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Abstract  

In preterm infants, bradycardias associate to critical health conditions. Standard algorithm for 

bradycardia identification assumes baseline heart rate (BHR) equal to 150bpm and identifies 

bradycardias when heart rate (HR) decreases below 100bpm. Since preterm infants show 

BHR varying from 120bpm to 160bpm, a new adaptive algorithm for real-time bradycardia 

identification was presented. The adaptive algorithm continuously adjusts BHR by averaging 

HR over the preceding 10-minute window after eliminating out-of-range HR values, and 

identifies bradycardias when HR decreases below 67% of BHR. Both standard and adaptive 

algorithms were evaluated using long-term (20.3-70.3h) electrocardiographic recordings of 

ten preterm infants (Preterm Infant Cardio-respiratory Signals database by Physionet). 

Bradycardias were characterized in terms of rate (BR, h-1) and depth (BD, bpm). Being also 

indexes of infants’ health conditions, gestational age at birth (GA), birth weight (BW) and 

HR were used to evaluate performances of the algorithms. Association between BR and BD 

vs GA, BW and HR was evaluated by computation of the correlation coefficient (ρ). Overall, 

standard and adaptive algorithms identified 516 and 546 bradycardias, respectively; median 

BR and BD values were comparable (1.25h-1 and 76bpm vs 1.26h-1 and 70bpm, respectively). 

However, the adaptive algorithm provided higher BD for HR>150bpm, and vice versa. 

Significant (p value<0.05) correlations were found between BR and HR (ρ=0.69), BR and 

BW (ρ=-0.76), and BR and HR (ρ=0.76) only when using the adaptive algorithm. Thus, the 

adaptive algorithm is superior to the standard algorithm and represents a potentially clinically 

useful tool for real-time bradycardia assessment in preterm infants.  

  

Keywords: Automatic heart-rate monitoring, Preterm infants, Heart rate, Bradycardia, Birth 

weight, Neonatal monitoring.  



1. Introduction  

A preterm infant is a newborn delivered before the 37th week of gestation. Despite its 

incidence remains under 11% of worldwide births, prematurity is increasing and passed from 

9.6% in 2014 [1] to 10.2% in 2018 [2]; it increases mortality and morbidity rate [3,4]. 

Advanced innovations in preterm infants’ treatment have significantly decreased mortality 

but, unfortunately, developmental disabilities have not declined accordingly [3,5]. Severe 

conditions of prematurity are usually associated with critical outcomes (such as chronic 

pulmonary diseases and neuromotor/sensory impairments) and disabling conditions (such as 

cognitive deficit and behavioural problems) [4]. 

A typical condition in preterm infants is represented by the immaturity of the 

cardiorespiratory system [6] that may cause apnoeic episodes [7,8]. In preterm infants, 

apnoea provokes hypoxemia and blood desaturation; the latter triggers the reaction of the 

parasympathetic autonomic nervous system that decreases preterm infant heart rate (HR), 

thus provoking bradycardia events [9]. Thus, similarly to what happens in foetuses [10] 

(whose conceptional age is like that of preterm infants), in preterm infants there is a link 

between blood desaturation/oxygen deficiency and episodes of HR deceleration and 

bradycardia. In foetal monitoring, occurrence of HR decelerations and bradycardia represents 

an index of risk for foetal hypoxia [10–12]; thus, their correct identification is fundamental 

for foetal well-being assessment [11]. In foetuses HR decelerations and bradycardia are 

evaluated in an adaptive way, by comparison with baseline HR (BHR) [10,11,13], which may 

change over time. Differently, in preterm infants evaluation of bradycardia usually relies on a 

rigid algorithm according to which bradycardia is defined as a HR decrement under an a 

priori experimentally determined HR value, typically ranging from 80bpm [14] to 100bpm 

 
 Abbreviations: BD: bradycardia depth; BHR: baseline heart rate; BR: bradycardia rate; BW: 

birth weight; GA: gestational age at birth; HR: heart rate; NB: number of bradycardias; tend: 

end time of bradycardia; ton: onset time of bradycardia. 



[15–17], lasting at least 1s. This algorithm assumes BHR to be 150bpm [18,19] in all preterm 

infants, assumption that represents a limit since BHR is subject to physiological intra and 

inter subject variabilities and can vary from 120bpm to 160bpm [20]. As a consequence, a 

HR decrement in healthy preterm infants with BHR lower than 150bpm may be wrongly 

identified as bradycardia (false positive detection); differently, a HR decrement in unhealthy 

or stressed preterm infants with BHR higher than 150bpm may be not identified as 

bradycardia (false negative detection). Thus, aim of the present work was to propose a new 

algorithm for bradycardia assessment in preterm infants based on an adaptive estimation of 

the BHR.  

 

2. Materials and methods 

2.1.  Clinical data 

This study used the “Preterm Infant Cardio-respiratory Signals” database by Physionet 

[15,21]. All Physionet data were fully de-identified and randomized, and can be used with no 

further independent ethics committee approval. The database consists of clinical data from 

ten preterm infants (identified as PTI1 to PTI10) admitted to the Neonatal Intensive Care Unit 

of the University of Massachusetts Memorial Healthcare. All preterm infants were 

spontaneously breathing and none of them was suffering from congenital or perinatal 

infection of the central nervous system, intraventricular haemorrhage of grade II or higher, or 

hypoxic-ischemic encephalopathy. Individual gestational age at birth (GA; in day) and birth 

weight (BW; in kg) of each preterm infant were annotated. BW was used to further classify 

preterm infants as: low BW, if birth weight was between 1.5kg and 2.5kg; very low BW, if 

birth weight was between 1.0kg and 1.5kg; and extremely low BW, if birth weight was less 

than 1.0kg [16]. Information about sex and neonatal clinical outcomes (i.e. blood pH, base 

excess, Apgar after 5 minutes from birth or similar) was not made available.  



All preterm infants underwent long-term electrocardiographic monitoring. Acquired data 

were annotated [15] in terms of R-peak time occurrences, with ti being the R-peak time 

occurrence of the ith heartbeat in the electrocardiogram (i=1,2…N, where N is the total 

number of heartbeats in the electrocardiogram). Beat annotations were then used to obtain the 

RR-interval sequence (RRi=ti-ti-1; in s) and, from it, the heart-rate sequence (HRi=60/RRi, in 

bpm). Eventually, BHR relating to the ith heartbeat (BHRi; in bpm) was computed from HRi as 

described below. 

 

2.2.  Automatic bradycardia identification and characterization 

The standard algorithm and the here proposed adaptive algorithm were applied to HR 

sequences of the preterm infants for automatic bradycardias identification. Specifically, a 

bradycardia was identified by determination of its onset time and end time (ton and tend, 

respectively; in s) and characterized in terms of its depth (BD; in bpm). BD was defined as 

the maximum HR decrement from BHR between ton and tend. Bradycardias shorter than 1 s 

(i.e. bradycardias for which tend-ton<1s) were rejected. Total number of bradycardias (NB) and 

bradycardia rate (BR, in h-1; i.e. number of bradycardias per unit of time) characterizing each 

HR sequence were then determined.  

 

2.2.1 Standard algorithm 

According to the standard algorithm for automatic bradycardia identification 

[15,16,18,19,22] BHRi is equal to 150bpm, independently from HRi. Based on this 

assumption, ti identifies a bradycardia onset (i.e. ton=ti) if HRi-1≥100bpm and HRi<100bpm, 

respectively, where 100bpm is 67% of BHRi. Instead, ti identifies a bradycardia end (i.e. 

tend=ti) if HRi-1<100bpm and HRi≥ 100bpm, respectively.   

 



2.2.2 Adaptive algorithm 

According to the here proposed adaptive algorithm for automatic bradycardia 

identification, BHR is characterized by both inter-subject and intra-subject variabilities; thus, 

its value has to be adapted to the subject and, within a subject, to the current HR. 

Specifically, BHRi is computed over a 10-minute long window ending in ti as the mean HR 

within an acceptability range identified as mean HR over the window ±10bpm. Based on this 

assumption, ti identifies a bradycardia onset (i.e. ton=ti) if HRi-1≥0.67∙BHRi-1 and 

HRi<0.67∙BHRi. Instead, ti identifies a bradycardia end (i.e. tend=ti) if HRi-1<0.67∙BHRi-1 and 

HRi≥ 0.67∙BHRi. 

 

2.3.  Clinical evaluation of the algorithms for automatic bradycardia identification 

Reliability of automatic bradycardia identification by the standard and adaptive algorithms 

was evaluated in relation to GA and BW, which are indexes of infant development [16,23], 

and in relation to mean HR, which is an index of the cardiac-system development [24]. 

Eventually, results obtained using the two algorithms were compared to determine which one 

performed better. 

 

2.4.  Statistics 

Given the long length (over 20h) of the electrocardiographic recordings (and thus of the 

HR sequences), distributions of individual HR and BD over time were described in terms of 

mean±standard deviation. Distributions of BD of a preterm infant obtained using the two 

algorithms were compared using the t-test for equal means. Given the small number of 

preterm infants (10 infants) involved in the study, distributions of GA, BW, HR and BD over 

the preterm infant population were described in terms of 50th[25th;75th] percentiles. 

Distributions of GA, BW, HR and BD obtained using the two algorithms were compared 



using the Wilcoxon rank sum test for equal medians. Association between BR and BD vs 

GA, BW and HR was quantified by computation of the Pearson’s correlation coefficient (). 

Statistical significance (p value) was set at 0.05 in all cases. 

 

3. Results 

Table 1 reports clinical features (i.e. GA, BW, BW class and HR) for each preterm infant 

and for the entire population. Overall, preterm infant population counted 5 low BW infants 

(PTI2, PTI3, PTI5, PTI8 and PTI10), 4 very low BW infants (PTI1, PTI6, PTI7 and PTI9), 

and 1 extremely low BW infant (PTI4). Moreover, 4 preterm infants (PTI1, PTI4, PTI7 and 

PTI10) showed mean HR significantly higher than 150bpm (i.e. higher than BHR assumed by 

the standard algorithm), 5 preterm infants (PTI2, PTI3, PTI5, PTI6 and PTI8) showed mean 

HR significantly lower than 150bpm, and 1 preterm infant (PTI9) showed mean HR not 

significantly different from 150bpm. Median HR over population was 147bpm, not 

significantly different from 150bpm.  

Fig. 1 shows HR sequences with relating BHR assumed by the standard algorithm and 

estimated by the adaptive algorithm of all preterm infants; BHR estimated by the adaptive 

algorithm is much more accurate than BHR assumed by the standard algorithm, even in the 

case (PTI9) for which HR has a mean value of 150bpm (Table 1) but also presents some 

physiological variability with time. Overall, the standard algorithm and the adaptive 

algorithm identified 516 and 546 bradycardias, respectively; as reported in Table 1, 411 were 

the bradycardias identified by both algorithms, 105 those identified by the standard algorithm 

only, and 135 those identified by the adaptive algorithm only. Table 1 also reports individual 

as well as population bradycardia characterization in terms of NB, BR and BD obtained using 

both algorithms. Difference between NB estimated by adaptive and standard algorithms was 

highly correlated to HR (ρ=0.85, p<0.0018) and tended to increase with seriousness of BW 



class (Fig. 2); on average, the adaptive algorithm tended to provide higher NB than the 

standard algorithm for preterm infants characterized by mean HR higher than 150bpm, and 

vice versa; median value of such difference over the preterm infant population was +8 not 

significantly different from zero. Additionally, the adaptive algorithm provided higher BD 

than the standard algorithm for preterm infants characterized by mean HR higher than 

150bpm, and vice versa; median values of BD estimated over the preterm infant population 

by the two algorithms were comparable. 

Table 2 reports correlation values between BR and BD vs GA, BW and mean HR. Values 

of the correlation coefficient between bradycardia characteristics and GA were always 

negative, quite small in module (0.26≤|ρ|≤0.54) and never statistically significant, 

independently from the used algorithm. Values of the correlation coefficient between 

bradycardia characteristics and BW were always negative, with higher module when using 

the adaptive algorithm than when using the standard algorithm (0.47≤|ρ|≤0.75 and 

0.32≤|ρ|≤0.45, respectively), and statistically significant (p<0.03) only when indicating the 

association between BW and BD by the adaptive algorithm. Eventually, values of the 

correlation coefficient between bradycardia characteristics and mean HR were always 

positive, with higher module when using the adaptive algorithm than when using the standard 

algorithm (0.69≤|ρ|≤0.76 and 0.09≤|ρ|≤0.27, respectively), and statistically significant 

(p<0.01) only when bradycardia characteristics were provided by the adaptive algorithm. 

Scatter plots of BR and BD in relation to GA, BW and mean HR are reported in Fig. 3; 

information relating to BW class is also represented. As general trend, seriousness of BW 

class increases with increasing BR and BD.  

 

 

 



4. Discussion 

This methodological work presented an adaptive algorithm for bradycardia assessment in 

preterm infants and tested it on the “Preterm Infant Cardio-respiratory Signals” database 

[15,21]. The algorithm adjusts baseline heart rate in correspondence of each heartbeat by 

averaging heart rate over the preceding 10-minute window, after eliminating very high or 

very low heart-rate values likely due to local arrhythmic events or noise. The window length 

was arbitrarily set at 10 minutes for clinical reasons: 10 minutes is the window length used in 

the clinical practise for foetal monitoring [11] and heart rate and heart-rate variability of 

fetuses and premature infants are comparable. In the absence of gold standards, it is 

impossible to mathematically demonstrate that this length is optimal. However, experimental 

preliminary evaluations indicated that use a 10-minute window represents a trade-off between 

the need of using a window sufficiently short to allow a correct tracking of significant heart-

rate changes, and the need of using a window sufficiently long to allow neglection of local 

and temporary heart-rate changes around baseline level. Additionally, for window size 

ranging from 5 minutes to 20 minutes, number of identified bradycardias ranged from 523 to 

567 (corresponding to an error, with respect to the 546 bradycardias identified when using the 

10-minute window, between ±4%), and correlations between bradycardia rate and mean heart 

rate, bradycardia depth and body weight, and bradycardia depth and mean heart rate were 

statically significant (ranging from 0.61 to 0.77, from -0.75 to -0.73  and from 0.72 to 0.76, 

respectively). Small, statistically not relevant errors and confirmed significant correlations 

indicate that the adaptive algorithm is robust to window size variations. Eventually, in order 

to make the adaptive algorithm suitable for real-time monitoring of preterm infants, the 

preceding window was used for computation of baseline heart rate relating to a heartbeat; this 

property is fundamental to promptly send out bradycardia alerts during its clinical 

implementation. Once baseline heart rate has been determined, bradycardia is identified when 



a heart-rate decrement of at least 67% of baseline value occurs. This is also an arbitrary 

setting that was selected because in analogy with the standard algorithm [15,16].   

Despite its size being limited to 10 preterm infants, the population used in the present 

study included cases with mean heart rate over (40%), below (50%) and equal (10%) to 

150bpm (Table 1), which are all the possible cases occurring in real scenarios. Additionally, 

lengths of the electrocardiographic recordings were quite long (from 20.3h to 70.3h; Table 1) 

so that over 500 bradycardias were automatically identified. This number is comparable to 

what reported in other studies [15,16,19,30] and sufficient for a reliable set up and a 

preliminary clinical evaluation of the adaptive algorithm (502 was the minimum number of 

bradycardias with a power of the test equal to 80%). Differences in the number of identified 

bradycardias and in their depth estimation by the standard and adaptive algorithms are due to 

more accurate estimations of baseline heart rate provided by the adaptive algorithm (Fig. 2). 

As graphically represented in Fig. 4, if baseline heart rate is below 150bpm, bradycardia may 

result identified by the standard algorithm only (Fig. 4A) or by both algorithms (Fig. 4B). In 

the former case, the standard algorithm may provide a false positive identification when 

baseline heart rate gets very low (thus close to 100bpm) since no significant heart-rate 

decrement occurs; in the latter case, bradycardia depth (i.e. difference between baseline and 

minimum heart rate) provided by the adaptive algorithm is smaller than that provided by the 

standard algorithm. If baseline heart rate is around 150bpm, bradycardia is identified by both 

algorithms and similarly characterized in terms of depth (Fig. 4C). Eventually, if baseline 

heart rate is over 150bpm, bradycardia may result identified by both algorithms (Fig. 4D) or 

by the adaptive algorithm only (Fig. 4E). In the former case, bradycardia depth provided by 

the adaptive algorithm is greater than that provided by the standard algorithm; in the latter 

case, the adaptive algorithm unlikely provides a false positive identification since a 

significant heart-rate decrement of at least 67% of baseline heart rate always occurs, while 



the standard algorithm likely provides a false negative identification. Since in our population 

number of preterm infants with mean heart rate greater and lower than 150bpm is similar, 

such differences in the performance of the two algorithms cannot be appreciated by analysing 

population distributions of bradycardia depth (median bradycardia depths over population 

provided by the adaptive and standard algorithms are comparable; Table 1) but, rather, by 

comparing intrasubject distributions of bradycardia depth obtained using the two algorithms 

(statistically different mean values of bradycardia depth were observed in 6 out of 10 preterm 

infants; Table 1).   

No commonly used neonatal clinical outcomes such as blood pH, base excess and Apgar 

after 5 minutes from birth, were available; thus, gestational age at birth, birth weight and 

heart rate were used to evaluate performances of standard and adaptive algorithms in 

bradycardia identification. If birth weight and gestational age at birth provide information 

about the clinical status of the infant at birth, heart rate provides information about the 

clinical status of preterm infant at the time of monitoring. In general, the smaller the 

gestational age at birth and the birth weight, the higher the heart rate, and the more critical the 

newborn’s conditions [16,23,24]. Being our study population constituted by preterm infants 

only, gestational age at birth showed limited variability (from 206day to 240day, 

corresponding to 74% to 86% of ideal value; Table 1). Birth weight was more variable within 

studied population (from 0.80kg to 2.10kg; Table 1), which in fact included low birth weight 

infants (50%), very low birth infants (40%) and extremely low birth weight infants (10%; 

Table 1). Eventually, as previously discussed, heart rate was also significantly varying within 

the studied population (from 131bpm to 167bpm; Table 1). Since bradycardias occurrence 

also reflects newborn’s health conditions (the lower the bradycardia rate and depth, the better 

the newborn’s conditions) [14,26], bradycardia rate and depth were expected to inversely 

correlate with gestational age at birth and birth weight and to directly correlate with heart 



rate. Results confirmed such expectations (Table 2). Still, associations were usually stronger 

when using the adaptive algorithm than when using the standard algorithm; additionally, 

statistical significance was obtained only computing bradycardia rate and depth with the 

adaptive algorithm. Specifically, when using the adaptive algorithm, association of 

bradycardia rate and depth with gestational age was weak, possibly because of the limited 

range of variability of this clinical feature within the preterm infant population; additionally, 

associations of bradycardia depth with birth weight and mean heart rate were stronger and 

more statistically significant than associations of bradycardia rate with birth weight and mean 

heart rate, respectively, suggesting that, in preterm infants, bradycardia depth indicates a 

critical health condition better than bradycardia rate. 

Adaptive algorithms for neonatal bradycardia assessment have been previously proposed 

in the literature [25–27]; they are machine learning approaches showing high performance 

but low interpretability, feature that may limit their clinical applicability (interpretability is 

particular important in uncertain critical cases in which classification is supposed to drive an 

action). Indeed, bradycardia identification is performed independently from baseline heart 

rate and algorithm reasoning underlying classification remains unknown. Differently, the 

presented adaptive algorithm is data independent and identifies bradycardias based on an 

optimazed baseline computation, maximizing interpretability. 

 

5. Conclusions 

This methodological study presented a reliable adaptive algorithm for real-time 

bradycardia assessment that could have a practical application in neonatal intensive care 

units. When clinically evaluated, the proposed adaptive algorithm proved to perform better 

than the commonly used standard algorithm thanks to an adaptive estimation of baseline heart 



rate. Future clinical studies are needed to confirm its clinical usefulness in automatic heart-

rate monitoring of premature infants.  
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Figure 1. Heart rate (HR) sequences (in grey) with relating baseline heart rate as assumed by 

the standard algorithm (in blue) and as estimated by the adaptive algorithm (in cyan) of all 

preterm infants (PTI1 to PTI10). 



 

Figure 2. Scatter plot, regression line and correlation coefficient (ρ) of difference between 

number of bradycardias (NB difference) estimated by the adaptive and the standard 

algorithms vs mean heart rate (mean HR). Preterm infants are represented in green, yellow or 

red if classified as low birth weight, very low birth weight or extremely low birth weight, 

respectively.  



 

Figure 3. Scatter plots, regression lines and correlation coefficients (ρ) of bradycardia rate 

(BR) and depth (BD), as provided by the standard algorithm and the adaptive algorithm, in 

relation to gestational age at birth (GA), birth weight (BW) and mean heart rate (HR). 

Preterm infants are represented in green, yellow or red if classified as low birth weight, very 

low birth weight or extremely low birth weight, respectively. 



 

Figure 4. Effect of varying baseline heart rate (BHR) on bradycardia identification by the 

standard and adaptive algorithms. Solid and dashed lines indicate BHR and 67%∙BHR, 

respectively, in blue for the standard algorithm and in cyan for the adaptive algorithm. 



 

 

Preterm Infants 

Population 

PTI1 PTI2 PTI3 PTI4 PTI5 PTI6 PTI7 PTI8 PTI9 PTI10 

GA 

(day) 
206 215 215 211 225 211 211 227 214 240 

214 

[211;225] 

BW 

(kg) 
1.20 1.76 1.71 0.80 1.67 1.14 1.11 2.10 1.23 1.90 

1.45 

[1.14;1.76] 

BW class 
Very 

low 
Low Low 

Extremely 

low 
Low 

Very 

low 

Very 

low 
Low 

Very 

low 
Low  n.a 

recording 

length (h) 
45.6 43.8 43.7 46.8 48.8 48.6 20.3 24.6 70.3 45.10 

45.3 

[43.7;48.6] 

HR 

(bpm) 
155§ 

±10 

131§ 

±14 

131§ 

±13 

167§ 

±9 

144§ 

±15 

137§ 

±8 

162§ 

±13 

141§ 

±13 

150 

±12 
156§ 

±16 

147 

[137;156] 

S
ta

n
d

ar
d
 

al
g

o
ri

th
m

 NB 60 58 66 57 63 39 32 19 85 37 
57 

[37;63] 

BR 

(h-1) 
1.32 1.32 1.51 1.22 1.29 0.80 1.58 0.77 1.21 0.82 

1.25 

[0.82;1.32] 

BD 

(bpm) 

65 

±9 

74 

±14 

74 

±14 

91 

±14 

76 

±11 

76 

±17 

79 

±13 

79 

±16 

92 

±22 

67 

±8 

76 

[74;79] 

A
d

ap
ti

v
e 

al
g

o
ri

th
m

 NB 79 52 43 75 72 23 40 17 94 51 
51 

[40;75] 

BR 

(h-1) 
1.73 1.19 0.98 1.60 1.48 0.47 1.97 0.69 1.34 1.13 

1.26 

[0.98;1.60] 

BD 

(bpm) 

71* 

±9 

64* 

±9 

66* 

±12 

106* 

±18 

71* 

±12 

70 

±15 

88* 

±14 

69 

±15 

92 

±21 

69 

±10 

70 

[69;88] 

NB  

difference 
+19 -6 -23 +18 +9 -16 +8 -2 +9 +14 

+8 

[-6;+14] 

NB-both 

algorithms 
58 35 33 57 51 21 32 15 76 33 411 

NB-standard 

algorithm 
2 23 33 0 12 18 0 4 9 4 105 

NB-adaptive 

algorithm 
21 17 10 18 21 2 8 2 18 18 135 

 

Table 1: Individual and population clinical features (i.e. gestational age at birth, GA; body 

weight, BW; BW class; and heart rate, HR) and bradycardia characteristics (i.e. number of 

bradycardias, NB; bradycardia rate, BR; and bradycardia depth, BD) as identified by the 

standard vs adaptive algorithms.  

n.a.: not available;  
§: p value<0.05 when comparing HR vs 150bpm.  

*: p value<0.05 when comparing bradycardia characteristics according to standard algorithm 

and adaptive algorithm. 



 

  GA BW mean HR 

Standard  

algorithm 

BR -0.54 -0.32 0.09 

BD -0.26 -0.45 0.27 

Adaptive 

algorithm 

BR -0.31 -0.47 0.69* 

BD -0.35 -0.75* 0.76* 

 

Table 2: Correlation coefficient between clinical features (i.e. gestational age at birth, GA; 

body weight, BW; and mean heart rate, HR) and bradycardia characteristics (i.e. bradycardia 

rate, BR; and bradycardia depth, BD) as provided by the standard and adaptive algorithms.  

*: p value<0.05 


