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Abstract: The evaluation of the canopy in orchard cultivation is a key aspect for the main cultivation
techniques, such as pruning, thinning, harvesting, production and improved fruit quality. The
possibility of having a periodic screening of the state of development of the vegetation can be of
practical support to growers. Research on the application of precision agriculture has provided
tools for reading and interpreting crops, and the resulting information is potentially useful. Many
of the systems under study provide after monitoring information processing systems that reduce
the timeliness of intervention. Especially in intensive systems such as olive groves, knowing the
precise intervention points is often essential. In the present work, a multi-parameter instrument
was used for field monitoring on the agricultural tractor to analyse the canopy. The system allows
measuring various indicators such as height and density of the canopy and the temperature and
humidity of the ambient air and at the leaf level. The first evaluation of the data made it possible
to identify areas with greater vegetative concentration and greater or lesser development. The
system made it possible to identify with good approximation the homogeneous areas, based on
the Canopy Index (CI) evaluation to be subjected to subsequent and specific management efforts,
dividing them into low, ordinary, and high vegetative growth. The results highlight the possibility of
directly combining operators able to intervene with the same passage, selecting based on differences
in growth, typical varietal specificities, and areas of deficient development or that are affected by
plant diseases, confirming the objective of defining the areas of the orchard that require different
management and workload techniques.

Keywords: precision farming; simulation model; sensors; automation

1. Introduction

In recent decades, various possibilities for the remote monitoring of agricultural pro-
duction have been developed based on data acquisition from orbiting satellites, aircraft,
and drones. Many remote sensing and canopy evaluation experiences occurred in vine-
yards [1]; however, many studies were also carried out in orchards focusing, above all, on
the production phase and increased fruit production [2–5]. In this respect, even if limited
to pome and stone fruits, the investigations focused on the grouping of fruits in the plant,
single branches, the solar exposure, and the growth rate of the fruits [6].

Orchard management consists of a series of tasks that require mental concentration
and physical commitment following the various types of interventions that, in turn, result
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from the different cultivated species, the pedoclimatic and plant conditions, the age, and
the fruit load and positioning in the plant.

The advantages of intensive cultivation have long been known for improving manage-
ment and facilitating the introduction of technology [7]. In olive growing and other fruit
tree cultivation systems, the pruning effort is second only to thinning and harvesting in
terms of cost (mechanical pruning versus manual pruning efficiency is more than 20 times.
It generally accounts for about 20–30% of annual cultivation costs) [8]. The olive harvest-
ing costs were monitored in different training systems and plant densities starting from
traditional systems [9]; however, what makes pruning a critical crop phase is the inherent
danger pruners undergo independently from adopted safety measures (e.g., falling height
risk, hand/machine cutting system). Tombesi et al. [10] studied the effort that pruners
must sustain when working in an olive tree grove with vase-shaped plants, 5 × 5 m spaced.
Comparing five teams of well-trained pruners equipped with a chain saw, chain pruner,
lopper, and pneumatic pruning shears with and without an extension pole, it was observed
that the working capacity was 16–23 trees h−1 and that when more massive and more
numerous cuts are necessary, the less tiring working equipment consisted of a chain saw
coupled with a pneumatic pruning shear. A preventive screening on the canopy could
replace the traditional monitoring of the entire grove (made of generic and repetitive
evaluations on the plant crowns), providing pruners and other operators with helpful
information about where and to what extent to intervene.

In olive tree groves, especially in high-density cropping systems, the varieties and
agronomic techniques are the most critical factors that affect fruit production and plant
adaptation to the mechanical operation until harvest [11]. In open field conditions, the
need for specific mechanical pruning starts from the 6th year of planting to be repeated
every year. Medium-low vigour cultivars (Spanish and Greek) showed good adaptability
to mechanical and manual prunings without yield impairment. On the contrary, medium-
high vigour cultivars (both new and belonging to the Italian tradition) require mechanical
hand pruning to control the canopy size, but this operation can severely impair their yield
production constancy level. [11,12]. It follows that pruning could represent one of the many
cultivation operations that most benefits from remote management of the canopy.

The Council for Agricultural Research and Economics (CREA), between the end of
2019 and spring 2020, carried out some tests with a multi-parameter sensor mounted on
an agricultural tractor ordinarily used for the primary cultivation operations. The tests
aimed to monitor and highlight the different vegetative phases of an intensive olive tree
grove to characterize the canopy and identify which specific and point-like areas of the row
undergo progressive vegetative development, flowering, fruit set, and ripening to provide
helpful information to olive growers.

2. Materials and Methods
2.1. Crop Survey

The test occurred on a 0.95-hectare surface within an olive grove of 1.85 hectares
located in Agugliano (Ancona, Italy) in a high-density olive orchard (1250 trees ha−1,
4.0 m × 2.0 m) planted in 2011 at the experimental farm of the Polytechnic University of
Marche, Italy (43◦32′55.57′′ N, 13◦21′52.69′′ E, 85 m a.s.l.). The experimental orchard aims
to evaluate the attitude of several local, national, and international olive varieties grown
in an intensive growing system in specific pedoclimatic conditions. Initially trained as a
central leader, the tree canopy was afterwards flattened according to a hedgerow, removing
long branches toward the interrow.

The soil is with a clay prevalence, grassed between the rows and mechanically man-
aged for weed control along the row. The orchard management relies on an agroecological
approach with integrated pest management. Fertilization and complementary irrigation
are supplied according to seasonal requirements.

The climatic data source are the Centro Agrometeo ASSAM by the weather station
of the University of Polytechnic of Marche located in the experimental University farm of
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Agugliano (An) from which the data of the temperature, rainfall, and rainy events were
extrapolated. In the monitored period, the environmental conditions are recorded from
five months first of winter passage and one month after the summer test in June.

The screening tests were carried out at two different vegetation steps: in Decem-
ber 2019, after fruit harvesting, and in June 2020, when plants were in the complete
vegetative phase.

2.2. Multiparametric Sensor

The Proximal sensors used for the tests consisted of two RGB optical matrix imaging
sensors (mounted on the left and right of the tractor) and the related algorithm, called
Canopyct [13], whose output is the Canopy Index (CI): a dimensionless number ranging
between 0 and 1000 directly correlatable to physically based variables such as LAI (Leaf
Area Index) and TRV (Tree Row Volume).

The multiparametric sensor (Figure 1) works in the RGB colour space in the respective
bands of 500, 600, and 690 nm, weighing less than 1000g, with a power supply at 12v,
protection level IP68, the possibility of dedicated connection or CAN-BUS, with sampling
frequency 1–20 Hz, a distance of reading from 25 to 300 cm of positioning with a reading
window of 60◦ from 60 to 250cm. In addition to the CI, it measures environmental tem-
perature, leaf temperature, relative humidity, and distance from 30 to 150 cm using an
ultrasound system.

Figure 1. Image of the modular measuring system adopted in the test. The system is easy to install in
any type of tractor in the front or rear position and able to increase the survey frequency as needed.

The sensor can also perform the real-time control of variable rate technology machines:
in this case, the sensor acquisitions can modulate the intensity of the intervention of the
operating machine (e.g., sprayer, trimmer, defoliator) placed on the rear of the tractor itself.
Such monitoring may occur using previously acquired data and real-time acquisitions: the
sensors’ range of acquisition embraces a width of up to 20 m transversely to the direction
of advancement of the tractor. The CI readings are insensitive to the differences in the
illumination of the vegetated wall (e.g., presence/absence of clouds, height, and angle
of the sun, shading). The Canopyct algorithm processes the acquisitions from the two
RGB imaging sensors: for each sensor, after calculating the Hue (H), Saturation (S), and
Brightness (L) coordinates of each pixel of the image from its R, G, and B components, the
software calculates a linear combination of R, G, B, H, S, and L of any pixel and compress
the data into a single dimension. The acquisition system provided for a reading of the data
with a frequency of 1 Hz.
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2.3. Methodology

Therefore, the collected values had an interval of about one meter, with a variability
caused by the small variations of the forward speed. The continuity of the values over
the entire surface was obtained by applying the processing by interpolation with the
kriging method, developing the krige function of the gstat package of the R software on
the collected dataset.

Afterwards, there is the creation of a thematic map: the instantaneous acquisitions of
the RGB sensors undergo a grouping technique that classifies each pixel of the image as
belonging to the vegetation or not following a statistical data processing algorithm based
on a “two-class” implementation of the Jenks Natural Breaks classification method [14].
Finally, the CI results from the following formula:

CI = Npixvegetation/Npixtotal × 100 (1)

where:
Npixvegetation = is the total number of pixels of the image classified as “vegetation”;
Npixtotal = is the total number of pixels in the image.
The overall CI for a single position results from the average of the left and right

acquisitions. Applying different intelligence data filtering techniques to the collected data
removes the readings unrelated to the crop.

Before the acquisition tests with the proximal sensors, each plant of the olive grove was
characterized based on geographic coordinates, size (i.e., the linear width—m—measured
with a meter from one end to the other of each plant) and the capturing of a frontal
photograph on the row (two pictures, one for each side).

The collected data underwent statistical processing with the software R [15] through
the “raster” function of the “raster” package [16]. A regular grid of geo-localized points
was prepared to extract the CI values from each of the 16 rasters obtained during field
reading. It was, therefore, possible to obtain for each plant a matrix of values having
16 rows and 11 columns (Figure 2).

Figure 2. Example of CI acquisition. The dashed square in the left picture represents the “focus” of the sensors. The
numerical matrix on the right shows the organization of the acquired CIs (16 rows and 11 columns).

The calculation of the difference in canopy index from June 2020 to December 2019
allowed for the assessment of the dynamic of the canopy zone in the considered period in
each position of the orchard and in any row at single plant level, calculated as follows:

∆CI = CIJune 2020 − CIDecember 2019 (2)

where:
CIJune 2020 = canopy index on June 2020
CIDec. 2019 = canopy index on December 2019
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The resulting dataset underwent processing with an Excel spreadsheet and Minitab
17 software to point out the variability of the various rows of CIs and define the setpoints
useful to establish which canopy zones are subjected to the most extreme variations. Such
discrimination was achieved by determining for each row of the matrix the interquartile
range (IQR) and pointing out the values deserving much attention.

Data analysis foresaw a two-step process. In the first step, all the calculated ∆CIs
underwent basic data processing to depict the variability (box plots) and establish the
percentiles. Then, in a second phase, the percentiles were georeferenced.

3. Results and Discussion
3.1. Environmental Data

Weather conditions were typical of the region, with average temperatures progres-
sively decreasing from August 2019 to January 2020, while remaining, in the following
summer, lower than the previous year. Concerning rainfall in the period of August–
December 2019 and of January–June 2020, there was a significant reduction in rainfall
almost equal to rainy events (days), going from over 150 mm to 105 mm (Figure 3). The
winter was rainy in the first period, favouring the storage of water in the deep layer of
soil, but significant rainfall reduction in the spring may have reduced the initial vegetative
phase of the olive plants.

Figure 3. Environmental conditions in the intensive olive orchards.

3.2. Crop Data

The tree height, the longitudinal (along the row) and transversal (perpendicular to
the row) diameters of the canopy, the height of the first branch from the soil, and the
trunk cross sectional area (TCSA) at 200 mm from the ground were measured in July 2019
and the average values ± standard deviation were 3.23 ± 0.35, 2.24 ± 0.36, 1.71 ± 0.23,
0.67 ± 0.21 m, and 6752.42 ± 2512.15 squares mm, respectively.

The resulting ∆CI dataset ranged from −228 to +228. Of course, each row of data has
its pattern of variation as it refers to specific plant heights. This analysis aims to point out
which plants eight shall undergo visual inspection: the distribution of the ∆CIs points out
any potential increase (∆CI > 0) or decrease (∆CI < 0) of biomass.

The IQR is the range of the middle 50% of the ∆CI distribution that the outliers can
hardly ever influence, resulting in a robust measure of the occurred variability

Figure 4 points out such variation. For each row of data, it is observed that the
difference between the two canopy conditions is not always positive. For some rows,
particularly, i.e., R10 to R14, the IQR relies entirely on the negative part, meaning that such
canopy fractions decreased in the considered period. However, some other rows of ∆C is
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have their IQR above or predominantly above zero (i.e., R2 and R3), meaning that a more
intense vegetative activity or redistribution occurred.

Figure 4. Box plots representation of the ∆CI is obtained in each row (from 1 to 16) of the orchard.

The quantiles analysis also provided useful hints to assess the threshold above which
the observed variation shall be considered non suspected (Figure 4).

3.3. Data Analisys

In a normal distribution of data such as that sampled here, the biased observations lie
outside the IQR. However, based on all the observations, ∆CI values between −60 and +4
(representing 55% of the observations) provide average canopy growth information. The
canopy modifies according to the weight increase for the fruits and the branches’ ordinary
growth rate. Here the 30th and the 85th percentile represent the thresholds above or below
which the information deriving from ∆CI calculation brings to alert it allows to identify
the points of the plant characterized by more remarkable vegetative growth resulting from
either more young leaves and branches (e.g., requiring pruning) or more scarce or damaged
plant sectors (e.g., the rise of a pest attack) (Figure 5).

Figure 5. Representation of the percentiles of all the ∆CI values and positioning of threshold alert for
low and higth growing.

Warning for excessive growth, not only pruning even just vegetative not fruit discrim-
ination.

As explained above, each matrix of 9 columns and 16 rows represents a plant
(144 acquisitions overall). It is possible to convert numerical data into percentages us-
ing the following criteria:
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If ∆CI < −62 = warning low growth (W)
If −62 < ∆CI < 45 = ordinary growth (O)
If ∆CI > 45 = warning high growth (P)

For each plant, the frequencies’ percentages can be calculated and represented graphi-
cally (Figure 6).

Figure 6. Percentages of ordinary growth (dashed blue), high growth (green), and warning situations
(red) in the monitored orchard. The x-axis reports the labels of the plants.

Such a chart shows that, throughout the olive grove, the ordinary growth situation is
generally widespread. However, some critical zones need attention where a loss of canopy
index occurred (e.g., some predominantly peripheral areas), highlighting some risks for
future production.

The system allows the precise identification of ordinary, high, and low vegetative
areas that can support the operator in choosing the specific areas of intervention for fruit
growing management. Spanish experiences, the most known reference areas for intensive
olive growing, have already characterized the water needs and management [17,18] of
intensive olive groves. Some cultivation operations substantially impact production costs,
and various authors have noted their impact on various fruit species [19]. CREA has
already carried out experiences on regulating the fruiting load monitoring both flowers
and fruits [20] if it should be particularly uneven in the detected canopy for precision chose
of intervention orchards area. In other orchard studies [21], remote sensing solutions exist
for monitoring fruit growing as a function of specific fruit load. There are several and
available alternatives of remote and proximity systems to detect canopy uniformity and
distribution [22]; however, the possibility of having them installed on the machine that
ordinarily performs the work allows for the constant updating of the situation as a result
of performing periodic passages inside the olive grove.

In the present work, thinking only in terms of ∆CI, it is also necessary to pay attention
to the different shade of the plant parts expecially in term of leaves between December,
that is, almost at the end of the vegetative season with more old leaves, and June of the
following year in which the young leaves can be read with different canopies, for which
further and specific investigation is required. Similar considerations can be made for the
branches and apical parts of the same.

The areas defined with the specific CI value, framed in one of the three areas (low,
medium, and high), after precise geolocation, required an in-depth study for a better
characterization of the pixel (Figure 7).
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Figure 7. Detail of an in-depth area for CI evaluation where branches, young leaves, and fruit
are integrated.

Once the aspects to be highlighted have been defined with sufficiently detailed criteria,
artificial neural network (ANN) approach methodologies could be applied aimed not only
at the identification of two classes of pixel (vegetation and non-vegetation), but also of
further, progressively more specific physiological aspects as already experimented in
the definition of the periods of thinning intervention for the evaluation of the forces of
detachment of fruits [23].

Such information can also be transformed into a KML layer and added to any map
rendering software (e.g., Google Earth), providing immediate information to farmers on
the critical zones’ location for more investigation.

The resulting graphic representation (Figure 8) helps identify the most critical areas in
this case study. Both warheads signal warnings could be attributed, for example, to the poor
effect of pesticide treatments, poor fertilizer distribution (e.g., when starting the spreading),
and transverse cold currents passages are all aspects that are to be investigated but which,
avoiding the generalized control of the plot, can be summarized in a few monitoring areas.
Similar considerations could apply to the left side of the plot, where other criticalities
are highlighted.

The study of the canopy index, on the one hand, allows to precisely identify the
areas with greater or lower vigor; on the other, it markedly signals the problems linked to
identifying the correct causes of this diversity. Since the causes are multiple and of different
intensity, the analysis of these aspects deserves in-depth studies such as to recommend self-
learning systems (with support of artificial intelligence) that can always better characterize
defined index ranges from 1 to 1000, which can also progressively indicate the most
probable cause in term of agronomic aspects and technical level. This aspect can show
different interpretation possibilities of the canopy index (CI) not directly linked to different
plant parts.

Many operations of orchard management are mainly made up of the visual control
of all plants, the evaluation of vegetative aspect, and intervention; generally weighted
inversely to exposure order, visual control and vegetative evaluation often make up the
prevalent part of the work so that by indicating the intervention areas in advance to the
operators, work times can be reduced significantly. Furthermore, the progressive training
of personnel in detecting the anomaly and associating the specific intervention measure
and intensity level allows making all types of interventions that can be managed with this
PA devices approach more and more targeted and efficient. Further investigations could
be aimed at specific operations such as pruning at a further classification of the type of
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intervention (heavy or light, reform or production) to identify and localise the different
types of intervention. Other aspects can be focused on, e.g., fertilizer distribution and
localized quantity, branch addressing/bending, presence of disease or pests, and type and
intensity of the problem. This additional function can be applied profitably, for example,
by analyzing the location in the plant profile (height/middle/low) with characterization of
the areas of greatest demand represented on the obtained maps.

Figure 8. Graphical representation of the plants based Eg on the Pruning index: 0–5% (orange);
5–20% (greenish); 20–35% (light green); and >35% (dark green).

A limit to these considerations can be represented by the fact that by evaluating only
the difference in growth in terms of canopy, even just the loss of some leaves, we can not
detect differences, or if only the branch remains, we can indicate only alerts with signalling
to the operator of direct verification.

Specific studies have allowed for the development, even if in other research contexts,
of protocols and models for the definition of homogeneous areas through the multivari-
ate analysis of the data obtained [24,25]. Thanks to previous experiences in forecasting
modeling, the homogeneous areas defined can also be clustered by hierarchical or other
algorithms developed [26–28], which can then be analyzed for specific problems or needs
for intervention.

Moreover, the hyperspectral analysis of the ∆CI can point out vegetation indices able to
develop novel algorithms for predicting the Leaf Area Index (LAI) of crop canopies and the
remote estimation of crop chlorophyll content in the context of precision agriculture [29–31].

The possibility of obtained different homogeneity areas of the canopy requires at-
tention above all in the definition and interpretation of spatial heterogeneity and specific
correlation with crop yield [32]. In this experience, the canopy analysis is not always
directly linked to olive yield but only to different growing habits.

Other in-depth analyses may concern the canopy characterization in terms of the
colour and shape analyses of foliage to individuate homogenous growing areas such
as symptoms of deficiencies or excesses of mineral nutrition as demonstrated in other
crops [33]. In addition, the development of systems can evaluate the effectiveness of the
mechanical distribution of fertilizer and defence treatments in the field to rationalize their
distribution only in the areas of actual need with improved treatment efficiency and envi-
ronmental protection [34]. It can finally enhance the possibility of providing precise maps
of points that require any direct-field verification to integrate an ordinary simplified tech-
nology synergy between crop and operator to benefit the precision farming applicability.
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The presented work allows the easy evaluation similar to other canopy detection and
analysis systems such as LIDAR with reference to the development and use of the Canopy
height model (CHM) [35]. The system also has the advantage, being purely optical, of not
presenting unknown and uninterpretable areas as happens with other technologies for
which specific filling software of modest reliability are sometimes required as they borrow
the single values from the neighbouring pixels [36].

This result can be obtained with tools directly available without external monitoring
and data processing systems. The distribution of the values of the canopy index in a
1–1000 standard index is more simple than a traditional NDVI index, being able to be
directly connected with lateral or rear operator machines used for other operations such as
spraying and fertilization with VRT systems and with the possibility of excluding plants or
rows sections for precision crop management.

The work showed the possibility of highlighting specific areas of the plot but, above
all, underlined the need to investigate further the reasons capable of affecting the IC in
field conditions.

4. Conclusions

The experimental activity had the main objective to characterize the canopy of an
intensive olive orchard in terms of the height, density, and growing homogeneity to
support the growers for orchard management in a precision agriculture approach in the
RGB approach.

The prescription map obtained in two different vegetative phases for the analysis
of different canopy indexes showed the main differences caused by a lack of branches,
foliage density, and the presence and lack of fruits. The processing of the two consecutive
maps highlighted these critical areas that require attention because a loss of the canopy
index has occurred. The evaluations are conducted in terms of the differential canopy
index (delta CI). The reasons for this loss, well indicated and geolocated, can be adequately
investigated for olive growers also for focused specific intervention (e.g., pruning, presence
of disease and pests, presence of cold damage). The distribution of the canopy obtained
in the field showed that the areas individuated with the reduced thickness and other
with more developed, but the correlation with fruits yield not is easy to highlight. This
study, therefore, represents a helpful contribution to the verification of the possibility of
the practical application of precision agriculture in new areas of interest, for example, as
an olive manual pruning intervention which sees the main advantage in indicating the
points and intensity of intervention and avoiding the continuous direct field control of
the operators.

The presented paper allows direct and easy evaluation compared with other canopy
detection without other analysis systems, such as LIDAR and the Canopy height model
(CHM) methodology. The system also has the advantage of being purely optical and does
not require the further interpretation of unknown pixel areas.

5. Future Work

The research activity will continue on both strands of orchards and tree crops and
herbaceous/industrial crops to create periodic monitoring systems that allow researchers
to study the evolution of the development/fruiting of plants and allow for targeted control
operations (e.g., growing/defense interventions).

It is planned to combine operators capable of carrying out treatments aimed at the
CI index detected previously on the same tractor in the same passage for orchards and
tree crops.

For herbaceous/industrial crops, the installation above the tractor cabin allows, on
the one hand, to record data at each crop passage and, on the other hand, to perform
differentiated treatments only in the areas at or above or below specific CI values.
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6. Patents

This section is not mandatory but may be added if there are patents resulting from the
work reported in this manuscript.
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