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A B S T R A C T   

The paradigm of Industry 4.0 involves fully automated and interconnected industrial production processes 
demanding a great deal of human-machine interaction. This implies the emergence of new problems related to 
the stress assessment of workers operating in new and more complex work contexts. To address this need, it may 
be important to implement automated stress detection platform designed to be effective in a real-world work 
setting. Many works in the literature deal with the stress evaluation topic, they use above all wearable systems 
that are often intrusive and subject to noise and artifacts that degrade performance. Moreover, most of them 
integrate supervised machine learning algorithms, which achieve high levels of detection accuracy, but require a 
complicated training phase, which might not be suitable in a real-world context. To reduce these limitations, a 
stress detection platform combining data from a wearable and an environmental system is presented in this 
paper. It analyses heart rate, galvanic skin response and camera RGB signals. The wearable device was designed 
to be minimally invasive with good signal stability and low noise, while a commercial camera was added to 
improve the performance of the whole hardware architecture. From the software perspective, the presented 
solution was first tested and validated using a supervised approach. Subsequently, attention was focused on the 
analysis and development of an unsupervised solution, implementing three unsupervised algorithms. The best 
performance was obtained with the Gaussian Mixture Model having an accuracy of 77.4% considering one level 
of stress and 75.1% with two levels of stress.   

1. Introduction 

Industry 4.0 represents a significant transformation of production for 
both processes and workers. This requires a socially sustainable inte-
gration of the human operator into the new production paradigms 
(Romero et al., 2016). Nowadays, it is usual to design a workplace 
around the needs of the operator, and the increase in automation is 
reducing the physical exertion of workers. However, the worker’s re-
sponsibilities include more cognitively demanding tasks. This is espe-
cially difficult for older workers who must operate in this new 
environment. As result, stressors and increasing mental health risks need 
more attention (Hafeez et al., 2019). Work-related stress is one of the 
major sources of stress in people’s lives, increasing the risk for long-term 
health issues and having a significant negative impact on quality of life, 
companies, and national economies. Psychological questionnaires have 
become the most widely used method for assessing human stress over 

the years. This form of investigation has a major disadvantage: it does 
not allow real-time or continuous monitoring. This makes it impossible 
to determine the causes and challenging work activities for the 
employee. Moreover, a discrepancy between the self-reported stress and 
the measured one is often observed (Nguyen and Zeng, 2017), making 
the analysis of physical responses, such as physiological signals (e.g., 
skin temperature, breathing rate, blink detection, human voice, and so 
on), an effective solution to the problem. These characteristics can be 
properly and continuously measured using ambient or wearable sensors. 
Ambient sensor-based monitoring technologies (such as Ultra-Wide 
Band systems, video cameras, and so on) are less obtrusive than wear-
able devices, but they necessitate a complicated and ad hoc environment 
design to provide reliable data. Minimally invasive wearable sensors 
have been accomplished in recent years through the development of 
miniaturized technologies, which has encouraged their adoption in the 
monitoring of health indicators and the prevention of dangerous 
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occurrences in the healthcare area (De Pascali et al., 2021; Lou et al., 
2020). Although the role of wearable devices in monitoring vital pa-
rameters is becoming increasingly relevant, several challenges need to 
be addressed, and many of these relate to the effectiveness of these tools 
in a real-world setting. Indeed, while excellent results have been ach-
ieved in minimizing the size of the devices, thereby increasing their level 
of user acceptability, unfortunately, there are some problems related to 
the stability and accuracy of the acquired signal. In particular, it is 
difficult to avoid problems such as motion artifacts and loss of data 
packets that significantly affect system performance (Balters and Stei-
nert, 2017). Motion artifacts have a significantly larger amplitude than 
biosignals and are a significant source of signal distortion. To reduce this 
effect, it is important to work both at the hardware level, increasing the 
stability level, and at the software side, using effective artifact 
compensation methods and automatic recognition techniques. 

Several wearable devices for monitoring vital signs have been 
developed on the market and in the literature, and the analysis of car-
diac and electrodermal activity seems very promising for the assessment 
of physical and cognitive stress (Samson and Koh, 2020; Mozgovoy, 
2019). For this reason, the attention was focused on these parameters for 
the presented work. 

Cardiac activity (CA) in a wearable device can be assessed by mainly 
two techniques: electrocardiography (ECG) and plethysmography 
(PPG). The main disadvantage of ECG is that measurements are usually 
limited to the chest to obtain a high-quality signal, precluding the use of 
wearable equipment other than a chest strap or patch. In contrast, PPG is 
less accurate, mainly due to loss of detected beats and motion artifacts, 
but it is a less invasive and more versatile technology, as it can be 
applied at different points on the body (e.g., finger, wrist, earlobe, etc.) 
and requires a single point of contact with the skin. This is a very 
important aspect, as it offers more flexibility in terms of types of wear-
able devices. 

The electrodermal activity (EDA), sometimes known as galvanic skin 
response or GSR, measures the electrical conductance, resistance, 
impedance, or admittance, depending on the method of acquisition, 
between two points. Therefore, two electrodes of various types, mainly 
pre-gelled, metallic, and textile, are applied on the skin to conduct this 
measurement. Textile and metal electrodes are more comfortable and 
easier to apply than pre-gelled electrodes. In contrast, they are more 
prone to noise and artifact disturbance due to their higher contact 
impedance and lower mechanical stability. 

For effective stress monitoring, it is also relevant to use wearable 
devices that satisfy the following main conditions: a) they are comfort-
able for the user and do not interfere with the user’s normal activities (e. 
g., lightweight, small size, ergonomics, wireless data transmission, etc.); 
b) they allow open and direct access to data to enable real-time software 
development; and c) they have a high level of accuracy to enable the 
good performance of the entire stress detection platform. Several devices 
with these characteristics are available on the market and the most 
widely used for stress assessment in recent years are listed in Table 1. As 
shown by the table, only three sensors can measure both CA and EDA. 

The points on the human body most used to monitor electrodermal or 
cardiac activity, for stress assessment, are the fingers of the hand, the 
chest, and the wrist. This is because these are suitable points for moni-
toring (e.g., high concentration of sweat glands, presence of visible 
blood vessels) and also since the most popular and user-accepted 
wearable devices are chest straps and wristbands. However, for long- 
term monitoring, in the work environment, they may not be the most 
appropriate locations for stress assessment. The wrist is subject to 
continuous and considerable movement, while monitoring on the finger 
is too invasive, and the chest may not be the best place for EDA signal 
assessment, as explored and described in our previous works (Ciccarelli 
et al., 2022; Leone et al., 2020)., 

As a result, it was decided to develop a sensorized garment that could 
simultaneously monitor the two signals of interest more effectively for a 
work context; that is, by placing the sensors at points on the body that 

are less prone to movements and that do not interfere with normal work 
activity. For EDA signal monitoring, the feet, hands and shoulders are 
the most responsive for measuring skin conductance to reflect emotional 
arousal (Van Dooren and Janssen, 2012). Regarding the measurement of 
cardiac activity by PPG signal analysis, the finger and earlobe represent 
the best measurement points to derive identifiable waveform features 
according to Hartmann et al. (2019). Based on these guidelines, the body 
points with the best trade-off in terms of best signal quality and least 
obstruction during work activity appear to be the shoulder and earlobe 
for monitoring electrodermal and cardiac activity, respectively. There-
fore, it was decided to develop a minimally invasive wearable system 
that would meet these requirements. 

On the software side, the majority of stress detection platforms 
developed and described in the literature use machine learning tech-
niques. The following section contains the main works analyzed and 
introduces the implemented algorithms. 

2. Related works 

In the literature, there are numerous works dealing with the assess-
ment of psychophysical stress. In this section, works concerning the 
state-of-the-art automated systems for detecting stress conditions using 
ambient and wearable sensors and adopting Machine Learning classifi-
cation techniques have been analyzed. Regarding wearable systems only 
those that monitor either cardiac or electrodermal activity were 
analyzed. They are measured mainly on the chest and hands to achieve 
the best signal quality, but this requires the use of two separate devices, 
which can be troublesome to manage in a real-world setting. Different 
types of classifiers have been used, and the main works in the literature 
in recent years are listed in Table 2. The table describes the monitored 
parameters, the type of used classifier, the number of detected stress 
levels, the analyzed body points, the measured accuracy values, and the 
testing environment. As can be verified, they adopt above all supervised 
machine learning schemes and the best performance was obtained 
through the K-Nearest Neighbor classifier with an accuracy of about 
96% (Zhang et al., 2017; Sriramprakash et al., 2017; Anusha et al., 2018; 
Vila et al., 2018; Airij et al., 2018; Zangróniz et al., 2018; Chen et al., 
2019; Zubair and Yoon, 2020; Rodríguez-Arce et al., 2020). However, 
they require a complex training phase based on a labeled dataset of 
simulated events that may be inaccurate and inconsistent with 
real-world data (Vildjiounaite et al., 2017). An unsupervised machine 
learning technique could reduce this issue. The unsupervised learning 
technique is particularly useful for evaluating data that do not require 
labeling information. It can also be used in various data mining appli-
cations, including the analysis of electrophysiological signals. Few 
works in the literature deal with unsupervised stress detection using, for 
instance, Self-Organizing Maps (SOMs) (Huysmans et al., 2018), deep 

Table 1 
Wearable devices for vital signs monitoring.  

DEVICE NAME VITAL 
SIGN 

SENSOR 
PLACEMENT 

Shimmer Unit ECG/GSR (https:// 
shimmersensing.com/) 

ECG, PPG, 
GSR 

Chest, hand finger, 
earlobe 

Zephyr Bioharness 3 (https://www. 
zephyranywhere.com/) 

PPG, ECG Chest 

Neulog NUL-217 (https://neulog.com/gsr/) GSR Hand finger 
polar h7/H10 chest band (https://www. 

polar.com/it/sensors/h10-heart-rate- 
sensor) 

PPG Chest 

empatica E4 (https://www.empatica.com/ 
en-eu/research/e4/) 

PPG, GSR Wrist 

BIOPAC bionomadix (https://www.biopac. 
com/product/bionomadix-ppg-and-eda- 
amplifier/) 

PPG, ECG, 
GSR 

Wrist, Arm 

samsung Galaxy Watch 5 (https://www. 
samsung.com/it/wearables/gear-s3/) 

PPG Wrist  
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learning (Oskooei et al., 2021), or traditional clustering algorithms 
(Fiorini et al., 2020; Medina, 2009). Moreover, Huysmans et al. (2018) 
analyzed both cardiac and electrodermal activity, while Oskooei et al. 
(2021) focused only on the cardiac activity, instead Fiorini et al. (2020) 
took into consideration the cardiac activity, electrodermal activity, and 
electrical brain activity. Their accuracy is in the range of 75–79%. 
Regarding acquisition points on the body, mainly the wrist, chest, and 
fingers of the hands are monitored, which, as mentioned above, are 
subject to consistent artifacts or are too intrusive for a real work context. 
Finally, most of the papers evaluate two conditions: stress, and no stress. 
Only a few consider two or more levels of stress, which are useful for 
discerning which situations are most unfavorable for a user. 

Regarding ambient sensor-based monitoring technologies, camera- 
based systems were considered for their effectiveness in detecting 
stress and they may already be present in the workplace for other pur-
poses or applications. They also represent a low-cost solution and do not 
require daily user intervention for setup. They measure specific pa-
rameters/features for stress evaluation at a distance from the subject 
without the need for any physical contact. This sensor category is often 
identified in the literature by the term “non-wearable sensor”. Human 
stress measurement with this kind of sensors can be subdivided into 
physical measures and vision-based measures. Physical measurements 
are those in which certain observable parameters of the human body are 
recorded, such as eye activity (including pupil dilation), human speech, 
and body postures (Baltaci and Gokcay, 2016; Pedrotti et al., 2014; 
Giannakakis et al., 2017; Simantiraki et al., 2016; Kurniawan et al., 
2013; Soury and Devillers, 2013; Giannakakis et al., 2018; Aigrain et al., 
2015). On the other hand, vision-based measures used some kind of 
imaging modality for measuring the stress level of an observed subject. 

They can be subdivided into thermal infrared (IR) imaging and com-
puter vision-based techniques (Cho et al., 2017; Chen et al., 2014; Gao 
et al., 2014; Aigrain et al., 2015). A summary of the most recent 
state-of-the-art publications that evaluate stress levels through 
non-wearable sensors is given in Table 3. They use supervised machine 
learning approaches with accuracy levels of up to 97%. 

This paper proposes a stress assessment hardware-software archi-
tecture to monitor operator stress with the aim of increasing operator 
well-being in the work environment. The main goal is to realize a sen-
sorized platform that can also be effective in a real-world scenario, 
focusing mainly on useful aspects to reduce the level of invasiveness and 
increase the stability of monitoring, while still maintaining good 
detection accuracy. To this purpose, from the hardware point of view, 
the focus was on developing a wearable system that would allow reliable 
simultaneous measurement of cardiac and electrodermal activity with a 
single device. Furthermore, points on the body were identified and 
chosen to permit the good acquisition of signals of interest without 
interfering with or disturbing operators’ activities. This also reduces 
artifacts due to the movements of the individual. In addition to the 
wearable device, a camera-based sensor was introduced to analyze the 
RGB signal, which can contribute to increase the total performance of 
the platform in terms of sensing accuracy and make it redundant to 
enable proper operation even if the wearable sensor is unavailable 
(malfunction, low batteries, etc.). On the software side, the focus was on 
reducing motion artifacts, identifying the most effective features for 
stress detection, as well as classification using supervised and unsuper-
vised machine learning software approaches. The supervised approach 
was applied to validate the platform and to compare it with other sys-
tems in the literature, however, the final choice for the framework was 

Table 2 
Wearable sensor-based systems for stress detection.  

WORK VITAL SIGNS CLASSIFIER SENSOR 
PLACEMENT 

STRESS 
LEVEL 

ACCURACY CONTEST 

Zhang et al. (2017) ECG Support Vector Machine Chest  2 93,7% 
strong level 
87,5% 
weak level 

Real 

Sriramprakash et al. (2017) ECG, GSR Support Vector Machine Hand fingers, Chest  1 92,75% Simulated 
Anusha et al. (2018) EDA, ECG, SKT Quadratic Discriminant Analysis, 

K-Nearest Neighbors 
Hand fingers, Chest  1 95.86% Simulated 

Vila et al. (2018) ECG, EDA Factorial Discriminant Analysis Hand fingers, Chest  1 87.5% Simulated 
Airij et al. (2018) HR, EDA, SKT Fuzzy Logic, K-nearest neighbors Hand  3 96.19% Simulated 
Zangróniz et al. (2018) PPG Tree-based Wrist  2 82.35% Simulated 
Chen et al. (2019) ECG, PPG Random Forest Wrist, Chest  1 80% Simulated 
Zubair and Yoon (2020) PPG Support Vector Machine Hand fingers  4 94,33% Simulated 
Rodríguez-arce et al. (2020) HR, SPO2, ST K-nearest neighbors Hand fingers, Nose  1 95.98% Simulated 
Huysmans et al. (2018) ECG, EDA, BVP Self Organizing Maps, 

Artificial Neural Network 
Chest, GSR not indicated  1 79% Simulated 

Oskooei et al. (2021) ECG K-means Chest  1  Simulated 
Fiorini et al. (2020) Brain Activity, ECG, GSR K-means Hand fingers, Chest  2 85% 

77% 
Simulated  

Table 3 
Ambient sensor-based systems for stress detection.  

WORK PARAMETER CLASSIFIER STRESS 
LEVEL 

ACCURACY CONTEST 

Baltaci and Gokcay (2016) Physical: Eye activity (pupil dilation) Adaboost with Random Forest  2 83.8% Simulated 
Pedrotti et al. (2014) Physical: Eye activity (pupil dilation) Artificial Neural Network  2 79.2% Simulated 
Giannakakis et al. (2017) Physical: Eye activity (pupil dilation) Ada Boost   91,68% Simulated 
Simantiraki et al. (2016) Physical: Human Speech Random Forest  2 92.06% Simulated 
Kurniawan et al. (2013) Physical: Human Speech Support Vector Machine  2 92.00% Simulated 
Soury and Devillers (2013) Physical: Human Speech Support Vector Machine  2 72.00% Simulated 
Giannakakis et al. (2018) Physical Body Postures Generalized Likelihood Ratio  2 97.90% Simulated 
Cho et al. (2017) IR Image: breathing Convolutional Neural Network  3 

2 
56.52% 
84.59% 

Simulated 

Chen et al. (2014) IR Image: oxygen saturation Binary Classifier  2 88.10% Simulated 
Gao et al. (2014) Computer Vision: facial expressions Support Vector Machine  2 90.50% Simulated 
Aigrain et al. (2015) Computer Vision: visual cues Support Vector Machine  2 77.00% Simulated  
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on the unsupervised techniques that might be more effective in a real- 
world setting. For performance evaluation, a preliminary analysis was 
carried out to verify that the developed hardware-software solution has 
accuracy in line with what has been presented in the literature. For this 
purpose, laboratory tests were carried out under controlled conditions, 
following procedures based on the most common mental stress tests. 
After this validation, it will be possible to study and test the platform 
under real working conditions. 

3. Materials and methods 

In this section, the hardware-software architecture and the proced-
ure used for the physiological signals acquisition and elaboration are 
described. 

3.1. Multisensory platform 

The platform consists of an ambient and a wearable device. The 
ambient device is a commercial RGB camera, while the wearable device 
is a sensorized backstrap. 

3.1.1. Wearable system 
The wearable device was realized by integrating the portable 

ShimmerGSR unit on a back band, as shown in Fig. 1. The Shimmer 
device was attached to the headband by a Velcro strip that allows the 
user to detach the electronic unit for battery charging. The sensor device 
provides connections and front-end amplifications for one channel of 
galvanic skin response data acquisition. It also features an additional 
channel for reading a plethysmographic sensor. The device has been 
validated for use in biomedically oriented research applications, it has 
an EEPROM memory for data storage, it is small in size (65 ×32×12 
mm) and weight (about 30gr), and it integrates a Bluetooth module for 
sending data. It enables users to acquire the following signals:  

• Galvanic Skin Response  
• Photoplethysmography  
• Angular rate  
• Orientation and height estimation  
• Acceleration 

For this work, the focus was on the analysis of skin conductance and 
the plethysmographic signals to assess electrodermal activity and blood 
pulsations. 

The wearable device was designed to be as minimally invasive as 

possible and not interfere with the user’s normal work activity. To this 
purpose, the most suitable points on the body have been identified for 
appropriate reading of the aforementioned signals. Van Dooren and 
Janssen (2012) compared the skin conductance signal measured at 16 
different body points with that produced by the fingers. The results of 
this work showed that the feet, fingers, and shoulders are the most 
responsive and suitable body points for measuring skin conductance to 
assess emotional arousal. As a result, the focus for the present work was 
on the shoulder, which can allow for less encumbrance monitoring and 
is less prone to disturbance due to body movements with respect to feet 
and fingers. An analogous study was carried out with regard to the 
plethysmographic signal, useful for the evaluation of the heartbeat. 
Therefore, the most suitable locations for monitoring this signal were 
considered and the one closest to the shoulder was chosen in order to 
allow electrodermal and heart rate activity to be assessed with a single 
device. In view of these considerations, it was decided to perform the 
measurements on the earlobe, which has been shown to produce good 
PPG waveforms. Fig. 1 shows the realized system. 

The EDA signal is measured by using two pre-gelled Ag/AgCl elec-
trodes placed on the right shoulder. They allow better stability and 
signal measurement than other types of contact electrodes (e.g., textile 
or metal electrodes). The device provides the possibility to select 2 
measurement ranges: 0.2uS-100uS ± 10% and 1.5uS-45uS ± 3%. For 
this work, the widest interval was chosen to consider signal variations in 
their full amplitude, while accepting a larger error. Heart rate, on the 
other hand, was assessed using the optical pulse-detection probe that is 
supplied with the Shimmer device. It is connected to the Shimmer device 
via a 3.5-mm jack and provides a PPG signal from the earlobe. 

Vital parameters of interest were sampled at a frequency of 10 Hz 
and are sent, via the wireless Bluetooth connection, to an embedded PC 
in which resides the algorithmic pipeline for the detection of stress 
conditions. The Bluetooth protocol, although permitting short-range 
communication, features low battery consumption, allowing contin-
uous monitoring for the whole work shift (about 8 h). In addition, it can 
be used to connect to a mobile phone placed close to the user to transfer 
the acquired data to a server for its successive processing on the 
embedded PC. 

The placement of the Shimmer electronic device on the back band 
and the sensor placement described above enables monitoring without 
interfering with normal operator activities. In addition, the movements 
to which the sensing part is subjected are smaller in comparison with 
those produced by the arm or hand. In contrast, the use of pre-gelled 
electrodes may be less comfortable than wearing a wristband and may 
cause redness or allergies if used for several hours. 

Fig. 1. Prototype of wearable smart system.  
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3.1.2. Ambient system 
The proposed ambient system involves the use of any consumer 

passive vision sensor having the functionality and features detailed 
below. A first hardware specification required for proper operation of 
the algorithmic pipeline designed for stress level evaluation is to have 
available as input data an RGB image with a resolution of at least 
320 × 240 pixels and with the end-user’s facial region present inside. In 
addition, it is further required that the orientation of the face should be 
between two angles of rotation with respect to the optical center of the 
camera, varying between − 15◦ and + 15◦ horizontally (pan angle) and 
− 10◦ and + 10◦ vertically (tilt angle), to always ensure the presence of 
the eyes in the acquired video stream. A further requirement relates to 
the lighting of the environment within which a brightness level of at 
least 30 lux must be measured (with the light level referring to general 
lighting, 1 lux = 1 lumen/sqm). A final but fundamental requirement is 
inherent in the end-user’s position relative to the optical center of the 
commercial camera. In fact, to return appropriate extracted feature 
values, the end-user will have to be positioned relative to the optical 
center of the camera at a distance within the following range: 0.5 mt. - 
1.5 mt. 

On the hardware side, the current version of the ambient sensor node 
consists of a webcam manufactured and marketed by LogitechTM 
(Fig. 2) (https://www.logitech.com/it-it/products/webcams/c920-pro- 
hd-webcam.960–001055.html). The selected webcam is very light 
(weighing 162 g) and has small dimensions (height: 43.3 mm, width: 
94 mm, depth: 71 mm). These features make it versatile from the point 
of view of installation within a work environment, as it can be placed on 
a table, on a laptop, on an instrument, or PC monitor. In addition, it is 
equipped with a USB connection cable of 1.5 m in length that allows its 
use even at such a distance from the processing system (embedded PC). 
Regarding technical specifications, the Logitech C920 HD Pro webcam 
allows it to capture video/images at the following resolutions: 
1920×1080p (30 fps) and 720×576p (30 fps). In addition, it has a fixed 
diagonal field of view of 78◦, automatic illumination correction, and 
finally possesses autofocus. 

3.2. Data acquisition 

The experimental study involved 20 volunteer participants (9 males 
and 11 females) in good physical health, aged between 24 and 38 (mean 
= 29,1 years). The users sample consists of undergraduate students, Ph. 
D. students, research fellows, and administrative personnel recruited at 
the university. 

Before starting the test, the following steps were carried out:  

• The room was arranged with a table, three seats (the user is seated in 
front of two judges), a laptop, a video camera, and a buzzer.  

• The set-up of the devices and the PowerPoint presentation were 
performed (check of battery status, software startup, check of slides 
animations, etc.) to avoid technical problems during the test.  

• Users’ personal data were collected.  
• The participant was informed about the goal of the study and the 

procedure, but no instructions on how to accomplish the tasks were 
given.  

• The participant was asked to read and sign the consent form.  
• The participant was asked to turn off his/her phone in order to 

eliminate distraction.  
• The participant was asked to wear the smart device. 

According to the procedure shown in Fig. 3, participants were asked 
to perform four tasks to induce stress. Physiological data, described in 
the previous section, were recorded during the entire test. The tasks 
instructions, included in the PowerPoint presentation, were shown 
directly on the screen limiting the interactions with the moderator. The 
tasks were separated by rest periods, during which the judges left the 
room leaving the user alone. Below, each phase is briefly described. 

In the resting phase, the participants were not asked to perform any 
tasks, only relaxing. Based on Akmandor and Jha (2017), a classical 
music sequence was played to obtain a relaxed state. To further keep the 
subject focused, a series of slow scrolling panoramic images were dis-
played on the screen without quick changes. They were preferred to 
neutral images because the subject can achieve mental stress by simply 
watching an image that is somehow connected to an unpleasant mem-
ory. There is no standard recovery time in the literature, it generally 
ranges from 2 min to 5 min or more (Van der Mee et al., 2020; Chala-
bianloo et al., 2022; Ollander et al., 2016). For this reason, a pilot test 
was preliminarily performed involving five users to verify that they fully 
recovered after the stress induction test with a 2 min rest period, to 
avoid long periods for data acquisition sessions. For this evaluation, the 
baseline signals were compared with the end of the rest periods, and it 
was verified that there is an acceptable variation (less than 10%); then 
the chosen period was confirmed. This was expected as the tasks did not 
involve excessive physical activity. For example, Fig. 4 shows the heart 
rate of two users during the whole session: as can be seen, the heart rate 
during rest periods is comparable to their baseline. 

Task 1 consisted of the Trier Social Stress Test (TSST) (Kirschbaum 
et al., 1993), which is the most common stress induction test (Narvaez 
Linares et al., 2020). It lasts ten minutes and is divided into two phases. 
In the first phase, the participant is asked to present himself and his skills 
for a job interview that has a five-minute duration. Judges listen to the 
presentation without any intervention, controlling their expressions as 
neutral. If the participant finishes the presentation before five minutes, 
they ask him or her to continue. The second phase is a mental arithmetic 
task. The participant is asked to count backward from 3895 in steps of 13 
aloud. If the participant makes a mistake, the judge presses the buzzer 
and asks the user to correct himself. After the last five-minute, the re-
covery period starts. 

Task 2 is the Stroop Color-Word Test (SCWT), which is one of the 
oldest and most widely used stress induction tests. It is based on the 
effect described by Stroop (1935): saying the name of a color spot takes 
longer than reading a color designation and saying the name of the color 
is more difficult if the color in question is used to write the name of 
another color. 

Several versions of SCWT exist (Lezak et al., 2005). They vary from 
the standard version, which asks to read the name of color words, for the 
number and content of subtasks, the type and number of stimuli, test 
duration, scoring procedures, etc. In the proposed version of the test, the 
participant is asked to say the number associated with the color of the 
ink with which the color words are written. An example is shown in  
Fig. 5. If the participant makes a mistake, the judge presses the buzzer 
and asks the user to correct himself. Fig. 2. Logitech C920 HD Pro webcam.  
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Task 3 is the Math test, which is based on the Montreal Imaging 
Stress Task (MIST) (Dedovic et al., 2005). It consists of a series of mental 
arithmetic challenges shown on the screen along with a bar countdown 
timer, which increases the induced stress during the equation solving. 
The participant is asked to calculate and say the result aloud. If the 
participant makes a mistake, the judge presses the buzzer and asks the 
user to correct himself. When the time is up the new equation is shown. 

Task 4 is the Memory test, a sort of puzzle game. A 6 × 6 cards matrix 
is shown to the participant that has 30 s to memorize the numbers (from 
1 to 36) written on the cards. Then, all the numbers are hidden. The 
participant is asked to click to flip the card to recreate the correct 
sequence of numbers. If the participant finds out the wrong number, the 
judge presses the buzzer, all the numbers disappear, and the user has to 
start again. Challenge is to find out the complete sequence with mini-
mum tries. At the end of the test, after removing the sensors, the par-
ticipants were asked to rate the perceived stress in each task on a scale 
from 0 (no stress) to 5 (maximum stress level). 

3.3. Software framework 

The software framework for stress condition detection was designed 
and implemented in the Python programming language. This section 
describes the algorithmic pipeline steps shown in Fig. 6 and detailed 
below. The analysis was performed in offline mode considering the data 
acquired during the laboratory tests described in the "Data acquisition" 
section. 

3.3.1. Pre-processing and calibration 
The main objective of the data preprocessing phase is to reduce 

ambient electrical noise and artifacts due to device movements. 
Appropriate software techniques were carried out for each sensor. 

Regarding EDA signal, filtering and smoothing techniques were 
applied to clean the signal of noise and disturbances. Specifically, a 
fourth-order Butterworth filter with a cutoff frequency of 5 Hz was used. 
In addition, the convolution of a filter kernel with the input signal was 
considered to compute the smoothed signal (Smith, 2003). To reduce the 
influence of motion artifacts and to avoid incorrect measurements 1) a 
minimum of 0.04 µS was set as the threshold for defining a significant 
EDA signal and 2) the technique described in (Kocielnik et al., 2013) was 
adopted. This technique has a low computational cost and good per-
formance: it eliminates signals that are anomalous with respect to the 
shape characteristics of conductance peaks in normal skin. In particular, 
signals with variations greater than 20% per second or smaller than 10% 
per second were eliminated. The EDA signal is composed of phasic and 
tonic components. The tonic component is correlated with the slow 
changing baseline levels and with individual background characteris-
tics. Whereas the phasic component shows the fast response of skin 
conductance due to a stimulus that is measured for a short period of time 

Fig. 3. Stress inducing procedure.  

Fig. 4. Comparison of the rest period to baseline based on users’ heart rate.  

Fig. 5. Variation of the Stroop Color-Word Test.  

Fig. 6. Framework software of the stress detection platform.  
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and can be event related. Therefore, attention was focused on the 
analysis of the phasic component achieved by a Butterworth bandpass 
filter with cutoff frequencies between 0.16 Hz and 2 Hz. 

To reduce noise and artifacts in the PPG signal for cardiac activity 
analysis, the Python HeartPy library was used (Van Gent et al., 2019). It 
utilizes an adaptive threshold for peak detection, which can match 
changes in PPG waveforms. To identify heartbeats, a moving average is 
calculated using a 0.75 s window on either side of each data point. 
Regions of interest are calculated between two intersection points where 
the signal amplitude is greater than the moving average. For the peak 
position is simply considered to be the highest point in each region of 
interest. Due to motion artifacts and the variable morphology of the PPG 
waveform, it may occur that after the initial peak fitting phase, incor-
rectly marked peaks may remain. To reduce this error, the threshold of 
the sequence of peak-to-peak intervals is considered. Peaks are consid-
ered low confidence if the interval created between two adjacent peaks 
deviates by more than 30% from the average peak-to-peak interval of 
the analyzed segment. If some peaks are considered incorrect, the 
peak-to-peak interval array is recalculated to contain only the intervals 
between two high-confidence peak positions. 

A normalization/calibration procedure was provided to manage the 
data correctly and reduce errors in detection due to psychophysical 
variations in different users. The purpose is to both measure and 
memorize the vital signals of interest, while the user is in a resting 
condition. For this purpose, the baseline of EDA and PPG signals was 
calculated as the average of data acquired for 30 s, during the first phase 
of each data collection trial, in which the user is not subjected to any 
external stimulus. The baseline values were then used to normalize the 
preprocessed acquired signals. 

Similarly, a pre-processing stage for the ambient sensor was designed 
and implemented. In particular, the first step consists of detecting the 
human face in the acquired image. So, in our proposed pipeline, the 
Mediapipe library (Lugaresi et al., 2019) was used. It estimates 468 3D 
face landmarks in real-time containing information of different facial 
areas. To detect the left and right eye, reference landmarks representing 
these regions were used. Each eye is identified by 16 landmarks that very 
accurately highlight the contour. From these landmarks, pairs are 
extracted that are at a greater distance both horizontally and vertically 
and identifying axes in those directions. Finally, the ratio (which iden-
tifies the eye’s aperture width) is calculated by dividing the lengths of 
the two axes obtained. 

3.3.2. Feature extraction and selection 
As for the feature extraction and selection phase, the focus was on 

several features in the time and frequency domain (Zhang et al., 2017; 
Sriramprakash et al., 2017; Anusha et al., 2018; Vila et al., 2018; Airij 
et al., 2018; Zangróniz et al., 2018; Chen et al., 2019; Zubair and Yoon, 
2020; Rodríguez-Arce et al., 2020; Vildjiounaite et al., 2017; Huysmans 
et al., 2018; Oskooei et al., 2021; Fiorini et al., 2020; Medina, 2009; 
Singh et al., 2013; Kim et al., 2018; Zangróniz et al., 2017), commonly 
used in stress detection analysis, and the most significant ones were 
identified. They were calculated within a 30-second sliding window for 
all signals. 

Regarding PPG, heart rate is a measure often used to estimate stress 
levels. It is expressed as the number of heartbeats per minute or the 
average interval between consecutive RR beats. Another widely used 
parameter is heart rate variability (HRV), which represents the distri-
bution of RR intervals over time. Several papers in the literature have 
used HRV-derived parameters as features for stress detection. Whereas, 
for the EDA signal, the phasic component of the signal was considered, 
and extracted as described in the "preprocessing and calibration" 
section. 

Regarding the ambient sensor, literature analysis showed that the 
eye blink is an important indicator for stress assessment (Marcos-Ramiro 
et al., 2014; Korda et al., 2021). In the present work, the main involved 
feature is the number of blinks inside given time windows. Blink is 

calculated by evaluating the ratio introduced in the previous section. In 
particular, if the ratio is smaller than a threshold value, the algorithmic 
pipeline identifies a blink. The threshold value differs for each user, and 
it is set in an initial calibration phase. 

All features analyzed for the three sensors are shown in Table 4. To 
reduce the complexity of signal processing and improve the performance 
of the system, two selection techniques were applied in order to identify 
the most suitable feature vector for stress assessment. As described in the 
next section, it was decided to test two machine learning classification 
approaches: supervised and unsupervised techniques. Consequently, 
two different methodologies were used to select the most appropriate 
features for either system. Specifically, 1) Lasso regression technique 
was considered to identify the feature vector for the supervised 
approach (Muthukrishnan and Rohini, 2016), while 2) Laplacian Score 
for the unsupervised one (He et al., 2005). Based on the results obtained 
by analyzing the dataset described in the "Data Acquisition" section, the 
features chosen for PPG, EDA and ambient sensor are marked with an 
“X” in Table 4. As can be observed, the feature space is 9 and 8 for the 
supervised and unsupervised approaches, respectively. 

3.3.3. Classification and post-processing 
After the feature extraction and selection step, the data were labelled 

considering two classes (no stress and stress) in the first case and three 
classes (no stress, stress level 1, and stress level 2) in the second case, by 
grouping the scales indicated by users during the questionnaire 
regarding the level of perceived stress, mentioned in the "Data acquisi-
tion" section. Supervised and unsupervised classification algorithms 
were considered. In particular, three supervised Machine Learning (ML) 
algorithms were trained on our data for comparison: Decision Tree (DT), 
Random Forest (RF), and K-Nearest Neighbors (KNN). Whereas three 
unsupervised algorithms were evaluated: K-means, Gaussian Mixture 
Model (GMM), and Self-Organizing Map (SOM). 

DT is one of the most popular supervised ML algorithms (Wu et al., 
2008). To traverse the observations on a feature (the branches of the 
tree) and arrive at the target value of the feature (the leaves), a tree is 
used as a predictive model; more specifically, the leaves represent the 
class labels, and the branches correspond to the feature conjunctions 
displayed in the class labels. 

RF algorithm (Breiman, 2000) builds a set of predictors with a set of 
randomly generated decision trees in the data set. It employs the 
hyperparameters of a decision tree. In particular, each classifier is 
generated using a vector independent of the input vector, and each tree 
votes for the largest number of classes. RF adds more randomness to the 
model and simultaneously increases the number of trees. It identifies the 
best feature in a random subset of features. 

KNN is very popular due to its user-friendly implementation and high 
classification performance. The idea is to allocate a sample to a category 
if most of the k neighbors of the considered samples belong to the same 
category. Generally, k is not greater than 20 (Zhang, 2018). In partic-
ular, it is important to choose the appropriate value of k because if k is 
too small then the noise may be present, whereas if k is too large, the 
neighborhood may include samples from other classes. The selected 
neighbors are those that have been properly classified. 

K-means algorithm (MacQueen, 1967) is probably the older and most 
popular clustering method and generally it minimizes clustering error. It 
searches locally optimal solutions with respect to clustering error. It is a 
fast iterative algorithm used in many clustering applications. However, 
it is a point-based clustering method starting with the cluster centroids 
initially placed at arbitrary positions and proceeding by moving the 
cluster centroids at each step to minimize the clustering error. The main 
drawback of the method is the sensitivity in choosing the initial posi-
tions of the cluster centroids. Consequently, to achieve near-optimal 
solutions, it is necessary to schedule several runs differing in the 
initial positions of the cluster centroids. 

GMM (Bishop, 2006) is one of the most popular data clustering 
methods that can be viewed as a linear combination of different 
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Gaussian components. It is an approach to solve the clustering problem 
which might not be the fastest but is very effective in certain cases. GMM 
assumes that the probability distribution generating the data is sup-
ported on the Euclidean space. Each Gaussian density is called a 
component of the mixture and has its own mean and covariance. In 
various applications, their parameters are determined by maximum 
likelihood, typically using the Expectation-Maximization algorithm 
(Dempster et al., 1977). 

SOM (Kohonen, 1995) is a general unsupervised method that can be 
used for various purposes in pattern recognition, information process-
ing, and clustering. Specifically, SOM involves a layer of units, usually 
called neurons, that fit a population of input patterns, through an iter-
ative procedure processing the input patterns sequentially. When an 
input pattern x is introduced, the neuron y that is closest to x is identi-
fied. Afterward, y and some of the neurons in its vicinity are updated, i. 
e., they are relocated closer to x. The goal is that after a sufficient 
number of iterations all neurons are migrated into areas of feature space 
where a high concentration of input patterns is present. 

Concerning the unsupervised classification, a post-processing block 
was added to increase the reliability and efficiency of the stress detec-
tion system. Specifically, the final prediction is obtained using a voting 
approach in which a temporal sub-window is analyzed, and the output 
class is selected based on the most frequent class in the analyzed sub- 
window. 

To obtain the best parameters for each ML classifier, a grid search 
technique (Bhat et al., 2018) was applied and the optimal selected pa-
rameters are shown in Table 5 for two classes and in Table 6 for three 
classes respectively. 

4. Results 

To validate the proposed pipeline, a series of experiments were 
performed to verify the effectiveness of the described approach. The 
stress signal acquisition and processing system was developed by using 

Python language and some packages like Pyshimmer, Mediapipe, Neu-
rokit, Heartpy, etc. The experiments were performed on an embedded 
PC with Intel Core i5 processor and 8 GB of RAM. The performances of 
both supervised and unsupervised classifiers were evaluated using four 
different metrics: accuracy (Acc), precision (Pr), recall (Re), and F1- 
score. They are defined by the following expressions: 

Acc =
TP + TN

TP + TN + FP + FN
(1)  

Pr =
TP

TP + FP
(2)  

Table 4 
Features for CA, EDA and Ambient sensor.  

FEATURE DESCRIPTION SENSOR 
Type 

SUPERVISED 
APPROACH 

UNSUPERVISED 
APPROACH 

RMSSD Root Mean Square of the Successive Differences PPG X X 
SDNN Standard Deviation of NN intervals PPG X X 
SDANN Standard Deviation of Average of NN intervals PPG   
PNN50 The proportion of interval differences of successive NN intervals greater 

than 50 ms 
PPG X  

MEAN HR Mean heart rate PPG   
MEDIAN HR Median Heart Rate PPG   
MAD HR Mean Absolute Deviation Heart rate PPG   
STD HR Standard Deviation of Heart Rate PPG   
LF PEAK Frequency peak of LF (0.04–0.15 Hz) PPG   
LF POWER PSD area in LF PPG   
MEAN GSR Mean of GSR EDA   
MEDIAN GSR Median of GSR EDA   
MAD GSR Mean absolute deviation of GSR EDA   
STD GSR Standard deviation of GSR EDA   
GSR PEAK AMPLITUDE 

SUM 
GSR value at Peak − GSR value at point of onset EDA X X 

GSR PEAK ENERGY SUM 0.5 × peak amplitude × peak rise time EDA X  
GSR RISE RATE AVERAGE Sum average of 1st derivative of points with 1st derivative > threshold 

(0.025) 
EDA X X 

GSR NO. OF PEAKS Number of peaks in a given segment EDA  X 
MEAN GSR Mean of GSR EDA   
MEDIAN GSR Median of GSR EDA   
MAD GSR Mean absolute deviation of GSR EDA   
BLINK NUMBER Number of Blinks Ambient X X 
RATIO MEAN Mean of Eye Aspect Ratio Ambient X X 
RATIO MAX Maximum of Eye Aspect Ratio Ambient X X 
RH DISTANCE MEAN Mean of the horizontal distance of the right eye Ambient   
RV DISTANCE MEAN Mean of the vertical distance of the right eye Ambient   
LH DISTANCE MEAN Mean of the horizontal distance of the left eye Ambient   
LV DISTANCE MEAN Mean of the vertical distance of the left eye Ambient    

Table 5 
Parameters used for each ML classifier with two classes (stress/no stress).  

ML 
Classifier 

Parameters 

DT criterion = gini, max_depth = 6 
RF max_depth = 8, n_estimators = 9, criterion = gini 
KNN n_neighbors = 7, metric = manhattan, algorithms = auto, weights 

= distance  

Table 6 
Parameters used for each ML classifier with three classes (stress/stress level 1/ 
stress level 2).  

ML 
Classifier 

Parameters 

DT criterion = gini, max_depth = 8 
RF max_depth = 7, n_estimators = 6, criterion = gini 
KNN n_neighbors = 8, metric = manhattan, algorithms = auto, weights 

= distance  
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Re =
TP

TP + FN
(3)  

F1 − score =
2 ∗ TP

2 ∗ TN + FP + FN
(4)  

where TP (True Positive) represents that a stress phase occurs, and the 
algorithm detects it; FP (False Positive) indicates that a stress phase does 
not occur and the algorithm activates an alarm; TN (True Negative) 
means that a stress phase does not occur and the algorithm does not 
detect it; FN (False negative) implies that stress phase occurs but the 
algorithm does not detect it. Accuracy represents the ratio between all 
correctly classified samples and all samples; precision indicates the 
model’s accuracy to predict positive occurrences; recall shows the 
model’s ability to detect positive cases using all positive cases; F1-score 
impacts true positive cases more than precision. 

As for the supervised techniques, the performance of each ML clas-
sifier was measured on separately designed test sets. To perturb the 
training set of each classifier by randomizing the original data set, a 10- 
way cross-validation was applied (Hastie et al., 2009). Consequently, 
each classifier was trained for each fold using 90% of the data, with the 
remaining 10% used for testing. Additionally, to avoid over-fitting of the 
training set, 10% of the training data was used to create a validation set. 
Additionally, the procedure was repeated 10 times, training the classi-
fier with a different training set and testing with a distinct test set. This 
prevents that the same samples appear in the training and testing sets at 
the same time. 

Tables 7 and 8 present the performance of each ML model with two 
classes (stress/no stress) and three classes (no stress, stress level 1, and 
stress level 2), respectively. The RF model showed the best performance 
in terms of accuracy, precision, recall, and F1-score considering both 
two and three classes with an average accuracy of 94.9% and 91% 
respectively in accordance with the state-of-the-art. Specifically, 
considering two classes, RF has an improvement in average accuracy of 
approximately 5% versus DT and 7% versus KNN. With three classes, the 
improvement is greater, in fact, it is around 6.5% compared to DT and 
12% compared to KNN. 

Regarding the unsupervised classifiers, the performances were 
evaluated with an external criterion (Jain and Dubes, 1988) by 
comparing the output with the assigned label and by using the same 
metrics used for the ML classifiers. To obtain the correct number of 
classes in our dataset, the Silhouette Score technique has been applied 
(Rousseeuw, 1987). This technique detects the coherence of the data 
points assigned to the respective cluster and the separation of the data 
points with the other clusters by using the mean intra-cluster distance. 
Separation is measured through the mean distance from the nearest 
cluster. The silhouette score varies between + 1 and − 1, with the best 
score of + 1 and the worst of − 1. The value 0 indicates overlapping 
clusters. So, applying this technique two classes (stress/no stress) were 
obtained. 

Various trials were carried out considering two classes and, in 
addition, the post-processing phase described above was tested. In 
particular, Table 9 shows the average performance obtained for each 
unsupervised classifier considering two classes without post-processing. 
It can be observed that among the three classifiers tested, GMM per-
formed best with an average accuracy of 76.3% in line with the state-of- 
the-art and a gap of about 5% compared to SOM and about 10% 

compared to K-means in terms of average accuracy. Instead, the results 
obtained for each unsupervised classifier considering post-processing 
are shown in Table 10: an improvement of up to about 3% is achieved 
compared to the approach without post-processing. 

Furthermore, to confirm the goodness of the adopted approach, 
unsupervised classifiers were tested by considering the sensors sepa-
rately (i.e., only the wearable sensor and only the ambient sensor). Then,  
Tables 11 and 12 show the results obtained considering only wearable 
sensor both without and with post-processing. In particular, Table 11 
presents the averages of the obtained metrics without post-processing. 
GMM is still the best classifier with an average accuracy of 73.5% and 
a deviation of 6.5% compared to K-means and 1% compared to SOM. 
Whereas in Table 12, the results obtained considering post-processing 
are shown, and as can be seen, an increase of 2–2.5% was obtained 
compared to without post-processing, supporting the effectiveness of 
this block’s introduction. 

A summary of the results obtained considering only the ambient 
sensor both without and with post-processing is given in Tables 13 and 
14. Also in this case, GMM is found to be the best classifier with an 
accuracy value of 73.24% (with post-processing) showing an improve-
ment of 6–7% over K-means and about 2% over SOM. To the best of our 
knowledge, there are no stress detection camera-based only systems that 
adopt unsupervised approaches. However, the accuracy values obtained 
are close to those measured with wearable systems. 

The data in Tables 9–14 show that combining the data from both 
sensors, the classifiers’ performances are improved of approximately 2% 
in terms of average accuracy. However, by analyzing the results of the 
individual sensors, it can be seen that the platform presents a good level 
of accuracy even with one kind of sensor. This makes the presented 
solution effective even when one of the two sensors is not active, for 
example, in case a user does not want to be filmed by the camera, or the 
wearable sensor’s battery runs out. 

5. Conclusions 

The paper proposes a heterogeneous multi-sensory hardware-soft-
ware architecture for the automatic detection of stress conditions, suit-
able for an industrial setting. Such a platform can be useful for selecting 
the most suitable tasks for each worker, optimizing his or her 

Table 7 
Comparison of the obtained performance for each ML classifier considering two 
classes (stress/no stress).  

Model Accuracy Precision Recall F1 

DT  0.891  0.895  0.886  0.892 
RF  0.949  0.956  0.937  0.944 
KNN  0.871  0.872  0.847  0.872  

Table 8 
Comparison of the obtained performance for each ML classifier considering 
three classes (stress/stress level 1/stress level 2).  

Model Accuracy Precision Recall F1 

DT  0.845  0.843  0.825  0.844 
RF  0.910  0.915  0.885  0.909 
KNN  0.788  0.787  0.752  0.783  

Table 9 
Comparison of the obtained performance for each unsupervised classifier 
considering two classes (stress/no stress) without post-processing.  

Model Accuracy Precision Recall F1 

K-means  0.664  0.712  0.722  0.665 
GMM  0.763  0.790  0.736  0.739 
SOM  0.705  0.738  0.710  0.708  

Table 10 
Comparison of the obtained performance for each unsupervised classifier 
considering two classes (stress/no stress) with post-processing.  

Model Accuracy Precision Recall F1 

K-means  0.670  0.719  0.682  0.619 
GMM  0.774  0.801  0.748  0.837 
SOM  0.730  0.766  0.740  0.732  
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performance and well-being. Two different types of sensors were 
considered: ambient and wearable. This enables versatile and efficient 
monitoring that can adapt to different application contexts and ensure 
proper operation even when one of the two sensors is inactive or mal-
functioning. For the wearable part, an ad hoc system was designed and 
implemented to enable minimally invasive monitoring and reduce 
disturbance due to motion artifacts. This was accomplished by moni-
toring points on the body that present a good trade-off in terms of signal 
acquisition quality, stability with respect to the user’s movements and 
interference in the user’s work activities. For the ambient part, an easy- 
to-find and low-cost technology that was so easily accessible was chosen. 
Therefore, cardiac activity, electrodermal activity and RGB signals were 
considered for the assessment of psychophysical conditions. The soft-
ware framework was built using machine learning techniques capable of 
providing high accuracy, and both supervised and unsupervised ap-
proaches were studied. Performance was evaluated under controlled 
laboratory conditions, considering both one and two levels of stress. 
Regarding the supervised approach, the best result was obtained by 
using the Random Forest classifier with an average accuracy of 94.9%. 
While with the unsupervised technique, a maximum accuracy of 77.4% 
was achieved using the Gaussian Mixture Model classifier. State-of-the- 
art analysis showed that the realized multisensor platform has accuracy 
values comparable with works presented in the literature, which, how-
ever, use less functional wearable systems that are more invasive 
because they consist of multiple devices or perform monitoring on the 
user’s hand. For the final prototype of stress sensing, it was decided to 

use an unsupervised approach with a GMM-type classifier to reduce the 
problems associated with the training phase (complex and imprecise 
training phase), which is typical of supervised techniques. 

Future developments include optimization of the presented wearable 
device first, making it less invasive, more aesthetically pleasing, and 
easier to use (e.g., reducing the size of the sensor connection wires, 
making a suitable pocket to accommodate the data acquisition/trans-
mission unit, integrating the wires into the band, etc.). In addition, 
different types of electrodes for monitoring electrodermal activity will 
be investigated, e.g., metallic type to be integrated into the back band, to 
be more comfortable and quicker to wear. 

From a software point of view, to improve classification perfor-
mance, future research will be addressed on the study and imple-
mentation of further feature extraction and reduction techniques; 
furthermore, additional machine learning classifiers will be tested. 

The developed software-hardware architecture was tested in labo-
ratory conditions and the test protocol for inducing psychological stress 
may not be representative of the work tasks that the operators perform. 
These are limitations of the work, so future developments will involve 
performance evaluation in real work settings. The adoption of an un-
supervised approach makes the results obtained more easily transferable 
in the Industry 4.0 context and many other contexts of people’s daily 
lives. 
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K-means  68.36  72.83  69.07  67.66 
GMM  75.16  79.57  74.49  73.85 
SOM  74.33  77.45  75.17  65.35  

Table 13 
Comparison of the obtained performance for each unsupervised classifier with 
only ambient sensor considering two classes (stress/no stress) without post- 
processing.  

Model Accuracy Precision Recall F1 

K-means  66.14  71.05  67.51  66.19 
GMM  72.04  72.02  66.27  66.49 
SOM  69.97  73.33  70.65  70.23  

Table 14 
Comparison of the obtained performance for each unsupervised classifier with 
only ambient sensor considering two classes (stress/no stress) with post- 
processing.  

Model Accuracy Precision Recall F1 

K-means  66.30  71.38  67.59  66.17 
GMM  73.24  71.79  67.12  67.27 
SOM  71.85  75.82  73.03  71.95  
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