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Abstract: Land cover changes in mountainous areas due to silvo-pastoral abandonment can affect
soil stability, especially on steep slopes. In addition, the increase in rainfall intensity in recent decades
requires re-assessing landslide susceptibility and vegetation management for soil protection. This
study was carried out using the software SlideforMAP in the Mt. Nerone massif (central Italy) to
assess (i) the effects of land cover changes on slope stability over the past 70 years (1954–2021) and
(ii) the role of actual vegetation cover during intense rainfall events. The study area has undergone a
significant change in vegetation cover over the years, with a reduction in mainly pastures (−80%)
and croplands (−22%) land cover classes in favor of broadleaf forests (+64%). We simulated twelve
scenarios, combining land cover conditions and rainfall intensities, and analyzed the landslide failure
probability results. Vegetation cover significantly increased the slope stability, up to three to four
times compared to the unvegetated areas (29%, 68%, and 89%, respectively, in the no cover, 1954,
and 2021 scenarios). The current land cover provided protection against landslide susceptibility,
even during extreme rainfall events, for different return periods. The 30-year return period was a
critical condition for a significant stability reduction. In addition, forest species provide different
mitigation effects due to their root system features. The results showed that species with deep root
systems, such as oaks, provide more effective slope stability than other species, such as pines. This
study helps to quantify the mitigation effects of vegetation cover and suggests that physically based
probabilistic models can be used at the regional scale to detect the areas prone to failure and the
triggering of rainfall-induced shallow landslides. This approach can be important in land planning
and management to mitigate risks in mountainous regions.

Keywords: Apennines; critical rainfall; root reinforcement; protection forest; ecosystem services

1. Introduction

Natural hazards arise from the interaction of various physical predisposing factors,
including topography, soil characteristics and vegetation, and triggering events such as
intense rainfall. In mountainous regions, environmental features such as steep slopes,
fractured rock formations, and complex topography [1,2] significantly contribute to the
occurrence of shallow landslides, particularly during heavy precipitation events [3].

For centuries, the mountainous landscapes of the central Apennines have been shaped
by human activities such as grazing, timber, firewood, and charcoal production [4]. The es-
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tablishment of human settlements in these mountainous areas frequently led to defor-
estation or modifications to the natural slope, primarily through activities such as road
construction, footpath development, and terrace building. These alterations in land use and
the resulting changes in hillslope morphology are associated with an increased frequency
of landslides [5–7]. However, social changes since the post-war period have induced the
abandonment of mountainous areas, leading to rapid changes in land use [8,9]. After World
War II and until the 1980s, a national reforestation program for slope stabilization in this
area led to the planting of 760,000 hectares of mainly conifer tree species. These land cover
changes over the last 67 years have caused a simplification of the mountainous landscape
matrix but also reduced land management and maintenance after disturbances [10–14].

A significant body of research indicates that forested mountainous regions exhibit a
lower susceptibility to shallow landslides compared to non-forested slopes (e.g., [15,16]);
thus, vegetation represents a natural protection against natural hazards such as erosion
and landslides. Many researchers have made significant contributions to understanding
the effects of forests on shallow landslides [17–21]. Liu et al. [22] investigated the stabi-
lizing effects of Lolium perenne on slopes, highlighting the importance of roots and soil
cover for soil particle retention. Mehtab et al. [23] demonstrated that tree stem diameter
significantly influences root distribution and tensile strength in Cunninghamia lanceolata
forests, with larger diameters correlating with increased root reinforcement and enhanced
soil shear resistance.

The mechanism by which vegetation enhances slope stability involves a complex
interplay of mechanical and hydrological processes. We can identify three main mechanisms
of root reinforcement, as highlighted by recent studies on root mechanics and hydrological
modeling [24–26]: (i) roots contribute to an increase in soil stiffness, making the soil less
prone to deformation. As roots grow in the soil matrix, they create a natural reinforcement
structure, enhancing the soil’s overall resistance to shear forces and stiffness. This process
works by improving the load-bearing capacity of the soil, distributing external forces more
evenly and limiting soil deformation. Moreover, improved soil structure, supported by root
systems and microbial activity, further stabilizes the soil, reducing susceptibility to erosion
and landslides [18,27]; (ii) roots are highly effective under both tensile and compressive
stresses. Under tension, roots resist being pulled out of the soil in the upper and lateral side
of a landslide, while under compression, they offer resistance to being crushed or bent at the
toe of the unstable slope [24,28]. The tensile strength of roots, especially that of the larger
roots of plants or trees, is particularly important in slope stabilization [29]. Even smaller
roots contribute to this process, as they collectively form a network that holds soil particles
and enhances soil aggregation [27,30]; (iii) finally, one of the most critical mechanisms by
which roots prevent shallow landslides is by crossing potential shear planes within the
soil. Roots that penetrate across the shear plane or are growing in the substratum act as
natural anchors, resisting the slide movement by binding the layers together. This is the
most efficient way to prevent localized failures, reducing the risk of soil detachment and
displacement [28,31–34].

In addition to the mechanism described, canopy tree interception, stem flow, and soil
porosity significantly influence the hydrological balance. Canopy interception captures
rainfall, reducing the net amount that reaches the soil surface and slowing soil saturation,
which is a critical factor in triggering shallow landslides [35].

Developing slope stability models for assessing landslide susceptibility is an essential
research topic for risk analyses [36,37]. Refs. [38,39] analyzed some common slope stability
models used in the literature and suggested criteria for their selection. Improvements to
the data accessibility and analysis details required by these models make them usable at
different scales and in diverse contexts. The choice of a specific model depends mainly on
the scope of the analysis, the spatial scale, and the available data. For example, probabilistic
models are preferable for analysis at catchment or regional scales, because they consider
spatial variability and uncertainty of the required input parameters. However, when assess-



Land 2024, 13, 1575 3 of 15

ing the mitigation effect of vegetation against shallow landslides, it is advisable to use slope
stability models that explicitly consider vegetation cover and root reinforcement [14,31,40–43].

In this study, we analyzed the landslide susceptibility of a mountainous area and the
relationship with land cover changes over 67 years. The analysis involved the reconstruction
of scenarios based on different land cover conditions and rainfall intensity, aiming to
(i) model the effects of vegetation on slope stability by comparing past scenarios with
the most current ones, and (ii) evaluate the current stabilizing effect of forest cover by
considering precipitation with different return periods.

2. Materials and Methods
2.1. Study Area

The study area is in the central Italian Apennines, in the northern Marche region bor-
dering Umbria and Tuscany, where Mt. Nerone is one of the highest peaks at 1525 m a.s.l.
(Figure 1). The study area, approximately 5600 hectares, belongs to the Metauro River catch-
ment. Meteorological data for climate classification were retrieved from the E- OBS 27.0e
grid for 1950–2020 time intervals [44]. According to the Rivas–Martinez bioclimatic classi-
fication system [45], the study area has a temperate oceanic climate (sub Mediterranean
variant), an upper meso temperate thermotype, and a low humid ambrotype. The mean
annual temperature is 12 ◦C, and the mean annual cumulative precipitation is 1164 mm,
occurring mainly from autumn to early spring, with periods of water deficit in late July
and August. Geological substrates are predominantly limestones and dolomites [46], with
a widespread karst system [47]. The Regional Soils Service database identifies six different
soil types for this area, according to the FAO World Reference Base for Soil Resources
classification system. The most representative soil classes are Mollic Leptosols (69% of the
area), Calcari-Epileptic Phaeozems (22%), and Eutric Cambisols (4%), which show a fine
silty texture with coarse fragments. Soil thickness ranges from 25 to 150 cm. The study
area is mainly covered by pastures, shrublands, mixed broadleaf forests (Quercus cerris and
Quercus pubescens; Ostrya carpinifolia and Fraxinus ornus), a few Pinus nigra plantations, and,
above 1000 m a.s.l., pure Fagus sylvatica forests. Broadleaf forests were generally managed
as coppices and now are mainly stored coppices or undergoing conversion to high forests.
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Figure 1. Location of the Mt. Nerone study area (yellow boundaries) in the Central Apennines (red dot).
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2.2. Workflow for Assessing Shallow Landslide Susceptibility

The workflow for simulating landslide susceptibility using the SlideforMAP model
was developed through a series of methodical steps, summarized as follows:

1. Initial susceptibility assessment: We first calculated the susceptibility to shallow
landslides without considering the contributions from vegetation cover. This anal-
ysis utilized rainfall depths corresponding to return periods of 2, 30, 100, 200, and
500 years.

2. Vegetation contribution assessment (1954) using land cover classes: We assessed
the susceptibility to shallow landslides by incorporating the contributions of land
cover classes as found in 1954, alongside a rainfall depth representative of a 200-year
return period.

3. Vegetation contribution assessment (2021) using land cover classes: We evaluated the
susceptibility to shallow landslides, including land cover classes from 2021, alongside
a rainfall depth representative of a 200-year return period.

4. Vegetation contribution assessment (2021) using forest categories: We evaluated
the susceptibility to shallow landslides, including forest categories data from 2021,
and considering rainfall depths for return periods of 2, 30, 100, 200, and 500 years.

By combining the results from steps 1, 2, 3, and 4, we generated a total of twelve
distinct scenarios (see Table 1). The scenarios are designated using the RP (return period)
and land cover classification, represented as 200RP0, 200RP54, and 200RP21. In this notation,
the subscript 0 indicates no vegetation, 54 corresponds to vegetation cover as observed
in 1954, and 21 represents vegetation cover in 2021, an asterisk corresponds to the forest
categories instead of land cover classes. Figure 2 illustrates the data processing and
preparation steps required for the simulations. To the right of the figure, the scenarios
outlined in Table 1 are represented schematically, providing a clear visual representation of
the analyzed conditions.

Figure 2. Workflow diagram. Boxes with dashed edges relate to the preliminary step for determining
land cover changes. The flowchart elements are color-coded and shaped differently to highlight
various workflow stages. Boxes with solid edges indicate the process of slope stability analysis.
Data sources (gray cylinder), source data for stability assessment (light blue boxes), software (yellow
box shapes), and outputs (dark blue boxes) for the different scenarios (0 = no vegetation cover;
54 = vegetation cover in 1954; 21 = vegetation cover in 2021; 21* = vegetation cover 2021 with detailed
forest categories). The bulleted list to the right lists the analyses and comparisons carried out in
this research.
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Table 1. The 12 scenarios considered, reporting for each return period (RP), relative rainfall intensity,
and land cover scenarios. Subscript 0 = no vegetation, 54 = vegetation in 1954, and 21 = vegetation in
2021. The land cover 2021, which considers the forest categories, uses the symbol 21*.

Labelscenario Land Cover Return Period Rainfall (mm)

2RP0 no vegetation 2 272RP21* 2021

30RP0 no vegetation 30 5130RP21* 2021

100RP0 no vegetation 100 61100RP21* 2021

200RP0 no vegetation

200 66200RP54 1954
200RP21 2021
200RP21* 2021

500RP0 no vegetation 500 74500RP21* 2021

The comparative study between 1954 and 2021 aerial images focused on analyzing
changes in broad land cover classes, specifically broadleaf and coniferous vegetation, rather
than detailed forest categories and distribution. This approach was necessary due to the
limited information available on the forest types and volumes in the 1954 aerial imagery,
making it possible to effectively track and quantify the changes in land cover that oc-
curred between the two time periods, despite the constraints of the historical data. This
methodology allowed for a meaningful comparison of landscape-level transformations
over the 67-year interval, even without the ability to differentiate more granular forest char-
acteristics. Cross-comparisons between the no-cover scenario (200RP0) and the scenarios
with vegetation (200RP54 and 200RP21) facilitated the assessment of how vegetation cover
influences the probability of failure and the stability of slopes within the study area.

On the other hand, to evaluate the effectiveness of actual land cover in maintaining
slope stability, we analyzed 2021 forest categories alongside rainfall events categorized
by different return periods: 2RP21*, 30RP21*, 100RP21*, 200RP21, and 500RP21. Each forest
category was compared against its corresponding no-cover scenario (2RP0, 30RP0, 100RP0,
200RP0, and 500RP0).

2.3. Land Cover Data and Analysis

For the classification of land cover classes in 1954, the aerial photos were sourced
from the Italian Military Geographic Institute (IGMI), while satellite images from ©Google
Earth were utilized for 2021. The 1954 IGMI aerial photos underwent orthorectification
using contemporary satellite images and a 10 m resolution digital terrain model (DTM) as
reference data [48]. The geometric correction of the 1954 IGMI images was performed using
the PCI Geomatica software 2012, applying 50 control points per image, resulting in a mean
root mean square error (RMSE) of 16–19 m. Land cover classification for both the 1954 IGMI
images and the 2021 satellite images was conducted using a semi-automatic object-based
approach. This method integrated automatic segmentation through eCognition Developer
software 64 v8.9 (scale factor 100, color factor 0.5) with on-screen photo interpretation of
segmented polygons [8,49]. Manual classification of the polygons followed the Corine
classification system, categorizing nine land cover classes (Table 2): cropland (cr), tree
groves (tg), unvegetated areas (un), pasture lands (ps), other woodland areas(wl), broadleaf
forest (bf), conifer forest (cf), urban areas (ua), and roads and paths (rt). To validate
the classification data, 300 random points were visually classified, yielding an overall
classification accuracy ranging from 0.79 to 0.91, with a K coefficient between 70.3 and 77.1.
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Table 2. Values of root reinforcement (RR), shape, and scale coefficient assigned to each land
cover class or forest category (Holm oak—Quercus ilex L.; Downy oak—Quercus pubescens L.; Hop
hornbeam—Ostrya carpinifolia Scop.; Manna ash—Fraxinus ornus; Beech—Fagus sylvatica L., Turkey
oak—Quercus cerris L.). Detailed values assigned to forest categories are considered only in 21*
scenarios. a Vanacker et al. [50], b Shu et al. [51], c estimated by SlideforNET (https://www.ecorisq.
org/slidefor-net-en, accessed on 15 March 2023).

Land Cover Class Forest Category Label RR (kPa) Shape Scale
Croplands cr 0 a 0 0
Tree groves tg 3 1 0.1

Unveg. areas un 0 a 0 0
Pastures ps 0.5 b 0.5 0.1

Other woodlands wl 3 1 0.1
Broadleaf for. bf 10 c 2.07 0.1

Holm oak for. ho 10 c 2.67 0.17
Downy oak for. do 10 c 2.67 0.17

Hornbeam/Ash for. hm 10 c 2.07 0.1
Beech for. be 10 c 1.28 0.27

Turkey oak for. to 10 c 2.67 0.17
Coniferous for. cf 5 c 1.14 0.15

Black pine plant. bp 5 c 1.14 0.15

We obtained the change and persistence for each land cover class through a land cover
transition matrix. Moreover, we analyzed the land cover patterns in 1954 and 2021 by
quantifying diversity land cover metrics with Shannon evenness and Simpson indices,
using the QGIS LecoS plugin [52].

Finally, the broadleaf and coniferous land cover classes were subsequently categorized
into specific ‘forest categories’ (Table 2) according to the official databases established in
2001, including the regional forest Inventory [53], and the current forest management plan
of the Mt. Nerone area [54]. The broadleaf forests were classified into five categories: holm
oak (ho), downy oak (do), hop hornbeam–manna ash (hm), beech (be), and turkey oak (to),
while coniferous forests were designated as black pine (bp) (Table 2).

2.4. Rainfall and Soil Data Collection

Rainfall heights were obtained from the Regional Meteo Information System (http:
//app.protezionecivile.marche.it/sol/indexjs.sol?lang=it, accessed on 20 October 2022).
We used data series recorded from 1952 to the present from rain gauges located in the town
of Piobbico, north of the study area, to calculate the rainfall height for a 1 h duration and
different return periods through the Gumbel equation. The return periods were chosen
based on the regional guidelines [55] for determining hydraulic hazard zones along streams
and rivers, corresponding to 30 (30RP), 100 (100RP), 200 (200RP), and 500 (500RP) years.
Additionally, we used a return period of 2 years (2RP) to consider the most frequent
low-intensity rainfalls.

Six soil classes were identified following the Regional Soil Observatory (http://suoli.
regione.marche.it/ServiziInformativi/Cartografia.aspx, accessed on 20 October 2022) and
according to the Soil Classification System (USCS): from coarse-grained soils, with gravel
well-graded (GW) and sand-silt mixtures (SM), to fine-grained soils with silt and low liquid
limit clay (ML and CL) and silt and high liquid limit clay (MH and CH). The dataset
and maps used for the rainfall scenarios and SlideforMAP simulation are freely available
and reusable.

2.5. The SlideforMAP Slope Stability Model

For slope stability analysis, we used SlideforMAP, a 3D-physical-based probabilistic
finite slope model based on limit equilibrium analysis [43]. SlideforMAP produces a raster
file indicating slope failure probability values, which, along with outputs such as root
reinforcement types, soil pore water pressure, and passive earth pressure, facilitates a

https://www.ecorisq.org/slidefor-net-en
https://www.ecorisq.org/slidefor-net-en
http://app.protezionecivile.marche.it/sol/indexjs.sol?lang=it
http://app.protezionecivile.marche.it/sol/indexjs.sol?lang=it
http://suoli.regione.marche.it/ServiziInformativi/Cartografia.aspx
http://suoli.regione.marche.it/ServiziInformativi/Cartografia.aspx
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comprehensive understanding of failure probabilities. This model is particularly effective
for large forested areas, as is the case of the Mt. Nerone study area.

As a probabilistic model, SlideforMAP generates a substantial spatial distribution of
hypothetical landslides within the study area, assessing the stability of each by integrating
both deterministic and probabilistic parameters. Deterministic parameters include vegeta-
tion and soil hydrological characteristics, while probabilistic parameters encompass the
location of hypothetical landslides, their area, soil cohesion, internal friction angle, pressure
angle, and soil depth. A critical feature of SlideforMAP is its module designed to quantify
the contribution of root reinforcement to the stability of vegetated slopes, considering
both basal and lateral root reinforcement, as defined by Cohen and Schwarz [26]. Maxi-
mum lateral root reinforcement values were derived from the SlideforNET (SlideforNET
(https://www.ecorisq.org/slidefor-net-en, accessed on 15 March 2023)) web application
by simulating forest composition and structure, including dominant tree species, stem
density, and average diameter at 130 cm height. Basal root reinforcement was subsequently
calculated in SlideforMAP as a function of soil depth, employing a gamma distribution
function with shape and scale coefficients provided by SlideforNET for each forest category.

Root reinforcement values for broadleaf and coniferous land cover classes were as-
signed based on the most prevalent species: hornbeam–manna ash for broadleaf forests
and black pine for coniferous forests (Table 2). For the more detailed 2021 map, specific
root reinforcement values were assigned to each subcategory of broadleaf and coniferous
forests (Table 2). Root reinforcement values for cropland and grassland were taken from
existing literature due to their unavailability in the SlideforNET database. In the absence of
a defined value for “other wooded areas”, we assigned a general root reinforcement value
of 3 kN/m, assuming these areas consist of mixed stands. Urban areas and roads and paths
were excluded from the analysis.

The soil parameters incorporated in SlideforMAP included porosity (47% ± 6), field
capacity (31% ± 10), friction angle (31◦ ± 3.63), cohesion (0 kPa), and hydraulic conductivity
(5184 m/day). These parameters were calibrated using a 2-year return period scenario
reflective of actual forest characteristics, assuming a low probability of failure. Multiple
simulations were conducted to adjust the hydraulic conductivity, ensuring that less than
10% of the area exhibited a calculated landslide probability of less than 10%.

The resulting failure probability values were categorized into six classes: F10 for values
between 0 and 10%; F20 for values between 10 and 20%; F40 for values between 20 and
40%; F60 for values between 40 and 60%; F80 for values between 60 and 80%; and F100 for
values between 80 and 100%.

2.6. Slope Stability Model Validation

The Italian landslide inventory (IFFI (https://www.progettoiffi.isprambiente.it/, ac-
cessed on 9 August 2024), ISPRA [56]) identifies this area as having a significant susceptibil-
ity to landslides, mainly classified as rotational–translational movements. To evaluate the
performance of the SlideforMAP model, we conducted a receiver operating characteristic
(ROC) and area under the curve (AUC) analysis by comparing the IFFI dataset with the
failure probability estimated by SlideforMAP. In a GIS environment, we selected random
points within and outside the IFFI landslide areas, ensuring one point per hectare. We then
assigned the failure probability value estimated for the 200RP54 scenario to each point and
classified it as true-positive, false-positive, or false-negative. For instance, we considered a
true-positive point within the IFFI landslide area if the failure probability was greater than
1%. We repeated this process ten times following the same criteria, and we calculated the
AUC for each iteration.

3. Results and Discussion
3.1. Land Cover Changes (1954–2021)

Over the past 70 years (1954–2021), land use has changed considerably, causing evi-
dent shifts in land cover classes and a marked reduction in landscape diversity (Figure 3).

https://www.ecorisq.org/slidefor-net-en
https://www.progettoiffi.isprambiente.it/
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These observations are confirmed by the decreasing values of both Shannon evenness
(0.68 to 0.39) and Simpson (0.71 to 0.41) diversity indices, as reported for most of the
Apennines [8]. This process occurred in most Italian mountainous areas following the
depopulation of the marginal regions and the consequent abandonment of traditional
agro-pastoral activities [57]. This abandonment induced rapid secondary succession dy-
namics and the expansion of broadleaf forests, increasing their relative cover share by
64% (Table 1), corresponding to a landscape change of 29% (about 1634 ha). Conversely,
land cover categories like pastures (−435.08 ha), croplands (−419.28 ha), non-vegetated
areas (−201.08 ha), and other woodlands (−571.45 ha) decreased remarkably (Table 3).
In particular, croplands and other woodlands almost completely disappeared, decreasing
by 80% and 94%, respectively. Coniferous forests showed the highest relative area increase
(224%), even if their absolute value is negligible (26 ha, 0.46% of the landscape share).

(a) Cover 1954

Cropland

Tree grove

Pasture

Other woodland

Broadleaf forest

Coniferous forest

Unvegetated area

Urban area

Road

(b) Cover 2021

Land cover classes

Figure 3. Land cover in the Mt. Nerone area in 1954 (a) and 2021 (b).

Table 3. Land cover changes expressed as absolute values (hectares) and relative share or landscape
values (%) of each class.

Label Land Cover Absolute Class Relative Class Relative Landscape
Id Classes Change (ha) Change (%) Change (%)

cr Croplands −508.3 −80% −9.09%
tg Tree groves −66.3 −73% −1.18%
un Unveg. areas −322.8 −94% −5.77%
ps Pastures −271.0 −22% −4.84%
wl Other woodlands −516.5 −78% −9.23%
bf Broadleaf for. 1634.3 64% 29.21%
cf Coniferous for. 25.7 224% 0.46%
rt roads and paths −2.0 −5% −0.04%
ua urban areas 26.8 122% 0.48%

3.2. Effects of Land Cover Changes on Slope Stability (1954–2021)

The effect of land cover changes on slope stability clearly appeared in the three sim-
ulation scenarios with a 200-year return period (Figure 4): (a) no-cover (worst scenario,
200RP0), (b) 1954 land cover (200RP54), and (c) 2021 land cover (200RP21). The no-cover
(200RP0) scenario showed that 68.9% of the area, including all failure probability classes
(>1% failure probability), is potentially susceptible to landslides. A limited portion of this
area is represented by the highest probability classes, namely F60 (7.1%) and F80 (0.3%).
The comparison between the 200RP0, 200RP54, and 200RP21 scenarios highlighted the ef-
fect of vegetation cover. The stable area had doubled in 200RP54 compared to 200RP0
(68.2% vs. 29.1%) and increased further in 200RP21 (89.7%). F10 class areas had remained
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unchanged in 200RP0 and 200RP54 (22.6%) but decreased in 200RP21 to 7.4%. Signifi-
cant changes were observed for all three scenarios: the F20 class areas were reduced by
one-third in 200RP54 compared to 200RP0 (15.5% vs. 5.1%) and then decreased again in
200RP21 (1.2%); the F40 class areas showed a drastic reduction from 200RP54 to 200RP21
(23.5% to 1.9%).

200RP0

F100

F80

F60

F40

F20

F10

Stable

(a)

200RP54

(b)

(c)
Stable

(c)

200RP21

Failure probability 
classes (%)

(d)

Figure 4. Failure probabilities estimated using SlideforMAP for the 200-year return period rainfall
with (a) no vegetation cover, (b) 1954 land cover, and (c) 2021 land cover. In the legend, Fn represents
the failure probability class, where n is the maximum value of each class. In (d), the sum of the
relative areas is less than 100% because urban areas (ua) and roads and paths (rt) were not included.

3.3. Slope Stability Assessment with Different Rainfall Return Periods (2021*)

The analysis of slope stability based on the current forested area (forest categories
2021*) and different rainfall return periods showed significant differences in the extension
of the area of the failure probability classes (Figure 5). Increasing the return time of rainfall,
the total area with a higher risk did not change significantly. On the other hand, the areas
with low failure probabilities increased significantly (Figure 5). For example, the F10 areas
increased by 200 ha between the 2 and 100-year return period rainfall. The F20 area was
20 to 60 ha for the same RPs. Changes were limited for the remaining failure probability
classes (F40, F60) or insignificant (F80 and F100). In particular, the F100 class did not change,
even for the 500-year RP variation. In summary, with the current landscape (2021* scenario),
low failure probability (F10 and F20) areas showed a significant increase moving from
2RP to 100RP (Figure 5). The greatest change in the area was recorded with a 30-year RP.
In general, the greatest increase in unstable areas occurred in the 30RP scenario. The results
showed that this rainfall scenario resulted in the presence of areas with significant values of
failure probability (F80 and F100), highlighting the predominance of morphological and soil
characteristics in the slope stability dynamics of these areas, as well as the ineffectiveness
of root reinforcement in these cases.

The low correlation between the variation in the surface area of high failure probability
and increasing RPs suggested that geo-morphological and land cover factors drive landslide
susceptibility [58–60].

The spatial distribution of the failure probability classes in the different forest cate-
gories between the no-cover and 2021* scenarios changed significantly (Figure 6). The area
distribution for the different return periods remained nearly identical for all forest cate-
gories in 2021*. The increase for the F20 and higher classes was very minor. This indicates
that forests had an important role in reducing landslide susceptibility for all return periods,
whereas the no-vegetation cover scenarios showed a significant surface area increase with
high failure probability classes and higher return periods, as we would expect.
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Several species occupied areas with high failure probability when running the no-
cover scenario. This was particularly true for oak (do) and hornbeam–manna ash (hm)
forest cover. These woodlands colonized steeper areas of abandoned pastures that were
more prone to landslides. The presence or absence of woodlands significantly affected the
spatial distribution of the failure probability, particularly with high values of rainfall return
period. For the 2-year RP in holm oak (ho) woodlands, both the no cover and forest cover
scenarios showed a nearly 100% area in the F10 failure probability class, indicating that
it grows in relatively stable areas. With increasing rainfall rates at higher return periods,
the forest-covered areas remained completely stable (nearly a 100% area in F10), while
areas with high landslide probability classes increased, indicating the important effect of
this species in reducing landslide probability.

Figure 5. Surface areas with different failure probability classes and different return periods in the
2021* scenario.
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The analysis performed using the forest categories confirmed the role of forests in re-
ducing rainfall-induced shallow landslides [61–64], given the different efficiencies depend-
ing on tree species. Such differences derive from their root reinforcement and coefficients
(Table 1), considering the forest composition and density. Reduced efficiency is affected by
a tree species’ root system type and on-site conditions, slope, and soil depth in particular.
Deep root systems, as in Quercus spp. [65], provide the activation of basal root reinforce-
ment, considered the most effective type [26], where roots can reach the deepest and most
stable soil layers and provide strong anchoring [66,67]. On the other hand, shallow root
systems, like those of most pine species, have a lesser basal root reinforcement that rapidly
diminishes with soil depth [59].

3.4. SlideforMAP Validation

We validated the SlideforMAP model for slope failure susceptibility using the 200RP54
scenario, through a receiver operating characteristic (ROC) analysis (Figure 7) using the
R package called (pROC (https://cran.r-project.org/web/packages/pROC/pROC.pdf,
accessed on 9 August 2024). The ROC curve showed an average area under the curve (AUC)
of 0.865, with a sensitivity of 0.786 and a specificity of 0.953. An AUC of 0.865 indicated
a high level of discriminative ability for the model. With an AUC of 0.865, the model
performed well above random chance, effectively distinguishing between the positive and
negative classes. This high AUC value signified that the model was robust in identifying
true positives and true negatives across different threshold levels. A sensitivity of 0.786
represented a strong performance, with 78.6% of actual positive cases. A specificity, or true
negative rate, of 0.953 meant that the model correctly identified approximately 95.3% of the
actual negative cases, suggesting that the model was highly effective at ruling out negatives
and minimizing false positives.

In summary, the given values suggest that the model was proficient in distinguishing
between positive and negative cases, with a strong ability to correctly identify both true
positives and true negatives. The high AUC value underscored the model’s excellent
discriminative power, while the high sensitivity and specificity balanced each other, indi-
cating a well-optimized model suitable for practical application in scenarios requiring high
accuracy and reliability.
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Figure 7. ROC curves for predictive model performance at various random point distances.
The curves show the area under the curve (AUC) for random point minimum distances of 1, 5,
10, 15, and 20 m. The diagonal dotted line is the reference line that defines the ROC curve as a
random classification.
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4. Conclusions

The spatio-temporal analysis conducted in this work provided an overall understand-
ing of the effects of vegetation cover changes on slope stability. The use of SlideforMAP
provided quantitative information about the failure probability, simulating heavy rainfall
scenarios and becoming a helpful decision-support tool in land and forest management.
We used a series of scenarios encompassing different vegetation covers and rainfall re-
turn periods, considered critical conditions in understanding slope stability dynamics in
Apennine areas.

The analysis of land use changes over the past 70 years revealed significant ecological
transformations, consistent with those of most Italian mountainous areas, with essential
implications for landscape diversity and stability. Such shifts modify the ecological bal-
ance and influence slope stability, as demonstrated by the simulation scenarios assessing
landslide susceptibility under varying rainfall return periods.

Comparing landslide susceptibility in 1954 and 2021 showed how forest cover expansion
can decrease landslide probability, especially in areas at higher risk. Abandoned pastures
and agricultural crops, shifted to forest, did not determine a significant change in landslide
susceptibility, because of their location on gentler slopes. Considering the effect of rainfall
intensity with different return times, the extensive vegetation cover in 2021 provides an
effective stabilizing effect, at least for rainfall rates with a return period of up to 30 years.

The ongoing land use changes in the Apennines, featuring the loss of agricultural
land and the expansion of forest cover, present challenges and opportunities for landscape
management. The observed trends suggest the revision of land use policies and the promo-
tion of sustainable practices that enhance biodiversity conservation, while safeguarding
against natural hazards such as landslides. Future research should focus on the long-term
ecological impacts of these changes and the potential for restoring sustainable practices of
traditional land use, fostering overall resilience in these mountainous regions.

Although slope stability models are valuable tools for quantifying the landslide sus-
ceptibility of an area, their application in some contexts is still limited. Over the past
decade, the development of these models has focused on the protective role of vegetation,
considering the complexity of root reinforcement variability [38]. However, the application
of these models is still limited in contexts where the details of the available data remain
coarse. The presented study is one such case, especially regarding the vegetation compo-
nent. The lack of detailed land cover data, particularly of a digital elevation and surface
model, did not allow using the single-tree analysis option implemented in SlideforMAP
and shown in the case study presented by van Zadelhoff et al. [43]. In addition, the lack of
a characterization of root reinforcement parameters in forest governance types different
from high forest, and in particular the coppice that is typical of the entire Italian Apen-
nines, makes it difficult to use advanced techniques, albeit implemented in the models,
and requires the use of assumptions for this factor. Such assumptions introduce a degree of
uncertainty into the analysis that must be properly considered when the products obtained
from these analyses are used in the planning and design stages.
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