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Abstract

Aims Arrhythmogenic right ventricular cardiomyopathy (ARVC) causes ventricular arrhythmias (VAs) and sudden cardiac
death (SCD). In 2019, a risk prediction model that estimates the 5-year risk of incident VAs in ARVC was developed
(ARVCrisk.com). This study aimed to externally validate this prediction model in a large international multicentre cohort
and to compare its performance with the risk factor approach recommended for implantable cardioverter-defibrillator
(ICD) use by published guidelines and expert consensus.

Methods
and results

In a retrospective cohort of 429 individuals from 29 centres in North America and Europe, 103 (24%) experienced sus-
tained VA during a median follow-up of 5.02 (2.05–7.90) years following diagnosis of ARVC. External validation yielded
good discrimination [C-index of 0.70 (95% confidence interval-CI 0.65–0.75)] and calibration slope of 1.01 (95%CI 0.99–
1.03). Compared with the three published consensus-based decision algorithms for ICD use in ARVC (Heart Rhythm
Society consensus on arrhythmogenic cardiomyopathy, International Task Force consensus statement on the treatment
of ARVC, and American Heart Association guidelines for VA and SCD), the risk calculator performed better with a su-
perior net clinical benefit below risk threshold of 35%.

Conclusion Using a large independent cohort of patients, this study shows that the ARVC risk model provides good prognostic in-
formation and outperforms other published decision algorithms for ICD use. These findings support the use of the mod-
el to facilitate shared decision making regarding ICD implantation in the primary prevention of SCD in ARVC.

Structured Graphical Abstract

Validation of the arrhythmogenic right ventricular cardiomyopathy (ARVC) risk calculator in a distinct cohort. AHA, American Heart Association;
ECG, electrocardiogram; HRS, Heart Rhythm Society; ICD, implantable cardioverter-defibrillator; ITFC, International Task Force Criteria; NSVT,
non-sustained ventricular tachycardia; PVC, premature ventricular complex; VA, ventricular arrhythmia.
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Introduction
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a sig-
nificant cause of sustained ventricular arrhythmia (VA) and sudden
cardiac death (SCD), especially in young individuals and athletes.
Preventing this catastrophic outcome through the prophylactic use
of implantable cardioverter-defibrillators (ICDs) is a cornerstone
of the disease management. Given the significant drawbacks asso-
ciated with ICDs in this young and active population, appropriate pa-
tient selection is essential.
Over the past 25 years, numerous studies have identified predic-

tors of sustained VA and SCD in ARVC and consensus documents
have integrated these in decision algorithms for ICD use.1–3

Building on this knowledge, a risk prediction model for sustained
VA and SCD in ARVC was recently developed in a multinational co-
hort (n= 528, designed as the derivation cohort) mostly including
high volume referral centres for ARVC.4 This prediction model pro-
vides individualized prediction of the risk of VA in patients with
ARVC without a prior history of sustained VA. Since its online pub-
lication, the risk calculator’s official site (http://www.ARVCrisk.com)
has been used�20 000 times illustrating its uptake in clinical practice.
The model has been internally and externally validated in small

studies.4–9 However, adequately powered external validation is still
lacking,10 yet is paramount to confirm the reproducibility, generaliz-
ability, and need to update the model in an independent population.
The aims of the present study are thus (i) to conduct external val-

idation of the published risk calculator in a distinct, adequately pow-
ered, and geographically diverse cohort including patients from six
countries across North America and Europe and (ii) to compare
the performance of the risk prediction model with other published
guidelines and expert consensus recommendations for ICD use.
During the current validation study, our group detected an inaccur-
acy in the formula of the original ARVC risk calculator published in
2019. It was corrected both on the website (ARVCrisk.com) and
in the published manuscript.11 We base the present study on the
corrected risk calculator.

Methods

Study design
We conducted an observational, retrospective, longitudinal cohort study
in accordance with the Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or Diagnosis (TRIPOD)
statement.12

Study population
The study population was derived from 29 centres (see Supplementary
material online, Table S1) in six European and North American countries.
This current cohort will be designated as the ‘validation cohort’while the
cohort leading to the published model will be designated as the ‘deriv-
ation cohort’. New patients from two centres participating in the original

study (Montreal Heart Institute and Johns Hopkins Hospital) were in-
cluded (52 patients; 12% of the cohort). No patients in the current co-
hort were included in the original ARVC derivation cohort. From each
site, consistent with the derivation cohort, consecutive patients who
(i) were diagnosed with definite ARVC as per 2010 Task Force
Criteria (TFC),13 (ii) were alive at presentation, and (iii) had not experi-
enced spontaneous sustained VA or sudden cardiac arrest (SCA) at diag-
nosis were included. The study conforms to the Helsinki declaration and
was approved by local ethics and/or institutional review boards. Tomain-
tain patient confidentiality, data, and study materials will not be made
available to other researchers for purposes of replicating the results. A
limited dataset may be made available upon request.

Data collection
Data were collected independently by each of the participating centres
using uniform definitions. A complete list of variables and their definitions
can be found in Supplementary material online, Table S2. Genetic var-
iants were reviewed according to the American College of Medical
Genetics and Genomics guidelines by cardiologists specialized in
cardiovascular genetics (R.T. and J.C.T.).14

Missing data
Patients with .50% of predictors missing were excluded from the ana-
lysis. Missingness was assumed to be at random and imputed using mul-
tiple imputation by chained equations.15 Missing quantitative values for
right ventricular ejection fraction (RVEF) and left ventricular ejection
fraction (LVEF) were imputed manually when only qualitative assessment
was available as done previously4 and detailed in Supplementary material
online, Table S2. The multiple imputation model included all pre-specified
predictors, proband status and genotype together with the outcome,
and cumulative baseline hazard estimation.16 A total of 25 imputed data-
sets were generated, and the final inference estimations were combined
using Rubin’s rules.17

Study outcomes
In accordance with the published ARVC risk prediction model which this
study aims to validate, the primary outcome was the first sustained VA
following the definite diagnosis as per the TFC. Sustained VA was defined
as a composite of the occurrence of SCD, SCA, spontaneous sustained
ventricular tachycardia (VT; lasting≥30 s at≥100 b.p.m. or with haemo-
dynamic compromise requiring cardioversion), ventricular fibrillation/
flutter, or appropriate ICD intervention. Heart transplantation, cardio-
vascular mortality, and all-cause mortality were also collected.

Predictor variables and risk calculator
The same candidate predictors as those selected in the published model
based on prior literature were considered.18–20 These include sex, age,
recent cardiac syncope (here defined as transient loss of consciousness
and postural tone with spontaneous recovery with a likely arrhythmic
mechanism, within a year of diagnosis), non-sustained VT (NSVT: defined
as hemodynamically stable VT at≥100 b.p.m., for≥3 beats,30 s), num-
ber of premature ventricular complexes (PVCs) on 24-h Holter moni-
toring, the extent of T-wave inversion (TWI) on anterior and inferior
leads, and RVEF. Each predictor variable was determined at the time of
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diagnosis, defined as 1 year before to 1 year after the date of diagnosis as
per 2010 TFC and prior to the occurrence of the primary outcome.

The 5-year risk of sustained VA for an individual patient as per the pub-
lished model is calculated using the following equation4:

P(VA at 5 years) = 1− 0.8396exp(LP)

where the linear predictor (LP) was calculated according to the equation:

LP = 0.488×male sex− 0.022× age+ 0.657

× history of recent cardiac syncope+ 0.811× history of NSVT

+ 0.170× ln(24-h PVC count)+ 0.113

× sum of anterior and inferior leads with TWI− 0.025

× RVEF.

Of note, the baseline hazard for 5-year prediction (0.8396) has been cor-
rected since the initial publication in 2019.11

Statistical analysis
Analyses were performed with RStudio version 1.3.1093 (Boston, MA,
USA). Continuous variables were expressed as mean+ standard devi-
ation or median [interquartile range (IQR)] and compared using either
the independent sample t-test or the Mann–Whitney U test.
Categorical variables were presented as frequencies (%) and compared
using the Fisher’s exact test. Follow-up duration was calculated as the
time interval between the time of definite diagnosis according to TFC
and the endpoint or censoring. Censoring was defined as death from
any other cause, heart transplantation or the most recent follow-up visit
at which the endpoint could be ascertained. Event-free survival probabil-
ity was estimated using the Kaplan–Meier method and Cox proportional
hazard regression analysis.

Model validation
The approach to external validation follows the method suggested by
Royston and Altman for Cox prognostic models.21 First, the overall dis-
criminative performance of the model was measured using Harrell’s
C-statistic, and the model fit by calculating the calibration slope, the re-
gression of the LP (i.e. the product of the variable part of the Cox model)
in the current cohort (validation cohort). Graphical evaluation of calibra-
tion was performed by plotting the predicted risk against the observed
risk of sustained VA, using grouped Kaplan–Meier estimates and the con-
tinuous hazard regression function. The choice of the number of groups
presented was based on the balance between providing sufficient spread
in group risk, while maintaining adequate group sizes for precision. For
the complete cohort, five groups are presented while for subgroup ana-
lyses, four groups are presented.

Subsequently, a more in-depth analysis of the model fit was performed
by a Cox’s model including the same predictor variables in combination
with the LP of the original model (as an offset variable) to evaluate po-
tential differences in the regression coefficients of each individual predict-
or. The result indicating the validity of the model would be that if all
coefficients ß* equalled 0, reflecting that all the variability in the validation
sample is accounted for by the published model. In addition, the baseline
survival function of the validation dataset was compared to that of the
derivation dataset to see if the overall predictions need to be globally
shifted upward or downward. Lastly, a new prediction model using the
same predictor variables was fitted to the validation dataset and com-
pared to the fit of the original model using the Akaike information criter-
ion (AIC), with a difference of .2 defined as statistically significant. This

allows testing whether a model specifically fitted to the validation dataset
performs better than the original model in the validation dataset.

Subgroup analyses
We visually explored the performance of the model specifically in differ-
ent populations of interest by comparing calibration plots for these sub-
groups. We stratified the cohort by geographic origin (Europe vs. North
America), by proband status and by plakophilin 2 carrier status (PKP2;
causal variant carrier vs. non-carrier). We did not report quantitative
markers of performance such as the C-statistic as this study was not
powered adequately for these subgroups.

To assess the impact of carrying an ICD on prediction accuracy, we
also presented calibration plots based on ICD carrier status at baseline
defined as ICD implantation prior to a year following diagnosis and first
VA outcome, whichever came first.

Clinical utility
To assess the relative clinical utility of the risk prediction model, it was
compared to three other published expert consensus algorithms for
ICD implantation in ARVC: the 2015 International Task Force
Consensus for the treatment of ARVC (ITFC),18 the 2017 American
Heart Association (AHA) guidelines for the management of VA and pre-
vention of SCD,2 and the 2019 Heart Rhythm Society (HRS) consensus
on arrhythmogenic cardiomyopathy (excluding programmed ventricular
stimulation)22 through decision curve analysis. In a decision curve ana-
lysis,23 the clinical benefit is assessed by the ‘net benefit’ representing
the balance between useful (i.e. in patients with events) vs. useless (i.e.
in patients without events) ICD placement at 5 years weighted according
to the threshold used for ICD implantation. More specifically, the deci-
sion curve uses the following formula:

True positives/total sample size

− false positives/total sample size× (pt/1− pt)

where ‘pt’ represents threshold probability, in the current case,
threshold for ICD implantation. Therefore, the higher the threshold
used, the greater the harm of useless ICD use (i.e. false positive) is va-
lued. Higher values indicate greater benefit while a value of 0 indicates
no benefit.

To present the consequence of setting different thresholds for ICD
implantation, we evaluated and plotted the proportion of patients who
would receive ICDs and the proportion of treated and missed events
at each threshold. We compared these with the recommendations for
ICD use by the three published consensus mentioned above [ITFC(1),
AHA (2), HRS(3)].

Results
The study population included 429 definite ARVC patients without a
history of sustained VA or SCA at the time of diagnosis aged 43.1+
15.8 years and slightly more than half (n= 235, 54.8%) were male.
Probands accounted for two-thirds of the cohort (n= 278,
64.8%). Half (n= 198, 46.6%) of patients had a pathogenic or likely
pathogenic variant in a gene with definite or moderate association
with ARVC,24 which represents 70% (198 patients) of the 282 pa-
tients for whom the complete genetic information was available.
PKP2 was the most common genotype, carried by 111 patients
(26%) followed by DSP in 38 patients (9%). Compared to PKP2 pa-
tients, DSP patients were more likely to have a decrease in LVEF,
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50% (44.7% vs. 6.4%) but less likely to have VA events at follow-up
(13.2% vs. 24.5%). Baseline characteristics according to genotype
are presented in Supplementary material online, Table S3. Other clin-
ical and demographic characteristics are summarized in Table 1.
Baseline characteristics by country of origin are presented in

Supplementary material online, Table S4, and a comparison of the
derivation and validation cohort populations is presented in
Supplementary material online, Table S5.

Overall, 299 (70.0%) patients had complete data for the pre-
specified predictors. Six of the eight predictors had missing data:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Baseline clinical characteristics

Overall (n=429) Non-sustained VA (n=326) Sustained VA (n=103) P-value

Demographics and genetics

Age at diagnosis (years) 43.1+ 15.8 44.1+ 15.7 40.1+ 16.0 0.025

Male sex 235 (54.8) 159 (48.8) 76 (73.8) ,0.001

Proband status 278 (64.8) 197 (60.4) 81 (78.6) 0.001

(Likely) pathogenic variants (n= 282) 198 (46.2) 150 (46.0) 48 (46.6) 0.480

Genotype 0.302

PKP2 111 (25.6) 84 (25.8) 27 (26.2)

DSP 38 (8.9) 33 (10.1) 5 (4.9)

DSG2 27 (6.3) 22 (6.7) 5 (4.9)

DSC2 3 (0.7) 1 (0.3) 2 (1.9)

JUP 0 (0.0) 0 (0.0) 0 (0.0)

TMEM43 10 (2.3) 4 (1.2) 6 (5.8)

PLN 3 (0.7) 3 (0.9) 0 (0.0)

Multiple mutations 6 (1.4) 3 (0.9) 3 (2.9)

Clinical history

Recent cardiac syncope (n= 424) 37 (8.6) 16 (4.9) 21 (20.4) ,0.001

ECG/continuous ECG monitoring

TWI in ≥3 precordial leads (n= 409) 250 (58.3) 187 (57.4) 63 (61.2) 0.295

TWI in ≥2 inferior leads (n= 403) 109 (25.4) 81 (24.8) 28 (27.2) 0.589

PVC count (n= 324) 1434 (439–3601) 1354 (400–3719) 1676 (602–3492) 0.160

NSVT (n= 359) 148 (34.5) 105 (32.2) 43 (41.7) 0.001

Imaging

RVEF (%) (n= 410) 45 (36–53) 47 (38–53) 40 (35–48.5) ,0.001

LVEF (%) (n= 404) 57 (51–60) 57 (51–61) 57 (50–60) 0.049

Treatment at baseline

ICD 175 (40.8) 113 (34.7) 62 (60.2) ,0.001

Anti-arrhythmic drugs (n=408) 0.041

Amiodarone 23 (6.0) 16 (4.9) 10 (9.8)

Sotalol 79 (18.4) 55 (16.9) 24 (23.3)

Propafenone/flecainide 15 (3.5) 9 (2.8) 6 (5.8)

β-blockers (n= 407) 206 (48.0) 156 (47.9) 50 (48.5) 0.50

Follow-up 5.02 (2.05–7.90) 4.48 (1.86–7.32) 6.12 (2.60–10.08) 0.002

Variables are expressed as frequency (%), mean+ standard deviation, or median (interquartile range). Total number of patients with available data for a given variable are mentioned
in parenthesis for variables with missing data.
DSC2, desmocollin-2; DSG2, desmoglein-2; DSP, desmoplakin; ICD, implantable cardioverter-defibrillator; LVEF, left ventricular ejection fraction; NSVT, non-sustained ventricular
tachycardia; JUP, junction plakoglobin; PKP2, plakophilin-2; PLN, phospholamban; PVC, premature ventricular complex; RVEF, right ventricular ejection fraction; TMEM43,
transmembrane protein 43; TWI, T-wave inversion; VA, ventricular arrhythmia.
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recent cardiac syncope (n= 5, 1.17%), NSVT (70= 16.32%), PVC
count (n= 105, 24.48%), extent of leads with TWI (n= 26, 6.06%)
and RVEF (n= 19, 4.43%). From an initial cohort of 433 patients,
four patients were excluded as.50% of their predictors were miss-
ing (four predictors or more).

Outcomes
During a median follow-up of [5.02 (2.05–7.90)] years, 103 patients
(24%) experienced sustained VA events corresponding to an annual

event rate of 4.98% [95% confidence interval (CI) 4.07–6.04]. Figure 1
shows the cumulative survival free from first sustained VA.

Among patients who experienced sustained VA during follow-up,
the most common events were ICD treated VAs, which represented
59.2% of events (n= 61), followed by sustained VT (n= 32, 31.1%),
SCA (n= 7, 6.8%), and SCD (n= 3, 2.9%). In patients with sustained
or ICD treated VT events, the median cycle length (available in 57/93
events) was 280 ms (IQR: 246–315) which corresponds to
214 b.p.m. (190–243).

At last follow-up, 9 (2.1%) patients had died, including 2 from non-
cardiac causes, and 7 (1.6%) had undergone heart transplantation.

External validation
Model validation revealed a Harrell C-index of 0.70 (95% CI 0.65–
0.75). The calibration slope was 1.01 (95% CI 0.99–1.03) showing
no significant difference in discrimination. The calibration of the
model is graphically presented in Figure 2 demonstrating good overall
agreement between predicted and observed shorter-term (1 year)
and longer-term durations (5 year) with no significant over or under
prediction across the complete risk spectrum. The distribution of pa-
tients according to their risk is presented in Supplementary material
online, Figure S1 and calibration plots for intermediate durations (1, 2,
3, and 5 years) in Supplementary material online, Figure S2.

Two different aspects of the model fit or potential misspecification
were evaluated. First, the assessment of individual predictor coeffi-
cients (Figure 3A) all showed no significant diversion from the original
model in this cohort. This finding means that none of the individual
coefficient would benefit from being modified from their original va-
lues to improve prediction in this cohort.

Second, the baseline survival function (i.e. predictors-adjusted sur-
vival) was assessed through the comparison of the baseline survival

Figure 1 Survival free from sustained ventricular arrhythmia at
follow-up. The cumulative event-free survival for any ventricular ar-
rhythmia with 95% confidence intervals (shaded area) is plotted.
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Figure 2Calibration plots presenting the agreement between predicted (x-axis) and observed (y-axis) 1-year (Panel A) and 5-year (Panel B) risk of
ventricular arrhythmia. Triangles represent binned Kaplan–Meier estimates with 95% confidence intervals for quintiles of predicted risk. The straight
line is the continuous calibration hazard regression with the dotted line represents optimal calibration (i.e. perfect correspondence between pre-
dictions and observations across the risk spectrum). The calibration is shown to be acceptable across the risk spectrum with no significant under or
over prediction in any risk category. VA, ventricular arrhythmia.
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probabilities (i.e. predictors-adjusted survival) in the derivation and
the validation cohorts at different time points showing similar ex-
pected survival curves as shown numerically and visually in
Figure 3B and C. These findings suggest that the survival function
does not need to be modified to improve prediction in this cohort.
Finally, the potential need to update the model was assessed by

comparing the fit of the published model with the derivation of a
new model in the validation cohort. The AIC of the published model
in the current cohort (1059.14) and of a model derived in this cohort
(1060.93) were not significantly different (absolute difference in AIC
of 1.79) indicating the absence of significant improvement in predic-
tions when fitting a model to this population.
As a sensitivity analysis, we repeated the process in patients with

complete data (n= 299) resulting in a similar C-statistic, calibration
slope, baseline risk, and calibration plot (see Supplementary
material online, Figure S3).

Clinical utility
We compared the performance of the risk calculator with published
consensus-based decision algorithms for ICD use in ARVC. As illu-
strated in Figure 4, the risk calculator generally had a superior net clin-
ical benefit when compared to the other published algorithms for
ICD use. Its performance becomes similar to the HRS consensus
above a risk of �35%.
Finally, we graphically presented the impact of different threshold

for ICD implantation on the proportion of ICD use and the protec-
tion rate and compared to the published decision algorithms
(Figure 5). Higher thresholds result in less ICD use but less protection

from VA. As an example, a threshold of 15% would results in im-
planting 59.4% of patients with ICDs while protecting 85.7% of pa-
tients with incident VA events.

Subgroups analyses
The performance in subgroups of interest was visually explored by
calibration plots presented in Supplementary material online,
Figure S4. This cohort was not sufficiently powered to provide defin-
ite answers in these subgroups.

Calibration appeared acceptable in patients from both Europe and
North America, although this analysis had low precision in the North
American population due to its smaller size.

The model performed well both in probands and family members
with a possible trend toward overestimation in family members in
the lower risk spectrum. The calibration was also visually acceptable
both in PKP2 carriers and non-carriers.

Calibration plots according to the presence of an ICD show an ac-
ceptable agreement between predictions and observations with a
tendency towards overestimation in non-ICD carriers and under-
estimation in ICD carriers in the higher risk spectrum (see
Supplementary material online, Figure S5).

Discussion
In this study, we validated the published ARVC risk calculator in an
independent cohort of patients from 29 centres in 6 countries in
North America and Europe. Since its publication in 2019, the risk cal-
culator had a significant uptake in clinical practice. Ensuring its

Figure 3 Assessment of the model fit. Assessment of the individual predictors (A) show an absence of diversion from the initial model as all coeffi-
cients are non-significantly different from 0. Compared survival probability of the derivation and validation cohorts (B) and baseline survival hazard
(i.e. predictors-adjusted survival) presented as survival curves (C ) both show similar expected survival. NSVT, non-sustained ventricular tachycardia;
PVC, premature ventricular complex; TWI, T-wave inversion; RVEF, right ventricular ejection fraction.
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reproducibility and accuracy in an independent patient population is
crucial to ensure both usefulness and safety.

The main findings are as follows:

(1) Demonstration that the model is accurate in its predictions with
an adequate discrimination and calibration in a cohort with a suf-
ficient sample size.10,25 The performance of the risk calculator
was indeed comparable to what was reported initially and its pre-
diction accuracy in this cohort would not be improved by
recalibration.21

(2) Demonstration that the risk calculator generally outperforms
various risk factor approaches recommended in published
consensus-based algorithms for ICD use in ARVC.

These findings thus support the clinical use of this risk prediction
model as a valuable tool for sustained VA and SCD risk stratification
in definite ARVC and, consequently, for guiding decisions about pri-
mary prevention ICD indications (Structured Graphical abstract).

Comparison of the internal and external
validation populations
While based on the same inclusion criteria (i.e. definite diagnosis of
ARVC and no prior history of sustained VA at the time of diagno-
sis), the initial risk calculator included a high proportion of patients
treated at highly specialized ARVC referral centres. Thus, a signifi-
cant concern regarding this population is a possible selection bias
due to the preferential referral of patients for adverse disease pro-
gression (i.e. recurrent VA referred for ablation and severe heart
failure for advanced therapies). This could potentially hamper ex-
ternal validity. The present cohort derived from 29 different cen-
tres in 6 countries is thus likely to reflect a more diverse ARVC
population. Expectedly, the annual event rate in this validation co-
hort (4.98%, 95% CI 4.07–6.04) was slightly lower, although non-
significantly, than in the derivation population (5.6%, 95% CI 4.7–
6.6) during a similar follow-up period [5.02 (2.05–7.90) years in
the validation versus 4.83 (2.44–9.33) years in the derivation co-
hort]. This reflects the overall high risk of VA events in definite
ARVC patients such as those included in this study which is consist-
ent with prior literature and often preceding structural
changes.4,19,25–28

Some differences between the two cohorts (shown in
Supplementary material online, Table S4) might have limited the
potential discrepancy in event rates, such as a higher proportion of
probands (64.8% vs. 49.8%, P, 0.001) and males (54.8% vs. 44.7%,
P= 0.002) in the current cohort. Conversely, patients in the present
cohort were slightly older (43.1 vs. 38.2 years of age, P, 0.001), had
less recent cardiac syncope and NSVT. The proportion of patients
with decreased LVEF (,50%) was also higher in this cohort (17.7
vs. 12.7, P= 0.002). Although individuals in the current population
were more likely to receive anti-arrhythmic drugs (P, 0.001) and
β-blockers (48.0 vs. 37.9, P= 0.001), the proportion of ICD carriers
at baseline was similar (41.1 vs. 40.8 P= 0.98). Finally, while still re-
presenting the predominant genotype, the proportion of patients
with PKP2 causal variants was lower than in the derivation cohort
(39.4% vs. 51.1% of tested patients) factoring that the current cohort
has a lower proportion of patients with known genetic information.
This predominance of PKP2 genotype is consistent with prior litera-
ture including patients with definite ARVC diagnosis.29 The propor-
tion of patients with DSP causal variants was also higher (8.9% vs.
4.4%) than in the derivation cohort.

Model performance
The current validation cohort included 429 patients, of whom 103
had events. This met the minimally recommended sample size of
100 patients with and 100 patients without events to attain sufficient
power for external validation.30 The initial study and internal valid-
ation using bootstrapping yielded an optimism corrected
C-statistic of 0.77 (95% CI 0.73–0.81) and a calibration slope of
0.93 (95% CI 0.92–0.95). In the current study, we obtained compar-
able results with a slightly lower C-statistic of 0.70 (95% CI 0.65–
0.75) showing acceptable discrimination and a calibration slope of
1.01 (95% CI 0.99–1.03) demonstrating almost perfect agreement
between predictions and observations for sustained VA. As illu-
strated in the calibration plot, this concordance between observa-
tions and predictions was consistent across the risk spectrum
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Figure 4 Decision curve analysis comparing the clinical utility of our
model (dashed thick black line) with the 2015 International Task Force
Consensus Statement algorithm for the treatment of arrhythmogenic
right ventricular cardiomyopathy (dashed red line), the2017American
Heart Association algorithm for the management of ventricular ar-
rhythmia and prevention of sudden cardiac death (dashed green
line) and the 2019 Heart Rhythm Society consensus on arrhythmo-
genic cardiomyopathy with exclusion of the Programmed ventricular
stimulation (dashed blue line). The clinical utility of each treatment
strategy is compared by plotting the net benefit (y-axis) for a range
of possible implantable cardioverter-defibrillator placement thresh-
olds based on the 5-year risk of ventricular arrhythmia (x-axis).
Higher net benefit values indicate greater benefit while a value of 0 in-
dicates no benefit. The published risk calculator depicted a better net
benefit than the other published algorithms for implantable
cardioverter-defibrillator implantation thresholds below a 35%.
Above this threshold its performance was similar to the Heart
Rhythm Society consensus algorithm. ICD, implantable cardioverter-
defibrillator;ARVC, arrhythmogenic right ventricular cardiomyopathy,
VA ventricular arrhythmia, SCD sudden cardiac death.
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(Figure 2). Calibration in subgroups based on geographical origin,
pedigree position, and genotype did not reveal major discrepancies

although the study was not adequately powered to arrive at defini-

tive conclusions in these subgroups.
The results of the current study are consistent with five small stud-

ies which have addressed the external validation of the ARVC risk
calculator since its publication. The risk calculator was shown to per-
form well in patients with a definite diagnosis of ARVC5,6,8 and re-
gardless of their exercise status.7 The validation study by
Baudinaud et al.,6 on a cohort of 115 patients, only 15 with VA
events, of whom only one had an ICD at baseline, reported a
C-statistic of 0.84 (CI 0.74–0.93) while reporting an overestimation
of the risk in lower risk patients.

Clinical utility
The model generally showed a superior net clinical benefit when
compared to a risk factor approach as recommended in the three
published consensus documents.2,18,22 The model was similarly
shown to outperform the ITFC and HRS consensus in two separate
cohorts.5,6 These studies, however, suggested highly different thresh-
olds for ICD implantation (10% and 37%), assuming an equal weight
to unprotected VA and unnecessary ICDs. We did not present such
an analysis as we do not propose that these adverse events are
equivalent and rather preferred the use of the weighted analysis
along with the graphical presentation of the clinical implications of
the different threshold. The question of the threshold for ICD im-
plantation is a legitimate concern when using the risk calculator.

Figure 5 Impact of implantable cardioverter-defibrillator use threshold on clinical outcomes. The potential impact of different thresholds for im-
plantable cardioverter-defibrillator use according to the model is presented on the left side and the proportion of patients who would get an im-
plantable cardioverter-defibrillator according to the different consensus statements is presented on the right side. For each threshold (x-axis) the
proportion of patients (y-axis) who have events (red) who do not have events (blue), who would receive an implantable cardioverter-defibrillator
(solid colours) or not receive one (hashed colours) are presented. The triangles represent the number of implantable cardioverter-defibrillator
needed per event prevented for each threshold (right-sided y-axis). The numerical values are presented in the table below. Implantable cardioverter-
defibrillator:ventricular arrhythmia, ratio of implantable cardioverter-defibrillator placements required to protect one patient developing ventricular
arrhythmia; other abbreviations as in figure 4.
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Establishing a single perfect threshold is a delicate undertaking as
every cut-off point comes with a trade-off between unnecessary
ICDs with their potential complications versus the potential for un-
protected SCA. The relative weight of these opposing undesirable
events varies significantly from one individual to another. In the indi-
vidualized decision-making process; however, a few points should be
considered when reflecting on the threshold for ICD use. First, when
tempted to use a similar threshold as suggested by the guidelines for
the hypertrophic cardiomyopathy (HCM) risk calculator (i.e. ≥6%
within 5 years),31,32 the breakdown of the type of events is relevant.
In ARVC cohorts, including the current study and in the derivation
cohort, most events were either ICD treated events or sustained
VA, while most events in the cohort leading to the HCM risk calcu-
lator cohort were SCD or SCA.33 Although most clinicians agree
that sustained or ICD treated VAs represent significant events, sup-
ported by guidelines,2,34 the exact number of treated VA events cor-
responding to a potential SCD is unknown in ARVC. Another
important aspect to consider is that none of these studies are pro-
spective evaluations of the role of ICDs in SCD prevention. Such
an undertaking would not be feasible in contemporary high-risk
ARVC populations. However, from such prior studies in the general
cardiomyopathy population the one which established a benefit for
primary prevention ICDs with the lowest annual risk of mortality,
SCD-HeFT, had an annual risk of SCD of 3.5%.35 Finally, the cost
of ICDs is rarely a significant determinant nowadays in countries
where ICDs can be considered in primary prevention.36 Factoring
the low number of ICDs needed to treat one VA event in ARVC, de-
creases in the cost of devices, the lifespan of modern ICDs reaching
10 years, and the potential number of quality-adjusted live years
(QALY) saved in this young, usually otherwise healthy population
(only five individuals had non-arrhythmic death during follow-up in
this cohort), the common, although debated thresholds for a
QALY between 50 000 and 100 000 USD37 remains far of reach.
Conversely, the rate of short- and long-term complications of
ICDs remain significant in ARVC patients (annual rate of complica-
tions of 4.2% and of inappropriate shocks of 3.9%),38 and although
subcutaneous-ICDs have become an appealing alternative, there is
no evidence of a lesser risk.39,40

Thus, in light of these different considerations, we do believe that
the best use of the risk calculator is as a shared decision making tool
balancing the opposing risks of SCD and ICD use. It appears reason-
able that the predicted 5-year risk threshold for recommending an
ICD would range from 5% to 25%, depending on the patient’s values
and preferences, and the clinician’s judgement.We acknowledge that
the threshold may change in the future with advances in non-invasive
treatments and innovations in ICD technology which may lower risks
associated with devices.

Future improvements in the model
While the model demonstrated a better performance compared to
other published decision algorithms, it remains imperfect as illu-
strated by a C-statistic of 0.70. While it is unlikely that any risk strati-
fication tool for SCD could predict the totality of these events,
different elements could potentially improve prediction in the future.
The addition of more refined parameters indicating left ventricular
involvement, including late gadolinium enhancement were recently
suggested.9 Genotype may also improve SCD risk prediction as

recently proposed for patients with phospholamban associated dis-
ease.41 Finally, additional invasive parameters such as programmed
ventricular stimulation42,43 might add additional accuracy in
intermediate-risk cases. Moreover, the model is based on prediction
of risk from the time of diagnosis of ARVC; a time-updated model for
repeated risk prediction may have practical clinical utility.

Limitations
In this study, the majority of sustained VA outcomes are ICD treated
events. While this fact is not possible to overcome in most modern
ARVC populations and while most would agree that these still re-
present significant events, they do not directly represent the under-
lying risk of SCD. However, this is a limitation shared with most of
previous studies in this field, including most of those used to elabor-
ate prior consensus-based risk stratification algorithms. While
underpowered for events, calibration plots by ICD carrier status
show acceptable correlation between predictions and observations.
This reflects both that ICDs are implanted in patients believed to be
at higher risk (selection bias), but also increase the detection of some
arrhythmia that might have gone undetected otherwise (information
bias) (see Supplementary material online, Figure S4). While family
members are well represented in the derivation cohort (50.2%),
they are less prevalent in the current cohort (35.2%), and contribute
to a lower proportion of events (21.1%). The calibration plot in this
specific subgroup, although underpowered, suggests possible over-
estimation in the lower risk patients which should be taken in consid-
eration when using the model.

Missing data also represent a limitation of this retrospective co-
hort. Although a complete case analysis reassuringly demonstrates
similar results with regard to performance, missing data could influ-
ence the relative benefit of the model over consensus-based
methods.

Finally, this validation only applies to patients who were well re-
presented in the derivation and validation cohorts. The model should
thus not be used in patients who do not meet definite ARVC diagno-
sis as per 2010 TFC such as those with left dominant forms and in
patients with rare malignant genotypes such as TMEM43-p.S358L,
of which only 10 patients were included in this cohort.

Conclusion
In this external validation study, we demonstrated that the published
ARVC risk prediction model not only provides accurate prognostic
information in patients with ARVC without a prior history of sus-
tained VA at diagnosis, but also performs generally better than other
published decision algorithms. These findings support its clinical use
as a valuable tool for risk stratification enabling consistent and effect-
ive shared decision making for ICD implantation.

Supplementary material
Supplementary material is available at European Heart Journal online.
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