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Extraction of User Daily Behavior from Home
Sensors through Process Discovery

Marco Cameranesi, Claudia Diamantini, Alex Mircoli, Domenico Potena, and Emanuele Storti

Abstract—In the last years, the wide availability on the market
of low-cost smart devices paved the way for the development of
smart environments, which offer an unprecedented opportunity
to recognize patterns of activities from the large amount of
collected data, with the ultimate aim of monitoring user behavior.
In this paper, we propose a methodology which relies on Process
Discovery techniques to analyze sensor data in terms of activation
sequences and to discover process models representing user’s
behavioral patterns. The extraction of such models is valuable
not only in the perspective of gaining a better insight on how
a certain task is performed, but also in supporting novel smart
services. In order to evaluate the effectiveness of the approach,
in this work we also consider a real-world case study set in an
ambient assisted living environment.

Index Terms—process discovery, ambient assisted living, inter-
net of things, smart environments, sensors.

I. INTRODUCTION

N recent years, much effort has been put in the design and

development of smart environments, that aim to improve
people’s quality of life providing them with services support-
ing their daily activities [1]. The term smart environment, also
related to the pervasive/ubiquitous computing paradigm [2],
refers to an environment that has been equipped with a number
of sensors and actuators of different types (e.g., monitoring
sensors, RFID tags, power-line controllers) for a variety of
applications ranging from health monitoring to security, light
management and energy saving. Logging the value of certain
classes of sensors allows to track the activities performed by a
user. Starting from these activities, it is also possible to identify
each task fulfilled by a user in the environment, as it can be
considered as a sequence of activities. For instance, when a
user performs a cooking task in a house, he/she moves towards
the light switch to turn it on, opens the fridge and after a while
he/she switches on the oven to warm the food. Each of these
activities triggers several sensors (e.g. doors, motion sensors)
and a sensor activation sequence can be seen as the execution,
or a trace, of an (implicit) process.

Making sense of this information may be useful to recognize
actual performed activities and, more in general, to derive typ-
ical patterns or processes capable to describe the user behavior
in performing some tasks, or macro-activities, such as cooking.
Due to the huge amount of data that can be potentially gen-
erated, analysing sensor data and deriving a workflow/process
model from them must be however supported by techniques
capable to provide a summarization of event logs monitored
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by sensors. In the Literature, Process Mining and in particular
Process Discovery techniques and algorithms have been used
to derive a process model representing a set of given traces,
to discover behavior models that represent the “standard”
behavior of the monitored user in the form of a process model,
where activities are tasks or macro-activities, e.g. cooking,
reading, watching TV for a smart home. This type of models
can be effectively used to get a better understanding of how a
user behaves in a given environment. As also mentioned in [3]
three research challenges in the specific application of Process
Discovery techniques are indeed (i) the gap between sensor
logs and tasks employed in Process Mining, (ii) designing
process modeling and mining techniques fitting the variability
of human habits and (iii) the segmentation of logs.

With such an aim, this paper presents a methodology for
user behavior analysis that exploits Process Discovery tech-
niques to derive activity models from sensor activation logs in
a smart environment. Unlike other work in the Literature, the
purpose of this approach is to derive descriptive models able
to represent user behavior. The methodology proposed in this
work is helpful in both human activity recognition and daily
behaviour monitoring. On the one hand, it helps to identity
a macro-activity on the basis of the activation sequence of
sensors and to gain a better insight on how a certain task is
performed; on the other hand, it supports novel smart services.
Among them, for instance, adaptive environments able to align
parameters to the specific behavior of users. These models can
also be used to support the monitoring of human behavior and
the identification of anomalies, i.e. sequences of activities that
are not aligned with the model generated from sensor data
related to past process instances. According to the specific
environment, their recognition can be indeed useful to react
more quickly to emergencies due to accidents or health issues
in a house or a factory, or possible threats in a public area.

The proposed approach includes these steps:

o cvent logs generated by sensor data are characterized
in terms of macro-activities, annotated by the user, and
micro-activities (i.e., sensor activations);

o logs are preprocessed in order to remove noise and make
them compliant with the adopted techniques;

« Process Discovery techniques, specifically infrequent in-
ductive mining, are applied over the event logs to derive
process models for activity flows.

The original contribution of the paper consists in the adop-
tion of Process Discovery techniques to represent user activ-
ities as a process, where each activity is a sensor activation.
While the application of Process Discovery to derive activity
models is reported by some work in the Literature, as shown
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in the next section, to the best of our knowledge this is the
first work that proposes the derivation of a model for user
activities from logs related to sensor activations. By helping
to better and more deeply understand the intrinsic workflows
behind a given macro-activity, e.g. having a shower, in terms
of activated sensors, useful insights can be derived, such as
recognizing trends or spotting deviances from the model.

As a further contribution, in order to assess the effectiveness
of the proposed approach, we include an experimentation
conducted on a real-world case study from the CASAS project
of the Washington State University, specifically dealing with
ambient assisted living environments. In particular, in the
project the behaviors of a user and her pet have been monitored
for almost two months through multiple sensors deployed in
a smart home. The retrieved data have been used in this work
as a basis for the application of the approach.

An early version of the approach presented in this paper is
available in [4]. This work builds on our prior study including
a more formal description of the approach and its extension
towards a domain-independent methodology, also including an
extended discussion on the preprocessing phase, a thorough
extension of the case study and of the experiments and a larger
analysis of related work.

The rest of the paper is structured as follows: next section
is devoted to discuss relevant related work, while in Section
IIT we provide some preliminaries on Process Discovery.
Section IV includes a detailed description of the proposed
methodology. A case study is presented in Section V together
with experimental results. Finally, Section VI draws some
conclusions and presents possible future work.

II. RELATED WORK

Most work in the Literature dealing with user behavior
analysis in smart environments refers to domotic scenarios in
the context of smart homes. In the Ambient Assisted Living
(AAL) field, some work in the last years has focused on
recognizing user’s activities starting from raw data collected
through a set of sensors. AAL community classifies this work
into two different groups: Activities of Daily Living (ADLs)
and Instrumental Activities of Daily Living (IADLs). The main
difference is that in IADLs there is an interaction between
the user and electronic devices (e.g. phone, home appliances),
usually through a user interface, contrary to ADLs where there
is not such kind of interaction. In [5] authors propose an
approach aimed at predicting a macro-activity from values
collected by simple and cheap sensors. The prediction is per-
formed by using an extension of the Naive Bayes classifier that
also takes into account temporal relationships. Experiments are
conducted on a dataset composed of 436 activities divided in
16 classes. The limit of the resulting classification model is
that it is not able to describe the user behavior, but only to
recognize that a trace is an execution of a given activity.

In [6], authors propose an unsupervised approach aimed
at discovering interesting ADLs patterns and compressing
the resulting patterns through a clustering technique. The
introduced solution is able to identify a pattern independently
from the time intervals between the activation of two sensors.

It means that the algorithm is able to identify a pattern
even if the steps of the same activity are performed with
different time duration by different users. We highlight that
also the approach proposed in this work is time independent,
because timestamps are only used to identify an ordering
among activities. A further contribution in the field of activity
recognition is described in [7], where authors explain how
monitoring ADLs at home can be exploited to predict clinical
score of inhabitants.

The approach proposed in [8] is based on a pattern mining
algorithm which is able to identify activity patterns by also
considering unexpected changes in the users’ behavior and
abnormalities occurred within a specific threshold, as typically
happens with Alzheimer’s patients.

Another methodology is introduced in [9], where authors
propose to recognize daily routines as a probabilistic com-
bination of activity patterns. They show how probabilistic
topic models can be exploited for the automatic discovery of
patterns.

In the last years, researchers have started to address the
problem of activity recognition with a novel approach which
is based on Process Mining techniques and algorithms [10]-
[15]. These approaches basically share the view that every
activity executed by a user can be seen as a step of a
process instance, namely a way in which a process can be
executed. In particular, in [10], the use of Process Mining to
perform several analyses on activities performed by a user
is introduced. Such an approach shares with our work the
analysis of user behavior, defined as a process model of macro
activities, but it logs activities through smartphones and smart
watches. The adoption of personal and/or wearable devices
introduces a simplification in the analysis, as it provides
more precise data about user behavior (i.e., they minimize the
presence of noise due to the activation of multiple sensors or
the presence of more than one user).

In [11], authors proposed a system to analyse the behavior
of health professionals in a surgical area of an hospital. As
initial step, an indoor location system (also known as Real-
Time Location Systems or RTLS) is used to collect data, that
are then assigned to a (macro) activity. In the end, Process
Mining techniques are exploited to discover a model able
to represent and describe the staff behavior. The authors
developed a specific tool designed to use Process Mining
techniques with indoor location system data. In particular, they
adopted the PALIA [16] algorithm which exploits syntactical
pattern recognition techniques to build a formal automaton,
known as Timed Parallel Automaton (TPA) [17], i.e. a safe
Petri net that can represent the process.

In [12] authors propose an interesting approach focused on
a preprocessing step aimed at mapping sensor data to event
logs based on domain knowledge. In particular their approach
is devoted to transform precision raw sensor measurements
containing locations and timestamps of process entities into
standardized event logs comprising process instances. To this
aim, the authors introduce the definition of “interaction” which
acts as intermediate knowledge layer.

Another contribution in the field of activity recognition
comes from [13]. Authors address the problem of the identifi-
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cation of habits related to multiple inhabitants living within the
same house, proposing a solution based on the Fuzzy Miner
[18] algorithm. In contrast to our methodology, all the above
mentioned work do not deal with the discovery of macro-
activity models that can be extracted from sensor data.

Among the approaches focused on the way of grouping low-
level events into higher-level activities, in [14] authors propose
a supervised event abstraction method, where behavioral ac-
tivity patterns are used to capture domain knowledge about
the conjectured relations between high-level activities and
recorded low-level events. Instead of inferring such relations
from data, however, activity patterns encode assumptions made
by experts on how high-level activities manifest themselves in
terms of recorded low-level events. The supervised approach
of [15], although not aimed to derive behavior models, takes a
similar approach in extracting high-level user operation from
low-level software execution log.

III. BACKGROUND

This Section aims to introduce the notation used hereafter in
the paper and the main concepts behind the Process Discovery
techniques adopted in the methodology.

A. Preliminaries

In this work we refer to a quite general notion of process, as
a flow of activities, each of which performed by some resource
and aimed to reach a certain goal.

In order to formally characterize a process instance, we
provide in the following the notion of event, trace and event
log. In particular, we refer to a simple notion of event
described through a set of properties. Although we do not
constrain the set of properties, hereafter we assume at least
three properties, respectively related to: the activity performed,
the resource (or agent) who performs the activity and the time
at which the activity is executed.

Definition 1. (Event) Let A be the set of activities, R the
resource domain and T the time domain. An event o is a tuple
(a,r,t), where a € A is an activity performed by a resource
r € R at a certain timestamp t € T.

Example. Let us consider an agent named Paul € R executing
a certain kitchen activity € A at 8:45 on May, 2nd 2019.
The corresponding event would be represented by the tuple (
Kitchen_activity, Paul,2019-05-02 08:45:00 ).

Definition 2. (Trace) A trace | is a finite non-empty sequence
of events {o1,...,0,} that are temporally ordered and such
that each event appears only once, i.e. Bo;, ojwithi # jjo; =
0 /\VZ,] with © < 7.t < tj.

An event log is the dataset recording all past executions (i.e.,
instances) of a process. Although instances can include parallel
execution of activities, event logs store only the trace of a
process instance, i.e., the sequence of the activities stored
according to their temporal order of occurrence.

Definition 3. (Event log) An event log L is a set of traces
such that every event appears at most once in the entire log,
ie. Vo € E,ﬁli,lj/tf el No € lj

TABLE I
LIST OF EVENTS RELATED TO THE Morning Activities EXAMPLE
activity | resource timestamp
o1 a r 2017-11-10 10:24:43
o2 b ri 2017-11-10 10:57:19
o3 c r 2017-11-10 11:09:32
o4 e r 2017-11-10 12:23:54
o5 a ro 2017-11-10 8:15:23
o6 d r2 2017-11-10 8:26:08
o7 e ra 2017-11-10 8:54:34
og a 1 2017-11-11 9:30:15
o9 c r 2017-11-11 10:02:08
010 b r 2017-11-11 10:43:27
o11 e r 2017-11-11 11:31:35

Example. Let us suppose a process related to the morning
activities performed in a house, with a set of activities A =
{a,b,c,d,e} and a set of resources (i.e., people living in the
house) R = {ry,7r2}. Let us consider the following traces
which include the sequence of events as recorded by a set
of sensors installed in the house: Iy = {01,09,05,04}, lo =
{05,06,07} and I3 = {08, 09,010,011} Where each event o;
is defined as in Table 1.

From such an event log it is possible to recognize that every
instance of process (as recorded by a corresponding trace),
starts with activity a¢ and ends with activity e. The sequence
of activities between those two points seems to differ from
trace to trace, although some regularities can be spotted e.g.,
c and b always appear together. In general, real-world event
logs include thousands of single events and a manual analysis
is not feasible. For such reason, a much more efficient and
effective way to look through the possible process flows is a
process model.

Processes are frequently represented through models repre-
senting the control-flow of the performed activities, that is their
ordering relation. Among the several formalisms available to
represent process models, in this paper we refer to Petri nets,
i.e. state-transition systems that can be represented as directed
bipartite graphs where nodes represent transitions (i.e. events
that may occur, graphically represented by bars) and places
(i.e. conditions, graphically represented by circles).

Definition 4. (Petri net) A Petri net is a tuple
(P,T,F,m;,my), where P is a finite set of places, T
a finite set of transitions such that P N'T = 0, and
F C(PxT)U(T x P) the flow relation between places and
transitions (and viceversa), m;, my : P — N are the initial
and final marking representing the distribution of tokens. A
firing sequence for a Petri net N is a sequence of transitions.

To model the workflow of process activities, a subclass of
Petri Nets with additional constraints is usually considered,
namely Workflow Nets (WF-Nets) with a single input place
with no previous transitions and a single output place with no
following transitions. The following property is defined for a
WE-Net [19].

Definition 5. (Soundness) A WF-Net is sound if and only if
these requirements are satisfied: (1) option to complete: it is
always possible to reach the state with a single token in the
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start

Fig. 1. Petri net for the example.

output place, (2) proper completion: if the output place is
marked all other places are empty, and (3) no dead transitions:
there is a firing sequence for every activity.

Example. In Figure 1, we show the schema for the morning
activity process, represented through a Petri net. Please note
that circles represent places, while transition are represented as
boxes. In particular, white boxes correspond to activities, while
black boxes are invisible transitions, which do not correspond
to any specific activity but are needed to obtain a sound net.

The quality of a process model can be determined through
several different metrics. Among them, fitness is one of the
most relevant, as it evaluates the ability of the model to replay
traces within the log. Fitness can be computed by comparing
the event log with the discovered model through conformance
checking algorithms [20]. A fitness value close to 1 means
that each trace in the log can be associated with an execution
path specified by the process model, while lower values are
typical of models that are not able to represent some traces or
portions of them. This metric is a key aspect in the evaluation
of model quality since an unfitting model (i.e., a model with
low fitness) is not able to represent all the recorded events.
Furthermore, in this work we consider also the simplicity as
a metric, which is a qualitative measure used to evaluate the
complexity of the discovered process model.

B. Process Discovery

If a process model is not available for the process at hand, it
can be derived from the event log by using Process Discovery
techniques. The most common discovery techniques include
Alpha Miner [20], Fuzzy Miner [18], Heuristic Miner [21],
and infrequent Inductive Miner [22].

The Alpha Miner algorithm has been designed for discov-
ering process models starting from “clean” conditions, that is
noiseless logs. It gives good results with structured processes
(known in Literature as lasagna-like processes), whereas it
fails in the discovery of valid models for highly variable
processes (known as spaghetti-like processes). In fact, in the
latter case the Alpha Miner often returns overgeneralizing
models (known as “flower” models), which do not provide
useful knowledge about the process as they suffer from an
underfitting problem [23].

The Fuzzy Miner algorithm filters and groups the most
infrequent behaviors providing as output a high-level (i.e.,
abstract) representation of the extracted model. The outcome
of such an algorithm is a scheme involving just the most
relevant activities, displayed as single activities or aggregated
in clusters, and their precedence relations. Moreover, Fuzzy

Miner is not able to represent split and join constructs. It
means that the resulting models do not have an executable
semantics.

The Heuristic Miner can be thought as an extension of the
Alpha Miner algorithm. The latter is able to find all causal
relations among activities within the log, whereas the former
takes into account the frequency of relations and applies
some heuristics to determine relevant sequence and parallelism
relations.

Finally, the infrequent Inductive Miner returns a model by
iteratively refining a process tree, where each node represents
either an activity of the process (leaf node) or an operator
(branch node). Similarly to the Heuristic Miner, this algorithm
filters infrequent behaviors and the output can be represented
by a Petri net. The infrequent Inductive Miner guarantees to
always return a sound model, i.e. a model where all process
steps can be executed and the final marking of the Petri
net is always reachable. The filtering level of the infrequent
Inductive Miner depends on a user-defined threshold, which
ranges from O to 1; the value of 0 indicates that the infrequent
paths are not filtered at all.

IV. METHODOLOGY

This section is devoted to discussing the methodology
for the extraction of behavioral patterns from an event log
produced by sensor data in a smart environment. The approach
relies on an event-based interpretation of sensor data, accord-
ing to which a sensor' produces data when an event occurs.

For such a reason, Process Discovery techniques can be
used to derive process models as behavioral patterns, since
the flow of sensor activations can be represented as a trace,
and the entire recording of sensor activations as an event log.
In this work, we consider some minimal requirements for each
recorded event in the log, namely its case id, the performed
activity and its timestamp.

As introduced in the last section, in Process Mining the
term case id stands for the identifier of a specific process
instance. In this context, it represents the execution of a certain
human task, allowing to group by case id all events performed
for its accomplishment. On the other hand, the term activity
refers to an action performed by a resource (or agent) in an
organisation. Although event logs can be specified at any level
of abstraction, most applications focus on a single, specific
level. In this work we consider two levels of abstraction
for the specification of activities, namely high- and low-level
activities. In order to distinguish them, we refer to the term
macro-activity to define a high-level task performed by a user,
e.g. cooking, having a shower or delivering a package.

On the other hand, we name micro-activity a low-level
activity measured by sensors deployed in the environment and
caused by a specific macro-activity performed by a resource.
For instance, in a smart home scenario, the macro-activity
“having a shower” will trigger one or more sensors, such as
a motion sensor on the bath door, a presence sensor in the
room, and so forth. To give another more detailed example,

I'Specifically, the class of sensors that produce data when triggered by an
external cause.
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Fig. 2. Workflow for discovery of macro-activity models.

when doing the macro-activity cooking, the user may (1) turn
the kitchen light on, then (2) open the fridge to take out food,
(3) close the fridge, (4) switch on the oven, (5) open the oven
door to put the food to warm inside, (6) close the oven door,
and after a while (7) open the oven again to take out the food
and finally (8) close the oven door again, (9) turn it off and
(10) switch the kitchen lights off. Those sensor activation are
micro-activity that can be recorded in an event log and that
will share the same case id related to the execution of the
macro-activity.

It is important to notice that there is no functional de-
pendency between a micro-activity and a macro-activity per-
formed by the resource: a macro-activity can trigger more than
one sensor at a time, while a specific sensor may be possibly
activated by different macro-activities. To make an example,
the presence sensor located in a room can be triggered by
opening the door but also by a user moving in the room.

Micro-activities are typically associated to a specific time
instant and as such can be considered atomic. On the other
hand, macro-activities have a duration specified by a start and
an end time. The sequence of sensors triggered during the
execution of a macro-activity, i.e. the corresponding set of
micro-activities, can be viewed as the execution of a process.
The related process model represents the model of the macro-
activity in terms of micro-activities, namely the macro-activity
model.

A major challenge regards how to group performed ac-
tivities into process instances, i.e. how to identify that a
set of recorded events in the log belong the same case.
To this end, we propose a supervised methodology for the
extraction of macro-activity models through the application
of Process Discovery techniques to sensor activation logs.
The methodology is summarized in Figure 2 and consists
of three main phases, namely (1) sensor data gathering and
preprocessing, (2) macro-activity recording and preprocessing,
(3) dataset split and macro-activity discovery. They will be
discussed in the following subsections.

A. Sensor data gathering and preprocessing

The phase introduced in this subsection aims to gather
sensor data and process them in order to produce as output
a micro-activity event log. In this work we do not make
particular assumptions on the type of sensors deployed in
a smart environment, provided that they generate data as a
consequence of some human actions. In case sensors produc-
ing data independently of human intervention are included

in the log, e.g. a temperature or a humidity sensor whose
outcomes are not typically affected by the activities done by
resources, they need to be filtered out during the preprocessing
step, because they give no valuable information for the macro-
activity discovery.

Sensor data can be analyzed through Process Discovery
techniques if, at least, the case id, the name of the performed
activity and the timestamp are reported. Typically, a record
from a sensor is characterized by the sensor name (or id), the
timestamp, and the value returned by the sensor. The case id,
which is a very important element as it allows us to distinguish
among different executions of the same process, is usually not
provided with sensor data. Indeed, the sensor does not know
who activates it (the user is recognized only in rare cases,
e.g., using RFID technologies or wearable devices) and for
which purpose it was activated (e.g., the motion sensor in
the kitchen can be activated if the user is cooking or is just
opening the fridge for a soda). A survey of possible approaches
for assigning case id to activities, and thus grouping them in
process instances is available in [24]. In our work we use two
definitions of case id based on the kind of analysis to perform.
In micro-activity event logs, a case is each execution of the
specific macro-activity at hand. To address the issue related to
map sensor measurements to macro-activities here we assume
that the user has been asked to annotate the activity she is
performing, e.g. reading, watching TV, taking medicines and
so on. In details, the user has to manually specify when she
starts and ends the performed macro-activity.

In the micro-activity event log, an activity is defined by
the name of the sensor and its value. For instance, when the
main door sensor reports the values OFF, the activity ’closing
main door” is captured. More precisely, for sensors returning
categorical values (e.g. door sensors, motion sensors or in
general sensors returning a status) we set the activity as the
pair (sensor name, sensor value); while for sensors returning
continuous values the values are first grouped in a given set
of intervals (based on frequency, fixed intervals or using any
clustering techniques), each of which is assigned a label, then
the activity is given by the pair (sensor name, label). In the
case of devices containing multiple sensors, a set of events
with the same timestamp is generated.

Hence, the preprocessing phase involves:

« cleaning sensor data by removing records having missing

values;

o transforming sensor data into micro-activity event log,

used to discover the macro-activity models.

B. Macro-activity recording and preprocessing

In a macro-activity event log, the day is the natural candi-
date to be used as case. However, some issues arise when iden-
tifying a day, namely the timestamp when a day starts/ends.
Using a fixed time to identify a day could lead to split a macro-
activity (e.g. sleep) into two days. For this reason, we have
chosen to set the end of a day dynamically, when the user
performs a given activity which usually indicates the end of
the day, like going to sleep.

While a micro-activity can be considered atomic and mo-
mentary, a macro-activity has a duration. Therefore, for two or
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Fig. 3. An example of wrong parallel activities (a) that have been fixed by
adding artificial events (b).

more macro-activities we need to consider temporal relations
among their executions. In particular, we discuss here the cases
of macro-activities executed sequentially (e.g. going to toilette
and then going to bed) or in parallel (e.g., having dinner
while watching TV). Given two macro-activities A and B, the
kind of their mutual parallelism is determined by their relative
start/end times. Indeed, we define B to be in partial overlap
with A if it starts before the beginning of A and finishes before
the end of A (or starts after the beginning of A and ends
after its end), while it is in fotal overlap if it starts after the
beginning of A and ends before the end of A.

Overlapping macro-activities deserve special attention. We
identify two main cases in which two macro-activities may
overlap:

o parallel activities: the two macro-activities have been
performed in parallel by the user. For instance, the user
watches the TV while cooking;

o annotation errors: A and B cannot be executed in parallel
by their nature; then the user made an annotation error.
For instance, the user cannot perform any other macro-
activity while she is sleeping, so the sleep macro-activity
must for its nature be performed in strict sequence to any
other macro-activities (see Figure 3(a)).

In order to remove annotation errors, we add artificial events
in the log. The artificial end of A is added just before the
reported begin of B and the artificial begin of A is added
just after the reported end of B. Figure 3(b) shows how the
wrong parallel behavior of Figure 3(a) has been transformed
in a correct sequential behavior.

C. Dataset split and macro-activity model discovery

This section describes the last steps needed to generate
models for macro-activities starting from the micro-activity
event log and the macro-activity event log that have been pre-
processed in the previous phase.

Firstly, the micro-activity event log is enriched with the case
id, namely it is labeled with the specific macro-activity that
was performed in the same time frame. This step is done by
comparing the timestamp of each event with the start/end time
of each macro-activity, until a match is found. Then, a dataset
split step allows to segment the event log by grouping events
that are related to different macro-activities, thus obtaining
a set of enriched micro-activity event logs. Finally, Process
Discovery techniques can be applied to each micro-activity
sub-event log to infer a model for each macro-activity.

The choice of the right technique depends on the problem,
and hence the kind of event log, at hand. When the problem
is structured, namely few variations in the process execution
are possible (e.g., sensors in an assembly line), the Alpha
Miner algorithm can be successfully used. In highly variable
processes, as the ones taken into account in this work, Fuzzy,
Heuristic and Infrequent Inductive Miner are more suitable.
These algorithms return a process model representing relevant
executions, removing infrequent behaviors. The decision on
what and how much to remove depends on user-defined
parameters, which affect the quality of the discovered process
model. More specifically, by filtering too much one can get
a simple but inaccurate model, namely a model with a low
fitness value. In this case the model is able to represent only
a limited part of the traces in the log. On the other hand, by
filtering little we obtain a model with a high fitness but so
complex (i.e., a flower model) to be practically useless.

V. CASE STUDY

This section is devoted to presenting and discussing the
application of the methodology in a real-world case. In Subsec-
tion V-A we introduce the dataset and its main features, while
in Subsection V-B we apply the methodology and present some
quantitative analysis.

A. Dataset

We refer here to the Milan dataset which includes a part of
the data collected by the CASAS project of the Washington
State University?. The selected dataset describes the behavior
of a user that had been living with her pet for 58 days in a
house, suitably equipped with sensors. The analysis of such a
dataset is challenging due to the movements of the pet and
the sporadic presence of some guests in the house during
data collection, which both add noise in the form of sensor
activations not related to user’s real behavior. The dataset
contains data about activities performed by the user in the
form of a sequence of sensor activations. An excerpt of the
dataset is reported in Table II. Here, each event represents
a measurement by a sensor and is described by the record
(timestamp, sensor, value, macro-activity):

o timestamp, which identifies when an event is recorded. It
is the date and time when the sensor has been triggered
due to a user’s action;

o sensor, represented through the unique identifier of the
sensor, as mentioned above;

e value, which is the value measured by the sensor. For
example, it can be an ON/OFF state, a temperature value
or an OPEN/CLOSE state of a door;

e macro-activity, which is the name of the macro-activity.

As shown in Figure 4, sensors were deployed in various
rooms in the house, and belong to different typologies:

e Motion sensors, based on infrared technology, track the
user moving in the various rooms of the house. These
sensors are typically placed one per room, in order to
detect the user movements during her daily life activities.

Zhttp://casas.wsu.edu/datasets/
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Fig. 4. The map of the house for the Milan dataset with deployed sensors.

In Figure 4, these sensors are denoted with the prefix
M followed by an identifying number (e.g., M002).
The motion sensors used in these experiments were of
two different typologies: spot sensors and wide range
sensors. The former are able to detect motion within a
small area and are denoted in the map with a small red
circle (e.g. M004 or M0OS). The latter are able to detect
motion within bigger areas, that are highlighted in the
Figure as red-shaded zones (e.g. M024 or M027). Motion
sensors check the presence of movements at a predefined
frequency: if no movement is recognized within the
detection range, no event is recorded. It triggers to ON
if a movement is detected, and again to OFF when no
further movement is detected. This behavior can produce
noise when either the user stops within the detection area
or she moves very fast.

o Open/close sensors that are able to detect the status of

a door. They are installed on the external doors of the
house, allowing to know when someone is entering or
leaving. This kind of sensors is denoted with the letter D
(e.g., D003).

o Environmental sensors, such as temperature sensors,

which are represented with the prefix T (e.g., T002).

During the project, the user annotated the macro-activity
reporting the timestamps when it begins and ends.

The full list of macro-activities includes: Bed To
Toilet, Chores, Desk Activity, Sleep, Read,
Dining Room Activity, Morning Meds, Evening
Meds, Meditate, Guest Bathroom, Kitchen
Activity, Leave Home, Master Bathroom, Watch
TV and Master Bedroom Activity. The average number
of macro-activities performed by the user per day is around
41 with a standard deviation of 13.7.

TABLE II
AN EXCERPT OF THE INPUT DATASET.

timestamp sensor | value macro-activity
2009-10-16 08:45:38.000076 | MO16 | ON | Kitchen_Activity begin
2009-10-16 08:45:39.000094 | M003 | ON NULL
2009-10-16 08:45:41.000000 | MO11 | OFF NULL
2009-10-16 08:58:52.000004 | MO16 | ON | Kitchen_Activity end
2009-10-16 08:58:52.000053 | M023 | OFF NULL
2009-10-16 08:59:02.000054 | MO19 | ON Chores begin
2009-10-16 08:59:04.000072 | M019 | OFF NULL
2009-10-16 09:14:47.000090 | M006 | ON Chores end

B. Application of the methodology

1) Preprocessing: The integration between the user’s activ-
ity journal (i.e., macro-activity event log) and sensors records
(i.e., micro-activity event log) allowed to identify the events
corresponding to the start/end of an activity. The enriched
dataset is reported in Table II (the NULL value in the last
column means that no annotation has been done at the given
timestamp). The first preprocessing step is aimed at identifying
overlapping macro-activities. From a preliminary analysis of
the dataset, we observed that in most cases macro-activities
are recorded in strict sequences. Overlaps occur only in few
cases and annotation errors have been removed as discussed
in Subsection IV-B.

Then the dataset has been split with the purpose of pro-
ducing a micro-activity event log for each macro-activity. The
structure of each micro-activity event log is similar to the one
reported in Table II, where the macro-activity field has been
deleted and an identifier representing the different instances
(i.e. case ids) of the macro-activity has been added. It should
be noted that the values returned by temperature sensors are
poorly correlated with the user’s activities. Hence, with the
aim to minimize noise, temperature sensors have been removed
from the log. In addition, the door sensors are placed on the
external doors of the house; therefore they are activated very
few times for each instance of a macro-activity, and have
a much lower percentage of activation than motion sensors.
Although low-frequency activation sequences can be discarded
by the Process Discovery algorithm (see Subsection III-B),
in order to reduce the complexity of the problem at hand,
door sensors have also been excluded. As a consequence, we
only considered motion sensors that can record an ON or
OFF event. The former means that a movement is detected
within the sensor’s range, while the latter means that after
an ON event no further movement has been detected. This
behavior can produce noise when either the user stops within
the detection area or she moves very fast. In the first case,
the sensor stores an OFF value in the event log, but the user
is still in the detection area. As the user starts moving again,
the sensor will detect another ON event followed by an OFF
event, and so on until the user leaves the area. This produces
in the event log a sequence of ON and OFF values of the
same sensor. In the second case, if the sampling rate is set
quite slow, the user could leave the detection area before the
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TABLE III
NUMBER OF TRACES AND AVERAGE NUMBER OF EVENTS PER TRACE IN
MICRO-ACTIVITY EVENT LOGS USED IN THE EXPERIMENTS.

activity number of traces | avg events per trace
Watch TV 114 207.79
Kitchen Activity 554 232.75
Read 314 160.13
Desk Activity 54 141.26
Meditate 17 77.35
Master Bathroom 306 49.25
Master Bedroom Activity 117 233.65
Guest Bathroom 330 32.12

OFF event is stored. Hence, in the event log there could be
the activation of a new sensor before the OFF of the previous
one. In order to reduce noise, we removed the OFF events
from each micro-activity event log. Furthermore, information
conveyed by OFF events is related to the time when the user
ends a micro-activity, hence it is not relevant for the goal of
detecting the process model of macro-activities performed by
the user.

In order to have unique start and end points for any instance
of the process, for each trace of all event logs, artificial events
corresponding to “START” and “END” activities have been
added as first and last event respectively. This widespread
practice is aimed at improving the soundness of Petri nets
resulting from a Process Discovery algorithm [22]. This oper-
ation is particularly important when analysing micro-activity
event logs. Indeed, it is noteworthy that different traces in the
same micro-activity event log could have different activities in
the first and last position. This is due to: (a) different ways (i.e.,
process variants) a macro-activity is executed (e.g., Kitchen
Activity could start triggering the sensor closed to one of
the two kitchen doors, i.e., MO12 and M016), and (2) the time
shift between the sensor activation and the manual annotation
of macro-activities.

2) Macro-Activity Model Discovery: In this subsection we
present the results of experiments aimed at extracting macro-
activity models. Without loss of generality, we focus only on
some of the most relevant macro-activities. For each of these
macro-activities, Table III shows some statistics of the related
micro-activity event logs, namely the number of traces per log
and the average number of events per trace.

From the Table, it turns out that each trace is characterized
by several events, namely triggered sensors. It is worth noting
that infrequent events slow down the execution of the Process
Discovery algorithm and do not contribute to the definition
of the model. This is the case of sensors triggered by the
guest and the pet. Indeed, the guest performs sporadic, and
hence infrequent, activities. As to the pet, we can assume
its behavior is independent of user’s behavior; for example,
when the user cooks the pet could be in any other room
randomly triggering sensors other than those activated by the
user. So the sensors activated by the pet are outliers in each
trace of considered micro-activity event logs. Hence, in order
to further reduce the complexity of the problem, for each
macro-activity we only consider the most frequently triggered
motion sensors. In particular, for each micro-activity event
log, we keep only those sensors whose occurrence frequency

TABLE IV
SENSORS AND RELATED OCCURRENCE FREQUENCIES.
Watch Kitchen Read Desk
TV Activity Activity
Sensor | Freq. | Sensor | Freq. | Sensor | Freq. | Sensor | Freq.
MO08 | 48.08% | M023 | 26.86% | M004 | 65.67% | M007 | 63.38%
MO026 | 8.16% | MO14 | 17.26% | M027 | 5.61% | M026 | 15.78%
MO003 | 2.98% | M022 | 14.24% | M003 | 3.79% | MO08 | 2.83%
MO007 | 2.96% | MO15 | 11.05% | MOO1 | 2.28%
MO001 | 2.87% | MO12 | 7.24% | MO12 | 2.25%
MO027 | 2.53% | M027 | 3.84% | M022 | 2.15%
MO006 | 2.10% | M003 | 3.67% | MO005 | 2.05%
MO17 | 2.03%
Master Meditate Master Guest
Bedroom Act. Bathroom Bathroom
Sensor | Freq. | Sensor | Freq. | Sensor | Freq. | Sensor | Freq.
MO028 | 25.35% | M024 | 62.66% | M025 | 51.46% | MO18 | 38.76%
MO025 | 23.83% | MO11 | 7.00% | MO13 | 23.04% | MO17 | 18.37%
MO020 | 12.06% | M028 | 3.65% | MO028 | 8.85% | MO003 | 6.17%
MO021 | 7.08% | MO16 | 3.19% | M020 | 3.86% | MO10 | 6.08%
MO13 | 4.53% | M025 | 2.89% MO11 | 5.74%
MO19 | 4.04% | M020 | 2.13% MO009 | 3.43%
MO009 | 2.81% | M022 | 2.05% MO16 | 2.45%
MO022 | 2.42%
MO12 | 2.24%
MOI5 | 2.16%
TABLE V

FITNESS VALUES OBTAINED BY CHECKING THE CONFORMANCE OF
MACRO-ACTIVITY MODELS OVER RELATED REDUCED LOGS.

activity fitness (%)
Watch TV 99.69
Kitchen Activity 97.96
Read 94.15
Desk Activity 94.91
Meditate 99.69
Master Bathroom 99.49
Master Bedroom Activity 98.56
Guest Bathroom 93.82

is greater than or equal to 2% of the corresponding event
log. Table IV shows these sensors and related frequencies.
After this filtering operations, we obtain a set of reduced
logs for the considered macro-activities. These logs have been
used to extract macro-activity models adopting the infrequent
Inductive Miner algorithm. In order to choose the threshold
parameter, we performed several experiments with threshold
ranging from O to 1 (step 0.1). Hereafter we set the threshold
to 0.20, which on average returned the best balance between
fitness and simplicity. Discovered models show a high fitness
with respect to related reduced logs, as reported in Table V.
This means that each model is able to correctly replay its
reduced log. In order to evaluate the effectiveness of models in
describing the related macro-activity, we have also computed
the fitness of each macro-activity model with respect to any
micro-activity event logs. Results are shown in Table VI.
The discovered model for a certain macro-activity a is an
effective representation if it is able to replay the traces in
the corresponding micro-activity event log and is not able
to replay traces of other event logs. This means that, for
the i-th row of Table VI corresponding to a certain macro-
activity a;, the maximum fitness value should be at the i-
th column of the event log (in bold in the Table), while
values for other columns should be lower. This behavior
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Fig. 5. Macro-activity model for Desk Activity.

TABLE VI
FITNESS VALUES OBTAINED BY REPLAYING ALL MICRO-ACTIVITY EVENT
LOGS OVER ALL MACRO-ACTIVITY MODELS.

[ Reduced Models | Micro-Activity Event logs |

Watch | Kitchen Read Desk
TV Activity ca Activity
Watch TV 77.30 14.73 17.15 89.61
Kitchen Activity 14.29 88.42 19.37 8.20
Read 7.30 19.57 80.55 7.98
Desk Activity 13.49 6.58 6.02 82.70
Meditate 8.97 23.14 7.03 8.27
Master Bathroom 5.77 6.81 5.66 8.00
Master Bedroom Act. 8.77 7.37 5.88 9.48
Guest Bathroom 11.79 20.00 7.75 7.37
Meditate Master Master Guest
Bathroom | Bedroom Act. | Bathroom

Watch TV 11.60 15.17 13.24 34.77
Kitchen Activity 17.09 13.72 10.01 24.96
Read 10.71 14.65 7.63 18.67
Desk Activity 8.35 14.31 6.74 15.85
Meditate 83.8 53.54 56.29 23.33
Master Bathroom 11.30 90.72 67.40 15.52
Master Bedroom Act.| 12.64 86.85 82.32 16.89
Guest Bathroom 14.15 15.56 11.46 81.15

Fig. 6. Macro-activity model for Read.

is experimentally confirmed for the following macro-activity
models: Kitchen Activity, Read, Desk Activity,
Meditate, Master Bathroom and Guest Bathroom.
Models obtained for Watch TV and Master Bedroom
Activity return high fitness values both for the related ac-
tivity and for another one. In particular, the Watch TV model
seems to be able to better represent the event log of Desk

Activity than the one of Watch TV. The main reason for
this inaccurate result is that the two activities take place in the
same room and in both cases the user often stops. As a matter
of fact, the two event logs share the most frequent sensors,
i.e., M007, M0OO8 and M026. Furthermore, the reduced log for
Watch TV includes all sensors in the reduced log of Desk
Activity. Hence, the model for Watch TV is able to
replay traces of Desk Activity, but the viceversa does not
hold. We observe the same behavior for Master Bedroom
Activity and Master Bathroom. In this case, the re-
duced log of Master Bedroom Activity contains sen-
sors of the one of Master Bathroom. When we check
the conformance of the micro-activity event logs of Master
Bathroom and Master Bedroom Activity over the
Master Bedroom Activity model, the resulting fitness
values are 86.85% and 82.32% respectively. Replaying the
same logs over Master Bathroom model, fitness values
become 90.72% and 67.40%, as expected. In order to improve
the results one could reduce the granularity (e.g., by merging
Desk Activity and Watch TV in a sort of living room
activity) or the filtering frequency for those micro-activity
event logs with few sensors in the reduced logs (e.g., Desk
Activity and Master Bathroom). For the sake of space,
in Figures 5 and 6 we show two of the eight discovered
models®, namely Desk Activity and Read respectively.

The two models highlight how the use of the reduced log
allows to simplify the discovered model and to make them
more understandable to human analysts. The model for the
Desk macro-activity (Figure 5) is formed only by living
room sensors (see Figure 4). In particular, the process is
characterized by repeated activations of the sensor closer to
the desk (i.e., M007), interspersed with sporadic activations
of M0O0O8 and MO0026. This behavior is compatible with a
user who is sitting at her desk for a long time, but she is
not perfectly stationary and several subsequent activations of
the sensor are stored in the event log (see Section V-B1).
Furthermore, the user occasionally leaves the room and so
both M008 and M026 are triggered (the parallel path in the
middle of the model).

The higher simplicity of the discovered model when using
the reduced log can also be appreciated in the macro-activity
model of Read (Figure 6). In the main path (the upper in the
model) only the M004 sensor is activated, showing that, while
reading, most of the time the user stands still without moving.
Sometimes she moves while reading to reach the window (near

3AIl models are available at
mining/tree/master/behavior-models

https://github.com/KDMG/process-
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MO005) and the main door (near M0O1), so other sensors in the
room are triggered.

VI. CONCLUSIONS

This work discusses a methodology aimed at discovering
user behavioral models from event logs generated by sen-
sors activation in a smart environment. After a preliminary
preprocessing step needed to address issues related to errors
and environmental noise, Process Discovery techniques are
exploited for model generation, in particular the infrequent
Inductive Miner algorithm [22]. While traditional activity
models characterize the way a user executes a sequence of
daily tasks (e.g., reading, watching TV, sleeping etc. etc.),
the specific focus on micro-activity models is novel in the
Literature, and allows to retrieve the flow of sensors activations
when a given macro-activity is performed by the user.

The effectiveness of the approach has been experimentally
evaluated by considering a real-world case study from the
CASAS project of the Washington State University. Further
experimentations are in line, both taking into account other
datasets from the same project and from HicMO [25] a project
funded by Marche region which involved several enterprises
and universities to establish a laboratory for active ageing.
Several extensions of the methodology are currently being
developed. Firstly, we are studying techniques to detect the
most frequent behaviors and we are also planning to ex-
ploit sub-graph mining techniques [26], [27]. Moreover, the
application of this technique to environments with multiple
users will require particular care in defining the criteria to
distinguish activities performed by each of them separately or
collaborative activities performed jointly.
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