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We report high-order implicit Large Eddy Simulations of flows around flat plates with massive flow separation and
reattachment. The aim is to provide evidence of the influence of relevant flow parameters such as the geometry of the
leading-edge corner, the presence of a trailing-edge flow separation and of a flow coupling between the two sides of the
plate. The results reveal that flows with right-angled corners develop taller flow recirculations which promote a very-
slow instability of the bubble itself. This large-scale unsteadiness is then found to be at the basis of negative turbulence
production mechanisms that in turn enhance the height of the bubble itself thus closing a self-sustained cycle. The
absence of these phenomena in flows with smooth leading-edge corners is also found to explain their high sensitivity to
free-stream turbulence. The observed behaviours may have strong repercussions for theories and closures of separating
and reattaching flows and should be carefully taken into account in control strategies used in the applications.

I. INTRODUCTION

One of the main features of separating and reattaching flows
is the combined presence of small scales due to the occurrence
of turbulence and large scales due to phenomena of shedding
of large-scale vortices. These phenomena nonlinearly interact
themselves giving rise to a self-sustained cycle. Two main
large-scale unsteadinesses are recognized: the shedding of
vortices from the recirculating bubble and the low-frequency
flapping mode of the recirculating region itself1. Despite the
fact that these kinds of phenomena have been the subject of
several numerical and experimental studies, their nature is still
elusive and deserves further investigations2. Indeed, a deeper
understanding of the origin of the main unsteadinesses of sep-
arating and reattaching flow may have strong repercussions on
the development of control strategies relevant for a huge num-
ber of applications in natural and engineering sciences. Here,
we aim at providing a further develop on the knowledge of
such phenomena.

Numerical experiments have radically changed the ap-
proach to fluid dynamics. As an example, numerical simula-
tions generally allow for broad observational capabilities that
experiments cannot give. Another important feature of nu-
merical experiments is the ability to manipulate the flow in
order to remove/suppress or add/enhance physical processes
and to measure the effects of those modifications on the dy-
namics of the flow. In this work, we make use of this ability
in order to identify the main parameters controlling separating
and reattaching flows and to understand the physical origin of
the related mechanisms. In particular, we start by consider-
ing the flow around a rectangular cylinder with a chord-to-
thickness ratio 5 (R1) which is recognized to be a very sim-
ple flow configuration for the analysis of separating and reat-
taching flow3–9. In order to appreciate the effects of shedding
phenomena at the trailing edge on the behaviour of the main
recirculating region, we then consider the flow around an infi-
nite (without trailing-edge) flat plate with right-angle leading-

a)Electronic mail: andrea.cimarelli@unimore.it

edge corner (R2). As shown in Refs. 10–12, also this flow
is recognized to be of overwhelming interest for the study of
large scale recirculating flows. Regarding the case of infinite
plates with leading edge separation bubble we also address
the effect of the leading-edge geometry on the physics of the
recirculating region by considering also an infinite flat plate
with circular leading-edge corner13,14 (R3). Finally, to ad-
dress the effects of possible coupling phenomena between the
shedding of large-scale vortices from the recirculating flows
in the two sides of the plate, we consider a fourth type of con-
figuration (R4). This last case reproduces the separating and
reattaching flow over an infinite plate with circular leading
edge such as (R3) but removing possible leading-edge inter-
actions between the two sides of the plate by solving the flow
in half domain by applying a symmetry boundary condition in
the symmetry plane of the domain. Overall, the simulation of
the above mentioned four types of separating and reattaching
flows would allow us to identify the role played by the geom-
etry of the leading-edge corner, by the presence or not of a
trailing-edge flow separation and by the coupling phenomena
between the two sides of the plate on the dynamics of the recir-
culating flow. A sketch of the flow configurations is reported
in figure 1. Finally, the effect of free-stream turbulence will
be also investigated in each flow configuration considered.

In closing this introduction, let us mention that several
works have been already devoted to study the effect of rele-
vant geometrical and flow parameters on the flow recircula-
tion. The role played by the trailing-edge vortex shedding on
the main flow processes of rectangular plates has been inves-
tigated in Ref. 6 by varying the chord-to-thickness ratio. It
is found that the trailing-edge shedding has a significant in-
fluence on the self-sustained oscillations of the leading-edge
shear layer. On the other hand, the role played by the shape of
the leading edge on the flow recirculation dynamics has been
investigated in Ref. 15 by changing the curvature of plates
with rounded leading edges. It is found that changes of the
leading-edge curvature deeply influence the bubble dynamic
such as an increase of the bubble size, of the separation an-
gle and of the turbulent intensity as the curvature is increased.
The high sensitivity of the flow dynamics on the leading-edge
geometry is further highlighted in Ref. 16 where the flow is
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FIG. 1. Flow configurations. (a) Flow around a rectangular cylinder, R1. (b) Flow over an infinite flat plate with right-angle corner, R2. (c)
Flow over an infinite flat plate with circular leading edge, R3. (d) Flow over half the domain of a flat plate with circular leading edge, R4.

found to be modified also by the introduction of very small
roundings of the leading-edge corners of the order of manu-
facturing tolerances in experiments. Also the role played by
the free-stream turbulence on the main processes of separating
and reattaching flows has been investigated in several works,
here we mention only few of them e.g. Refs. 17–21. The
overall effect of free-stream turbulence is found to produce a
more rapid transition in the leading-edge shear leading to a
reduction of the reattachment length. Similar effects are re-
ported by increasing the Reynolds number, see e.g. Refs. 2
and 22. Contrary to the mentioned works, here we address
simultaneously the effects of different parameters such as the
leading-edge geometry, the presence of a trailing-edge separa-
tion and the free-stream turbulence. The main goal is to give
a general description of the physics of the flow recirculation
that is able to explain the effects of all the geometrical and
flow parameters considered.

The paper is organized as follows. In section §II the de-
tails and parameters of the numerical simulations are reported.
The results of the different flow configurations are analysed in
terms of instantaneous flow topology in section §III, while in
sections §IV and §V the mean flow statistics are reported. The
energetics of the different flow configurations are addressed in
section §VI by means of a study of the turbulence production
mechanisms. Finally, the effect of free-stream turbulence on
the different flow configurations is analysed in section §VII.
The paper is closed by final remarks in section §VIII.

II. NUMERICAL PROCEDURE AND SIMULATIONS

To handle the incompressible Navier-Stokes equations, we
use an unstructured high-order Discontinuous Galerkin (DG)
solver. The numerical fluxes solving the discontinuous ap-
proximation of the solution at the interface between elements
have been properly defined following the technique proposed
in Refs. 23–25. On the other hand, the second form of the
Bassi and Rebay scheme26 has been used for the viscous
terms. The resulting discretization is fully coupled and time
consistent. Time integration is performed through the four
stage, order three linearly implicit Rosenbrok scheme27. Im-
plicit schemes usually require the evaluation of the Jacobian
matrix, which can be, particularly for a high-order method,
an expensive task. To speed-up the solution process the DG
solver uses a matrix-free flexible GMRES linear solver pre-
conditioned by p-multigrid algorithm requiring, at the highest
order, the evaluation of only the diagonal blocks of the Ja-
cobian matrix. For more details the readers are referred to
Ref. 28. The advantage of high order DG discretizations is
given by the fact that it is possible to achieve the same spa-
tial resolution with a reduced number of degrees of freedom
(DOFs) than standard methods29–31.

Another important advantage of the DG discretization is
that the method shows numerical properties that are partic-
ularly suitable for the solution of turbulent flows with im-
plicit Large Eddy Simulation (ILES) approaches32. In fact,
the dissipation of the numerical scheme behaves like a spec-
tral cut-off filter, which mimics the role of subgrid-scale mod-
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Case Re Lx Dx×Dy×Dz Ne (DoF) ∆y ∆z ∆t
R1 3000 72 200×151×5 52695 4.4 ·106 0.0042 0.076 0.025
R2 3000 20 36×50×5 29538 2.5 ·106 0.0039 0.127 0.05
R3 3450 12 28×17×2 38320 3.2 ·106 0.0023 0.045 0.05
R4 3450 12 28×8.5×2 18820 1.6 ·106 0.0023 0.045 0.05

TABLE I. Parameters of the simulations. Re is the Reynolds number defined as Re =U∞D/ν . Lx is the distance from the inlet of the plate and
Dx×Dy×Dz are the domain dimensions. Ne is the number of elements of the computational grid while DoF are the degrees of freedom of the
corresponding solutions obtained using a sixth order polynomial scheme. ∆y and ∆z are the wall-normal and spanwise resolutions evaluated
as the height and width of the first cell near the wall divided by the directional number of DoF. Finally, ∆t is the temporal resolution.

els. ILES simulations of canonical flow problems preformed
with the present code can be found in Ref. 33. A relevant
benefit of the DG-ILES approach is given by the fact that the
method does not introduce any unphysical subgrid dissipation
in the regions of the flow where the field is fully resolved such
as in the laminar flow regions. This property is particularly
important in transitional flows, such as the ones investigated
in the present work where laminar, transitional and turbulent
free-shear regions are simultaneously present.

In this work all the computations are performed adopting
a sixth order polynomial representation of the solution, for
both the velocity components and pressure, which means that
the velocities are 7th order accurate while pressure is 6th or-
der accurate. A structured Cartesian mesh made of hexahe-
dra is used in the near plate region. This near plate hexahe-
dral mesh is uniform in the z direction and stretched in the x
and y directions in order to ensure a sufficient resolution in
the near-wall, shedding and reattachment regions. The height
and width of the near-wall elements is reported in table I. On
the other hand, outside this near plate region, an unstructured
grid is used which is strongly coarsened moving away from
the plate to save computational resources. Further details on
the mesh properties can be found in Ref. 28. The resulting
number of grid elements is reported in table I where other pa-
rameters of the simulations such as domain lengths, degrees
of freedom, spatial and temporal resolutions are reported. For
all the flow cases, in accordance to the standard approach for
a DG discretization, weak imposition of boundary conditions
are employed. In other words boundary condition data to-
gether with extrapolated values define an external state and
numerical fluxes are used, as for the internal faces, for solving
the discontinuous solution at the boundaries faces. An unper-
turbed free-stream velocity U∞ is applied at the inlet and a
pressure condition is used at the outlet. On the other hand, in
the top and bottom boundaries a weak imposition of the free-
stream condition is used for the flow cases R1 and R2 while a
symmetry condition is applied for R3 and R4. Finally a peri-
odic boundary condition is applied in the spanwise direction.
The domain, boundary condition and Reynolds number differ-
ences between the flow configurations R1 and R2 with respect
to R3 and R4 are given by the need of replicate benchmark
data of the corresponding flow cases present in literature, e.g.
Refs. 8, 9, 12–14. The solutions obtained have been conse-
quently validated with a comparison with these reference data,
see e.g. the careful validation of the R3 solution reported in
Ref. 28. A study of the numerical convergence of the present

simulations is reported in appendix A while a general assess-
ment of the effects of the domain spanwise length and of the
mesh resolution can be found in Ref. 34.

After reaching a statistical steady state, the simulations
have been run for 300 characteristic time scales D/U∞ in order
to obtain a number of sampling sufficient for statistical con-
vergence. For the symmetry of the problem, statistics, here-
after denoted as 〈·〉, are computed by averaging in time and
in the spanwise direction. Finally, the customary Reynolds
decomposition of the flow in a mean and fluctuating part,
ui = Ui +u′i and p = P+ p′, will be hereafter used where the
index i = 1,2,3 corresponds to the streamwise (x), vertical (y)
and spanwise (z) directions of a reference Cartesian system
centred at the beginning of the top flat wall as shown in figure
1. Throughout the paper, non-dimensional variables will be
used, implying normalization of lengths with the plate thick-
ness D and of velocities with the free-stream velocity U∞.

III. INSTANTANEOUS FLOW REALIZATIONS

We start the analysis by considering the instantaneous flow
pattern realized by the different flow configurations. To this
aim we consider the eduction scheme proposed by Jeong et
al. 35 and based on the second largest eigenvalue λ2 of the
tensor

Ti j = SikSk j +ΩikΩk j (1)

where

Si j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
Ωi j =

1
2

(
∂ui

∂x j
− ∂u j

∂xi

)
(2)

are the symmetric and antisymmetric part of the velocity gra-
dient tensor. This eduction scheme is known to accurately ex-
tract the three-dimensional pattern of vortical structures. As
shown by the iso-surface of λ2 = −4 colored by the stream-
wise velocity in figure 2, the considered separated and reat-
taching flows exhibit a rather complex behaviour. The gen-
eral behaviour shared by all the configurations consists of a
detachment of an initially laminar shear layer highlighted by
the flat iso-surface of λ2 in the leading-edge region. Then, in
a very short length, the separated flow develops large span-
wise vortex tubes typical of the Kelvin-Helmholtz instabil-
ity. Such large-scale structures further develop downstream
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FIG. 2. Instantaneous flow realization of the different flow configurations simulated. Iso-surface of λ2 = −4 colored by the streamwise
velocity.

and, by interacting with shear, undergo a lift up in the vertical
direction and stretching in the streamwise one thus forming
hairpin-like structures6,36. This is the last stage before the de-
velopment of fully turbulent regime composed by turbulent
structures arranged in a chaotic manner. Besides the obvious
differences due to the downstream presence of a wake or of a
flat boundary layer, the main difference between the different
flow configurations concerns small scale fluctuations. In par-
ticular, it seems that flows with right-angle corners develop a
wider range of turbulence fluctuations. Indeed, as shown in
figure 2, R1 and R2 appear to be populated by a variety of
small scale fluctuations superimposed to a large scale velocity

field whose characteristics are shared by the different config-
urations analysed.

In order to quantitatively assess the multiscale features of
the analysed flows, we make use of frequency spectra of ver-
tical velocity defined as,

Evv(x,y,St) = 〈v̂(x,y,St)v̂∗(x,y,St)〉 (3)

where St = f D/U∞ is the Strouhal number with f the fre-
quency and (·̂) denotes the Fourier transform with respect to
time. In figure 3, the evolution of the premultiplied frequency
spectra along the shear layer for the different flow configura-
tions is shown. It is evident that in all the cases, the range of
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FIG. 3. Premultiplied frequency spectrum of vertical velocity St Evv(St) computed along the leading-edge shear layer for the different flow
configurations simulated. The arrows indicate increasing streamwise locations. On top of each spectrum, the iso-contours of ∂U/∂y are shown
to highlight the location of the leading-edge shear layer and the positions of the probes used to compute the spectra.

frequencies amplified by the transitional mechanisms of the
shear layer are centred at St ≈ 1. This amplification leads to a
fill up of the entire spectrum that is particularly evident for the
flow cases with right-angle corners in accordance with the in-
stantaneous flow topology analysed so far. The premultiplied
frequency spectra allow us also to analyse the low-frequency
unsteadinesses of the flow1. Being associated with the insta-
bility of the entire recirculating region, its statistical footprint
is expected to be present at very small frequencies and to be
almost independent on the position considered since the asso-
ciated very large-scale motions should be felt almost every-
where in the flow. As shown in figure 3, this type of statis-

tical footprint is present only in flow cases with right-angle
corners (R1 and R2). In accordance with Cimarelli et al. 9,
the range of frequencies is centred at St ≈ 0.05. Their inten-
sity is significant at all positions along the measured points in
the leading-edge shear layer thus supporting the idea that the
energy related with these frequencies is associated with an un-
steady phenomenon involving the entire flow recirculation1,36

and, hence, is felt almost everywhere. All these aspects are not
apparent for the smooth corner cases (R3 and R4). Indeed,
a well-defined central frequency is absent since the spectral
behaviour at low frequencies is found to be largely modu-
lated throughout the shear layer development thus suggesting
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FIG. 4. Streamwise behaviour of the friction coefficient for the dif-
ferent flow configurations simulated.

that the energy content of these low frequencies is associated
with motions that do not involve the entire flow recirculation.
Hence, the very slow unsteadiness phenomena of the entire
flow recirculation appear to be peculiar mechanisms of plates
with sharp corners. We argue that such a distinction in re-
producing a very low-frequency unsteadiness is related with
the height of the recirculating bubble that, as it will be shown
in the next section, is significantly higher in flows with right-
angle corners thus promoting the instability of the entire re-
circulating region. In closing this section, let us notice also
the effect of trailing-edge flow separation. By comparing flow
cases R1 and R2, it is evident the appearance of the shedding
frequency St ≈ 0.14 for the case R1. As shown in Cimarelli et
al. 36, the motion associated with the vortex shedding super-
impose to that slower of the recirculating bubble thus forming
a self-sustaining cycle.

IV. FRICTION AND PRESSURE COEFFICIENTS

We start the statistical analysis of the flow by considering
first wall quantities. As shown in figure 4, the behaviour of
the friction coefficient, c f , highlights significant differences
between the different flows. The general trend of the fric-
tion coefficient conforms with the presence of a large scale
recirculating region c f < 0 followed by an attached forward
boundary layer c f > 0. The main differences between the dif-
ferent flow configurations come from the length of the main
recirculating region and from the presence or not of a second
smaller recirculating flow within it.

Starting from the last consideration, we observe that for the
flow cases with right angle corners, R1 and R2, the near-wall
reverse flow induced by the large scale recirculating bubble,
detaches forming a secondary smaller recirculation that can
be recognized by the presence of positive values of friction for
streamwise locations within the main separation bubble, see
the inset in figure 4. In both cases, the secondary bubble starts
around x = 1.04, however its length `sv is found to be slightly
larger for the case of an infinite plate R2. This secondary flow
is not observed for the cases with circular leading-edge cor-
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FIG. 5. Streamwise behaviour of the pressure coefficient (a) and of
its standard deviation (b) for the different flow configurations simu-
lated.

ner, R3 and R4. As shown in Cimarelli et al. 36, the presence
of the secondary vortex is a result of adverse pressure gradient
phenomena which induce the separation of the reverse bound-
ary layer produced by the main recirculating flow. Accord-
ingly, as shown in figure 5(a), the pressure coefficient high-
lights a negative streamwise gradient, dcp/dx< 0, only for the
flow cases with right angle corners R1 and R2. Hence, only
for these two flow cases, the reverse flow induced by the main
recirculating bubble experiences an adverse pressure gradient.
As a consequence, the reverse boundary layer detaches, thus
leading to a secondary smaller recirculating region.

As far as it concerns the length of the main recirculating
region, we observe that all the flow cases behave in a different
way. The reattachment length strongly depends on the tur-
bulence levels created in the leading-edge shear layer which
in turn are affected by the geometry of the leading-edge cor-
ner and by the presence/absence of trailing edge vortex shed-
ding mechanisms as unequivocally shown here in quantitative
terms.

It is worth pointing out that, as expected, in the upstream
portion of the flat plates, the behaviour of the friction coeffi-
cient appears to be strongly affected by the geometry of the
leading edge independently of the presence or not of a trail-
ing edge flow separation. Indeed, similar behaviours are ob-
served for the same geometry. On the other hand, while mov-
ing downstream, the effect of the presence of the trailing-edge
separation becomes relevant and a departure of the behaviour
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of the friction coefficient for the cases R1 and R2 is observed.
Interestingly, when comparing cases R3 and R4, one would
expect that the effect of the presence/absence of a flow sep-
aration in the two sides of the plate is more relevant in the
region close to the leading edge where the top and bottom
sides of the plate communicate. However, as shown here in
quantitative terms, the effect of the presence/absence of a flow
separation in the two sides of the plate is negligible in the up-
stream part of the plate where the friction coefficient shows
similar behaviour and a significant departure is observed only
downstream. The same reasoning applies when comparing the
downstream behaviour of the friction coefficient of flow cases
R2 and R3. Indeed, we would expect that the effect of the dif-
ferent leading-edge geometry is retained only in the upstream
part of the plate. On the contrary, the differences are observed
also downstream.

Let us consider now the behaviour of the pressure coeffi-
cient cp and of its standard deviation c′p shown in figure 5(a)
and (b), respectively. As for the friction coefficient analysed
so far, the leading-edge geometry is the most significant pa-
rameter influencing the upstream behaviour of the recirculat-
ing flow. Indeed, we observe that, both in terms of average and
fluctuating intensity, the pressure field behaves similarly for
the flow cases R1/R2 and R3/R4. It consists in a flat behaviour
of cp associated with small value of c′p for the circular leading-
edge geometry. On the other hand, for right-angle corners,
the pressure field cp slightly decreases moving downstream
the leading edge, dcp/dx < 0, and the associated fluctuations,
c′p are more intense. Let us recall that, as previously shown
when analysing the behaviour of the friction coefficient, the
presence of a negative pressure gradient, dcp/dx < 0, is at the
basis of the formation of the secondary recirculating flow.

By moving downstream, the pressure recovery show sig-
nificant differences which are particularly interesting for the
flow cases without trailing edge separation, i.e. R2, R3 and
R4. Indeed, these flow cases differentiate for the geometry of
the leading edge corner and for the presence or not of flow
separation in the two sides of the plate. Such differences are
physically located upstream but their effects are significant
also in the pressure recovery region downstream the reattach-
ment. Indeed, an homogenization of the pressure distribution
between the different cases is recovered for x > 7 only for cp.

V. MEAN VELOCITY FIELD AND TURBULENT KINETIC
ENERGY

The behaviour of the mean velocity field for the differ-
ent flow configurations is shown in figure 6 with streamlines.
We observe that the main recirculating region is strongly af-
fected by the shape of the leading-edge corner. Indeed, sharp
leading-edge corners, R1 and R2, are found to produce thicker
recirculating bubbles with respect to circular leading-edge
corners. This aspect could be at the basis of the very-slow
frequency unsteadiness observed only for right-angle corner
flows as shown in section §III. The effect of the trailing-edge
separation consists in a reduction of the average length of the
recirculating zone, compare R1 and R2. On the other hand,

0.00 0.01 0.02 0.03 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.13 0.14 0.15 0.16

R1

R2

R3

R4

FIG. 6. Mean velocity field streamlines and iso-contours of turbulent
kinetic energy q(x,y).

by comparing R3 and R4, we observe that the effect of cou-
pling phenomena between the two sides of the plate is less
significant as far as it concerns the height of the recirculating
flow. On the contrary, as far as it concerns the length of the
recirculating flow, a significant streamwise elongation is ob-
served when coupling phenomena between the two sides are
precluded, see the behaviour of the friction coefficient in fig-
ure 4.

Interesting insights can be argued by analysing the be-
haviour of the turbulent kinetic energy, q(x,y) = 〈u′iu′i〉/2,
shown with iso-contours in figure 6 for the different flow con-
figurations. It is evident how the presence of a sharp leading-
edge corner, beside producing a thicker flow recirculation,
leads to a faster transition to turbulence. Indeed, the initially
laminar leading-edge shear layer is found to develop insta-
bilities and turbulence fluctuations for streamwise locations
which are significantly upstream for the case of sharp leading-
edge corners with respect to the smooth ones, compare the tur-
bulent intensity levels of cases R1 and R2 to the cases R3 and
R4. This upstream shift of the main instabilities giving rise to
turbulent transition is associated also to more intense turbulent
fluctuations. Indeed, for all the flow cases, the most intense
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fluctuations are reached in the shedding region of the main
recirculating bubble but, as highlighted by the higher levels
of the iso-contours, these maxima are stronger for flow with
sharp leading-edge corners with respect to those with smooth
corners.

VI. PRODUCTION OF TURBULENT FLUCTUATIONS

An important aspect of separating and reattaching flow is
that production of turbulence fluctuations is embedded into
the system rather than being provided by an external agent.
To study this aspect it is useful to consider the budget equa-
tions for the Reynolds stresses, 〈u′iu′j〉. Such equations can be
derived from the Navier-Stokes equations and read

∂ 〈u′iu′j〉
∂ t

+

∂ 〈u′iu′j〉Uk

∂xk
+

∂ 〈u′iu′ju′k〉
∂xk

+
1
ρ

∂ 〈p′u′j〉
∂xi

+
1
ρ

∂ 〈p′u′i〉
∂x j

−ν
∂ 2〈u′iu′j〉
∂xk∂xk︸ ︷︷ ︸

∂φ
i j
k /∂xk

=

1
ρ
〈p′
(

∂u′i
∂x j

+
∂u′j
∂xi

)
〉︸ ︷︷ ︸

pi j

−〈u′iu′k〉
∂U j

∂xk
−〈u′ju′k〉

∂Ui

∂xk︸ ︷︷ ︸
Πi j

−2ν〈 ∂u′i
∂xk

∂u′j
∂xk
〉︸ ︷︷ ︸

ε i j

(4)

Equations (4) can be rewritten in a symbolic form as

∂ 〈u′iu′j〉
∂ t

+
∂φ

i j
k

∂xk
= pi j +Π

i j− ε
i j , (5)

where we can recognize the transport of turbulent stresses
within the flow domain, φ

i j
k , the local balance between pro-

duction and dissipation processes, Πi j − ε i j, and the inter-
component pressure-strain transfer of energy pi j. For the
statistical symmetries of planar separating and reattaching
flow as those considered here, we have that ∂ 〈·〉/∂ t = 0 and
∂ 〈·〉/∂ z = 0, so that the above equations reduce to

∂φ
i j
x

∂x
+

∂φ
i j
y

∂y
= pi j +Π

i j− ε
i j , (6)

thus highlighting that the transport of turbulent stresses sta-
tistical occurs only in the streamwise and vertical directions
driven by a field of fluxes (φ i j

x ,φ i j
y ,0). In equation (6), the

term Πi j commonly represents a source of turbulence, Πi j >
0. It extracts energy from the mean field to sustain the trans-
port (φ i j

x ,φ i j
y ,0) and redistribution pi j processes down to dissi-

pation ε i j. For this reason Πi j is commonly called turbulence
production term. By considering only the diagonal terms of
the turbulent stresses, i.e. twice the kinetic energy of each
component of the fluctuating velocity field, and considering
again the statistical symmetries of the flow, the production

term is active only for the streamwise and vertical velocity
components, i.e.

Π
11 =−2〈u′u′〉∂U

∂x
−2〈u′v′〉∂U

∂y
(7)

Π
22 =−2〈v′v′〉∂V

∂y
−2〈u′v′〉∂V

∂x
(8)

Π
33 = 0 . (9)

Accordingly, to study how turbulence fluctuations are pro-
duced in separating and reattaching flows, in what follows,
we will consider the behaviour of the production terms Π11

and Π22.

A. Production of streamwise turbulent �uctuations

In figure 7, the iso-contours of Π11 for the different flow
configurations are shown. It is evident that production of
streamwise fluctuations is active also along the leading-edge
shear layer in the case of sharp corners R1 and R2, while, in
the case of smooth corners R3 and R4, production is present
only in the shedding region of the recirculating bubble. A
slight increase of the production levels is also observed in the
case of sharp corners. In this context, the effect of the pres-
ence of a flow separation at the trailing edge is to induce a
further significant increase of the intensity of the production
mechanisms of streamwise fluctuations, compare R1 with R2.
The previously observed behaviours of turbulent kinetic en-
ergy, figure 6, are consistent with and could be ascribed to the
upstream estention and to the increase of the production of
streamwise fluctuations in the case of sharp corners and even
more with the presence also of trailing-edge separation.

Interestingly, figure 7 highlights the presence also of re-
gions of reversal of flow energy from the fluctuating to the
mean streamwise velocity field. Indeed, in the reattachment
region of the flow we observe negative values of production,
Π11 < 0. This phenomenon is observed in all the flow configu-
rations considered and can be attributed to the wall-impinging
of flow structures that on average mainly occurs in this region
of the flow. Indeed, due to impinging, pressure-strain phe-
nomena pi j redistribute the kinetic energy of vertical fluctua-
tions to the horizontal velocity components, thus, leading to
a highly oscillatory streamwise velocity behaviour in the wall
region which alternatively promote the development of an up-
stream and downstream boundary layer, see Cimarelli et al.
36. Accordingly, from the inspection of the data, these reverse
flow phenomena Π11 =−2〈u′u′〉∂U/∂x−2〈u′v′〉∂U/∂y < 0
are found to be essentially due to the term −2〈u′u′〉(∂U/∂x)
and hence to the divergent behaviour of the mean streamwise
velocity field in this region of the flow, i.e. ∂U/∂x > 0.

B. Production of vertical turbulent �uctuations

In figure 8, the iso-contours of Π22 for the different flow
configurations are shown. Apparently, the production of ver-
tical fluctuations, Π22 > 0, is significantly active only in the
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FIG. 7. Mean velocity field streamlines and iso-contours of produc-
tion of streamwise fluctuations, Π11(x,y).

shedding region of the recirculating bubble for all the flow
configurations considered. The only difference comes from
the intensity of the process which is found to be significantly
reduced when sharp corners are combined with a downstream
development of a flat boundary layer, compare R2 with re-
spect to the other flow cases.

Interestingly, intense phenomena of reversal of flow en-
ergy from the fluctuating to the mean vertical velocity field,
Π22 < 0, are present. As shown in figure 8, these phenomena
take place along the development of the leading-edge shear
layer and only for the flow cases with sharp corners, R1 and
R2. Contrary to those observed for the streamwise velocity
field, these negative production mechanisms are intense as
much as those of positive turbulence production. From the in-
spection of the data, we found that both terms composing the
production of vertical fluctuations, Π22 = −2〈v′v′〉∂V/∂y−
2〈u′v′〉∂V/∂x, contribute to the negative value of Π22 in this
region of the flow thus highlighting that both a divergent be-
haviour of the mean vertical velocity field ∂V/∂y > 0 and
a positive correlation of Reynolds shear stresses 〈u′v′〉 and
streamwise shear ∂V/∂x contribute to the reversal of flow en-
ergy from the fluctuating to the mean vertical velocity field.

­0.03 ­0.02 ­0.01 ­0.01 0.00 0.01 0.02 0.02 0.03 0.04

R1

R2

R3

R4

FIG. 8. Mean velocity field streamlines and iso-contours of produc-
tion of vertical fluctuations, Π22(x,y).

Being a peculiar mechanisms of sharp leading-edge corners,
we conjecture that negative production mechanisms of vertical
fluctuations in the leading-edge shear layer could be responsi-
ble, at least partially, to the development of a thicker recircu-
lating region in such a flow cases. In fact, negative production
phenomena correspond to a production of mean vertical ve-
locity.

C. On negative production of turbulent kinetic energy

As shown in Cimarelli et al. 37, negative production phe-
nomena of turbulent kinetic energy,

tr(Πi j)/2 =−
(
〈u′2〉−〈v′2〉

) ∂U
∂x
−〈u′v′〉

(
∂U
∂y

+
∂V
∂x

)
(10)

are found to occur in the leading-edge shear layer of the
flow around a rectangular plate with sharp leading and trail-
ing edges. The presence of these phenomena are shown to
be a challenge for turbulence theories that should predict a
source of mean kinetic energy from the interaction of turbu-
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FIG. 9. Premultiplied frequency cospectrum St E−uv(St) computed in the leading-edge shear layer for the different flow configurations simu-
lated. The exact location of the probe is reported in figure 3.

lent stresses and mean velocity gradients. This fact is of over-
whelming importance also for turbulence closures as shown
in Cimarelli et al. 38 in a context of Large Eddy Simula-
tion. As shown in Cimarelli et al. 37, negative turbulence
production phenomena are given by the negative value of the
Reynolds shear stresses in the shear layer, −〈u′v′〉. In particu-
lar, the phenomena determining the sign of the Reynolds shear
stresses in the shear layer, −〈u′v′〉, are found in Cimarelli et
al. 37 to be related with the motions induced by the very-large
scale unsteadiness of the entire flow recirculation.

As already reported in section §III, premultiplied frequency
spectra of vertical velocity show that this very-slow phe-
nomenon is typical of the flow cases with right-angle corners,
thus, explaining the presence of negative turbulence produc-
tion phenomena in such flows and their absence in the flow
cases with smooth corners. To verify this conjecture, in figure
9, the premultiplied frequency cospectra, St E−uv(St), evalu-
ated along the leading-edge shear layer are reported. It is ev-
ident that for the flow cases with right-angle corners, R1 and
R2, the cospectrum show two-distinct behaviours contribut-
ing to the Reynolds shear stresses −〈u′v′〉 with opposite sign.
In particular, a range of small time scales centred at St ≈ 1
is found to produce positive turbulent stresses, −〈u′v′〉 > 0,
while a range of very slow scale motion centred at St ≈ 0.05 is
found to produce negative turbulent stresses, −〈u′v′〉< 0. As
shown in section §III, the former is a range of small-scale fluc-

tuations that are amplified along the shear layer by transitional
mechanisms thus leading to turbulence. On the other hand, the
latter range of very slow motions is related with the instability
of the entire recirculating region. As shown here in quantita-
tive terms, this very slow motion is the origin of the negative
turbulence production mechanisms in the shear layer of flows
with right-angle corners, R1 and R2. On the other hand, as
shown in section §III, the flow cases with smooth corners are
not characterized by this instability of the entire recirculat-
ing bubble. Accordingly, the relative premultiplied frequency
cospectra, shown in figure 9 (cases R3 and R4), do not exhibit
the large scale negative contribution to the turbulent stresses
thus explaining the absence of negative turbulence production
phenomena. Indeed, only the small scale contribution due to
the development of turbulence survives thus leading solely to
classical positive turbulence production mechanisms.

VII. SENSITIVITY TO FREE-STREAM TURBULENCE

In the present section we address how the different flow
configurations react to the presence of a non-zero free-stream
turbulence level. To this aim, the four numerical cases de-
scribed in section §II have been run again using the same
numerical settings and adding a free-stream turbulence level√

2q/U∞ = 0.002. This very low but finite value of free-
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stream turbulence has been considered in order to study the
sensitivity of the flow configurations on this parameter. Fur-
thermore, it allows to reproduce the settings of the ERCOF-
TAC T3L test case experiments. In this respect, let us notice
the good agreement of the present computations with the ex-
perimental data shown in Ref. 28 and 39

In the present work, due to mesh coarsening, the appli-
cation of a free-stream turbulence at the inlet is unfeasible.
Hence, turbulent fluctuations are introduced by applying a
spatially-supported random forcing term to the momentum
equations which is active in the regions of the flow just up-
stream the plates where the mesh density is enough to not
dissipate them. The random forcing is homogeneous in the
cross-flow (y,z)-plane and assumes a Gaussian distribution in
the streamwise direction that is centred at x =−3. The width
of the Gaussian distribution is 0.01 while the intensity of the
forcing is adapted in the different flow configurations to ob-
tain a free-stream turbulence level at the leading-edge of the
plates

√
2q/U∞ = 0.002, see Ref. 28 for more details.

In figure 10, the behaviour of the friction and pressure coef-
ficients for the different flow configurations with and without
free-stream turbulence are shown. Interestingly, the effects
of free-stream turbulence are almost negligible for the flow
configurations with right-angle corners, cases R1 and R2. In-
deed, both the profiles with and without free-steam turbulence
of the friction and pressure coefficient almost collapse each
other for these flow cases. We argue that this lack of sensi-
tivity on free-stream turbulence is due to the absorption effect
of vertical fluctuations performed by the negative production
mechanisms observed to occur in the shear layer for the flow
cases with right-angle corners.

As shown in the previous section, such negative production
phenomenon is induced by the very-slow motions related to
the instability of the entire recirculating bubble that are found
to be typical of flows with sharp leading-edge corners. Ac-
cordingly, in the flow cases with smooth leading-edge cor-
ners, negative production mechanisms are not observed and
a strong sensitivity of the flow on the free-stream turbulence
level is found as unequivocally shown in quantitative terms in
figure 10. Indeed, despite the very small value of free-stream
turbulence considered, the behaviour of the friction coefficient
shows a drastic shortening of the recirculating region for both
smooth corner cases R3 and R4, see Lamballais et al. 15 and
40 where similar features are reported. Interestingly, the ef-
fect of free-stream turbulence is to cancel out the effects re-
lated to the flow coupling between the top and bottom sides of
the plate. In fact, the differences that were observed between
the flow cases R3 and R4 without free-stream turbulence are
cancelled by the addition of a very small value of free-stream
turbulence. As shown in figure 10 the friction and pressure
profiles of the flow cases R3 and R4 collapse in the case of
free-stream turbulence.

VIII. FINAL DISCUSSIONS

In the present work, the ability of numerical simulations
to manipulate the flow conditions in order to understand how
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FIG. 10. Streamwise behaviour of the friction (a) and pressure (b)
coefficients for the different flow configurations simulated with and
without free-stream turbulence. The colours encode the flow configu-
ration while circles denote the behaviour with free-stream turbulence
and solid lines reports the profiles without free-stream turbulence.

geometrically relevant parameters influence the behaviour of
separating and reattaching flows is exploited. In particular,
the effect of the leading-edge corner geometry (sharp and
smooth), of the trailing-edge flow separation and of the flow
coupling between the top and bottom sides of the plate are
investigated by means of four different flow configurations:
the flow around a finite rectangular plate with right-angle cor-
ners (R1), the flow around an infinite plate with right-angle
leading-edge corner (R2), the flow around an infinite flat plate
with circular leading-edge corner (R3) and the flow occur-
ring solely in the top side of an infinite flat plate with circular
leading-edge corner (R4). For the solution of these flow prob-
lems, implicit LES simulations have been performed by using
a high-order Discontinuous Galerkin numerical method.

The results reveal that the most significant differences be-
tween the different flow configurations are, in general, given
by the geometry of the leading-edge corner. However, sec-
ondary differences given by the presence of a trailing-edge
separation or by a coupling between the top and bottom sides
of the plate are found and analysed in detail. Here, we resume
only the main results.

We found that the flow configurations with right-angle cor-
ners are characterized by a thicker recirculating bubble and
by the presence of a secondary smaller recirculation within it.
This secondary flow is given by a negative streamwise pres-
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sure gradient dcp/dx < 0 that acts as adverse pressure gra-
dient for the reverse boundary layer induced by the main re-
circulation thus promoting its separation and leading to the
secondary recirculation. The right-angle corner cases are also
found to develop higher turbulence intensities as a result of an
increased level of turbulence production of streamwise fluctu-
ations.

The spectral analysis of the flows reveals that the fluctu-
ations amplified by the transitional mechanisms of the shear
layer lie in the same range of frequencies for all the flow cases
that is centred at St ≈ 1. The main difference between the dif-
ferent flow configurations is given by the fact that a very-slow
frequency unsteadiness of the recirculating bubble, centred at
St ≈ 0.05, appears in separating flows with right-angle cor-
ners. We argue that this large-scale instability of the entire
recirculating bubble is related to the height of the flow recircu-
lation itself that is, in fact, very large in the case of right-angle
corners with respect to smooth corners. This aspect gives rise
to the question if there exists a critical height for the develop-
ment of the bubble instability mechanisms.

The presence of a very-large scale unsteadiness of the
main recirculating bubble has strong consequences on the be-
haviour of the separating and reattaching flow. Indeed, the
analysis of the frequency cospectra reveals that this large scale
unsteadiness is responsible for negative turbulence production
phenomena of vertical fluctuations in the leading-edge shear
layer. This reversal of flow energy from the fluctuating to
the mean vertical velocity field is argued to be at the basis of
the development of thicker recirculating region in sharp-edges
flows. Overall, the picture is that of a source of mean vertical
velocity at the leading-edge shear layer that leads to thick flow
recirculations whose height exceeds a critical limit for the de-
velopment of very low-frequency instabilities of the entire re-
circulating bubble that in turn are responsible for the leading-
edge negative production itself thus closing a self-sustained
cycle.

This negative production of vertical fluctuations as strong
consequences also for the sensitivity of the flow on the pres-
ence of a free-stream turbulence level. Indeed, negative pro-
duction is found to absorb free-stream fluctuations thus lead-
ing to a weak sensitivity of the flow cases with right-angel
corners to the presence of free-stream turbulence. On the con-
trary, in smooth corner cases this phenomenon is absent and
a stronger sensitivity to free-stream turbulence is observed
which leads to a drastic shortening of the flow recirculation.

Data availability. The data that support the findings of this
study are available from the corresponding author upon rea-
sonable request.
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FIG. 11. Streamwise behaviour of the friction (a) and pressure (b)
coefficients for different flow configurations encoded by colours and
numerical settings encoded by symbols.

Appendix A: Numerical convergence

The first requirement of the Large Eddy Simulation ap-
proach is to correctly reproduce first order moment statistics
regardless of the resolution adopted. To verify that the DG-
based implicit LES approach here adopted satisfies this re-
quirement, we compare the statistical behaviour of the friction
and pressure coefficients obtained using a fifth order polyno-
mial representation (flow cases R1_p5, R2_p5 and R4_p5)
with those analysed in the paper (flow cases R1, R2 and
R4) corresponding to a sixth order polynomial representation.
This reduction of the polynomial order corresponds to a re-
duction of resolution that in terms of degrees of freedom is
20%. To further assess the robustness of the approach em-
ployed, for the finite rectangular plate case we also address
the convergence of the statistics by varying the top and bottom
boundary conditions from free-stream to a symmetry condi-
tion and the numerical domain dimensions as well as the time
step size. The additional simulation (case R1_SD) employ-
ing such variations is hence compared with that analysed in
the paper (case R1). The overall numerical parameters of the
additional simulation tests are reported in table II. As shown
in figure 11, the numerical method employed highlights a ro-
bustness of first order moment statistics to variations of these
numerical parameters.

.
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Case Re Lx Dx×Dy×Dz Ne DoF ∆y ∆z ∆t
R1_p5 3000 72 200×151×5 52695 3.5 ·106 0.0046 0.082 0.025
R2_p5 3000 20 36×50×5 29538 2 ·106 0.0042 0.136 0.05
R4_p5 3450 12 28×8.5×2 18820 1.3 ·106 0.0025 0.049 0.05
R1_SD 3000 35 112×50×5 47670 4 ·106 0.0039 0.049 0.05

TABLE II. Parameters of the test simulations used to verify the robustness of the numerical method. See the caption of table I.
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