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IMPROVING KNOWLEDGE DISTILLATION FOR NON-INTRUSIVE LOAD MONITORING
THROUGH EXPLAINABILITY GUIDED LEARNING

Djordje Batic⋆ Giulia Tanoni † Lina Stankovic⋆ Vladimir Stankovic⋆ Emanuele Principi†

⋆ Dept. Electronic & Electrical Engineering, University of Strathclyde, Glasgow, United Kingdom
† Dept. Information Engineering, Università Politecnica delle Marche, Ancona, Italy

ABSTRACT
Knowledge distillation (KD) is a machine learning technique widely
used in recent years for the task of domain adaptation and complexity
reduction. It relies on a Student-Teacher mechanism to transfer the
knowledge of a large and complex Teacher network into a smaller
Student model. Given the inherent complexity of large Deep Neural
Network (DNN) models, and the need for deployment on edge de-
vices with limited resources, complexity reduction techniques have
become a hot topic in the Non-intrusive Load Monitoring (NILM)
community. Recent literature in NILM has devoted increased effort
to domain adaptation and architecture reduction via KD. However,
the mechanism behind the transfer of knowledge from the Teacher
to the Student is not clearly understood. In this work, we aim to ad-
dress the aforementioned issue by placing the KD NILM approach in
a framework of explainable AI (XAI). We identify the main incon-
sistency in the transfer of explainable knowledge, and exploit this
information to propose a method for improvement of KD through
explainability guided learning. We evaluate our approach on a vari-
ety of appliances and domain adaptation scenarios and demonstrate
that solving inconsistencies in the transfer of explainable knowledge
can lead to improvement in predictive performance.

Index Terms— Non-Intrusive Load Monitoring, Energy Disag-
gregation, Knowledge Distillation, Neural Networks, XAI

1. INTRODUCTION

Energy conservation plays a crucial role in providing energy effi-
ciency in smart homes and smart buildings. Surveys, such as [1],
report that energy consumption awareness can lead to a reduction
of about 15% of consumer energy usage in the residential sector.
Recent developments in the area of research centered around Non-
intrusive Load Monitoring (NILM) have shown success in estimat-
ing the contribution of individual appliances to the total load, help-
ing gain deeper insight in energy usage and consumption habits,
and enriching energy feedback and energy saving advice as a re-
sult. In particular, Deep Neural Network (DNN) approaches have
reached state-of-the-art performance in various NILM tasks across
most publicly available datasets [2]. However, the inherent complex-
ity of large DNN models requires a large amount of computational
resources both during training and inference, hindering deployment
of the DNN-driven NILM methods on edge devices with limited re-
sources. To this end, in recent years, techniques for complexity re-
duction have been gaining considerable attention in the NILM com-
munity [3, 4, 5]. One of the most promising approaches for model
compression and domain adaptation is Knowledge Distillation (KD)
[6], a machine learning paradigm that relies on the transfer of knowl-
edge from a large Teacher network to a less complex Student model
that can be implemented on the edge. In other application domains,

KD has demonstrated effective results in maintaining the perfor-
mance of the Teacher network, while facilitating scalability [7] and
preservation of privacy [8].

Another important issue that has received considerable critical
attention in the NILM community is algorithmic transparency [9,
10, 11]. Lack of interpretability brought by the inherent algorith-
mic complexity of DNN models has caused many to regard them as
“black-box” algorithms, leading to concerns raised by the scientific
community [12], as well as legislative bodies [13]. The aforemen-
tioned problem has spurred the field of explainable AI (XAI), aimed
to derive methods for creation of more trustworthy deep learning
systems by providing human-understandable explanations of DNN
outputs. Previous studies in this area of research have sought to pro-
pose techniques for generating visual explanations that highlight the
features of the input which are the most influential for the predic-
tion of a model. A considerable volume of literature suggests that
such approaches can facilitate more trustworthy machine learning
systems by facilitating predictive transparency [14] and assessment
of the levels of bias [15]. However, despite the apparent benefits
of introducing XAI in DNN-based NILM systems, most studies in
KD NILM have only focused on domain adaptation and architec-
ture reduction [16, 17], and little is understood about the mechanism
behind the transfer of knowledge from the Teacher to the Student
model. Importantly, the relationship between the explanations of the
Teacher model outputs and how they relate to explanations of the
Student model decisions has not received any attention in the NILM
community.

In this paper, we propose a methodology that establishes a link
between KD and XAI approaches for NILM. A KD framework is
used to train less complex networks (Students) for each appliance
starting from a more complex network (Teacher) trained on a large
quantity of samples from different domains. The Teacher network
is a multi-label classifier used to distill the knowledge into a binary
Student classifier model. By exploiting existing XAI tools, we first
derive visual explanations of outputs generated by the components of
the KD system, with the aim of understanding the distillation mech-
anism. We then use this information to identify the main type of
inconsistencies w.r.t. transfer of explanation knowledge. Finally, we
propose a method for improvement of predictive performance of KD
NILM algorithms by guiding the distillation process towards cor-
rect transfer of explanation knowledge. We evaluate the proposed
methodology using models trained for classification of five appli-
ances on geographically distinct UK-DALE [18] and REFIT [19]
datasets in two domain adaptation scenarios.

In summary, the contributions of this work are as follows: (i) We
identify the main type of inconsistency in the process of transferring
explanation knowledge in the KD framework for NILM (ii) We pro-
pose a technique for alleviation of explanation inconsistencies in KD
NILM via a new loss function (iii) We analyse the effectiveness of
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the proposed explainability guided learning in various domain adap-
tation scenarios

The rest of this paper is structured as follows: In Section 2 we
present the methodology of our approach. Section 3 demonstrates
the experimental setup, while the experimental results are presented
in Section 4. Finally, we conclude our work in Section 5.

2. METHODOLOGY

2.1. Knowledge Distillation

Network compression techniques are used to reduce the architecture
size and overall computational load during the training and inference
process. In this work, we adopt a KD approach based on a Teacher-
Student strategy, where the architecture of the Teacher network is
a Convolutional Recurrent Neural Network (CRNN). The architec-
tural reduction compared to the Teacher is achieved by reducing the
number of convolutional blocks and gated recurrent units in the Stu-
dent model, leading to a 6-fold reduction in the number of trainable
parameters. The architectures of Teacher and Student networks con-
sidered are shown in Table 1. The Teacher network is pre-trained
on a large set of aggregate smart meter load profiles and then fine-
tuned on a smaller set of aggregate signals. The pre-training set is
annotated with sample-by-sample labels (called strong labels) and
window-level labels (called weak labels). For more information on
strong and weak labels, please see [20]. The networks take as input
a series of D disjointed aggregate windows with dimension L and
produce as output two levels of predictions, a series of D sample-
by-sample state predictions x̂s ∈ R1×L at the strong level and a
series of D window predictions ŵs ∈ R1×1 at the weak level. Both
levels are shown in Table 1. The pre-training loss at the Teacher net-
work is formulated as Lpt = Ls + λLw, with Ls and Lw being
Binary Cross-Entropy (BCE) defined as in [20] for strong and weak
predictions, respectively. Then, the Teacher network is fine-tuned
on a set of mains, annotated only with weak labels and the same set
is also used during the distillation process for the Student network
training. Fine-tuning is performed by re-training the Teacher net-
work with the loss function defined as Lft = Lw. The distillation
loss compares soft Teacher with soft Student predictions and weak
level predictions with weak ground-truth, and it is formulated as:

LKD = β·Lsoft

(
σ

(
x̂s

T

)
, σ

(
x̂t

T

))
+(1−β)·θ(e)·Lw(ŵs, w),

(1)
with σ(x̂s/T ) being soft predictions of the Student and σ(x̂t/T )
soft labels from the Teacher, and σ being the sigmoid function. T
is the temperature parameter used to soften Teacher predictions [6].
θ(e) is a dynamic weight that balances the magnitude of the two
losses based on the formula θ(e) = 10−G(e) where G(e) is obtained
by G(e) = log10(Lw(e)) − log10(Lsoft(e)) and index e is the
training epoch. Parameter β balances the contribution of the Teacher
knowledge and the weak ground-truth.

At the end of the distillation process, Student predictions are
quantized to obtain the state of the appliance, by applying a threshold
selected based on the validation set.

2.2. Feature Importance Map Generation

As the need for explainability is becoming an increasingly impor-
tant step for integration of AI systems, there has been a strong push
towards development of practical tools that facilitate better under-
standing of complex, “black-box” algorithms. In order to incorpo-
rate XAI in the NILM KD framework, we devote our attention to

Model Layer Activation Filters Kernel Units

Teacher

Convolutional Block 1 ReLu 32 5 -
Convolutional Block 2 ReLu 64 5 -
Convolutional Block 3 ReLu 128 5 -
Bidirectional GRUs - - 64
Fully Connected (strong level) Sigmoid - - 5
Linear Softmax Pooling - - - 5
Activation (weak level) Sigmoid - - -

Student

Convolutional Block 1 ReLu 32 5 -
Bidirectional GRUs - - 32
Fully Connected (strong level) Sigmoid - - 5
Linear Softmax Pooling - - - 5
Activation (weak level) Sigmoid - - -

Table 1: Architecture of Teacher and Student models.

GradCAM, one of the most cited explainability methods [21]. Grad-
CAM aims solve the problem of assigning importance values to the
input features of a DNN algorithm.

Given an input x to a DNN model, and a target concept c, the
goal is to map the relevance of each input feature to the target con-
cept, where the target concept can be represented as a class of interest
in the case of classification tasks. GradCAM operates by computing
the gradient w.r.t the final convolutional layer of a CNN network
[21]. In order to generate an explanation map hc ∈ RW×H of width
W and height H for a target concept c, the gradient of the output for
the target concept yc w.r.t the kth feature map activations Ak of the
last convolutional layer is computed, i.e., ∂yc

∂Ak . Next, a global av-
erage pooling operation is applied over the height and width dimen-
sions (indexed by i and j, respectively) on the computed gradients,
to obtain neuron importance weights [21]:

ωc
k =

1

W ×H

∑
i

∑
j

∂yc

∂Ak
i,j

. (2)

The generated weights represent the importance of feature map
k for the target concept c. In order to compute the explanation map
hc, weighted combination of feature map activations, followed by
ReLU function, is performed [21]:

hc = ReLU

(∑
k

ωc
kA

k

)
. (3)

Note that ReLU operation ensures that only features with a pos-
itive influence on the target concept are considered.

2.3. Explainability Guided Learning

As previously stated, KD minimizes the divergence between the
probability distributions of the Teacher and Student models, with
the aim of aligning the logits produced by the Student with those
of the Teacher. This process achieves effective transfer of knowl-
edge by conditioning the Student model to mimic the outputs of
the Teacher. However, we observe that KD might not always be
successful in transferring the explainable knowledge of the Teacher.
In particular, we note the main erroneous case of inconsistency in
the explanation knowledge transfer, that is, given identical inputs,
Teacher and Student networks produce dissimilar output explana-
tions for a given class. This phenomenon is illustrated with an
example in Fig. 1 a)-b) in the form of a heatmap, where the highest
values correspond to input features most important for the predictive
output of the Washing Machine class. We observe that the distilla-
tion process has been unsuccessful in transferring the magnitudes
of most relevant importance values to the Student, possibly causing
the occurrence of a false positive prediction. We hypothesize that
a reduction of such inconsistencies might be a crucial step in the
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Fig. 1: Explanations for prediction of Washing Machine in the
REFIT-to-REFIT domain adaptation scenario. a) Teacher expla-
nation b) baseline Student explanation, displaying the inconsistent
transfer of explanation knowledge c) Corrected Student explanation
and prediction after explainability guided learning. Strong predic-
tions are displayed before quantization.

optimization of the distillation process, leading to a more stable
predictive performance.

To prevent inconsistencies in the transfer of explainable knowl-
edge, we derive a learning technique for improvement of knowledge
distillation, focusing on dissimilarities between the Teacher and Stu-
dent explanations. We condition the distillation process to transfer
the Teacher behaviour both in terms of output predictions and out-
put explanations. This mode of learning, hereinafter explainability
guided learning, is achieved through a new distillation loss function,
modified to guide the learning process towards the resolution of ex-
planation inconsistencies. As explanation heatmaps are represented
in vector form, we quantify the inconsistency between two explana-
tions through a loss function based on a measure of cosine similarity,
defined as:

Lµ
xai(a, b) = − ab

∥a∥∥b∥ = −
∑n

i=1 aibi√∑n
i=1 (ai)2

√∑n
i=1 (bi)

2
, (4)

where a and b represent two generated explanations, while µ repre-
sents the output type to be compared (weak or strong). It is expected
that two similar vectors will have a similar angle between them, lead-
ing to the conclusion that the similarity of two vectors increases as
the value of their cosine angle increases. To this end, in order to pro-

Appliance Scenario γ µ

Washing Machine UK-DALE 0.50 weak
REFIT 0.30 strong

Dishwasher UK-DALE 0.85 strong
REFIT 0.70 weak

Washer-Dryer UK-DALE 0.60 weak
REFIT 0.30 weak

Kettle UK-DALE 0.30 weak
REFIT 0.70 weak

Microwave UK-DALE 0.70 weak
REFIT 0.5 strong

Table 2: Training hyperparameters used for training of Student mod-
els for each of the two domain adaptation scenarios.

mote the minimization of the loss function, we invert the sign of the
generated cosine similarity measure.

To alleviate inconsistencies w.r.t transfer of explainable knowl-
edge in KD, we introduce a modification to the KD loss function
by including the cosine similarity-based loss between the explana-
tions produced by the Teacher and the Student networks. Thus, the
explainability guided knowledge distillation loss function can be de-
fined as:

LXGKD = LKD + γ · Lµ
xai(ht, hs), (5)

where ht and hs represent explanations generated by Teacher and
Student networks, respectively, while γ represents a parameter that
adjusts the impact of the cosine similarity loss component Lµ

xai.

3. EXPERIMENTAL SETUP

3.1. Datasets

To validate our proposed approach, we use real-world UK-DALE
[18] and REFIT [19] datasets. UK-DALE contains aggregate and
appliance-level power measurements from 5 buildings acquired at a
granularity of 1 s and 6 s, respectively, while REFIT contains power
measurements collected from 20 houses at 8 second intervals. To
account for different sampling rates in the two datasets, we resam-
ple the UK-DALE aggregate and REFIT measurements to 6 s. To
account for class imbalance, the datasets have been balanced as in
[20]. Houses 2, 4, 8, 9, and 15 in REFIT have been used for test-
ing. We extract a portion of this data for fine-tuning and distillation
(30% of the total number of windows). To evaluate the success of
our approach in performing domain adaptation, two different scenar-
ios are used to pre-train the Teacher network, where training data are
taken from 1) UK-DALE houses 1, 3, 4, and 5 (UK-DALE-to-REFIT
scenario) and 2) REFIT houses 5, 6, 7, 10, 12, 13, 16, 17, 18 and
19 (REFIT-to-REFIT scenario). The UK-DALE-to-REFIT scenario
is used to evaluate the performance of the proposed method when
pre-training and target environment domains are different, while the
REFIT-to-REFIT scenario aims to evaluate the performance of the
method when the pre-training domain is similar to the target environ-
ment signal domain. The validation set for each scenario is extracted
from the pre-training set, as well as the mean and standard deviation
values used to normalize the input signals.

3.2. Training Procedure

We evaluate our approach on five appliances (Washing Machine
(WM), Dishwasher (DW), Washer-Dryer (WD), Kettle (KT), and
Microwave (MW)), across two domain adaptation scenarios (UK-
DALE-to-REFIT and REFIT-to-REFIT). Teacher is trained to per-
form multi-label classification of an input signal. As part of our
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distillation framework, we design the Student model as a binary
classifier with reduced architecture compared to the Teacher so that
explainability guided learning can be focused on explanations for
one appliance/class at a time. Moreover, the model can be used
without re-training, even if some of the five appliances of interest
are not present in the target house. We first perform knowledge
distillation without explainability guided learning, using LKD loss
defined in Eq. (1), to create baseline Student models for each ap-
pliance in the two domain adaptation scenarios. Then, the same
process is repeated with explainability guided learning with a loss
function defined in Eq. (5). As each appliance model is sensitive
to the choice of µ and γ, we report the chosen hyperparameters in
Table 2. Hyperparameters and thresholds to quantize the predictions
have been selected for each model such that they maximize the
performance on the validation set. The input window dimension is
L = 2550 which corresponds to 4h and 15min of measurements.
The batch size is set to 64. Adam optimizer is used with a learning
rate of 0.002, and a number of epochs is set to 1000. To prevent
overfitting, we use early-stopping criterion. Standard classification
metrics: Recall, Precision, and F1-score, are used for evaluation.
We considered false positives as samples that have to be classified
as inactive but have been predicted as active, while false negatives
are samples that have been classified as active though they were
inactive. Consequently, true negatives and true positives are the
samples that have been correctly predicted as inactive and active,
respectively.

4. EXPERIMENTAL RESULTS

We first present the results, in Table 3, for the case of domain adapta-
tion scenario where the Teacher network is trained using UK-DALE,
while the Student is trained using REFIT (UK-DALE-to-REFIT sce-
nario). We observe that the proposed explainability guided learning
led to an increase in performance compared to the baseline model
for all appliances. When comparing with the Teacher model, we
note improvements for all appliances, except for WD, where the F-
score remains unchanged, and KT, where the F-score decreased, but
still remained significantly higher than the baseline model. A pos-
sible reason for the poor performance for KT is the fact that in this
case, the Teacher model might not be ideal for knowledge distil-
lation, as its low recall value suggests that it exhibits a high num-
ber of false negative predictions. Results for the domain adaptation
scenario where both Teacher and Student models were trained us-
ing REFIT data (REFIT-to-REFIT) and tested on unseen houses in
REFIT are shown in Table 4. As in the first scenario, we observe
improvements in the performance compared to the baseline and the
Teacher, with the exception of MW, where all three methods pro-
vide similar performance. Results presented in Figure 1 suggest
that explainability guided learning helps alleviate incorrect transfer
of explanation knowledge, and through this process improves the
predictive performance of the Student model. The results presented
in Tables 3 and 4 show that the proposed explainability guided learn-
ing leads to improved knowledge distillation for most appliances
in both domain adaptation scenarios. In the first scenario, we ob-
serve improvements of the F-Score measure ranging from 1.6% (for
DW) up to 22.6% (for WM) compared to the baseline, while the im-
provements over the Teacher model ranged from 0% (for WD) up
to 33.3% (for MW). Similar findings hold for the REFIT-to-REFIT
domain adaptation scenario, where the maximum improvement over
the baseline was 15.6% (for WD), while the maximum improvement
over the Teacher was 25.5% (for DW).

Appliance Model Precision Recall F1-Score

Washing Machine
Teacher 0.56 0.69 0.62
Baseline 0.70 0.43 0.53
Ours 0.55 0.81 0.65

Dishwasher
Teacher 0.49 0.84 0.62
Baseline 0.50 0.88 0.63
Ours 0.52 0.83 0.64

Washer-Dryer
Teacher 0.79 0.77 0.78
Baseline 0.97 0.52 0.68
Ours 0.75 0.81 0.78

Kettle
Teacher 0.77 0.42 0.55
Baseline 0.26 0.98 0.41
Ours 0.31 0.97 0.47

Microwave
Teacher 0.43 0.98 0.60
Baseline 0.94 0.52 0.67
Ours 0.69 0.96 0.80

Table 3: Results for the UK-DALE-to-REFIT domain adaptation
scenario.

Appliance Model Precision Recall F1-Score

Washing Machine
Teacher 0.57 0.91 0.70
Baseline 0.60 0.93 0.73
Ours 0.76 0.82 0.79

Dishwasher
Teacher 0.35 0.97 0.51
Baseline 0.42 0.96 0.59
Ours 0.49 0.93 0.64

Washer-Dryer
Teacher 0.93 0.52 0.67
Baseline 0.98 0.47 0.64
Ours 0.67 0.82 0.74

Kettle
Teacher 0.92 0.55 0.69
Baseline 0.60 0.95 0.73
Ours 0.72 0.79 0.75

Microwave
Teacher 0.79 0.98 0.87
Baseline 0.77 0.95 0.85
Ours 0.93 0.77 0.84

Table 4: Results for the REFIT-to-REFIT domain adaptation sce-
nario.

5. CONCLUSIONS

We propose explainability guided learning for improvement of
knowledge distillation for NILM. Driven by the increasing com-
plexity of state-of-the-art architectures and the need for deployment
on edge devices with limited resources, through this approach, we
address three important challenges of NILM: scalability, algorith-
mic transparency and transferability. We identify the main type of
inconsistency in transfer of explainable knowledge, and propose ex-
plainability guided learning that aims to alleviate erroneous knowl-
edge transfer during the distillation process. Experimental results
performed on actual smart meter household measurements suggest
that our methodology helps mitigate explanation inconsistencies,
and leads to improved predictive performance in the majority of
domain adaptation scenarios.
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