application of an open-source solver654

for compressible mass, momentum and energy equations, named caafoam,655

which is able to capture a wide range of flow phenomena. Particular atten-656

tion was devoted to computing aeroacoustic sound. Our solver was devel-657

oped within the FV OpenFOAM library and it adopts explicit low-storage658

Runge-Kutta schemes for time integration. KNP and Pirozzoli energy con-659

serving schemes were used to handle Eulerian numerical fluxes, while stan-660

dard central schemes were considered for diffusive terms. Only the Pirozzoli661

schemes proved capable of predicting acoustic waves on fully unstructured662

computational grids, while the two different approaches performed equally663

well on structured grids. An appropriate non-reflective boundary treatment664

was achieved using an artificial sponge layer because it is simple to code, ro-665

bust, and not stiff; and it proved flexible in handling complex geometries. The666

solver also showed a very good parallel performance on two completely differ-667
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ent architectures, making it suitable for use in massively parallel aeroacoustic668

computations.669

A broad range of far-field aeroacoustic sound configurations, emitted from670

bluff-bodies in a flow with uniform velocity inlet, was investigated for vali-671

dation purposes. In all the benchmarks considered, caafoam performed well672

in predicting the sound produced by the flow-body interaction. We found673

rhoCentralFoam unable to capture acoustic wave propagation phenomena674

correctly, even though we had introduced a proper non-reflective boundary675

treatment. On the other hand, the caafoam-m1 version can produce a direct676

solution of aeroacoustic fields. This goes to show that the inviscid numerical677

flux is not the key ingredient on structured grids; the solution algorithm is the678

primary issue to address.679

Another novelty of this paper concerns our assessment of the impact of ther-680

mal boundary conditions at the wall on the sound produced by the interaction681

of a bluff body with a uniform laminar flow. Two different cases were consid-682

ered, with square and circular cylinders. In both cases, we found that heating683

the wall reduces the vortex shedding developing in the wake region, as noted684

experimentally by Lecordier et al. [8]. This is of considerable interest in aeroa-685

coustics because the pulsations of the lift and drag forces for these objects686

are directly related to the aerodynamically-produced sound. In fact, reducing687

them by heating the wall in turn reduces the production of acoustic pertur-688

bations. In other words, increasing the wall temperature reduces the sound689

power level. This finding has important practical implications since it can be690

considered as a method for actively controlling aeroacoustic sound.691
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Figure 1. The computational cells.
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(a) Speed–up (b) Efficiency

Figure 2. Parallel performance.
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(a) p′ (b) Dimensionless ∂uj/∂xj

Figure 3. Sound wave generated by the flow past a circular cylinder at Re = 150.
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(a) Structured grids (b) Unstructured grids

Figure 4. Flow past a circular cylinder at Re = 150. Grids effect.
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(a) caafoam-m1 (b) caafoam-m2

Figure 5. Flow past a circular cylinder at Re = 150. G2 grid. RK scheme effect;
Comax ' 0.2.
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(a) caafoam-m1 (b) caafoam-m2

Figure 6. Flow past a circular cylinder at Re = 150. G2 grid. Time-step size effect.
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Figure 7. Flow past a circular cylinder at Re = 150. G2 grid. Sponge layer strength
impact.
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Figure 8. Cylinders arranged side by side.

41



(a) Dimensionless vorticity field (b) Force coefficients time history

Figure 9. Square cylinders side by side at Re = 150, M∞ = 0.2, L/D = 3. Finer grid
results.
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(a) Polar plot (b) Dimensionless ∂uj/∂xj

Figure 10. Square cylinders side by side at Re = 150, M∞ = 0.2, L/D = 3.

43



D

cylinder

Upstream

cylinder

Downstream

L

x

yFlow

Figure 11. Square cylinders in tandem configuration.
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(a) Directivity plot (b) p′

Figure 12. Square cylinders in tandem at Re = 150, M∞ = 0.2, L/D = 2.
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(a) ∂T/∂n|w = 0 (b) Tw = 2T∞

(c) Tw = 3T∞

Figure 13. Wall temperature effect, square cylinder Re = 150. Dimensionless
∂uj/∂xj .
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(a) Average drag coefficient (b) Root mean square of the lift coef-
ficient

Figure 14. Wall temperature effect, square cylinders. Force coefficients.
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(a) drag coefficient (b) lift coefficient

Figure 15. Wall temperature effect, square cylinders. Force coefficients fluctuations.
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(a) Validation, r/D = 75 (b) r/D = 40

Figure 16. Wall temperature effect, square cylinder at Re = 150.
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(a) Re = 140 (b) Re = 130

Figure 17. Wall temperature effect, square cylinder. p′rms, r/D = 40.
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(a) Re = 120 (b) Re = 110

Figure 18. Wall temperature effect, square cylinder. p′rms, r/D = 40.
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(a) Re = 100 (b) Re = 90

Figure 19. Wall temperature effect, square cylinder. p′rms, r/D = 40.
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(a) Sthroual number (b) Sound power level

Figure 20. Wall temperature effect, square cylinder.
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(a) Average drag coefficient (b) Root mean square of the lift coef-
ficient

Figure 21. Wall temperature effect, circular cylinder. Force coefficients.
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(a) drag coefficient (b) lift coefficient

Figure 22. Wall temperature effect, circular cylinder. Force coefficients fluctuations.
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(a) Re = 150 (b) Re = 140

Figure 23. Wall temperature effect, circular cylinder. p′rms, r/D = 40.
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(a) Re = 130 (b) Re = 120

Figure 24. Wall temperature effect, circular cylinder. p′rms, r/D = 40.
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(a) Re = 110 (b) Re = 100

Figure 25. Wall temperature effect, circular cylinder. p′rms, r/D = 40.
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Figure 26. Wall temperature effect, circular cylinder. p′rms, r/D = 40.
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(a) Sthroual number (b) Sound power level

Figure 27. Wall temperature effect, circular cylinder.
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Table 1
Cylinder at Re = 150, M∞ = 0.2, G2–grid results. caafoam–m1

Case u∞∆t/D 〈CD〉 ∆CD · 102 ∆CL St

RK 2–2 (Comax ' 0.2) 2 · 10−4 1.3326 2.580 0.5203 0.182

RK 2–2 (Comax ' 0.4) 4 · 10−4 1.3325 2.560 0.5200 0.182

RK 3–4 (Comax ' 0.2) 2 · 10−4 1.3329 2.570 0.5203 0.182

RK 3–4 (Comax ' 0.4) 4 · 10−4 1.3329 2.575 0.5201 0.182

RK 3–4 (Comax ' 0.6) 6 · 10−4 1.3325 2.580 0.5199 0.182

RK 4–5 (Comax ' 0.2) 2 · 10−4 1.3329 2.580 0.5203 0.182

RK 4–5 (Comax ' 0.4) 4 · 10−4 1.3328 2.575 0.5201 0.182

RK 4–5 (Comax ' 1.0) 8 · 10−4 1.3325 2.570 0.5199 0.182

rhoCentralFoam (Comax ' 0.2) 2 · 10−4 1.3347 2.580 0.5215 0.182
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Table 2
Cylinder at Re = 150, M∞ = 0.2, G2–grid results. caafoam–m2

Case u∞∆t/D 〈CD〉 ∆CD · 102 ∆CL St

RK 2–2 (Comax ' 0.2) 2 · 10−4 1.3321 2.565 0.5183 0.182

RK 2–2 (Comax ' 0.4) 4 · 10−4 1.3321 2.565 0.5183 0.182

RK 3–4 (Comax ' 0.2) 2 · 10−4 1.3321 2.565 0.5183 0.182

RK 3–4 (Comax ' 0.4) 4 · 10−4 1.3321 2.566 0.5183 0.182

RK 3–4 (Comax ' 0.6) 6 · 10−4 1.3321 2.564 0.5183 0.183

RK 4–5 (Comax ' 0.2) 2 · 10−4 1.3321 2.564 0.5183 0.182

RK 4–5 (Comax ' 0.4) 4 · 10−4 1.3347 2.565 0.5182 0.182

RK 4–5 (Comax ' 1.0) 8 · 10−4 1.3321 2.564 0.5183 0.182

rhoCentralFoam (Comax ' 0.2) 2 · 10−4 1.3347 2.580 0.5215 0.182
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Table 3
Cylinder at Re = 150. Literature data.

Case 〈CD〉 ∆CD · 102 ∆CL St

Muller [33] 1.34 2.6 0.52 0.183

Inoue and Hakateyama [34] 1.32 2.6 0.52 0.183

Williamson [47] (Exp.) − − − 0.18
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Table 4
Side–by–side square cylinders at Re = 150, M∞ = 0.2. Force coefficients.

RK 4–5 coarse RK 4–5 fine rhoCentralFoam
(fine)

Inoue [40]

〈CD〉 1.5806 1.5920 1.5859 1.5519

〈CL〉 ±0.0759 ±0.0753 ±0.0749 ±0.0689

2∆CD 0.2216 0.2282 0.2281 0.2377

2∆CL 0.8286 0.8479 0.8456 0.8575

St 0.153 0.144 0.155 0.150
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Table 5
Square cylinder in tandem configuration at Re = 150, M∞ = 0.2. Force coefficients.

Upstream cylinder

Case 〈CD〉 2∆CD · 104 2∆CL St

RK 4-5 coarse 1.2753 2.0 0.0378 0.134

RK 4-5 fine 1.2803 2.1 0.0384 0.134

rhoCentralFoam (fine) 1.2805 2.1 0.0383 0.134

Inoue et al. [42] 1.2794 − − 0.133

Downstream cylinder

Case 〈CD〉 2∆CD · 103 2∆CL St

RK 4-5 coarse -0.1936 1.50 0.106 0.134

RK 4-5 fine -0.1959 1.54 0.1068 0.134

rhoCentralFoam (fine) -0.1961 1.53 0.1065 0.134

Inoue et al. [42] -0.1945 − − 0.133
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