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Abstract

Composites made of reinforcing short fibers embedded into brittle matrices, like, e.g., fiber-
reinforced concretes, exhibit enhanced strength and ductility properties. Their failure process
induced by tensile loadings involves hardening and softening stages as a result of matrix mul-
tiple micro-cracking, due to stress bridging of fibers across matrix micro-cracks, and strain
localization phenomena.

In the present paper, a variational model is proposed for the description of the intriguing
failure mechanisms observed in short fibre-reinforced composites subjected to tensile loadings.
The key modeling idea is to schematize the composite as a mixture of two phases, a brittle phase,
representative of the matrix, and a ductile phase, accounting for the fibers reinforcement, which
are coupled by elastic bonds.

Different modeling levels of increasing complexity are proposed, ranging from a simplified
one-dimensional analytical model to a three-dimensional variational model. Within the varia-
tional formulation, specific damage and plastic energies are assigned to the two phases, incor-
porating non-local gradient terms, and governing equations and evolution laws for the internal
variables, as yield inequalities, consistency conditions and normality rules, are deduced from
minimum principles. Parameters calibration is discussed as well as the importance of three in-
ternal lengths incorporated into the model. Moreover, the variational structure of the problem
allow for a straightforward finite element implementation based on an incremental energy min-
imization algorithm and several aspects of the response are highlighted by means of numerical
examples.

Keywords: Variational fracture, gradient plasticity, fiber-reinforced concrete, ductile failure,
micro-cracking
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1. Introduction

High-performance applications in structural engineering continuously demand for innovative
materials with enhanced mechanical properties. One way to meet this request is to develop com-
posites where different materials with specific properties are combined to achieve the desired
performances. Among the many typologies of composites, we focus on short fiber-reinforced5

composites, which are obtained by embedding fibers of short length within matrices to improve
their mechanical properties, [1, 2, 3, 4]. In construction engineering, an example is given by
ultra-high performance fibre-reinforced concretes (UHPFRC), in which tensile strength, ductil-
ity, and durability are significantly improved by adding great amounts of short fibres (> 2%
by volume), usually made of steel, within ultra high strength cementitious matrices [5]. Many10

experimental studies on UHPFRC have been conducted [6, 7, 8], highlighting the role of mix
design [9], and proposing recommendations for a correct use in structural applications [10].

The response of UHPFRC to tensile loads clearly shows the advantage of fibers on the
overall performances of the composite, and it is taken as an explicative example of the peculiar
mechanical behaviour of short fiber-reinforced composites. Three different stages distinguish15

the tensile response of UHPFRC, as shown in Fig. 1. The initial stage is linear elastic. Then
a non-linear stress-hardening response follows, characterized by a process of matrix micro-
cracking. This stage, totally absent in ordinary concretes, is due to the bridging action of
fibers, transferring stresses across micro-cracks, which progressively open within the whole bar.
After the peak-stress has been reached, no further cracks develop, and the response becomes20

stress-softening, with strain localization within a single crack, leading to the fully failure. In
case of sufficiently long bars, the softening response may not be observed, since an unstable
response (snap-back) leads to abrupt failure [11]. During the failure process both damage and
plastic strains develop, as shown by unloading curves [8, 12], which exhibit reduction of the
elastic modulus and presence of permanent deformations.25

Processes of micro- and multi-cracking are observed in many other cases, as, for instance,
in hybrid composites [13], in coatings [14], in thin films on rigid substrates [15], in flexible
electronic devices [16], in mud and clay desiccation processes [17] and even in the crocodile
skin [18]. The correct description of the complex multi-cracks patterning is of fundamental
importance when assessing material durability and ductility [19]. Its accurate characterization,30

as the knowledge of the micro-crack spacing, can also allow for novel and advanced applications
as auto-diagnostic materials and visual overload strain sensors [20].

In this work, a variational model is proposed, able to describe the intriguing tensile failure
of short fiber-reinforced composites, where rupture is anticipated by a stress-hardening pro-
cess of multi-cracking, and special attention is payed to the characterization of the dissipation35

mechanisms induced by damage and plastic strain evolution.
The model is developed within the framework of energetic formulations for rate-independent

systems [21, 22, 23], which have been applied to the modelling of many problems of non-smooth
evolution and material instability induced by strain localization. Among the many works avail-
able in literature, we mention the phase-field models for brittle fracture [24, 25, 26], quasi-brittle40

fracture [27], cohesive fracture, [28, 29, 30], anisotropic fracture [31, 32], plastic shear bands
and ductile fracture [33, 34, 35, 36], phase-transformation [37, 38]. According to the energetic
approach, once the internal energy density of the material is specified, the entire evolution is
governed by three energetic requirements, which are the stability criterion, the energy balance
and the dissipation inequality. Compared to standard theories, the energetic formulation owns45

the advantage of being completely derivative-free, admitting discontinuities both in space and
in time. Such a feature, in addition to evolution governing principles, allows for a natural and
straightforward numerical implementation based on incremental energy minimization schemes,
which is a valuable alternative to the integration of differential evolution equations [39, 22].
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A first variational model for the description of stress-hardening and stress-softening stages of
micro-cracking and macro-crack opening, as observed in tensile UHPFRC, has been proposed in
[40]. By introducing an internal damage variable within the model, the micro-cracking process
is described by zones of diffuse damage, where single micro-cracks are indistinguishable, and
the final macro-crack is reproduced by damage localization. The model accurately captures5

the tensile stress-strain response found in tensile experiments on UHPFRC, but it is unable to
predict the patterning of multiple cracks, as well as the crack spacing, which is a key aspect
when assessing durability. Furthermore, the model does not describe plastic strain evolution
and, therefore, it does not correctly predict dissipation and ductility.

The modeling of complex multiple cracks patterning is still an open issue. In the one-10

dimensional context, it is proved that rate-independent formulations based on a single dis-
placement field are not able to describe multiple strain localizations [41]. In phase-field models
[42, 40], damage diffuses in regime of stress-hardening, and it localizes in a single region in regime
of stress-softening. A similar behaviour is observed in non-local plasticity models [41, 43, 33]. In
[37, 38], the localized zone of phase transformation extends instead of promoting the formation15

of new localization areas. Models with multiple internal variable, as damage and plasticity [35],
are also unable to describe the occurrence of multiple zones of localization.

On the contrary, phenomena of fragmentation and multiple strain localization have been
reproduced by phase-field models of thin films on rigid substrates [44] and hybrid composites
[45]. In both the cases, the interface between layers has played a key role in the description20

of multiple cracks. Inspired by these studies, we propose a model based on the concept of
superposition of continua [46]. The body is assumed to be a mixture of two solid phases
representing the matrix and the fiber reinforcement. Phases are weighted by suitable volume
fractions, and they are coupled by linear elastic springs, which play the role of transferring
stresses among phases, thus accounting for the fibre-bridging effect. The matrix is assumed to25

be brittle, and it is described by a variational phase-field damage model [25], where a damage
internal variable describes the evolution of micro-fractures. Fibers are supposed to be ductile,
and they are modeled by a variational plasticity model [41, 43], where plastic strains account
for the inelastic processes experienced by the reinforcement. As in Aifantis’s gradient plasticity
theories [47, 48], the plastic energy is assumed to depend on the cumulated plastic strain, and30

it incorporates a nonlocal gradient term which allow to deal with stress-softening behaviours of
plastic strains localization. In any material point, both the two phases coexist in proportion to
their volume fraction, linked by elastic bonds, and thus fibres and matrix are indistinguishable
in the resulting continuum body. A key modeling hypothesis is that all inelastic phenomena are
included into damage and plastic properties of the two phases, and elastic bonds have just the35

role of transferring stresses between the two phases. The aim of this simplistic assumption is to
separate the effects that each modelling ingredient has on the description of the failure process,
keeping the analysis as simple as possible. It also allows for a straightforward calibration of the
constitutive parameters.

Equilibrium equations and evolution laws for the internal state variables automatically de-40

scend from the energetic formulation, and, numerically, the evolution problem is formulated as
an incremental energy minimization problem. Numerical solutions show the model ability to
reproduce all the main features of the failure process of UHPFRC. The progressive formation
of multiple micro-fractures within the brittle phase is reproduced, providing a more realistic
description of the micro-cracking process than model [40], and the macro-crack growth occur-45

ring in the softening stage is described as a process of progressive plastic strain localization. In
addition, the model correctly describes the dissipation mechanisms which, in experiments, are
detected by performing unloading cycles, and which manifest in the form of stiffness degradation
and residual strains.
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Three different modeling levels of increasing complexity are considering. They correspond
to a one-dimensional analytical scheme, a one-dimensional variational formulation and a three-
dimensional variational model. The one-dimensional analytical theory highlights the fibres
bridging mechanism across micro-cracks. It allows to correlate the spacing between adjacent
micro-cracks to the value of the elastic coefficient of bonds between phases. Furthermore, the5

first-level model can be used as a fast design tool. At the second level, the one-dimensional
variational formulation, preparatory to the three-dimensional extension, is used to determine
the shapes of damage and plasticity energies, and to calibrate parameters therein. The damage
energy is assumed to be linear to account for an initial elastic stage [25]. For the plastic energy,
a convex-concave piecewise quadratic function is assigned in order to capture the two evolution10

stages of stress-hardening and stress-softening, characterized by plastic strain diffusion and
localization. The one-dimensional scheme also allows to identify the three internal lengths
incorporated into the model, which govern the entire failure process: the width of matrix
micro-cracks, the size of the macro-fracture process zone, appearing in the non-local damage and
plasticity energy contributions, respectively, and the minimum distance between adjacent micro-15

cracks, included in the elastic coefficient of the coupling bond energy. The three-dimensional
variational model allows to simulate failure processes observed in real problems, capturing non-
trivial crack patterning. The model is numerically implemented in a finite element code where
the incremental minimum problem governing the failure evolution is solved through an iterative
procedure which consists in sequences of constrained quadratic programming problems. Results20

of tensile and bending tests show the ability of the model in capturing the evolution of complex
multiple cracks patterns, the accompanying development of plastic strains, and the final strain
localization around a pre-existing micro-crack, which leads to the macro-fracture opening. The
key role played by the three internal lengths on the entire failure process is pointed out, and,
furthermore, special attention is focused on the dissipation mechanisms strictly closed to those25

observed in experiments.
The manuscript is organized as follows. In Sec. 2, the failure process observed in short-fiber

reinforced composites is described, and the strategy to model it is presented, highlighting the
basic modelling ideas. Sec. 3 introduces the preliminary analytical model, which allows for
a first comprehension of the key features of the tensile failure observed in experiments. The30

variational model is introduced in Sec. 4. First, the theory is formulated, assigning the state
variable and the energetic quantities, and deducing the governing equations, the dissipation
inequalities and the incremental evolution problem. Then, the problem is reduced to the one
dimensional setting, and the calibration issue is addressed. Different numerical examples are
described in Sec. 5. Finally, conclusions and perspectives are drawn in Sec. 6.35

Concerning notation, unless otherwise specified, a prime 2′ indicates either the derivative
with respect to the spatial coordinate or the derivative with respect to the argument or the
directional derivative of functionals; a superposed dot 2̇ means right-derivative with respect to
time.
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2. Diffused fiber-reinforced composites

2.1. Failure process of UHPFRC in tensile experiments

In this section, we recall the main features of ductile failure of fiber-reinforced composites,
as observed in tensile experiments. We concentrate on UHPFRC, which represent a specific
class of composites made of brittle matrices strengthened with a significant amount of short5

fibers. The use of fibers (usually steel fibers) diffused into an ultra-high-performance concrete
matrix remarkably enhances many mechanical properties, as strength and ductility, especially
when tensile loads are applied [6, 49, 8, 50, 51, 52]. In Fig. 1, typical stress-strain curves
resulting from direct tension tests on standard FRC and UHPFRC are compared. As it can be
immediately noticed, the UHPFRC curve exhibits a stress-hardening branch, corresponding to10

progressive micro-cracking, which is totally absent in the responses of FRC or in standard plain
concretes.

Three peculiar stages can be distinguished in the UHPFRC response curve of Fig. 1, which
are described in the following.
i. Elastic stage. Initially the response is linearly elastic, and it terminates when the maximum15

tensile strength of the matrix is reached. At this instant, the first micro-crack forms within the
matrix.
ii. Multi- and micro-cracking stage. By further loading, a sequence of cracks develops in
the specimen. In this stage, the stress-strain curve has a sawtooth shape, where stress drops
correspond to the opening of new cracks [50]. Since the upper envelop of the stress-strain curve20

is increasing, the overall response is stress-hardening1. Within each micro-fracture, bridging
fibers transfer loads across the crack lips, preventing brittle failure and enhancing material
ductility. This bridging mechanism [53] is accompanied by a process of plastic stress-hardening
due to fibers plastic stretching and frictional debonding. The specimen can sustain increasing
loadings because the strength of each cracked section, reinforced by fibers, is greater than the25

concrete matrix cracking strength.
Micro-cracks form more quickly in the first stage of the hardening process, and, as a result,

stress drops are closer in the first part of the hardening branch of the response curve. As
the process evolves, the frequency at which cracks open reduces. This multi-cracking stage
terminates when the maximum strength of the reinforcement is achieved, and, at this point, the30

final softening stage starts.
At the end of the hardening stage, all cracks have experienced almost the same widening, as

measured in [54] by using acoustic emission techniques, and they are almost equally spaced, as
noticeable in pictures of Fig. 2. The ultimate cracks spacing, independent with respect to the
bar length, is related to a characteristic internal length, which depends on the fibers geometrical35

and material properties and on their distribution within the matrix.

iii. Macro-crack opening stage. In this last stage, only a single pre-existing micro-crack continue
to widen, turning into a macro-crack. Strains localize within the macro-crack, whereas the rest
of the sample elastically unloads. The progressive breaking or pulling-out of bridging fibers
leads to the sample failure. Macro-cracks are clearly visible in pictures of Fig. 2. Since the bar40

experiences a stress-softening behaviour, if it is sufficiently long, the response may be unstable
(snap-back), with a deep stress drop and a brutal crack opening.

A sequence of unloadings and reloadings, as done in [8, 12], allows to estimate the evolution
of damage and plasticity, by measuring the elastic modulus reduction and the permanent strain

1In many experimental works, stress drops are removed from the response curves, which present smooth
branches.
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Figure 1: Responses of standard FRC (a) and UHPFRC (b) tensile specimens, with the corresponding failure
crack pattern.
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Figure 2: Crack pattern at failure of UHPFRC specimens subjected to direct tensile tests. In all situations,
the cracks are always almost equally spaced, regardless their density, denoting the existence of a characteristic
material length. Sub-figures (a), (b) and (c) are, respectively, taken from [6, 49, 51]
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accumulation. Specifically, damage2 mostly evolves at the beginning of the stress-hardening
stage, thus being related to the evolution of micro-cracks. Differently, permanent inelastic
strains, i.e. plastic strains, accumulate during the whole process, from the occurrence of the
first crack to the specimen failure, growing about linearly. In the stress-hardening stage, plastic
strains diffuse in the whole specimen, while, during the softening stage, they localize within the5

macro crack.

2.2. Composite modeling

Based on the above experimental evidences, we assume that a composite body Ω is a mixture
of two solid phases, representing the matrix and the fiber reinforcement, respectively, bonded by
elastic springs. Roman numbers I and II are used to label the two phases. The material of phase10

I is brittle, and a linear elastic-brittle constitutive law is assigned to it. Material of phase II is
assumed to be elastic-plastic, and it is denominated ductile material. Volume fractions of the
two phases are vI and vII, with vI +vII = 1. In the variational model proposed in Sec. 4, damage
energy of phase I and plastic energy of phase II are endowed with non-local contributions which
depend on two internal lengths, `I and `II. The length `I is related to the width of the fracture15

process zone of each micro-crack, whereas the length `II represents the width of the plastic band
that localizes in Ω when a macro-crack develops.

We assume that the reference configuration Ω is undeformed, stress-free, and without any
pre-existing crack. For any point x ∈ Ω, uI(x) and uII(x) are the displacements of the material
points of phase I and II, respectively, and δ(x) = uI(x)− uII(x) is their relative displacement.20

Brittle and plastic phases are bonded by linear elastic springs. The forces that the two
phases mutually exchange linearly depend on δ through the elastic coefficient Ek/`

2
k. The

parameter `k in the denominator is an internal length which controls the minimum spacing
between adjacent micro-cracks, as shown in Sec. 3 through a simplified one-dimensional model.
The stiffness modulus Ek depends on the constitutive parameters of the two phases, and its25

explicit expression is deduced in Sec. 3. The model is based on the simplistic assumption that
springs have just the task of elastically transferring stresses from one material phase to the
other. All inelastic phenomena occurring at the interface level in real composites are included
into the plastic properties of material II. This assumption is aimed at distinguishing the effects
of the different model ingredients on the description of the composite failure process, and it30

allows to keep the analysis as simple as possible.
A geometrical sketch of the model is proposed in Fig. 3. Therein, the real composite and the

model scheme are compared in case of sound and cracked configurations. The mixture proposed
in the model is the superposition of two continua connected by springs, distinguished in the
split view of Fig. 3.35

3. 1D analytical model

We start discussing the mechanical response of a simple one-dimensional analytical model
based on the modeling assumptions of Sec. 2.2, with the aim at reproducing the key features of
the rich failure mechanism described in Sec. 2.1. Specifically, the domain Ω we consider consists
of a bar of length L, made of the superposition of a brittle phase I and a ductile phase II,40

connected by elastic springs. A sketch of the problem geometry is proposed in Fig. 4a, where
the split view is also reported.

For any x ∈ (0, L), uI(x) and uII(x) are the axial displacements of points belonging to phase I
and phase II, respectively. Since the aim is at reproducing failure in a tensile test, we assign

2Here damage refers to the elastic modulus reduction.
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Figure 3: Real material and two-phases superposed continua represented for sound (a) and fractured (b) config-
urations.

the boundary conditions

uI(0) = uII(0) = 0 and uI(L) = uII(L) = ε(t)L (3.1)

where ε(t) is a given mean strain, function of time t.3 We assume that ε(0) = 0, ε(t) ≥ 0 and
ε̇(t) ≥ 0, for any t. For sake of simplicity, only a positive not-decreasing ε is assigned, since this
introductory model just intends to reproduce the cracking process observed in direct tension
tests. The unloading behaviour is briefly addressed in Sec. 3.5.3. The infinitesimal strains of5

phase I and II, together with their relative displacement, are

εI = u′I, εII = u′II, δ = uI − uII (3.2)

and they are conjugated to the tensile stresses σI and σII and to the shear force τ . Relations
between stresses and kinematic descriptors (3.2) are defined in the next section.

3.1. Constitutive assumptions

Phase I has a linear elastic-brittle behaviour. In the elastic stage, the tensile stress σI linearly10

depends on the stretching εI through the stiffness modulus EI, and cracks open when a certain
peak stress σf is reached. At fracture, the tensile stress nullifies since stiffness is totally lost.
Accordingly, phase I obeys the following constitutive law

σI(εI) =

EIεI, if max
τ∈[0,t]

(εI(τ)) ≤ σf/EI

0, otherwise,
(3.3)

whose graph is plotted in Fig. 5a.

3Here and in the following, the variable t ∈ R+, called time for convenience, is used to parameterize any
deformation process.
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Figure 4: Geometrical scheme of the two-phases bar in the reference configuration (a), and in configurations
associated to the three different evolution stages: the elastic stage (b), the hardening stage (c) and the softening
stage (d).

Phase II is assumed to have a linear elastic behaviour, with stiffness modulus EII, and plastic
hinges can develop in those points where cracks are formed in phase I. In each hinge, the yield
stress σp depends on the displacement jump

∆ = u+
II − u−II , (3.4)

according to the bilinear hardening-softening law

σp(∆) =


Hp∆ + σ̄p, if 0 < ∆ ≤ ∆̂ (hardening)

σ̂p − Sp

(
∆− ∆̂

)
, if ∆̂ < ∆ ≤ ∆̌ (softening)

0, if ∆̌ < ∆ (hinge fracture)

(3.5)

where5

Hp =
σ̂p − σ̄p

∆̂
, and Sp =

σ̂p

∆̌− ∆̂
, (3.6)

are the hardening and softening moduli. The choice of a bilinear yield stress function, with
an hardening branch followed by a softening curve, is suggested by the response of UHPFRC

10



described in Sec. 2.1. After the elastic phase, the composite experiences a stress hardening phase
in which plastic strains develop, as attested by the permanent strain registered at unloading,
Fig. 1. Subsequently, the stress-softening stage takes place, where plastic strains localize in a
single hinge and a macro-crack opens. The parameters to be assigned in (3.5) are the activation
stress σ̄p, the point (∆̂, σ̂p) of maximum stress, and the displacement jump ∆̌ at complete5

failure. A graph of the yield stress is drawn in Fig. 5b. In each hinge, displacement jump ∆
and stress σII evolve according to the set of Kuhn-Tucker conditions

σII ≤ σp(∆) ∆̇ ≥ 0 (σp(∆)− σII) ∆̇ = 0, (3.7)

which state that ∆ never decreases, and that it can increases only if σII equals σp.
Lastly, we assume that springs connecting phase I and phase II are linear elastic. Accord-

ingly, relation between shear stress τ and relative displacement δ is10

τ =
Ek

`2k
δ. (3.8)

σ

ε
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1
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σ̄p

σ̂p

∆̂ ∆̌

(b)

Figure 5: Constitutive laws. (a) Fracture law of phase I, (b) plastic law of phase II.

3.2. Equilibrium configurations

Increasing ε, we expect an initial elastic stretching, Fig. 4b, followed by a stress-hardening
phase, in which a sequence of cracks forms in phase I, and plastic hinges develop in phase II,
Fig. 4c. Finally, when one hinge enters the softening regime, its plastic displacement increases,
leading the bar to failure, Fig. 4d. In the fractured configurations of Figs. 4c-d, adjacent cracks15

are separated by portions of sound bar. Each portion is divided into two symmetric parts of
equal length that are called unit-cells. In case cracks cannot form at the bar endpoints, 2n
unit-cells correspond to n cracks. Within each unit-cell, stresses in the two phases are

σI(x) = EIεI(x), σII(x) = EIIεII(x), (3.9)

and the global stress is
σ(x) = vIσI(x) + vIIσII(x). (3.10)

An enlargement of the generic i-th unit-cell of length `i is sketched in Fig. 6a. In the following,20

index i is omitted for brevity.
Equilibrium equations, easily deduced from the scheme drawn in Fig. 6b, are

vIσ
′
I − τ = 0, vIIσ

′
II + τ = 0. (3.11)

We notice that, summing up the two equations, we obtain

vIσ
′
I + vIIσ

′
II = (vIσI + vIIσII)

′ = σ′ = 0, (3.12)
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which says that the total stress σ is constant trough the bar. If we substitute (3.8) in (3.11)
and differentiate, equilibrium equations rewrite as follows

vIEIε
′′
I =

Ek

`2k
(εI − εII), vIIEIIε

′′
II = −Ek

`2k
(εI − εII). (3.13)

In order to solve these set of ordinary differential equations, pairs of boundary conditions for
εI and εII are needed. Referring to the local reference system plotted in Fig. 6a, we assign the
conditions5

ε′I(0) = 0, ε′II(0) = 0, εI(`) = 0, εII(`) = ε̃. (3.14)

The first two conditions result from the symmetry of strains with respect to the midpoint of
each sound portion between consecutive cracks. The third condition is due to the fact that
phase I is fractured at x = `. The fourth condition assumes that the strain adjacent to a
possible plastic hinge is equal to a positive strain ε̃, which will be determined later on from the
kinematic compatibility equation.10

Solution of problem (3.13)-(3.14) is

εI(x) =
ε̃

1 + β

(
1− cosh(κx)

cosh(κ`)

)
, εII(x) =

ε̃

1 + β

(
1 + β

cosh(κx)

cosh(κ`)

)
(3.15)

with

β =
vIEI

vIIEII

, κ =
1

`k

√
Ek

(
1

vIEI

+
1

vIIEII

)
(3.16)

Since the strain fields εI and εII of solution (3.15) are monotone concave and convex, respectively
(see Fig. 7), we can easily evaluate the maximum stresses σI and σII. By using (3.9) and (3.15),
we get15

max
x

EI εI(x) = EI εI(0) = d(`)ε̃ =: σmax
I (`, ε̃)

max
x

EII εII(x) = EII εII(`) = EII ε̃ =: σmax
II (ε̃)

(3.17)

with

d(`) =
EI

1 + β

(
1− 1

cosh(κ`)

)
. (3.18)

We notice that σmax
II is the stress applied to the plastic hinge. Being σI(l) = 0 and σII(l) = σmax

II ,
the global stress (3.10) is

σ = vIIσ
max
II = vIIEII ε̃. (3.19)

Since σ is constant along the bar, ε̃ is the strain of all points of phase II which are adjacent to
plastic hinges, and, consequently, all hinges have the same stress, equal to σmax

II .20

εII(`) = ε̃

0 `

x

εI(`) = 0

ε′II(0) = 0

ε′I(0) = 0

unit-cell

(a)

dx

σI + dσI

σII + dσII

τ

σI

σII

τ

(b)

Figure 6: (a) Unit-cell problem with corresponding boundary conditions, (b) forces in an infinitesimal portion of
the bar.
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Figure 7: Strain profiles and stress transfer zone within a unit cell.

3.3. Micro-cracks spacing

In each bar portion of length 2`i between adjacent cracks, the maximum stress σmax
I in

phase I is attained at the midpoint, and its value is proportional to the half-length `i, namely

σmax
I (`1, ε̃) > σmax

I (`2, ε̃) if `1 > `2. (3.20)

Consequently, within each unit-cell, a new crack forms at the sound endpoint x = 0, Fig. 6a,
when the peak stress σf is reached, according to the stress criterion (3.3). Condition for crack5

opening writes
σmax

I (`, ε̃) = σf, (3.21)

from which, using (3.17)1, the maximum strain ε̃ is

ε̃f = σf/d(`). (3.22)

During the micro-cracking process, each new crack opens in the longest unit-cell, where the
largest σmax

I is attained.
Let us suppose that, within a unit cell, stresses σmax

I and σmax
II assume the values10

σmax
I = d(`)ε̃ = σf, σmax

II = EIIε̃ = σ̂p. (3.23)

The first equation represents the condition for which a new fracture opens in material I, and the
second equation represents the condition for which the peak stress in material II is achieved.
By further increasing the strain ε, two different evolutions are possible: i. a new crack forms,
which produces a stress drop; the plastic hinge reenters in the stress-hardening phase, and the
micro-cracking process goes on; ii. the plastic hinge starts the softening phase, and its plastic15

displacement increases; the global stress reduces in the whole bar, and no further cracks form.
If we solve equations (3.23) with respect to ` and ε̃, we obtain the critical length

` = ˆ̀ := `k

arc sech

(
1− (1 + β)

EIIσf

EIσ̂p

)
√
Ek

(
1

vIEI

+
1

vIIEII

) . (3.24)

If the half-spacing length is slightly larger than ˆ̀, evolution i. is favored and a new crack forms.
The resulting half-spacing becomes ˆ̀/2, which represents lower estimate of the semi-distance
between adjacent cracks. On the contrary, if the half-spacing length is a bit smaller than ˆ̀,20

evolution ii. takes place.
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Eq. (3.24) allows us to calibrate the internal length `k and the modulus Ek as follows. We
assign to `k the value of the smallest micro-crack spacing observed in tensile experiments at the
end of the stress-hardening stage. Since the half-spacing lower bound is ˆ̀/2, we set ˆ̀ = `k in
(3.24), from which we obtain

Ek =

(
arc sech

(
1− (1 + β)

EIIσf

EIσ̂p

))2

1

vIEI

+
1

vIIEII

, (3.25)

which allows to set the value of Ek as function of the phases volume ratios vI and vII, Young’s5

moduli EI and EII, and peak stresses σf and σ̂p that phases can achieve.

3.4. Kinematical compatibility

To determine the unknown strain ε̃, we require the solution to be kinematical compatible.
The compatibility equation reads

εL =
2n∑
h=1

∫ `h

0
εII(x) dx+

n∑
i=1

∆i, (3.26)

which states that the bar elongation (term on the left-hand side) is given by two contributions:10

the elastic stretching of the unit-cells (first summation on the right-hand side), and the elon-
gations ∆i of the plastic hinges (second summation on the right-hand side). Using (3.15)2, the
integral in the first summation reads∫ `h

0
εII(x) dx = f(`h)ε̃, with f(`) =

κ`+ β tanh(κ`)

(1 + β)κ
(3.27)

and the corresponding summation rewrites

2n∑
h=1

∫ `h

0
εII(x) dx = S(Ln)ε̃ (3.28)

with15

S(Ln) =

2n∑
h=1

f(`h) and Ln = {`h, h = 1, . . . , 2n} . (3.29)

We suppose that the n plastic hinges, corresponding to the n micro-fractures, are in stress-
hardening regime, i.e., ∆i ≤ ∆̂, for any i = 1, ..., n, and that j hinges are active and (n − j)
are inactive. In an active hinge, stress equals the yield stress σmax

II = σp(∆i), and the plastic
displacement ∆i evolves (∆̇i > 0). On the contrary, in an inactive hinge, σmax

II < σp(∆i), and
∆i stays fixed (∆̇i = 0).20

In case of an active hinge, from equation σmax
II = σp(∆i), by using (3.5) and (3.17)2, we

obtain

∆i := ∆a =
1

Hp
(EIIε̃− σ̄p) , (3.30)

which states that all active hinges have the same plastic displacement ∆a, where a stands for
active. We assume that all inactive hinges have the same plastic displacement jump, ∆f , where
f stands for fixed. Since σmax

II = σp(∆a) < σp(∆f ) and σp is increasing with ∆ in the considered25

case of stress-hardening, then ∆a < ∆f . Equation (3.26) rewrites

14



εL = S(Ln)ε̃+
j

Hp
(EIIε̃− σ̄p) + (n− j)∆f , (3.31)

from which
ε̃ = ε̃(ε, n, j,Ln,∆f ) = c1(j,Ln)ε+ c2(n, j,Ln,∆f ), (3.32)

with

c1(j,Ln) =
L

S(Ln) + jEII/Hp

c2(n, j,Ln,∆f ) =
c1(n, j,Ln)

L

(
j
σ̄p

Hp
− (n− j)∆f

)
.

(3.33)

For future developments, it is useful to invert (3.32) and to express ε in terms of ε̃

ε =
1

c1(j,Ln)

(
ε̃− c2(n, j,Ln,∆f )

)
. (3.34)

3.5. Evolution

In the forthcoming sections, we analyze the three different stages, namely the elastic, the5

hardening and the softening stages, which are experienced by the bar in a tensile test.

ε
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0 ε̂0

σ

ε̂1ε̄1 ε̄2 ε̂2 ε̄n−1 ε̂n−1ε̄n ε̂n ε̄n̄ ε̂n̄

ε̂n−1 ε̄n ε̂n

σ̌n

σ̂n−1 = σ̄n

σ̂n
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σ̌3
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σ̂2
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σ̂n H1 H2
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n− 1 fixed hinges
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1

Figure 8: Schematic graph of the σ− ε curve, where the different response stages are highlighted. The green and
red dashed lines represent, respectively, the envelop of all local stress peaks and a linear approximation of the
softening stage.

3.5.1. Elastic stage

Initially, the bar undergoes a linear elastic stretching, according to the law

σ = (vIEI + vIIEII) ε. (3.35)

Strains are uniform along the bar and equal to ε in the two materials, and since δ = 0, the
connecting springs are unloaded, with τ = 0.10
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As soon as the stress in phase I reaches the value σf, a fracture opens in the brittle phase.
Global strain and stress at the end of the elastic stage are

ε̂0 = σf/EI, and σ̂0 =
vIEI + vIIEII

EI

σf, (3.36)

(see Fig. 8).
After the occurrence of the first fracture, the stress is no more homogeneous through the

bar. Indeed, at fracture, σI drops to zero, and σII jumps up to a sufficiently high value for5

plastic hinge activation. By using (3.17)2 and (3.32), the stress at the hinge is

σII = σmax
II = EII ε̃(ε̂0, 1, 1,L1, 0). (3.37)

Arguments of function ε̃ account for a single active hinge between two unit-cells. The plastic
hinge activates after the crack occurrence only if the activation stress σ̄p in (3.5) satisfies the
inequalities

σ̄p ≥ (EII/EI)σf, σ̄p ≤ σmax
II . (3.38)

The first inequality avoids hinge activation before crack opening, and the second one guaranties10

hinge activation after breaking. When the first crack and hinge form, the global stress (3.19)
drops down to the value

σ̌1 = vIIEII ε̃(ε̂0, 1, 1,L1, 0), (3.39)

as shown in Fig. 8.

3.5.2. Micro-cracking stage

After the occurrence of the first fracture, the process of progressive cracks opening takes15

place in a stress-hardening regime. The resulting stress-strain curve has a sawtooth shape,
where stress drops correspond to crack openings. We suppose that one crack forms at a time,
and we do not consider simultaneous opening of multiple cracks. The micro-cracking response
is obtained by recursively repeating three stages sketched in the enlargement of Fig. 8 and
highlighted by labels H1, H2 and H3, which define one tooth of the stress-hardening curve of20

Fig. 8. Notice that each branch is linear since linear constitutive laws have been assumed.
We analyze each stage, supposing that the bar has (n − 1) cracks and (n − 1) hinges, and

that the initial point (ε̂n−1, σ̂n−1) is known. It is also known the plastic elongation ∆n−1 of the
(n− 1) hinges. Combining (3.17)2 and (3.19), stress and strain at the (n− 1) hinges are

σmax
II =

σ̂n−1

vII

, ε̃ =
σ̂n−1

vIIEII

. (3.40)

Stage H1, from (ε̂n−1, σ̂n−1) to (ε̂n−1, σ̌n). The new n-th crack opens and the corresponding25

plastic n-th hinge forms. The stress drops to the value

σ̌n = vIIEII ε̃(ε̂n−1, n, 1,Ln,∆n−1), (3.41)

which is obtained by (3.19) and (3.32). Arguments of ε̃ account for (n−1) inactive pre-existing
hinges, with plastic elongation ∆n−1, and one active new-formed hinge. At crack opening, the
plastic displacement of the active hinge is given by (3.30), with ε̃ = ε̃(ε̂n−1, n, 1,Ln,∆n−1).
Stage H2, from (ε̂n−1, σ̌n) to (ε̄n, σ̄n). By increasing ε after the stress drop, unit-cells elastically30

reload. The plastic elongation of the new appeared plastic hinge increases, while the (n − 1)
inactive hinges stay fixed. This stage terminates when the elongation ∆a of the active hinge
reaches the elongation ∆n−1 of the inactive hinges. At this point, stress σmax

II and strain ε̃ of the
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active hinge equal the values (3.40) of the inactive hinges. From now on, all hinges are active.
At the end of phase H2, the global stress is

σ̄n = σ̂n−1, (3.42)

and the corresponding global strain ε̄n, determined from (3.34) and (3.40)2, is

ε̄n =
1

c1(0,Ln)

(
σ̂n−1

vIIEII

− c2(n, 0,Ln,∆n−1)

)
. (3.43)

Parameters of c1 and c2 account for n hinges with plastic displacement ∆n−1.
Stage H3, from (ε̄n, σ̄n) to (ε̂n, σ̂n). In this phase, plastic displacements develop in all the n5

hinges, and unit-cells elastically stretch. The global stress-strain response is still linear, but with
a smaller slope than in stage H2, since all plastic hinges are active now. This stage terminates
when the stress σI attains the peak value σf in one unit-cell, and strain ε̃ equals the peak value
ε̃f given by (3.22). Values of ε̂n and σ̂n are determined from (3.34) and (3.19), respectively,
with ε̃ = ε̃f. They are10

ε̂n =
1

c1(n,Ln)
(ε̃f − c2(n, n,Ln, 0)) , σ̂n = vIIEIIε̃f, (3.44)

where n active hinges are considered to set the variables of c1 and c2. The final plastic displace-
ment of hinges is

∆n =
1

Hp
(EIIε̃f − σ̄p) . (3.45)

3.5.3. Macro-crack opening stage

The hardening stage finishes when the peak stress σ̂p is reached in the plastic hinges. At
this instant, the number of fractures is15

n̄ : arg min
n : σ̂n≥σ̂p

σ̂n, (3.46)

and, by using (3.19), the global stress is

σ̂n̄ = vIIσ̂p. (3.47)

The corresponding global strain, determined by equation (3.34) with ε̃ = σ̂p/EII, is

ε̂n̄ =
1

c1(n̄,Ln̄)

(
σ̂p

EII

− c2(n̄, n̄,Ln̄, 0)

)
, (3.48)

where n̄ active hinges are taken into account, whose plastic displacement is ∆̂, introduced in
(3.5). From this point on, we suppose that (n̂− 1) hinges remain inactive, and only one hinge
evolves. According to the constitutive law (3.5), the plastic displacement ∆a ∈ (∆̂, ∆̌) of the20

considered active hinge is obtained by inverting the relation σmax
II = σp(∆a), and its expression

is

∆a =
1

Sp
(σ̂p − EIIε̃) + ∆̂. (3.49)

In this case of one active hinge in stress-softening regime, and n̄ − 1 inactive hinges with
displacement ∆̂, the compatibility equation (3.26) writes

εL = S(Ln̄)ε̃+
1

Sp
(σ̂p − EIIε̃) + n̄∆̂, (3.50)
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from which
ε̃ = d1(Ln̄)ε+ d2(n̄,Ln̄), (3.51)

with

d1(Ln̄) =
L

S(Ln̄)− EII/Sp
, d2(n̄,Ln̄) = −d1(Ln̄)

L

(
σ̂p

Sp
+ n̄∆̂

)
. (3.52)

By combining (3.51) and (3.19), the stress-strain law for the stress-softening stage reads

σ = vIIEII (d1(Ln̄)ε+ d2(n̄,Ln̄)) . (3.53)

The stress σ decreases for increasing ε, and it nullifies when the ultimate strain

εult = −d2(n̄,Ln̄)

d1(Ln̄)
=

1

L

(
σ̂p

Sp
+ n̄∆̂

)
(3.54)

is reached. Necessary condition for the stress-softening evolution is that d1 ≤ 0, which, from5

(3.52)1, corresponds to
EII/Sp ≥ S(Ln̄). (3.55)

If this inequality is not satisfied, the bar undergoes brutal failure (snap-back).

Remark. The above analysis does not change if we consider more complex yield stress functions
than (3.5). Only few equations require slight modifications. Let us assume the generic yield
stress law10

σp(∆) =

σ
h
p(∆), if 0 ≤ ∆ < ∆̂

σsp(∆), if ∆ ≥ ∆̂
(3.56)

where σhp(∆) and σsp(∆) are continuous functions, accounting for hardening and softening re-
sponses, and satisfying the properties:

σhp(0) = σ̄p, σhp(∆̂) = σsp(∆̂) = σ̂p,
dσhp
d∆

(∆̂) =
dσsp
d∆

(∆̂) = 0, σsp(∆) ≥ 0,
dσhp
d∆

(∆) > 0, if 0 ≤ ∆ < ∆̂

dσsp
d∆

(∆) < 0, if ∆ > ∆̂

.

(3.57)

Each function is invertible, because it is continuous and monotonic. As a result of the assump-
tion (3.56), equations (3.30) and (3.49) modify as follows

∆a = (σhp)−1(EIIε̃), ∆a = (σsp)−1(EIIε̃), (3.58)

and the kinematic compatibility conditions (3.31) and (3.50) rewrite, respectively, in the form15

εL = S(Ln)ε̃+ j (σhp)−1(EIIε̃) + (n− j)∆f ,

εL = S(Ln̄)ε̃+ (σsp)−1(EIIε̃) + (n̄− 1)∆̂,
(3.59)

which are solved with respect to ε̃.
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3.6. Global response

In the previous section, all key steps for deducing the global σ-ε curve of a tensile test have
been derived, with the underlying assumption that multiple cracks are not allowed to occur
simultaneously. Summing up, each branch of the curve is linear and determined by means of
the following relations:5

• elastic stage:

– (ε̂0, σ̂0) 7→ (3.36);

• hardening stage:

– (ε̂n−1, σ̌n) 7→ (3.41);

– (ε̄n, σ̄n) 7→ (3.42)-(3.43);10

– (ε̂n, σ̂n) 7→ (3.44);

• softening stage:

– (ε̂n̄, σ̂n̄) 7→ (3.47)-(3.48);

– (εult, 0) 7→ (3.54).

In order to estimate the amount of damage induced by the cracking process in the bar, we15

introduce a scalar damage variable d, which assumes values in the interval (0, 1): when d = 0,
the bar is sound, with stiffness modulus (vIEI+vIIEII), and, when d = 1, the bar is totally broken,
with null stiffness modulus. We refer to the instant at which the n-th crack opens, corresponding
to the point (ε̂n−1, σ̌n) in the stress-strain curve of Fig. 8. At this instant, damage dn (index n
specifies that damage corresponds to n cracks) is defined through the stress-strain relation20

σ̌n = (1− dn)(vIEI + vIIEII)ε
e
n, (3.60)

where εe
n is the elastic mean strain, determined by (3.28) and (3.32),

εe
n =

S(Ln)

L
(c1(1,Ln)ε̂n−1 + c2(n, 1,Ln,∆n−1)) . (3.61)

By inverting (3.60), we obtain

dn = 1− σ̌n
(vIEI + vIIEII)εe

n

. (3.62)

In the next examples, damage is evaluated at each new crack opening of the multi-cracking
stage.

In addition to damage, we estimate the mean plastic strain as follows25

pn =

∑n
i=1 ∆i

L
. (3.63)

Therefore, in case of unloading, the response is linear elastic, with a global elastic stiffness
that decreases as the number of cracks increases according to the stress-strain response (3.60).
Moreover, at vanishing stress, a residual strain is observed, given by the sum of all plastic hinges
openings divided by the bar length.

The geometrical and constitutive parameters considered in the next examples are taken30

from [8]. Specifically the bar length is L = 76 mm, whereas the constitutive parameters are
listed at the beginning of Sec. 5, with the exception of ∆̂ and ∆̌, which do not enter into the
variational model. Here we assume ∆̂ = `kp̂ = 0.014 mm, with `k and p̂ assigned in Sec. 5, and
∆̌ = 0.406 mm, such that the softening modulus approximatively equals the one observed in the
tensile experiments in [8]. The value ∆̂ correspond to the stretching of a bar portions between35

adjacent cracks of length `k, subjected to the homogeneous plastic strain p̂.
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3.6.1. Example 1. Equidistant cracks

First, we assume that cracks are always equidistant. This assumption is optimal in terms
of strain energy minimization, but it does not satisfy the irreversibility condition for cracks
[55]. Indeed, when a new crack forms, the preexisting cracks rearrange their position to satisfy
equidistance. For n cracks, the length of each unit-cell is `n = L/2n, and (3.29) rewrites5

S(Ln) = 2nf(`n), (3.64)

with f defined in (3.27)2.
The resulting stress-strain curve is plotted in Fig. 9a, whereas damage and plasticity evolu-

tion curves are drawn in Fig. 9b, according to formulas (3.62) and (3.63). Each stress drop in
the sawtooth stress-hardening branch corresponds to the opening of a new crack. In Fig. 9a,
the crack pattern at each stress-drop is highlighted.10

In agreement with experimental evidences, we observe that the frequency of crack opening
reduces in the evolution process as the load increases. Consistently, the damage curve consid-
erably increases at the beginning, and progressively reduces its growth rate. Differently, the
plastic evolution curve is almost linear in the whole process. Finally, we notice the two different
slopes of the linear branch within each tooth of the response curve, which correspond to the15

cases of a single active hinge and to that of all active hinges.

3.6.2. Example 2. Irreversible cracks.

In this example, crack irreversibility is considered. The strengths of the two phases are
randomly perturbed in order to give a realistic description of the cracking process. Unlike the
previous example, the cracks positions are not a-propri known, nevertheless, the global response,20

plotted in Fig. 10a, does not differ too much from the curve of the previous example.
In this case, more cracks opens, resulting in a higher damage level, whereas the plastic strain

evolution is almost unchanged, Fig. 10b. It can be noticed that, in the hardening stage, the
bar exhibits a softer response due to the occurrence of more cracks, with the maximum stress
attained for an higher strain value. Moreover, the crack pattern evolution is more irregular,25

being affected by the random strength perturbation.
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Figure 9: Analytical model without irreversibility condition: (a) Stress-strain curve with corresponding crack
pattern evolution; (b) damage and plastic strain curves.
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Figure 10: Analytical model with irreversibility condition: (a) Stress-strain curve with corresponding crack
pattern evolution. The dashed gray curve corresponds to the response without crack irreversibility of Fig. 9a;
(b) damage and plastic strain curves.
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4. Variational model

In this section, a three-dimensional variational model is proposed, based on the scheme of
two phases mixture presented in Sec. 2.2. The constitutive assumptions made in Sec. 3.1 for the
simple one-dimensional model are extended to the variational three-dimensional context. Thus,
as the one-dimensional model, the variational formulation is rate-independent. Fracture and5

plastic energetic contributions are incorporated into the model to account for cracking of phase I
and plastic straining of phase II, and they are enriched by non-local gradient contributions, to
avoid energetic costless strain localizations.

4.1. State variables

The displacement fields of the two phases are uI and uII, and the relative displacement10

between phases is δ, as in Sec. 2.2. Time-dependent displacements are assigned on a portion of
the body boundary

uI = uII = uD(t) on ∂DΩ, (4.1)

whereas the complementary boundary part ∂NΩ = ∂Ω \ ∂DΩ is left stress free. A scalar damage
field d = d(x) is defined in phase I, with values in [0, 1]. The values d = 0 and d = 1 correspond
to sound and fully damaged material, respectively. To avoid crack healing, damage d must15

satisfy the irreversibility condition
ḋ ≥ 0. (4.2)

Strains of phase II also depend on the plastic strain tensor p = p(x), which is assumed to be
symmetric. This assumption allows to reproduce all kinds of fracture mechanisms, including
mode I failure mode, which is typically experienced by composites where fibers are randomly
oriented within the matrix. Classical plasticity formulations, as Von Mises, are based on the20

assumption of symmetric and deviatoric plastic strains, describing only mode II and mode III
failure mechanisms, characterized by shear bands [56]. The accumulated plastic strain is a scalar
history variable defined as

p̄ :=

∫ t

0
‖ṗ(τ)‖ dτ (4.3)

with ‖ · ‖ the euclidean norm. The total strains in the two phases are

εI = sym∇uI and εII = sym∇uII = e+ p. (4.4)

Therefore, in phase II, the total strain is decomposed into the sum of elastic strain e = εII − p25

and plastic strain p.
The model state variables are summarized in Tab. 1.

For next developments, it is convenient to collected variables into the vector s = (uI,uII, d,p, p̄)
with s ∈ S = U × U × [0, 1] × Sym × R+ and U = {u : u = uD(t) on ∂DΩ}. We assume that
s = 0 at the initial instant t = 0.30

At a given time t, an admissible perturbation is s̃ = (ũI, ũII, d̃, p̃, ‖p̃‖), belonging to the
cartesian product S̃ = Ũ × Ũ × D̃(d(t))× Sym× R+, with

Ũ = {u : u = 0 on ∂DΩ} and D̃(d) = {f : f ∈ D and f ≥ d} . (4.5)

4.2. Energy

The total internal energy of Ω is

W(s) =

∫
Ω
vIwI(uI, d) dΩ +

∫
Ω
vIIwII(uII,p, p̄) dΩ +

∫
Ω

1

2

Ek

`2k
(uI − uII)

2 dΩ. (4.6)
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phases state variables

I
(brittle cementitious material)

uI displacement (independent)
εI infinitesimal total strain
d damage (irreversible, independent)
∇d gradient damage

II
(ductile fibres)

uII displacement (independent)
εII infinitesimal total strain
e elastic strain
p plastic strain (independent)
p̄ accumulated plastic strain (irreversible, history)
∇p̄ gradient plastic strain

Table 1: State variables. Independent sate variables are explicitly indicated.

The first and second contributions are the energies of the brittle phase I and plastic phase II,
weighted by their respective volume fractions; the third term is the energy of the linearly
elastic bonds between phases, where the elastic coefficient Ek/`

2
k is equal to that of the force-

displacement relation (3.8) assumed in the one-dimensional model of Sec. 3. The explicit ex-
pressions of the energy densities wI, wII are given in the following.5

Energy density wI. For the total internal energy density of the brittle phase I, we consider the
expression used in phase-field models of brittle fracture [25]

wI(uI, d) =
1

2
g(d)CIεI :εI + wI(d) +

1

2
wI`

2
I∇d·∇d, (4.7)

where the first term is the elastic strain energy density, and the second and third terms are the
local and non-local fracture energy densities, respectively. According to linear elasticity, the
elastic term is quadratic with respect to the strain tensor εI, with CI the elastic strain tensor,10

and g the degradation function, which satisfies the conditions

g′(d) ≤ 0, g(0) = 1, g(1) = 0. (4.8)

Since g decreases to zero as d increases, material stiffness reduces when damage advances, until
it nullifies for d = 1. The fracture energy is sum of a local and a non-local term, depending on
d and ∇d, respectively. Following [25], we assume that wI satisfies the conditions

wI(0) = 0, w′I(0) = wI > 0, w′I(d) ≥ 0, (4.9)

where the second condition allows for an initial phase of elastic deformation, without any dam-15

age, as shown later on. The assumption of non-decreasing wI implies that

ẇI(d) = w′I(d) ḋ ≥ 0, (4.10)

and, thus, that the local fracture energy is dissipative. The non-local gradient contribution
(third term in (4.7)) introduces the internal length `I related to the size of the zone where d
localizes at crack, also called process-zone. Here CI and wI are left unspecified to leave the model
as general as possible, but specific shapes will be assigned in Sec. 4.6, and used in numerical20

simulations in Sec. 5.

The total internal energy density wII. The energy density assigned to phase II is

wII(uII,p, p̄) =
1

2
CII(εII − p) : (εII − p) + wII(p̄) +

1

2
wII`

2
II∇p̄·∇p̄, (4.11)
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where the first term is the elastic energy density, which depends on the elastic part of the strain
tensor e = εII − p, and the second and third terms are the local and nonlocal plastic energy
densities, functions of the accumulated plastic strain p̄ and ∇p̄, respectively. The elastic energy
is a quadratic form, with CII the elasticity tensor, and the plastic energy density wII satisfies
the conditions5

wII(0) = 0, w′II(p̄) > 0. (4.12)

Since
ẇII(p̄) = w′II(p̄) ˙̄p = w′II(p̄) ‖ṗ‖ ≥ 0, (4.13)

wII is also dissipative. As shown in [41, 43, 33], the plastic response strongly depends on
the convexity properties of wII. Indeed, in case of convex wII, plastic strains tend to diffuse
within the body in a regime of stress-hardening. On the contrary, if wII is sufficiently concave,
plastic strains localize in small portions of the body in regime of stress-softening. In the latter10

situation, the non-local energy term plays the role of localization limiter, penalizing plastic strain
gradients. To this end, the internal length parameter `II influences the size of the localization
zone. In Sec. 4.6, a specific expression for wII is assumed, and rules to calibrate the parameters
are proposed.

The energy density (4.11) is typical of Aifantis’s gradient plasticity theory [47, 48], refor-15

mulated in a thermodynamically consistent format in [57, 58], and discussed in [59, Sec. 89],
with particular emphasis on the dissipative and stored nature of local and non-local plasticity
contributions.

Stress tensors σI and σII of phases I and II are obtained by differentiating the phases elastic
energy densities with respect to the corresponding elastic strains. Similarly, the relative force τ20

results from differentiation of the bond energy density with respect to the relative displacement
(uI − uII). Their expressions are

σI = g(d)CIεI, σII = CII (εII − p) , τ =
Ek

`2k
(uI − uII). (4.14)

By inverting (4.14)1,2, we obtain the inverse relations

εI =
1

g(d)
SIσI, εII = SIIσII + p, (4.15)

where SI = C−1
I and SII = C−1

II are the compliance tensors of phases I and II, respectively.

4.3. Energetic formulation25

According to the energetic formulation for rate independent systems [22], the evolution
process is governed by three principles: the stability condition, the energy balance, and the
dissipation inequality.

4.3.1. Stability condition

We consider a local directional stability condition, which states that a process s(t) is stable30

if at any time t ∈ [0, T ] and ∀s̃ ∈ S̃, ∃h̄ > 0 : ∀h ∈ [0, h̄]

W(s) ≤ W(s+ hs̃) (ST)

For the Gâteaux differentiable total energy (4.6), a necessary condition for (ST) is the first
variation of W to be non negative for any admissible perturbation, namely

DW(s)[s̃] ≥ 0, ∀s̃ ∈ S̃. (4.16)

25



The above first-order stability condition is an equilibrium equation, and its solutions are equi-
librium configurations.4 By substituting (4.6) into (4.16) and integrating by parts, we obtain∫

Ω

(
(−vI divσI + τ )·ũI + (−vII divσII − τ )·ũII

)
dΩ+

+

∫
Ω
vI

(
1

2

g′(d)

g2(d)
SIσI :σI + w′I(d)− wI`

2
I ∆d

)
d̃ dΩ+

+

∫
Ω
vII

(
−σI : p̃+

(
w′II(p̄)− wII`

2
II∆p̄

)
‖p̃‖

)
dΩ

+

∫
∂NΩ

(vIσIn·ũI + vIIσIIn·ũII) d∂Ω

+

∫
∂Ω

(vIwI`
2
I∇d·nd̃+ vIIwII`

2
II∇p̄·n‖p̃‖) d∂Ω ≥ 0, ∀s̃ ∈ S̃,

(4.17)

which, by standard arguments of calculus of variations, leads to the following equations:

1. Equilibrium equations

vI divσI − τ = 0, vII divσII + τ = 0, in Ω, (4.18)

and macroscopic boundary conditions5

σIn = σIIn = 0, on ∂NΩ. (4.19)

2. Damage threshold condition for phase I

fI(σI, d,∆d) := −1

2

g′(d)

g2(d)
SIσI :σI − w′I(d) + wI`

2
I ∆d ≤ 0, in Ω, (4.20)

and damage boundary conditions

∇d·n ≥ 0, on ∂Ω. (4.21)

3. Plasticity yield condition for phase II

fII(σII, p̄,∆p̄) := ‖σII‖ − w′II(p̄) + wII`
2
II∆p̄ ≤ 0, in Ω, (4.22)

and plasticity boundary conditions

∇p̄·n ≥ 0, on ∂Ω. (4.23)

It is worth noting that the relations fI = 0 and fII = 0 define the boundaries of the elastic10

domains for each material phase, which are spheres in the principal stresses space.

4.3.2. Energy balance

Descending from the first principle of thermodynamics, the energy balance states that for
any time-instant t ∈ [0, T ]

W(s(t))−W(0)− L(t) = 0, (EB)

4In addition to (4.16), higher-order stability conditions needs to be assigned in order to obtain sufficient
conditions for the stability notion (ST), [23].
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where L(t) is the external work expended in the time interval [0, t]. In case of the proposed
model, since body and external loads are null, the external work is only due to the assigned
displacement ū(t) on ∂DΩ. It is

L(t) =

∫ t

0

(∫
∂DΩ

(vIfI + vIIfII)· ˙̄u(t) d∂Ω

)
dτ , (4.24)

with fI = σIn and fII = σIIn being the reaction stresses of the two phases.
For time-differentiable energies, equation (EB) can be replaced by the following equation of5

energy rates balance
Ẇ(s(t))− L̇(t) = 0. (eb)

Substituting (4.6) and (4.24) into (eb), and integrating by parts, we obtain∫
Ω

(
(−vI divσI + τ )·u̇I + (−vII divσII − τ )·u̇II

)
dΩ+

+

∫
∂NΩ

(vIσIn·u̇I + vIIσIIn·u̇II) d∂Ω

+

∫
Ω
vI

(
1

2

g′(d)

(g(d))2
SIσI :σI + w′I(d)− wI`

2
I ∆d

)
ḋ dΩ+

+

∫
Ω
vII

(
−σII : ṗ+

(
w′II(p̄)− wII`

2
II∆p̄

)
‖ṗ‖

)
dΩ

+

∫
∂Ω

(vIwI`
2
I∇d·n ḋ+ vIIwII`

2
II∇p̄·n ‖ṗ‖) d∂Ω = 0.

(4.25)

First and second integrals are null by (4.18) and (4.19). The remaining integrals are non-
negative by (4.2) and inequalities (4.20)-(4.23), and, as a result, their integrands must vanish.
By nullifying the third integral, we obtain the following consistency condition for damage10 (

−1

2

g′(d)

(g(d))2
SIσI :σI − w′I(d) + wI`

2
I ∆d

)
ḋ = fI(σI, d,∆d)ḋ = 0, (4.26)

which states that the yield function fI must maintains equal to zero when damage evolves. By
requiring the fourth integral to be null, we get the plastic consistency condition(

‖σII‖ − w′II(p̄) + wII`
2
II∆p̄

)
‖ṗ‖ = fII(σII, p̄,∆p̄)‖ṗ‖ = 0, (4.27)

and the plastic flow rule

ṗ = ˙̄pnII, with nII =
σII

‖σII‖

(
=
∂fII

∂σII

)
, (4.28)

which accounts for associative plasticity. Finally, the last boundary integral in (4.25) nullifies
if the following boundary conditions are satisfied15

∇d·n = 0, and ∇p̄·n = 0, on ∂Ω. (4.29)

It is worth noting that boundary conditions for the internal variables automatically de-
scend from the variational problem and do not have to be prescribed a-priori as in standard
formulations.

Remark. Energy balance for time-discontinuous evolutions. As highlighted in [23],
within the framework of rate-independent processes, energy balance at time instants where a20

discontinuous evolution occur is at least arguable if not wrong. Therefore, it is often more
reasonable to ensure only an energy imbalance at such discontinuous instants, with possibly
a criterion for guiding the time discontinuous transition as a gradient flow law or a vanishing
viscosity contribution.
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4.3.3. Dissipation inequality

The dissipation inequality for isothermal processes states that

D = P − Ḣ ≥ 0 (4.30)

where D is the local dissipated power, P is the local mechanical internal power, and H is the
free energy density. The expression of the free energy density is

H = vI

(
1

2
g(d)CIεI :εI +

1

2
wI`

2
I∇d·∇d

)
+

+vII

(
1

2
CII(εII − p) : (εII − p) +

1

2
wII`

2
II∇p̄·∇p̄

)
+

+
1

2

Ek

`2k
(uI − uII)

2,

(4.31)

which is sum of the elastic energy densities of the two phases, the non-local damage and plastic5

energy densities, and the bonds elastic energy. Local damage and plastic energies are not
included into the free energy since they are dissipative potentials, as shown by inequalities
(4.10) and (4.13) and extensively discussed in [35]. The local internal mechanical power is

P = vI σI : ε̇II + vII σII : ε̇II + τ ·(u̇I − u̇II). (4.32)

Then, using the definitions (4.14) for the stresses σI and σII, and the force τ , and the boundary
conditions (4.29), we get10

D = −vI

(
1

2

g′(d)

g(d)2
SIσI :σI − wI`

2
I ∆d

)
ḋ− vII

(
−σII : ṗ− wII`

2
II∆p̄ ‖ṗ‖

)
≥ 0, (4.33)

which is always satisfied. Indeed, by considering (4.10), (4.13), (4.26) and (4.27), the dissiaption
(4.33) reduces to

D = w′I(d) ḋ+ w′II(p̄) ˙̄p ≥ 0 (4.34)

which is always non-negative.

4.4. Time discrete scheme for the evolution problem

In this section, a time discrete evolution scheme is presented, which is used in the finite15

element numerical implementation of the variational model. In the following, index t refers to
time instant.

Time is discretized into intervals of finite size δt. Given the solution st = (uI t,uII t, dt,pt, p̄t)
at instant t, the scheme provides an iterative procedure to estimate the increment δst, which
allows to determine the solution st+δt = st + δst at the instant t+ δt.20

Within the iterative procedure, the increment of the plastic strain tensor is approximated
by δp = δp̄nII, where nII is the flow tensor evaluated at the previous numerical integration
step. Accordingly, the list of unknown increments reduces to δq = (δuI, δuII, δd, δp̄). The
numerical implementation consists in solving a sequence of minimum problems, which operate
on the second-order development of energy (4.6)25

W(s+ δs) =W(s) + δW(s)[δs] +
1

2
δ2W(s)[δs] · δs =W(s) + F(s; δq), (4.35)
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with

F(s; δq) = F(uI,uII, d,p, p̄ ; δuI, δuII, δd, δp̄) =∫
Ω

{
vI

[
1

2
g(d)CIδεI :δεI + g′(d)σI :δεIδd+

1

4
g′′(d)σI :εIδd

2 +
1

2
w′′I (d)δd2 +

1

2
wI`

2
I∇δd·∇δd

]
+

+vII

[
1

2
CIIδεII :δεII − CIInII :δεIIδp̄+

1

2
CIInII :nIIδp̄

2 +
1

2
w′′II(p̄)δp̄

2 +
1

2
wII`

2
II∇δp̄·∇δp̄

]
+

+
1

2

Ek

`2k
(δuI − δuII)

2

}
dΩ+

+

∫
Ω

{
vI

[
g(d)σI :δεI +

1

2
g′(d)σI :εIδd+ w′I(d)δd+ wI`

2
I∇d·∇δd

]
+

+vII

[
σII : (δεII − nIIδp̄) + w′II(p̄)δp̄+ wII`

2
II∇p̄·∇δp̄

]
+ τ (δuI − δuII)

}
dΩ .

(4.36)
The flowchart of the iterative procedure that allows to estimate the solution within a time step
t→ t+δt is outlined in the following. Apices i and j refer to iteration steps within the iterative
loops of the scheme. The solution st is supposed to be known, and st+δt is to be determined.

1. Initialize s0 = st.5

2. Loop 1 → to estimate (uI,uII, d).
i-th iteration

• Determine (δuiI, δu
i
II) = arg min(δuI,δuII)F(si−1, δq).

• Update the displacements uiI = ui−1
I + δuiI, u

i
II = ui−1

II + δuiII.

• Update the solution si = (uiI,u
i
II, d

i−1,p0, p̄0).10

• Determine δdi = arg minδdF(si, δq), with constraint δd ≥ dt − di−1.

• Update the di = di−1 + δdi.

• Update the solution si = (uiI,u
i
II, d

i,p0, p̄0).

• End loop when |δdi|L1 ≤ tolld.

3. Initialize s0 = si15

4. Loop 2 → to estimate (uI,uII,p, p̄).
j-th iteration

• Determine (δujI , δu
j
II) = arg min(δuI,δuII)F(sj−1, δq).

• Update the displacements ujI = uj−1
I + δujI , ujII = uj−1

II + δujII.

• Update the solution sj = (ujI ,u
j
II, d

0,pj−1, p̄j−1).20

• Determine δp̄j = arg minδp̄F(sj , δq), under the constraint δp̄ ≥ p̄t − p̄j−1.

• Update the cumulated plastic strain p̄j = p̄j−1 + δp̄j .

• Update the stress tensor σjII = CII

[
sym∇ujII −

(
pt +

(
p̄j − p̄t

)
nj−1

II

)]
,

flow tensor njII = σjII/‖σjII‖, and

the plastic strain tensor pj = pt +
(
p̄j − p̄t

)
njII.25

• Update the solution sj = (ujI ,u
j
II, d

0,pj , p̄j).

• End loop when |δp̄i|L1 ≤ tollp̄.

5. Set st+δt = sj and pass to the next time step.

29



All minimum problems operate on convex quadratic functionals, and problems for δd and δp̄
are constrained by linear inequalities. Discretized by finite elements, they turn into quadratic
programming problems, which are solved numerically. Numerical tests have shown that the two
loops converge after few iterations. The double loops have been also iterated with the aim of
improving accuracy. Since it was found that multiple iterations do not considerably improve5

solution accuracy, the above listed two loops 1 and 2 are performed one time per time step, in
order to save computational cost.

4.5. 1D variational model

The equations deduced in the previous sections are specialized to the case of a one-dimensional
tensile bar. The one-dimensional problem provides simple formulas relating model constitutive10

parameters to quantities which can be easily measured from tensile experiments. These formulas
are used to calibrate to model parameters. We use the notation of Sec. 3.

A bar of length L and unit cross-section area is subjected to the boundary displacements
(3.1), where the mean strain ε(t) is supposed to be non-negative, as in tensile tests. In this
one-dimensional framework, the plastic strain tensor p reduces to the scalar plastic stretching15

p. The flow rule (4.28) rewrites ṗ = sign(σII) ˙̄p, with σII the tensile stress of phase II. Since
σII ≥ 0 in tensile tests, the plastic strain coincides with the accumulated plastic strain. Thus it
satisfies the constrain

ṗ ≥ 0. (4.37)

The total internal energy (4.6) simplifies as follows

W(uI, uII, d, p) =

∫ l

0
vI

(
1

2
g(d)EIu

′2
I + wI(d) +

1

2
wI`

2
I d
′2
)
dx+

+

∫ l

0
vII

(
1

2
EII(u

′
II − p)2 + wII(p) +

1

2
wII`

2
IIp
′2
)
dx+

+

∫ l

0

1

2

Ek

`2k
(uI − uII)

2 dx,

(4.38)

where the three integrals correspond to the energy of phases I and II and to the bond energy.20

Coefficients EI and EII are the Young’s moduli of the two phases. The normal stresses in the
two phases, and the exchanged shear force are

σI = g(d)EIu
′
I, σII = EII(u

′
II − p), τ =

Ek

`2k
(uI − uII), (4.39)

which are obtained by differentiating the elastic energy densities with respect to strains and the
bond energy density with respect to the relative displacement. Non-negativeness of the total
energy first variation25

δW(uI, uII, d, p)[ũI, ũII, d̃, p̃] ≥ 0, (4.40)

for any perturbation (ũI, ũII, d̃, p̃), such that ũI(0) = ũII(0) = 0, ũI(L) = ũII(L) = 0, d̃ ≥ 0 and
p̃ ≥ 0, leads to the following relations

vIσ
′
I − τ = 0, vIIσ

′
II + τ = 0, equilibrium equations,

fI(σI, d, d
′′) = −2EI

g′(d)

g2(d)
σ2

I − w′I(d) + wI`
2
I d
′′ ≤ 0, damage yield condition,

fII(σII, p, p
′′) = σII − w′II(p) + wII`

2
IIp
′′ ≤ 0, plasticity yield condition,

(4.41)
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which are the one-dimensional counterparts of equations (4.18), (4.20), and (4.22). The macro-
scopic balance equations (4.41)1,2 are equal to (3.11). To satisfy the variational inequality
(4.40), the boundary conditions

d′(0) ≤ 0, d′(L) ≥ 0, p′(0) ≤ 0, p′(L) ≥ 0, (4.42)

must also be imposed. Equation (eb) of energy balance specializes as follows

Ẇ(uI, uII, d, p) = (vIσI + vIIσII) ε̇, (4.43)

from which the consistency conditions descent5

fI(σI, d, d
′′)ḋ = 0, fII(σII, p̄, p̄

′′) ˙̄p = 0, (4.44)

with the boundary conditions

d′(0) = d′(L) = 0, p′(0) = p′(L) = 0, (4.45)

which restrict conditions (4.42) to equalities.
Yield conditions (4.41)3,4 can be rewritten in the following form of constraints on stresses

σI ≤ σf(d, d
′′) :=

√
−2EI

g2(d)

g′(d)

(
w′I(d) + wI`2I d

′′),
σII ≤ σp(p, p′′) := w′II(p)− wII`

2
IIp
′′,

(4.46)

with σf and σp the elastic limit stresses of phase I and II, respectively. We define

σ̄f := σf(0, 0) =

√
−2EI

w′I(0)

g′(0)
, σ̄p := σp(0, 0) = w′II(0), (4.47)

as the maximum stresses that can be elastically sustained by phase I and phase II, respectively.10

When the stress σ̄f is reached, a fracture can form, and, when the stress σ̄p is attained, plastic
strains can develop. By inverting the above relations, we obtain

w′I(0)

g′(0)
= − σ̄f

2

2EI

, w′II(0) = σ̄p, (4.48)

which are used in Sec. 4.6 to calibrate parameters of wI and wII. Indeed, quantities on the
right-hand sides can be easily estimated from tensile tests.

4.5.1. Limit models for an infinite soft and infinite rigid relative displacement stiffness15

The relative displacement stiffness Ek/`
2
k =: K plays a key role in the global response of

the composite material. Hereafter the limit cases for an infinite soft and infinite rigid relative
displacement stiffness are discussed.

Case K → 0. In this case, the last integral in (4.38) vanishes. Therefore, no interaction ex-
ists anymore between the two phases and the global material response corresponds to a plain20

superposition of the individual responses of the two phases.
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Case K → ∞. This case is more intriguing. In order to keep the total internal energy finite,
a rigid relative displacement stiffness forces the displacement fields of the two phases to be
the same (δ = 0). As a result, the model depends only on one displacement field, namely
uI = uII = u. The resulting total internal energy becomes

W(u, d, p) =

∫ L

0

(
1

2

(
vI(1− d)2EI + vIIEII

)
ε2 − vIIEIIu

′p+
1

2
vIIEIIp

2

)
dx+

+

∫ L

0

(
vI

(
wI(d) +

1

2
wI`

2
I d
′2
)

+ vII

(
wII(p) +

1

2
wII`

2
IIp
′2
))

dx (4.49)

A qualitative homogeneous response, without non-local effects, of this limit model is sketched
in Fig. 11. The global response is well represented by a coupled damage-plasticity model where
damage degrades only part of the elastic stiffness. The global response has therefore strong
analogies with the gradient-damage plasticity models developed and discussed in [60, 35].

ε

σ

σ̂0

σ̂

E0

0

elastic stage hardening stage softening stage

E(d) vIIEII

1 1 1

ḋ 6= 0 and ṗ 6= 0

ḋ = 0 and ṗ 6= 0ḋ = 0 and ṗ = 0

Figure 11: Qualitative homogeneous response of the limit model (4.49). Damage is assumed to stop its evolution
after the hardening stage. In the figure E0 = vIEI + vIIEII and E(d) = vI(1− d)2EI + vIIEII.

4.6. Constitutive assumptions and parameters calibration5

In this section, specific functions are assigned to elastic, damage and plastic energy densities,
and criteria are proposed to calibrate the constitutive parameters of the model. The specific
constitutive assumptions are suggested by the peculiar mechanical response of UHPFRC de-
scribed in Sec. 2.1. Here, UHPFRC is chosen as an example, but the model is quite general,
and it can be applied to different composites. Obviously, different shapes of the energy densities10

must be chosen in order to properly describe the specific mechanical behavior of the considered
composite.

Since we suppose that fibers are homogeneously distributed and randomly oriented within
an isotropic matrix, we specialize the elastic tensors CI and CII to the case of isotropic materials

Ci =
Ei

1 + νi

(
I +

νi
1− 2νi

I⊗ I

)
, i = I, II, (4.50)

with I and I the fourth and second order identity tensors, Ei the Young’s modulus, and νi the15

Poisson’s ratio.
For the degradation function g and the damage energy density, we assume

g(d) = (1− d)2, wI(d) = wId, (4.51)
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where the expression of g is that usually considered in phase-field models [25], and the linear
dependence of wI on d allows to account for an initial undamaged elastic stretching. To calibrate
parameter wI, we use equation (4.48)1, which specializes as follows

wI =
σ̄f

2

EI

, (4.52)

where the quantities on the right-hand side are usually known (they can be easily be estimated
from tensile tests). If the composite stress-strain curve is available, like the curve of Fig. 1b, σ̄f5

can be estimate from σ̂0 by the formula

σ̄f =
EI

vIEI + vIIEII

σ̂0. (4.53)

The internal length `I is related to the fracture process zone size `f through the formula

`I =
`f

2
√

2
, (4.54)

obtained in [25] by solving (4.41)2. In case of matrices made of aggregates of different sizes (like
concrete) the process zone size is about 2-3 times the size of the largest aggregates.

To properly assign the shape of the plastic energy density wII, we recall some features of10

the UHPFRC response described in Sec. 2.1. Plastic strains develop in the stress-hardening
stage of progressive micro-cracking, and, at the end of this phase, the mean accumulated plastic
strain is the permanent strain ε̂p reported in Fig. 1b, which is determined by unloading the
specimen when the tensile process has reached the hardening-to-softening transition point. In
the softening stage, plastic strains accumulates around a single crack, which develops into a15

macro-crack.
Since a convex plastic energy promotes the evolution of diffused plastic strains in regime

of stress-hardening, and, on the contrary, a concave energy produces plastic strain localization
in stress-softening regime [41, 43, 33], we assume a convex-concave plastic energy density, in
order to reproduce the two consecutive plastic stages of diffused and localized strains observed20

in experiments. A simple choice, fulfilling the above requirements, is the following piecewise
quadratic expression

wII(p̄) =


1
2hpp̄

2 + σ̄pp̄, if 0 < p̄ ≤ p̂,
−1

2sp (p̄− p̂)2 + σ̂p (p̄− p̂) + 1
2hpp̂

2 + σ̄pp̂, if p̄ > p̂,
(4.55)

whose derivative is

w′II(p̄) =

hpp̄+ σ̄p, if 0 < p̄ ≤ p̂,
−sp (p̄− p̂) + σ̂p, if p̄ > p̂,

(4.56)

which is very similar to the yield stress law (3.5) of Sec. 3. Graphs of (4.55) and (4.56) are
plotted in Fig. 12. Coefficients to be assigned in (4.55) are the activation stress σ̄p, the peak25

stress σ̂p, the corresponding strain p̂, and the softening modulus sp. The hardening modulus is
hp = (σ̂p − σ̄p)/p̂, and it depends on the listed quantities.

The stress σ̄p must satisfy conditions (3.38), which ensure plasticity development after crack
opening, as observed in experiments. The peak stress σ̂p is equal to the maximum stress σ̂
registered in a tensile experiments (see Fig. 1b). The corresponding plastic strain p̂ is related30

to the mean accumulated plastic strain ε̂p of Fig. 1b. At the end of the hardening stage, p̄ is
not homogeneous, and the maximum values attained in correspondence of cracks should be p̂.
Since p̂ = max p̄(x) > mean p̄(x) = ε̂p, a value of p̂ larger than ε̂p should be assigned.
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The remaining quantities to be characterized are the softening coefficient sp, and the co-
efficients wII and `II of the non-local plastic energy. The internal length `II is the size of the
macro-crack process zone, and it should not exceed the minimum micro-crack spacing `k, in-
troduced in Sec. 3.3. To calibrate sp and wII, we use formulas (39) and (41)2 of [43], which
express the size `II of the localization zone and the negative slope Es of the softening branch5

(see Fig. 1b) as functions of L, EII, sp and wII`
2
II. Their expressions, adapted to the present

notation, are

`II = 2π

√
wII`2II
sp

, Es = −sp
(

2π

L

√
wII`2II
sp
− sp

EII

)−1

, (4.57)

from which

sp = −Es

`II

L

(
1− Es

EII

)−1

, wII =
sp

4π2
, (4.58)

which are used to calibrate sp and wII, since terms on the right-hand sides are known.
Finally, parameters Ek and `k of the bond energy are fixed according to the results of Sec. 3.3:10

`k is the spacing between adjacent micro-cracks, easily observable in tensile tests, and modulus
Ek is given by formula (3.25).

w′
II(p̄)

p̄

hp

0

sp
1

1

σ̄p

σ̂p

p̂

wII(p̄)

p̄

0 p̂1

σ̄p

1

σ̂p

Figure 12: Graphs of functions wII(p̄) and w′II(p̄).

5. Numerical simulations

In this section, numerical results are presented. The evolution scheme described in Sec. 4.4
is numerically implemented in a finite element code, developed within Matlab R© environment.15

In the next Sec. 5.1, experimental results of [8] are reproduced by implementing the one-
dimensional model of Sec. 4.5, and two-dimensional tests are proposed in Sec. 5.2. In all the
cases, values of the model parameters are taken from [8]. Among the many experimental results
proposed in [8], where different kinds of fibers with different volume fractions are tested, we
consider the case of straight fibers with volume fraction equal to 2.5%, labeled U-S-2.5 in [8].20

For this mixture, values are listed in the following.

• Phases volume fractions. vI = 0.975, vII = 0.025.

• Young’s moduli. EI = 57000 MPa, EII = 210000 MPa, corresponding to ultra-high perfor-
mance concrete and steel, respectively.
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• Internal lengths. `k = 5 mm, corresponding to the micro-crack interspacing observed
in experiments; `f = 1 mm, which is slightly bigger than the maximum size of concrete
aggregates equal to 0.8 mm; `II = 5 mm which is about 1.5 times the fiber length of 3 mm,
as suggested in [61].

• Peak stress of phase I. σf = 11.25 MPa, obtained from (4.53), where the peak stress5

σ̂0 = 12 MPa is taken from [8], Table 7.

• Parameters of the plastic energy of phase II. σ̄p = 5σf = 56.25 MPa, which belong to
the values range defined by inequalities (3.38); σ̂p = 660 MPa, taken from [8], Table 7;
p̂ = 2.8 · 10−3, which is slightly larger than ε̂p ' 2.5 · 10−3, value taken from the stress-
strain curve of Fig. 9(c) of [8]; Es = EII/2, which is the slope of the softening branch, and,10

from (4.58)1, sp = 2.92 · 104 MPa.

• Non-local plastic coefficient of phase II. From (4.58)2, wII = 739 MPa.

• Relative stiffness modulus. Ek = 18700 MPa, estimated from (3.25).

In the next simulations, the peak stress σf of phase I has been perturbed through a random
function of amplitude 0.5%, which reflects material inhomogeneity. In simulations, this pertur-15

bation reduces the possibility of simultaneous opening of multiple cracks, favoring the formation
of single cracks at a time.

5.1. One-dimensional tensile test

We consider a bar of length L = 76 mm, which is the distance of extensimeter’s blades used
in [8] to measure specimens stretching. The bar is discretized into 380 finite elements of size20

0.2 mm. Within each element, displacements uI and uII, and damage d are approximated by
quadratic shape functions, depending on three nodal variables defined at the element ending
and mid nodes. Plastic strain field p is approximated by linear shape functions, with nodal
values defined at the element endpoints.

The stress-strain curve resulting from the simulation is plotted in Fig. 13 (black line), and it25

is compared with the piecewise linear curve (gray line) obtained in [8] through a regularization
procedure of the experimental curves. The numerical curve captures the three stages of the
evolution: the initial elastic phase, the sawtooth-shaped branch of multi- micro-cracking, with
stress drops corresponding to crack openings, and the final stress-softening phase of macro-crack
coalescing.30

In Fig. 13, unloading branches inform on the amount of damage and plastic strain that
accumulate in the bar during the tensile test. The slope of the unloading branches is related to
the amount of damage. Since the slope only reduces in the stress-hardening phase, maintaining
constant in the next stress-softening stage, damage cumulates only in the intermediate phase of
matrix cracking. The permanent strain, given by the intersection of the unloading curve with35

the strain axis, is an estimate of the accumulated plastic strain. The permanent strain increases
both in the hardening and in the softening phase. In the stress-hardening phase, plastic strains
develop thereby matrix cracks, diffusing in the whole bar, while, in the stress-softening phase,
plasticity localizes around a single pre-existing crack, developing into a macro-crack. These
results are in agreement with those given by the discrete analytical model of Sec. 3.6.40

The process of matrix cracking is described in Fig. 14, where profiles of damage d are plotted
at different values of ε. At each crack, damage localizes in a zones of size `I = 1 mm. Cracks
progressively distribute in the whole bar, gradually reducing the distance between adjacent
fractures. In agreement with the experimental observation, the minimum spacing at the end of
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Figure 13: 1D simulation. Numerical stress-strain curve (black line) compared to experimental curve (gray line),
taken from figure 8(c) in [8].

the process is about 5 mm, which is, as expected, equal to the internal length `k assigned in the
simulation.

Profiles of displacements uI and uII and plastic strain p are drawn in Figs. 15 and 16,
respectively, for different values of the applied deformation ε. Although displacements are
always continuous, uI steeply increases in correspondence of damage, miming the displacement5

jump associated to fracture. Displacement uII has a more regular profile, with slope growth
nearby cracks. While in the stress-hardening phase, displacement jumps are practically equal
in each crack, in the stress-softening stage, displacement grows only in one crack, where plastic
strains localize (see bottom-right pictures of Figs. 15 and 16). The plastic strain profiles of
Fig. 16 exhibit peak values at crack points. During the micro-cracking stage, the peak value10

corresponding to the new formed crack is slightly smaller than the peak values of the pre-
existing cracks. In the evolution process that follows each crack opening, plastic strain initially
grows around the new formed crack, and, when the value of the pre-existing peaks is reached,
plastic strains start to increase in the whole bar again. These two phases correspond to the two
different slopes exhibited by the response curve within two consecutive stress drops (in Fig. 13,15

the two slopes are highlighted within one curve tooth). These two evolution steps are imposed
as a modeling assumption in the analytical formulation of Sec. 3.5, according to which, between
two consecutive crack openings, a single hinge is active in the first stage, and, all hinges actively
evolve in the second stage.

In Fig. 17, snapshots of p, σI and σII are plotted at four different values of ε belonging to20

the evolution stage that leads to the opening of the fourth crack. At ε = 0.68, the third crack
has just formed on the left side of the specimens. At the points where fractures have formed,
σI nullifies and σII attains the maximum values. Increasing ε, stresses grows, until σI reaches
the peak stress σ̄f (red line in Fig. 17b) at about x = 28 mm, where a new crack forms. The
opening of the new fracture produces a stress drop in the whole bar.25
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Figure 14: 1D simulation. Profiles of damage d at different values of the imposed deformation ε (× 10−3).
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5.2. Two-dimensional simulations

In this section, results of two-dimensional simulations are proposed. A tensile test on a
dog-bone specimen, and a three point bending test are simulated under the hypothesis of plane
stress state. The geometrical schemes of the two simulations are sketched in Fig. 18. In both
the cases, domains are discretized by unstructured meshes made of triangular elements. In the5

tensile test, the specimen response is supposed to be symmetric with respect to the axis y, and,
thus, only the right half part of the body is considered. This domain reduction considerably
reduces the computational cost.

Six nodal points (triangle vertices and edges midpoints) are considered for each triangular
element to approximate displacements uI and uII, and damage d through quadratic shape10

functions. Three nodes (triangle vertices) are used to approximate the cumulated plastic strain
p̄ by linear functions. In Fig. 18b details of the triangular mesh and the nodal points are
shown. The maximum edge side of the finite elements is 0.6 mm, which is sufficiently smaller
than the internal length `I = 1 mm. The half dog-bone specimen and the rectangular domain
for the bending test are discretized with 2231 elements (4648 nodes), and 5434 (11087 nodes),15

respectively.
In the numerical code, the degradation function (4.51)1 has been modified as follows

g(d) = (1− cd)2, with c =

{
0, if divuI < 0,
1, if divuI ≥ 0,

(5.1)

in order to avoid fracture under compressive deformation states (divuI < 0).
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Figure 18: 2D simulations. Geometry, boundary conditions and finite element mesh of specimens for tensile test
(a) and three-points bending test (b).

5.2.1. Tensile test on a dog-bone specimen

The stress-strain curve resulting from the tensile test simulation is plotted in Fig. 19. The20

three branches that characterize the different stages of the evolution can be clearly distinguished.
The initial linear elastic branch is followed by the sawtooth branch, associated to matrix crack-
ing. In this latter phase, fractures progressively form within the specimen, according to the
sequence of snapshots reported in Fig. 20, where the damage field d is plotted at different val-
ues of ε. The first and second cracks open at the extremities of the thinner central part of the25

sample. This situation is often observed in experiments, because the stress flux through the
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specimen shrinkages is not homogeneous, and more vulnerable zones of stress concentration form
therein. The third crack opens in the middle cross-section, and, it branches into two fractures.
The next fractures distribute in the rest of the sample, and the final spacing between adjacent
cracks is about 5 mm, in agreement with the one-dimensional tensile simulation. The irregular
profiles of cracks, which present kinks and branches, are mainly due to the random perturbation5

applied to σf, which produces material inhomogeneity. In general, it was noticed that the crack
evolution predicted by the model is also quite sensitive to geometrical inhomogeneities due to
mesh distribution and to time discretization. Although these factors do not change the overall
evolution, however they can influence the trajectories of certain cracks.

The evolution of the cumulated plastic strain p̄ is described in Fig. 21. In the micro-cracking10

stage, the plastic strain p̄ cumulates nearby the cracks. The stress-hardening phase of micro-
cracking terminates when p̄ attains the peak strain p̂, which, in this simulation, is first reached
in correspondence of the crack in the middle cross-section. In the next stress-softening stage,
p̄ localizes around the central cross-section, as shown by the plastic strain fields of Fig. 21 at
ε = 4.6 · 10−3 and ε = 5.5 · 10−3. In that cross-section, the pre-existing matrix crack evolves15

into a macro-crack. Finally, Fig. 22 reports profiles of the vertical displacements uI = uI · ey
and uII = uII · ey, with ey the vertical unit vector, along the axis y, at different steps of the
evolution. Profiles are very similar to those of Fig. 15, resulting from the one-dimensional test.
The displacement jump generated by plastic strain localization can be clearly observed in the
profiles at ε = 5.5 · 10−3.20
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e

Figure 19: 2D tensile test. Stress-strain curve of tensile test on dog-bone specimen.

41



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
d

e=0.2 e=0.6 e=1.2 e=1.8

e=2.6 e=3.1 e=3.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
d

e=0.2 e=0.6 e=1.2 e=1.8

e=2.6 e=3.1 e=3.5

Figure 20: 2D tensile test. Damage field d at different values of the imposed deformation ε (× 10−3).
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Figure 21: 2D tensile test. Cumulated plastic strain field p̄ at different values of the imposed deformation ε
(× 10−3).
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5.2.2. Three-points bending test

The simulation of a three-points bending test gives the response curve of Fig. 23, where the
reactive force f at the specimen supports is plotted versus the imposed displacement u. Also in
this case, the curve decomposes into a linear elastic branch, a stress-hardening sawtooth branch,
and a softening branch. Stress drops correspond to the opening of cracks in the bottom central5

part of the specimen, as shown by the damage contours of Fig. 24. The first crack opens in
the bottom half-span point of the beam, where the maximum tensile stress is attained, and it
propagates upward. The next fractures form in the central part of the domain. They activate
at the bottom side of the beam, and propagate upward, bending toward the upside midpoint,
where displacement u is applied, and resulting in curved trajectories. The fracture patterning10

accurately reproduces the cracking scenarios usually observed in experiments, where fractures
are basically orthogonal to the isostatic lines of maximum tension. Mainly, at late stages of the
evolution, cracks undergo phenomena of branching and merging, which complicate the fracture
patterning, as shown by the damage map at u = 0.29 mm.

The evolution of the cumulated plastic strain associated to the cracking process is described15

in Fig. 25. The plastic strain grows in the bottom part of the specimen, in correspondence
of the cracks. In the last stage of stress-softening, p̄ localizes nearby the central crack, and,
therein, the macro-crack develops.

f [N/mm]

u [mm]

Figure 23: 2D bending test. Force-displacement curve of three-point bending test.
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Figure 24: 2D bending test. Damage field d at different values of the imposed displacement u [mm].
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Figure 25: 2D bending test. Cumulated plastic strain field p̄ at different values of the imposed displacement u
[mm].

6. Conclusions and Perspectives

A novel variational model for the description of the tensile dominated failure in short fiber-
reinforced composites has been proposed. The composite is represented as a mixture of two
phases linked by elastic springs. One phase represents a brittle matrix, modeled by a non-
local phase-field model, whereas the other phase represents dispersed ductile fibres, modeled by5

a non-local plasticity model. Equilibrium equations and evolution laws for the internal state
variables are variationally deduced, once the energy functional has been assigned. The model
has been numerically implemented in a finite element code and the evolution problem has been
solved by an incremental energy minimization algorithm.

Analytical solutions of a simplified model and numerical results have shown the capability of10

the model in capturing the main features of the failure process experienced by UHPFRC, taken
as an example of short fiber-reinforced composites. The model has been proved to properly de-
scribe the progressive formation of multiple micro-cracks within the matrix, and the subsequent
macro-fracture opening, properly interpreting the stress bridging action of fibers. It has been
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found that the whole tensile failure process is governed by the three different internal lengths,
i.e., `I, `II and `k, which are incorporated into the energy (4.6). The strict dependence of the
crack patterning on these characteristic lengths is shown in Fig. 26, where the phase-field local-
ization width in the brittle phase, the plastic-strain localization width in the ductile phase, and
the crack spacing length are highlighted. Also the dissipation mechanisms found in experiments5

have been captured by the model which combines damage and plasticity dissipations.
The calibration of constitutive parameters has been discussed, providing simple formulas for

their identification from data which can be directly measured from tensile experiments. Due to
the great flexibility of the variational formulation, the developed model can be tuned for the
description of the mechanical response of many other fibre-reinforced composite materials, by10

just changing the values of the constitutive parameters.
In this work, the attention has been focused on tensile dominated behaviours. In shear and

compression, different phenomena may be expected and this model can represent a valid starting
point for further enrichments. Furthermore, a key aspect that deserve a more careful analysis in
the future is the coupling elastic term by considering, for instance, the effect of non linear and15

anisotropic laws [62], possibly derived from micromechanical models of crack bridging [53, 63].

d p

`II (∼ 5mm)

ε = 5.5× 10−3

`f (∼ 1mm)

`k (∼ 5mm)

Figure 26: Damage and plastic strains snapshots at failure of the tensile test of Sec. 5.2.1, where the three
characteristic lengths (phase-field localization width `f = 2

√
2`I, plastic-strain localization width `II, and micro-

crack spacing length `k) are highlighted.
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