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Abstract
We prove a new .A-caloric approximation lemma compatible with an Orlicz setting. With this
result, we establish a partial regularity result for parabolic systems of the type

u; —diva(Du) = 0.

Here the growth of a is bounded by the derivative of an N -function ¢. The primary assumption
for ¢ is that 7¢” (¢) and ¢’ (¢) are uniformly comparable on (0, c0).

Mathematics Subject Classification 35B65 - 35K40 - 46E30

1 Introduction

In this paper, we establish a partial regularity result for weak solutions to parabolic systems
with general growth. By partial regularity, we mean Holder continuity for the spatial gradient
outside a closed set with zero measure. Let 2 C R” be an open bounded set,n > 2, T > 0,
and N > 1; we consider weak solutions u : 7 — RN, where Q7 = Q x (=T, 0), to the
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following homogeneous parabolic system
u; —diva(Du) =0 in Qr, (1.1)

where the C!-vector field @ : R¥" — RN" satisfies ellipticity and growth conditions in terms
of Orlicz functions. The precise structural assumptions on the vector field a will be presented
later, but the principal prototype we have in mind is the parabolic p-Laplacian system

! D
4 — div (M Du) _o. (12)
1+ [Dul

where i > 0and ¢ is an Orlicz function (see Sect. 2). In the model case, with ¢ (s) = %s” for
some p > 1, (1.2) gives the more familiar non-degenerate evolutionary p-Laplacian system:

uy — div (e + | Dul)? "2 Du) = 0. (1.3)

Hence system (1.2) (and consequently (1.1)) can be seen as a generalization of the p-Laplacian
parabolic system (1.3). In particular, in addition to not requiring the system (1.1) to have the
standard p-growth, we do not assume an Uhlenbeck structure as in (1.2).

The literature is rich with regularity results for parabolic systems with standard p-growth. In
the paper by DiBenedetto and Friedman [14], everywhere regularity is proved. In this paper,
the system has an Uhlenbeck structure: a(§) = |£|P —2¢ and p > % Using a combination
of the Moser and De Giorgi iteration schemes, the solution’s spatial gradient is shown to
be bounded and Holder continuous on its domain. In [15], the authors extended their result
to allow nonlinear forcing and introduced the intrinsic scaling which accommodates the
singular (p < 2) or degenerate (p > 2) behavior of a in a natural way. (For a comprehensive
introduction and collection of results on the subject, we refer the reader to DiBenedetto’s
book [13].) It is well-known that, without special structural assumptions, solutions to systems
can only be expected to possess partial regularity, that is regularity on an open set of full
measure. Giaquinta and Giusti [28] provided the first result in this direction. Adapting a blow-
up argument, successfully used for elliptic systems, they showed partial Holder continuity for
the weak solution, u, of nondegenerate systems with p-growth (p > 2). By again adapting
techniques for elliptic systems, Giaquinta and Struwe proved higher integrability and partial
Holder continuity for a solution’s spatial gradient, Du, provided a has quadratic growth. For
a general nonlinear a(z, u, &) with quadratic growth, partial regularity for the spatial gradient
remained an open problem until the work of Duzaar and Mingione [25]. In this transformative
paper, the authors introduced the, now well-known, A-caloric approximation approach to
regularity theory for parabolic systems. Generalizations to problems with superquadratic or
subquadratic growth were provided by Duzaar, Mingione, and Steffen [26] and Scheven [41].
Utilizing intrinsic scaling and p-caloric approximation, along with .4-caloric approximation,
Bogelein, Duzaar, and Mingione [5] extended these results to p-growth systems, of the
form (1.1), that are potentially degenerate (p > 2) or singular % < p < 2. Without any
attempt for completeness, we also mention to the papers [1, 5, 6, 27, 39] where the partial
Holder continuity, either for the solution’s spatial gradient or the solution itself, is established.
The main goal of this paper is to extend some of these partial regularity results into the
Orlicz-growth setting. In the papers cited above, the superquadratic p > 2 and subquadratic
p < 2 cases require different techniques. Working in an Orlicz setting, we provide a unified
treatment for both system classes.

There is a long history of interest in partial differential equations with nonstandard growth.
Early existence results for both elliptic and parabolic problems were established by Donaldson
[23, 24] (see also [43]). For elliptic equations and scalar-valued variational problems with
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(p, q)-growth, Marcellini [35, 36] developed an approximation and Moser iteration technique
to prove everywhere regularity. For elliptic systems with an Uhlenbeck structure, Marcellini
and Papi [38] extended this strategy to even allow problems oscillating between linear and
exponential growth (see also [37]). Under general growth conditions, additional results for
elliptic systems can be found, for example, in [7, 10-12, 16, 18, 21, 22] and the references
therein. Regarding regularity for parabolic systems with general growth, much less work is
available in the literature. Assuming an Uhlenbeck structure, the iteration strategies developed
in [14, 15] have been adapted to problems with form (1.1). Assuming 7¢’(¢) and ¢(t) are
comparable on (0, co), Lieberman [34] proved that a weak solution u to (1.2) has a Holder
continuous spatial gradient Du, provided Du is already known to be bounded. In [44],
You removed the boundedness assumption, but under stricter growth assumptions. More
recently, the boundedness of |Du| has been established under more general conditions. In
[19], Diening, Scharle, and Schwarzacher assume 7¢” (f) and ¢’ (¢) to be comparable, while
in [32], only a doubling property is needed to obtain the boundedness of u. For additional
regularity and higher integrability results, where an Uhlenbeck or similar structure is assumed,
we also mention [2, 3, 8, 20]. Without such a structural assumption, higher integrability was
established by Hésto and Ok in [31]. As far as the authors are aware, the current paper is the
first to establish the partial Holder continuity of a weak solution’s spatial gradient.

We now list the specific assumptions needed (see also Sect. 2).

Assumption 1.1 Let ¢ € C1([0, 00)) N C2%(0, o0) be an N-function satisfying
V V
tpT () _ up 12 ® _

0<po—1<inf 1—1,

<su
>0 @'(1) T 1m0 ¢'(1)

2n

with P

< po < p1. Without loss of generality we can assume that pg < 2 < p;y.

With this ¢, we consider (1.1) under the following hypotheses on the C!-vector field a :
RN" — RN™:

(a1) There exists L > 0 such that

la@) < Lo’ (1 + |£])

holds for every & € RV";
(ar) There exists v > 0 such that

Da(&)(n, ) = ve" (1 + |ED)In|?

holds for any &, n € RV";
(a3) Forevery & € RV"

|Da(§)| < Le" (1 +[§);

(as) There exists a nondecreasing and concave function w : [0, c0) — [0, 1] withw(0) =0
such that
1§ — nl

|Da(§) — Da(n)| < Lw (m

)w”(l + &1+ 11D

for every £, n € RV,

While it ensures ¢¢” (¢) is comparable ¢’ (¢) for ¢t > 0, Assumption 1.1 does not imply ¢
has p-growth. It does imply ¢ and ¢* have the doubling property (2.1). Similar assumptions
also appear in several of the works cited above.
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The notion of weak solution adopted in the present paper is the following: u €
CO=T,0, L2, RV) N LY(—T, 0, Wi-1(Q, RY)) with ¢(|Du|) € LY(~=T, 0, L1(Q)) is
a weak solution to (1.1) if it holds

/ u-n, —a(Du)- Dndxdt =0,
Qr

forall n € C2®°(Qr, RN). Here Du : (=T, 0) x 2 — RN denotes the spatial gradient of u.
We can now state our regularity result.

Theorem 1.2 Letu € CO(—T,0; L2(2, RY) N LY (=T, 0; Wh1(Q, RN)) with ¢(|Dul) €
LY(=T,0; LY(Q)) be a weak solution to (1.1) in Q21 under hypotheses (ay)-(as) and Assump-
tion 1.1. Then for every a € (0, 1) there exists an open subset Qo C Qr such that

V(Du) € C 2% (0. RN and |\ Q0] =0,

where V(&) = ‘p/;ﬁgl)é. Moreover; the singular set Qr \ Qo C X1 U X9, where

%) = {z0 € Qr : lim inf][ \V(Du) — (VD))= p2dz > 0} |
Qlo(ZO)

p—0

¥ = {Zo € Qr :limsup [(Du)y, ol = —|—oo} ,

p—0

denoting the mean value of a function over the parabolic cylinder Q,(zo) = B, (x0) X (fo —
P2, 10) by ()zq,p-

Here zg = (xo, ) € Q x (=T, 0) and B, (xp) is the ball in R" with radius p centered at
xo. Note that the Holder continuity of V (Du) implies the Holder continuity of Du with a
different exponent depending on ¢.

The proof of Theorem 1.2 relies on a decay estimate for certain excess functionals, which
measure in a suitable way the oscillations of the solutions. More precisely, for zp € Qr,
r > 0,a > 0, and an affine map £ : R" — RY, we define the excess functional by

2 u—=r
‘lja(Z(),l", E) =f + @a < ‘) dz.
Qr(20) r

Here ¢, interpolates in a certain sense between 2, when r < a, and ¢, when t > a. (The
precise definition of the function ¢, is given in Sect. 2.)

In order to achieve the decay estimate, we first derive the Caccioppoli inequality which is
compatible with (1.1) (see Theorem 4.1). This, in particular, allows us to control the spatial
oscillations of u and oscillations in Du via the excess functional. Though u need not be
differentiable, if W, is sufficiently small, then a family of smooth approximations to a spatial
linearization of u, centered at zg, can be produced. These 1st-order surrogates for u are, in
fact, solutions to a constant coefficient parabolic system. Moreover, their approximation to
u improves as r — 0T providing a decay estimate for the W,, which implies the oscillations
in V(Du) decrease as r — OV, The rate of decrease is fast enough to deliver the regularity
of V(Du) through Campanato’s characterization of Holder continuity.

The outline of the proof of Theorem 1.2 follows the approach developed in [26, 41]. The
cornerstone to the strategy is the .A-caloric approximation theorem, which provides the family
of approximations to u. The generalization of this theorem to something suitable for the Orlicz

u—=2
r
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setting was a significant obstacle and is the paper’s principal novelty. Our proof for this result
does not require Assumption 1.1. In fact, ¢ is only assumed to be an N-function with super
n2_~’_12 -growth and a doubling property near zero. Thus ¢ may have exponential or even super-
exponential growth. A key difference between the p-growth and Orlicz settings is that for

LP-spaces one has

L7(Qp) = L"(=p*, 0: LV (Bp)).
but for the Orlicz spaces L one only has
L¥(Qp) € L¥(=p?,0: LY (By)).

In fact, equality holds if and only if ¢(¢) is comparable to t” (see the remarks following
Proposition 1.3 in [24]). With standard growth, the proofs for the .A-caloric approximation
theorem can take advantage of Simon’s compactness result [42] in L?(— p%,0; L (By)) to
directly obtain convergence in L”(Q,,). This, however, is not possible in the Orlicz setting.
While we use Simon’s result for convergence in L2, upgrading to convergence in L?(Q o)
involves a combination of approximations via convolution, sophisticated pointwise estimates,
and integral bounds for the non-centered Hardy-Littlewood maximal function. With this new
A-caloric approximation, we prove a decay estimate for the excess function. Employing a
standard iteration argument, we are able to identify the singular set with points where either
the excess cannot be made sufficiently small, X, or the mean (Du),, , is not bounded, X».
Finally, to prove that the singular set is negligible, we use a Poincaré-Sobolev-type inequality
for solutions to (1.1) which bounds the excess of u in terms of its spatial gradient Du. The
proof for this inequality is rather complicated and relies on a Gagliardo-Nirenberg inequality
from [31].

The paper is organized as follows: after collecting the basic terminology and other prelim-
inaries in Sect. 2, we present the .A-caloric approximation in Sect. 3. In Sect. 4, the proofs
of the Caccioppoli inequalities in the parabolic setting. We detail the Poincaré-Sobolev-type
inequalities in Sect. 5 and the linearization in Sect. 6. We finally establish the decay estimates
and the main theorem in the last two sections.

2 Notation and preliminary results

Let & C R" be a bounded domain; in the following Q7 will denote the parabolic cylinder
Q x (=T,0), where T > 0. If z € Q7, we denote z = (x, 1) withx € Qandt € (-T,0).
In what follows C will be often a general positive constant, possibly varying from line to
line, but depending on only the structural parameters n, N, L/v, po, p1, with 1 < po, p1 <
oo identified in Assumption 1.1 above. The notation Du(x,t) = Dyu(x,t) denotes the
differentiation with respect to the spatial variable x, and u, stands for the differentiation with
respect to the time variable.

With xo € R”, we set

Br(xp) :={x e R" : |x —xo| < r}

the open ball of R” with radius > 0 and center xo. When dealing with parabolic regularity,
the geometry of cylinders plays an important role. We denote the general cylinder with spatial
radius p and time length t centered at zo = (xg, f) by

Qp,:(z0) = By (x0) x (to — 7, 1o),
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and we define the standard parabolic cylinder by
Q,(20) = Q, ,2(20) = By(x0) x (to — p*. t0).
Given a cylinder Q = B X (s, t), its parabolic boundary is
opQ (= (B x {s}) U (B x [s,]).

The integral averages of a function u on Q C R"*! are given by

m)o(t) :][ ulx,t)dx, Wm)o :][ u(x,t)dz.
Q Q

We will denote the average (1) g, (zy) by (#)z, - The parabolic metric is defined as usual by

distp(z,20) = /|x — xol2 + |t — 19

whenever z = (x, 1), zo = (x0, fp) € R"1.
We recall that a strongly elliptic bilinear form .4 on RV with ellipticity constant v > 0 and
upper bound L > 0 means that

VIE? < A5, §), A, &) < LIEIE| V&, E e RV

Definition 2.1 We shall say that a function & € L%(tg — p2, to; W1'2(Bp (x0), RM)) is A-
caloric on Q,(zo) if it satisfies

/ h-n, — A(Dh, Dn)dz =0, foralln e C>°(Q,(z0), RY).
QP(ZO)

Remark 2.1 In the following we shall often write u; even if a weak solution of a parabolic
system may not be differentiable in the time variable. The arguments can be made rigorous
by the use of a smoothing procedure in time, as for instance via Steklov averages. However,
since this argument is by now quite standard, we shall abuse the notation u; proceeding
formally, without further explanation.

2.1 N-functions

We begin recalling the notion of N-functions (see [40]).

We write f ~ g, and we say that f and g are equivalent, if there exist constants ¢y, co > 0
such that ¢1g(t) < f(r) < cpg(¢) for any ¢ > 0. Similarly the symbol < stands for < up to
a constant.

Definition 2.2 A real convex function ¢ : [0, 00) — [0, 00) is said to be an N-function if
©(0) = 0 and there exists aright continuous nondecreasing derivative ¢’ satisfying ¢’(0) = 0,
¢'(t) > 0fort > 0and tlim ¢'(t) = oco.

— 00

An N-function ¢ satisfies the Aj-condition, and we write ¢ € A», if there exists a constant
¢ > 0 such that

@2t) <ce(t) forallt > 0. 2.1
The smallest possible constant will be denoted by A»(¢). Combining ¢ (t) < ¢(2¢) together
with the A,-condition we get ¢(21) ~ ¢(t).
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The conjugate function ¢* : [0, +00) — [0, +00) of an N-function ¢ is defined by
©*(t) ;= sup [st — @(s)] forallt > 0.

s>0

It holds that ¢* itself is an N-function. If ¢ and ¢* both satisfy the A,-condition, then we
will write that Ay (@, ¢*) := max{A,(p), A2(¢*)} < 0co0. Assume that A, (¢, p*) < o0;
then for all § > O there exists c¢s depending only on A; (¢, ¢*) such that for all s,¢ > 0 it
holds the Young’s inequality

ts <8@)+csp*(s).
In most parts of the paper we will assume that ¢ satisfies Assumption 1.1.

Remark 2.2 'We remark that the lower bound on pg appearing in Assumption 1.1 is absolutely
natural to prove regularity in such a context: one need only to consider the power case
() = tP (see [13]).

Under Assumption 1.1 on ¢ it follows from [12, Proposition 2.1] that A> (¢, ¢*) < oo and

19/ (1) - 19/ (1) <

po < inf <s
>0 () ~ 50 ()

Moreover the following inequalities hold for every ¢ > 0:

sPlo(t) < p(st) < sPep(r) if0<s <1,

2.2
sPo(t) < @(st) <sPlo@) ifs>1, (22
as well
s%gp*(t) < @*(st) < s%go*(t) if0<s <l
_rL - - _Po - (2.3)
ST (1) < ¢*(s1) < sPTe*(0) ifs > 1,
and also
Pl (1) < @ (s1) < sP7 /(1) if0<s <1,
@ @ (s1) @ (1) 2.4)

sl (1) < ¢ (s1) <SPl ifs > 1
In particular, for > O we have
o) ~1¢'(1), ¢ O~ 19" ), @ D)~ @), ¢TI O@HT O~ 25
Now, we consider a family of N-functions {¢,},>0 setting, for r > 0,
@a(t) == /Ot go(s)ds with (1) :== ¢ (a + I)%ﬂ.
The following lemma can be found in [16, Lemma 27].

Lemma 2.1 Let ¢ be an N-function with ¢ € A, together with its conjugate. Then for all
a > 0 the function @, is an N-function and {¢4}a>0 and {(¢q)*}a=0 ~ {‘P;/(u)}azo satisfy
the Ay-condition uniformly ina > 0.

Let us observe that by the previous lemma ¢, (1) ~ t¢/ (). Moreover, for t > a we have
@q(t) ~ @(t), while Assumption 1.1 provides

C 9" (@)t* < ¢, (1) < C¢"(a)t?, forO <t <a, (2.6)
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since ¢’ ~ t¢"”. The constant C depends on only pg and p;. This implies also that, for all
s €[0,1],a>0andt €0, a],

ga(st) < C25%0,(1). 2.7)

Finally, allowing Assumption 1.1, the following relations hold uniformly with respect to
a>0

pa+1) 2 (/)/(a +t)l‘2
(a+1)? a+t (2.8)
pla+1) ~ @q(t) + ¢(a).

Remark 2.3 1t is easy to check that if ¢ satisfies Assumption 1.1, the same is true for ¢,,
uniformly with respect to @ > 0 (with the same pg and p1). This in particular means that

@a(t) ~ ¢"(a+0)1* ~

sup A (¢p,) <2 2.9
a>0
and
t700a(1) < @a(t) <t @a(1), fort>a=>1,
thanks to (2.2) for ¢,.

Next result is a slight generalization of [16, Lemma 20].

Lemma 2.2 Let ¢ be an N-function with As (@, ¢*) < oo, then, uniformly in &1, & € RN"
with |E1] + |&2] > 0, and in u > 0, it holds
¢'(n+ 1611+ 15D /1 @'+ |€0|)d9
w161+ 162] R O 1
where &g = &1 +0(& — &) with 0 € [0, 1].

Remark 2.4 We now state the following two consequences of our structure assumptions for
further reference. First, we note that the ellipticity condition (a;) and Assumption 1.1 together
with Lemma 2.2 and (2.8) imply

(a(§) —a(%0)) - (€ — &0) = cp141/ (1€ — ol).

for every £, & € RM", where ¢ = ¢(po, p1, v).
In a similar way, the growth condition (a3) and Assumption 1.1 imply

() — atéo)| < c¢ 41 (1€ — Eol).
for every £, & € RV, where ¢ = ¢(po, p1, L).

The following results deal with the change of shift of N-functions ¢,. The first one is proved
in [17, Corollary 26].

Lemma 2.3 Let ¢ be a N-function satisfying A (¢, ¢*) < +00. Then for each § > 0, there
exists cs (A2 (@, ™)) > 0 such that for all a, b € RY andt >0

@la|(t) < cs5@pp|(t) + 8¢@pq (la — b)).

Lemma 2.4 Let ¢ be a N-function satisfying Assumption 1.1; let M > 1and 1 <a,b <M
be given. Then

@a(t) < 4P MP 200 (1), forallt > 0.
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Proof From the definition and the fact that /2¢’(¢/2) < ¢(t) < t¢'(2),

P @ a+s) (s+b , 0Q2@+s) (s+b\>
“’“(S)_‘”b(s)[w(b+s> <s+a>]5%m[ ob 1 5) (s—i—a) }

If s < M, then, using (2.2), we have
92 +s)) (s + b>2 RICION
ob+s) \s+a w(l)
Otherwise, 1 <a,b <M < s and

¢Q2a+s) <s+b>2 <423 _ypn
ob+s) \s+a o(s) ~ '

< 4PV pgP1+2

Thus

t t
(ﬂa(t) — /(; %/l(s) ds < (4P1MP1+2 +4P1+1)/0 (p};(s) ds < 4P|+1Mp1+2(pb([).

We will use the function V : R¥" — RN defined by

(1
- (D,

The monotonicity property of ¢ ensures that

V(&) — V(E)P ~ @1y (& — &) forany &, & € RV (2.10)

see [16] for further properties about the V -function.
Let ¢ be an N-function that satisfies the Aj-condition. The set of functions L% (€2, RM) is
defined by

LY(Q,RY) = {u : Q — RY measurable : / e(u))dx < oo} .
Q

The Luxembourg norm is defined as follows:

il o) :inf{k ~0: / ¢ ('”(Ax”) dx < 1}.
Q

With this norm L? (2, RV) is a Banach space.

By wbhe(Q, RY) we denote the classical Orlicz-Sobolev space, thatis u € whe(Q, RN)
whenever u, Du € L?(Q, RY). Furthermore, by WOl #(Q, RY) we mean the closure of
CX (R, R™) functions with respect to the norm

lullwieryy = lull Lo ryy + 11Dl Lo @ rN)-
For a function u € L¥(Q,(20), RN ), using the decomposition
Q5 (20) = {z € Qp(z0) : [u(z)| <a} and Q3 (z0) = {z € Qp(z0) : |u(z)| > a},

as well as (2.6) and Remark 2.3, we easily get the following lemma.

Lemma 2.5 Let ¢ be a N-function satisfying Assumption 1.1 and let u € LY(Q,(z0), RM),
a > 1. Then
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(a)
][ ga(lu)dz < Cy"(a) |u|* dz + @a (1) |u|P! dz;
Qp(ZO) Qﬂ(ZO) Qp 20)
(b) foreachQ <s < pg <2,

C . 1
][ ul* dz < | —— ga(luhdz | + a(ul) dz.
Q,(z0) ¢"(a)) g, ) Pa(1)J 0, (z0)

Here C only depends on po, p1.

2.2 Affine functions

Let zo € R**! and p > 0. Given u € LZ(Qp(z()), RY), we denote by Lypp R — RY the
unique affine function minimizing the functional

0(x) > lu(x, 1) — €(x)|* dz
Qp(z0)

amongst all affine functions ¢ : R" — RN . 1t is well known (see [5]) that

Ca9.p(X) = (U)z9,p + Py p(x — X0), (2.11)
where
n—+2
Py.p = 72][ u(x,t) ® (x — xp) dz. (2.12)
P Q,(z0)

The following lemma ensures that €, , is an almost minimizer of the functional

—¢
{ @ <|u |> dz amongst the affine functions £ : R” — RV,
Q,(z0) r

Lemma 2.6 Let ¢ be an N-function satisfying the Ay-property and letu € L?(Q,(z0), RM).
Let r > 0, then there exists a constant ky = ko(n, A2(¢)) > 0 such that

u—= u—~
][ w(ﬂ> dzflco][ w(' |) dz,
Qp(ZO) r Qp(ZO) r

for every affine function £ : R" — RN

Proof Assume zo = (0,0) and denote £, ,, Q,(z0), and (i), , by £, Qp, and (u),,
respectively. Let us consider a generic affine function £(x) = ¢ + Ax, then, forx € B,

[€— Lol =1(w)p — &+ (DL, — A)x| < [w)p — &I + p| DL, — Al

Now we have

S][ lu —€|dz,
9

|(M)p—€|=’][ (—1¢)dz :V (u—1¢—Ax)dz
Qp Qp

and, using (2.12),

n+2
02

n

\DE, — A =
? P

][ (u—Ax)® xdz
Q

P

2
+2 ‘][ (u—¢—Ax) ®xdz
Q)
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2
s ][ u — €] dz. 2.13)
o Jo,

In conclusion

[ =Lyl < (n+3) lu —£ldz. (2.14)
<

Recalling that, by the convexity and the Aj-condition, ¢ (s+t) ~ ¢(s)+¢(t) forany s, t > 0,
we have

-/ A -/ A -1
][ (p(lu p|>dZS 2(9) (p(lu |>dz+ 2(9) (p(l p|>a,Z.
Qp r 2 Qp r 2 Qp r

Hence, using (2.14), the fact that ¢ is increasing together with Jensen’s inequality, we can

infer that
-1 u—4~
fo()aesf o (M)
r r Qp r

An analogous reasoning leads to another basic inequality.

Remark 2.5 For an N-function ¢ satisfying the A;-condition, we have

u—u u—u
][ @ (*' ( )Zo’p|> dz < Ay(p) @ (' 0|> dz,
Qp(ZO) r Qp(z()) r

for any ug € R" and for any r > 0.

Finally, we can show that £, , is an almost minimizer of the functional ¢

— ¢
][ @1+|De| <M> dz amongst the affine functions £ : R" — RN,
20 1Y

e

Lemma 2.7 Let g bean N-function satisfying Ax (¢, 9*) < 400, andletu € L¥(Q,(z0), RY).
There exists a constant k| = k1(n, Ay(@, ™)) > 0 such that

lu — €5l lu — 2|
][ P14|Dez | (ﬂ dz < K Y1+|De] dz,
9, (z0) P Q) (z0) P

for every affine function £ : R" — RN

Proof From Lemma 2.1, Lemma 2.6, and Lemma 2.3 we obtain

[ — €z pl lu — €|
P14ty | | ———— ) dz = ko LDty | | — ) dz
Q,(z20) p Q,(z0) o

lu — ¢
< Ca][ ®1+|De| <7 dz + 8¢141pe|(ID€ — DLy pl),
p(~0> '0

using also the fact that @11 |q|(la — b]) ~ @14p|(la — b|). Moreover, from (2.13) we infer
lu — ¢
Q) (z0) P

Inserting this above, applying the Aj-condition, and Jensen’s inequality conclude the proof.
]

|Dez(),p - Del = (l’l + 2) dz.
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In the same way you obtain the following fact.

Remark 2.6 For an N-function ¢ satisfying A, (¢, ¢*) < 0o, we have

][ PL{(Du)g (IDu — (Du)z, 1) dz < Kz][ 1414 (|Du — Al) dz,
(20 Qﬂ(ZO)

for any A € R¥", where k2 = k2 (n, Az (e, 9*)) > 0.

We conclude the section with an excess-decay-estimate for weak solutions to linear parabolic
systems with constant coefficients [9, Lemma 5.1]. This can be achieved along the lines of
the classical proof with very minor changes, so we will consider only the main points of the
proof referring for the rest to [9].

Lemma 2.8 (A-Caloric yr-Excess Estimate) Suppose that h € LY (19— R?, tg; WhL(Bg (xo):

RM)Y) is A-caloric, and let Y 1 [0,00) — [0, 00) be an increasing function. Then h €
C®(Qr(z0); RN) and the following excess estimate holds: for eachO < p < R, y > 0, and

0 <6 < 1/4, we have
dz <y CGJ[ dz
0y (z0)

][ Q4p 20) v (

where Eﬁh)(x) = (h)zy,r + (Dh) g, - (x — x0) and C depends on onlyn, N, L/v.

y(h— )

0

(k)
y(h =€, ,)

0p

Proof Ttis only necessary to prove the estimate, since the smoothness of / is already contained
in [9]. As argued in [4, Remark 3.2 and Lemma 3.3], we may use (5.9) and (5.12) in [9] to

show that there exists C’ = C’(n, L/v) < oo such that
w

sup |D%w| < c’][ =
Q,/2(20) Q) (z0) P

w J 3 ,
—|dz and sup |Dw| <C
p Qp/2(20) 9, (z0)

‘ dz,

(2.15)

for any A-caloric map w € C*°(Qgr(z0); RM). Define w, = h — egﬁl Then w, is A-caloric
and w, € C®(Qr(z0); RV), foreach0 <r < R.Let0 < 0 < % and 0 < p < R be given.
Using (2.15), the fact that Q,(zp) is a standard parabolic cylinder, and the fact that every
derivative of & is still A-caloric, for each (x, ) € Qg,(z0), we have

lwep (x,1)] <6p sup |Dh — (Dh)y 0| +620% sup |3;h]
Qop (z0) Qop (z0)

59%2( sup |D*h|+6p sup |3;Dh|+ sup |9k
Qop(20) Qop(z0) Qop(z0)

<C"0?p*| sup |D*w,|+6p sup |D3w,|
Q,/2(20) Qp/2(20)

§C92][ lw,| dz.
Qp(ZO)

Here, C” and C depend on only n, N, and L /v. The result follows from this and the definition
of wp. a
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3 A-caloric approximation

To prove the partial regularity for non-degenerate parabolic systems with ¢-growth, we shall
compare the solution of our parabolic system with the solution of a linear parabolic system
with constant coefficients. The comparison will be achieved by a generalization of the .A4-
caloric approximation lemma in Orlicz spaces. We emphasize that the approximation lemma
requires no upper bound on the growth of ¢.

Recall that a function f : [0, 400) — [0, +00) is said to be almost increasing if there exists
A > 1suchthat f(r) < Af(s) forevery 0 <t < s < +00. We will consider the following
assumptions for the N-function ¢, more general with respect to Assumption 1.1:

t
(H1) There exists a pg > " such that w is almost increasing,
n+2 tPo 5
t
(H2) ¢ has a uniform doubling property near zero; i.e. lim sup v(0) = Ap(p) < oo.
—0t @ )
In general, an N-function might not satisfy assumption (H2). For example, with
1 2kk=1) k
Li(t) = T + T(z —27"%), forkeN,
the N-function
0, t =0,
o) = { lr1(), ke N\ {I}and27%"1 <y < 27F
82, 272 <1,

is not uniformly doubling near zero since (k+1)€x41 Q%1 = ¢, (27%). For any N-function
and a > 0, however, (H2) is satisfied by the shifted function ¢, (¢). In fact,

0a21) _ 4¢/Ca)
a) = ¢'(a)’

forall0 <t <

N

3.1 Additional notation and supporting results

For this section, we introduce some additional notation. There are also several supporting
results used in the proof of the approximation lemma.
First, we require a compactness principle of Simon.

Theorem 3.1 ([42, Theorem 6]) Suppose that X C B C Y are Banach spaces with a compact
embedding X — B. Given 1 < g < oo, assume

e Fisboundedin L4(0,T; BYNL},.(0,T; X),
o forallO <t <tp < T, |If(-+h)— fOllLray.n:y)y = 0as h — 0, uniformly for
fEeF.

Then F is relatively compact in LP(0, T; B) forall1 < p < gq.

We also need to work with the Orlicz norm: given a measurable E C R”",

IfllLs ey = sup {/E Fegydy : wa*(Ig(y)l)dy = 1}-
It can be verified [33] that the Orlicz space
Ly(E) = {f € L"E) : || fllzye) < o0)
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is a Banach space. The Orlicz norm is equivalent to the Luxemborg norm ( [33], p. 80).
Moreover, as established in [33, Lemma 9.2 and p. 75], given {fk}}:‘;l C L:; (E)and f €
L3 (E),
lim || fx — fliLze) = 0= lim / oM fi(x) — f(x)Ddx =0, forall » > 0.
k—o00 ¢ k—oo JE
3.1

We will also need the following

Definition 3.1 Given an open set E C R” and f € L}OC(E), the (non-centered) Hardy-
Littlewood maximal operator is M(f) : E — [0, o0]

Mf(x) = sup ][ F()ldy.
NE

Bax

Here the supremum is taken over all balls containing x.

It is well-known that the maximal operator is bounded on L?, for p > 1. From [30, Corollary
4.3.3], we have

@) .
S

Corollary 3.1 Let an open set E C R" and an N-function ¢ be given. If p > 1 and o i

almost increasing, then there exists a B > 0 such that
1 1
e(BMF )T < M (p(f)7) (@)
foreveryball B, x e BNE, and f € LY(E) satisfying/ o(fdx < 1.
E

Finally, as explained in the proof of the .A-caloric excess estimate (Lemma 2.8), we may use
the regularity provided in (5.9) and (5.12) in [9] to show there isa C = C(L/v) < oo such
that

sup (|Dw|2+|w|2)sc][ wdz, (3.2)
Q:r(20) Qr(z0)

forany% <R<1, 1 <7t < %,and.A-caloric mapw € L'(to— R%,0; WL2(Bgr(x0); RV)).

3.2 The .A-Caloric approximation lemma

With the preliminaries above, we can state and prove the main result for this section.

Theorem 3.2 Suppose that (HI) and (H2) are satisfied. Let e,v > 0 and v < L < o0 be
given. There exists 8o < 1, 8o depending on n, N, po, Ao(¢), v, L, &, and 1 < K, with the
following property: for any y € (0, 1/ /w, ] (with w, being the measure of the unit sphere
in R"), any bilinear form A satisfying

A, &) = vIE® and AG, )| < LIE|InI,

and any approximately A-caloric map v € L% (ty — ,02, 10; Lz(Bp(xo); R¥) N L' (1 —
0%, to; WEL(B, (x0); RY)) satisfying:

e o(IDv]) € L(tg — p?, to; L' (B, (x0))),
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e for some 0 < § < o,

<& sup |Dyl, foralln e CX(Q,(z0); RY),
Q,(z0)

][ (v- 9 — A(Dv, Dn))dz
Q,(z0)

(3.3)

e and

2
i +][ <<p (H) + (p(lel)) dz < y?, 34
Q,(20) o

0

sup ][
to—p2<t<ty” Bp

then there exists an A-caloric map h € L*(ty — p?/4, to; WI’Z(B/,/Q (x0); RM)) such that

fo 27
Qe \IP/2 p/2
v—yh

2
v—yh
][ +<p( 4 D dz < ey”.
Qp/2(z0) p/2 p/2

The constant K, is defined in (3.12) and depends only on ¢ and C(L/v) in (3.2).

2
h
+o ( VD + w(Ith|)> dz < 22K,y

and

Proof We translate and rescale to zo = (0,0) and p = 1. Assuming the alternative,
there exists an g9 > 0, sequences yx € (0, 1/,/wy ], bilinear forms Ay, and maps vy €
L®(=1,0; L2(B1; RM) N LY (=1, 0; Wh1(By; RY)), such that for each k € N, the follow-
ing holds:

() p(IDvl) € L'(=1,0; L' (B)),

1
(ii) ][ (v - 9 — Ax(Dug, Dn))dz < ESUPIDWI, for all n € C§°(Q1: RY),
Qi

Qi

i) sup ][ |vk|2dx+][ ((ul) + o(1 D) dz < 12,
te(—1,0)J By Q)

(iv) for any Ay-caloric map h € C*°(Qj2; RY) satisfying
][Q (4lych* + ¢Q2lykh)) + @(1yxDh))) dz < 2" K2,
1/2
we find
][Q (4o — yeh P + o Qe — i) dz > s0y2.
1/2

By (iii) the sequence {¢ (| Dvi|)}72 ; is bounded in L'(—1,0; L' (B1; RV)). Assumption (H1)
implies the existence of a constant C such that

lvkllLrogy) + 1DvkliLro(gy) < C.

It follows that, for a non-relabeled sequence, there exists a bilinear form .4 and a map
v e L%(Q1) N LP2(Qy) such that Dv € LP9(Q;) and

vk in L2(Q;; RY),
Dvg—Dv in LPo(Qy; RN,
Ay —> A in bilinear forms on RV”",

vk = v €10,1/Jw,].
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The convexity of ¢ implies
][Q (WP + p(v) + ¢ Dv)) dz < 2. (3.3)
1

Moreover, with the same argument used in [41], we conclude that v is .A-caloric and v €
C®(Q1; RY). From (3.2),

sup (Jv]” + [Dvf?) < C<L/v)][ v]*dz < C(L/v)y”. (3.6)
Q3/4 Qi

As demonstrated in [41], given £ > ";’2, forany —1 < ) <t < —h,

ro—1

|
loe (s 8) — v s + M) lw-e2) < C (h P04 E) , fors e (t,n)

2 » ppo—1) 1
= /rl ok (- 8) = vk o5+l 25,45 < € <h P 4 k7> ,
for any p > 1.
Moreover, the sequence {vx}?2; is uniformly bounded in L*(—1,0; L*>(B;; RY)) N
L} (=1,0; WhroB; RY)). With X = WP @Bi;RY), B = L2(B;;RY), and ¥ =

W=62(By; RY), Theorem 3.1 yields the strong convergence (for a non-relabeled subse-
quence)

v — v in LP(=1,0; L*(B1; RY)), (3.7)

for any p > 1. This entails also that vy — v in L?(—1,0; LY(By; RY)Y) for any p > 1, so
lok — vliLig:rry = 0 for almost every —1 < ¢ < 0.

Claim: lim @Al —v])dz =0, forall A > 0.
—0JQ3
First, we observe that v (-, t) and v(-, t) belong to wLL(B;, RN), for almost every time
t € (—1,0). We may therefore extend them to the whole of R” in such a way that their
extensions U (-, f) and (-, ¢) belong to W1 (R"”, RV), and

||:D/k(.7 t) — 5(, t)”Wl'I(]R",RN) < C”Uk(', [) — U(', t)”W]'I(Bl,]RN)’ forae.t € (—1, 0),

where the constant C depends only on B;. Let ¢ be the standard mollifier and o, (x) =

15 (1
o (1),

On account of (3.1), it is enough to verify

lim sup/ lvk —v|lgdz=0
k—oo ¢ JOy
where the supremum is taken over all g € LI(Q3/4) such that ||<p*(|g|)||L1(Q3/4) < 1. Fix

g € L'(Qs4) satisfying ||§0*(|g|)||L1(Q3/4) < 1.With0 < & < 1given,foreach—1 <t < 0,
we let Uy * o, and U * o, denote the mollifications of the extended maps vy and v in the spatial
direction. We have

/ vk (z) — v(2)|g(2)dz
Q34

< / B, 1) = Bx, D)9 (6, 1) ldxdr
Q34
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5[/ @ % 00) (x. 1) — Te(x. Dl (x, Dldxds
Q3/4

+/ (@ = D) # 0 (. D)8 (. 1)ldxd
Q3/4

+/ |(V * 05)(x,t)—v(x,t)||g(x,t)|dxdti|
Q3/4

=[x+ Ik + il (3.8)
First, we examine /5 ;. Given —1 < ¢t < 0, we use Young’s convolution inequality to write

sup | (W — V) * 0% (-, )| 220 (B30) < 8Up [0 1) = VC, DIl L1 (3548 10 | Lo (B3 )
keN keN

= sup (I DLz sy iy + ITC Dl iy ) N0 0
keN 3.

9)

<Csup (llok (. Dl 2(5,:m5) + 1V D 205,.m8)) e [ Lo @)
keN
<Clloel Lo m®n)-

For the last two inequalities, we used (iii). On the other hand, by Young’s inequality and by
the convexity of ¢*, for any « € (0, 1), we have

w('“’k*maw) dxdt-i—a/ @™ (lghdxdt

Q34

f | — ) % 02 (x. )18 e, 1)ldoxds 5/
Q34 Q34

s/ ¢ (—l(vk =9 *US(X’I)l)dxdt fa
Q34 L

Since

klim (U — V) % 0 (x, )] > 0 forae. (x,1) € Q3/4,
—00

thanks to (3.9) we may use the dominated convergence theorem to conclude that

lim suplh < «a.
k—00 g

Now, we turn to bounding /; ; and I3 ;. The arguments for each term are similar, so we
focus on 7 ;. We will use some results contained in [30]. As provided in [30] (p. 135), the

following pointwise estimate holds for functions in WIL’CI (R*, RN):

1
[V (x, ) = Uk % o) (x, )] < 8/0 (IDV] * o) (x, ) d,

almost everywhere in B34. Let B > 0 be the constant from Corollary 3.1. Combining the
bound above with [30, Lemma 4.4.6], for each —1 < ¢ < 0, we obtain

[V (x, 1) — (U % o) (x, )| < %M(ﬂ|DUk|(', ) (x), forae.x € B3ua.

Here M is the (non-centered Hardy-Littlewood) maximal function defined earlier. Observing
that, for almost every ¢ € (—1, 0), we have

B

Bax 1Bl JBns,

M(BIDV (-, D)])(x) | DV (y, )] dy

< sup — Dk (y, s)|dy ds = M(B|Dvk|)(x, 1),
2s(x,n 121 Jane,
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we deduce that

~ ~ 2e -

[Vk(2) — (0 * 0e) ()] = FM(,BIkaI)(Z), forae. z € Q3/4.
Incorporating this into the definition of /1 ; and applying Young’s inequality, we may write

2 ~
I Ei M(B|Dvi|)(2)|g(2)ldz
03/4

2
Si |:/ (M (B|DUk|)(2))dz +/ </>*(|g(Z)|)dZ:|
B 03/4 03/4
2¢e ~
<2 [/ o (M(BIDTN (2))dz + 1} ,
B 03/4

where we have used |¢*(|g])|| LY(Qya) = 1 in the last inequality. Recalling that

t
/ ¢(|Dvg|)dz < 1 and that % is almost increasing, we can use Corollary 3.1 to infer
1

G(BM(Du)@)™ < M (¢(|ka|>%) @,

almost everywhere in Q. Thus

po
/ w(ﬂMukaD)dzsf (M<¢(|ka|)%)) sz/ o(I Dl dz < 1,
Q3/4 Q Q

since M is bounded in LP°. We conclude that I1 ; < &/8. A similar argument shows I3 ; <
e/B, as well.
Returning to (3.8), we have shown

lim sup / (@) — v(@)Ig@)dz S = +a,
k=oco ¢ S04 B
with the supremum being taken over all g € L! (Q3/4) satisfying ||<p*(|g|)||L1(Q3/4) <1
Here g is independent of k. Since €, « > 0 were both arbitrary, the claim is proved.
Next, we produce a sequence {h;}72, € C*(Q1/2; RN of A-caloric maps that will contra-
dict (iv) for k sufficiently large.
Case 1: yx — O: In this case, clearly v = 0, vy — 0 strongly in L%(Q;) and

@ (2|vg|)dz — 0. Thus, we obtain a contradiction to (iv) with 7 = 0.
Qi

Case 2: yx — v € (0, 1/ /w,]: For each k € N, let hj be the unique solution to

/ (/’lk . 8;7) — Ak(th, Dn)) dz =0 forall n e CSO(Q3/4; RN)
Q34
hy = yk_lv on dp Q3/4.

Since v € C°°(@3/4; RY) and vk — ¥ > 0, so is each hg. As shown in [5] and [41], we
have

lim (Iv = yihel* + |Dv — ye Dhel?) dz = 0.

k— 00 Q34
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Thus
yehy — v and yy Dhy — Dv in LZ(Q3/4). (3.10)

This implies convergence in measure for both sequences. Moreover, after taking a non-
relabeled subsequence if necessary, the bounds in (3.2) and (3.6) imply

sup (Iyihel + lye Dhil) < 2" C(L /).
Qi

Thus, since supy cyy [1Vilk — vllLoo(0y ) + 1Yk Dhi — Do,y < 2"3C(L/v),

lim (@ lykhk — v)) + @Ay Dhi — Dv|))dz =0, forallaA > 0. (3.11)

k— 00 Qi

To finish the proof, define

)

K :8+su{ :
Y Plem

0<t< 2”+2C(L/v)} . (3.12)
Note that K, must be finite due to assumption (H2). Using (3.5) and the convexity of ¢,

lim ][ (4lyehi + o Qlyehil) + o(ye D)) dz
k— 00 Qi

1
<5 lim (16lyxhe — vI* + @ @lyihi — ) + @2lye Dhi — Dv))) dz

k— 00 Qi

1
+ 5][ (16]v]> + p(4[v]) + p(2|Dv])) dz
Qi

< 2"+1K¢][Q (012 + (oD + p(IDv)) dz
1
< 2"+1K¢y2.
Since y > 0, for k sufficiently large, we have y < 2y4, and the Ag-caloric map Ay satisfies

][ (i + oQlyehil) + oy D) dz < 242K,y
Qi

Similarly, using the convergences provided by the claim, (3.7), (3.10), and (3.11) we conclude
that

lim (4lvk — wchil* + 0 2lok — yihe))) dz = 0,
k— 00, Qi

which provides the contradiction to (iv). ]

Remark 3.1 For the shifted function ¢,

4¢/(2a>>2 9a (2" C(L/v))
@ ) gala/d '

Ky, §8+max:<

If the function ¢ is doubling, then K, = 8 + Az (¢)?.
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4 Caccioppoli type inequality

Let us prove the following Caccioppoli inequality for standard parabolic cylinders.

Theorem4.1 Letu € CO(—T,0; L2(Q,RY)) N L'(~T,0; Wh-1(Q, RN)) be a weak solu-
tion to (1.1) satisfying ¢(|Du|) € L'(—=T,0; L'(Q)). Under hypotheses (a1)-(as) and
Assumption 1.1, given a standard cylinder Qg (zo0) C Qr, with center zo = (xo, ty), and any
affine map £ : R" — RN and 0 < r < R, we have

sup / lux, s) — €(x)|? dx +/ @141 (|Du — DL|)dz
2 B, (x0) Q,(z0)
u—4 2
dz,
R—r D + :| <

fo—r=<s<ty
=co / P1+|De| (
Qr(z0)

where co depends only onn, N, L, v, po, p1.

Proof For notational brevity, we put M = 1 + |DZ|. Without loss of generality we may
assume zo = (0, 0). For a generic radius p, we denote Q,(z0) = Q, and B,(xg) = B,. Let
us consider the function n(x, 1) = xP' (x)¢2(t)(u(x, t) — £(x)) as a test function in (1.1),
where yx is a standard cutoff function between B, and Bg, and ¢ € CO(R) is defined by

u—=
R—r

t(t)=0,  te(—o0,—R?
Gi(t) = ﬁ, 1€ (—R* —r?)
) =1, te(=r2s)
;‘,(t):—%, re(s,s+e)
(@) =0, te(s+e¢, +00)
for —r2 < s <0and 0 < & < |s|. We have
/ xP'c%a(Du) - (Du — DO) dz
Qr
=—p1/ x"'¢*a(Du) - [Dx ® (u — 0)] dz+/ u-nedz.
QRr QR
Noting that/ a(D¢)-Dndz =0 and/ £ -n;dz = 0, we obtain
Qr Qr

I ;=/ xP'c%(a(Du) — a(DL)) - (Du — DO) dz
ORr
=—pi / x" ¢ (a(Du) — a(DO) - [Dx ® (u — 0)] dz (4.1)
QOr
+ u—420 - -ndz=:11+ 11

QR
The left hand side can be estimated thanks to Remark 2.4, leading to

1> c/ xP 2o (|Du — DE)) dz (4.2)
ORr

and

11| SC/Q X" €26l (1D — DE| Dyl — ¢ d=.
R
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Using Young’s inequality and (2.3) together with (2.5), we derive the following bound for
1I:

|11|<c6f = wM(|Du—DE|>xP'—1)dz+c(8)/ 2ou(u — £lIDx ) dz
43)

< csf xP'c%op (|1 Du —Dz|)dz+c(5)/ ou ('” — ') dz.
Or Or R—r

Choosing § sufficiently small, we can absorb the first integral of the right hand side into the
left. Finally, expanding the derivative n;, we may write (recalling Remark 2.1)

111:2/ XPI;;,|u—z|2dz+f xP P u—0) - (u—),dz
Qr Qr
2 1 29 2
=2 [ areau—ePdze g [ ane - P
Qr 2 Jog ot
So, an integration by parts yields

111:/ xP g u — €)2dz.
Qr

Exploiting the definition of ¢, we obtain

III_ / / u—EIXp'dedt—f/ /u—“XPICdth
22
-/
5/ i dz—f/ [ e axar
Or & Js Br

R—r
since R2 — r2 > (R — r)2. Incorporating the above bound and the bounds for 7 and /7,
in (4.2) and (4.3), into (4.1), we deduce that

| [ste u—2t 12
f/ / |u—6|2xp'zdxdr+f xf’l;%Mun—DeDdzsc/
e Jg Br O o IR—

+/ =ty ,
¢ QR(/)M R—r

Recalling the definition of ¢ and x, we may take the limit as ¢ — 0 to get

r

/|u(s,x)—£(x)|2dx+/‘ /goM(lDu—Dil)dz
B, —r2 By

2
—¢

Ec/ dz—i—c/ qazu('u |>d
Qr Qr R—r

We use the previous inequality twice: firstly, by dropping the second term in the left hand
side, and taking the supremum over s € (—r2, 0); secondly, by dropping the first term in the
left hand side and letting s tend to 0. By summing up the two resulting contributions, this
gives the result. O

u—4~
R—r

Finally, an application of the Caccioppoli inequality in Theorem 4.1 and (2.9) produces the
following
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Corollary 4.1 Letu € CO(—T,0; L*(Q,R¥) N LY (=T, 0; Wh1(Q2, RN)) be a weak solu-
tion to (1.1) satisfying ¢(|Dul) € L'(=T,0; LY(Q)). Under hypotheses (a1)-(as) and
Assumption 1.1, given any standard parabolic cylinder Q,(zo) C Qr, with center in
z0 = (X0, t0), and any affine map £ : R" — RN, we have

u(x,s) —£(x)
P

5602"+p'+2][ 14| D] <
Q,(z0)

where co depends only onn, N, L, v, po, pi.

2
dx +][ ¢141pet(|Du — De)Ydz
Qg(zo)

) 2
“ D+ :|dz,
P

su f
10—(5)*<s<rto Bg (x0)

u—4r
P

5 Poincaré type inequalities

We begin this section providing a Poincaré type inequality valid for solutions to certain
parabolic-like systems. The proof follows the same lines as [5, Lemma 3.1].

Lemma5.1 Let W be an N-function satisfying Ay(Y, w*) < oo. With t; < t, and
U C R, suppose that & € LY (U x (t1,1), R and w € C%@¢, 1, L2(U,RY)) N
LY (11, 1o, WHI U, RN)) satisfy ¥ (|Dw)) € L' (11, 12, L' (U)) and
/ (w-&—§&-D8)dz=0, forany¢ e CP(U x (t1,t2),RN). 5.1
UX([],tz)

Then for any parabolic cylinder Q,(z0) C U x (1, t), we have

][ v (’w ) dz <c {][ V(| Dw|)dz + ¥ (f |s|dz>}
Q,(20) P Q,(z0) Q,(20)

with c| depending only onn, N, and Ay (Y, ™).

Proof We fix a nonnegative symmetric weight function € C2° (B, (xp)) such that
n=0, ][ ndx =1 and |[nllec + plIDNllec < ¢y, (5.2)
Bp(x())
and, fort € (to — ,02, to) we denote

(w)y (1) :][ w(x, Hn(x)dx,
Bp(xo)
as well as
Wi =f,  weeonw .
Qp(ZO)

By the triangle inequality and the Aj-condition we have

fy v ([
Q/)(ZO) p
EC[][ w(‘w—“ﬂ)n(”
Q5 (z0) P

)
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+][t0 " (‘ (w)n(t) - (w)n )dt oy <‘ (w)n - (w)zo,p )]
t0—p> P

o
=:c(I+ 11+ 1),

with the obvious meaning of 7,11, and III. Since Ay(yr, ¥*) < oo, we may bound I by

applying Poincaré’s inequality for vanishing n-mean value (see [16, Theorem 7]) slicewise

with respect to x: for a.e. t € (fp — ,02, t0),

Iscm,AwaW»f v (IDwl)dz.

Q) (z0)

Tobound /11, we use Jensen’s inequality followed by the triangle inequality and A,-condition

to infer
l{l < % 1{, (‘ (u)” ) jZ <c ’ ,lp (‘ (u‘)n(l) ) ’
Qp(z()) ! Qp(ZO) /

1 _
+][° w( (w)y (@) — (w)y )dt}
t0—p>

0
=c(I +1II).

So it remains to estimate /1. For this, we recall that w is a weak solution of the parabolic

system (5.1). Even if the solution w, need not be differentiable in the time variable, with

Steklov averages, we may rewrite (5.1) as

/ (wy-¢+&-Df)dx =0 forall¢ € C;’O(U,]RN) and for a.e. € (ty — p, to).
U

Fori =1,..., N, lete; € RN denote the unit vector in the i-th coordinate direction. With
(t,7) C (to — p2, 1), we use (5.1) and (5.2), with ¢ =ne; € CZ(U; RM), to write

/ ][ -(ne;)dxds
Bp(xo)
&-(Dnej)dxds

<anmo/‘f7 £ |dx ds
B (x0) p(XO)

s—/f mmm§mf €.
P Jr B, (x0) Q,(z0)

Summing over each component, we conclude that

II§c1ﬁ<][ |§|dz>.
Q9 (z0)

Combining these estimates we obtain the desired Poincaré type inequality. O

T

|W%m4mmﬁm— I [(w)y(9)] e ds| =

Remark 5.1 Suppose that A is a bilinear form on RY” and there is A < oo such that
lAM1, 1)l < Almlinal, for all n1,n2 € R¥". If h € C®(Q,(z0); RY) is A-caloric,
then we may identify a £ € C*(Q,(20); RN™) so that, at each z € Q,(z0), we have
A(Dh(z), n) = &(z) - n, for all n € RN" Then |€] < A|Dh| and Lemma 5.1 and Jensen’s
inequality imply

][ v (’h — (Wzg,p
Q/)(ZO) o

) dz < CT][ Y (|Dh|) dz,
Q5 (z0)
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with ¢ an N-function satisfying Ax(i/, ¥*) < oo and c] depending on n, N, A, and
Ao (Y, ).

The following Poincaré type inequality for weak solutions of (1.1) is a consequence of the
previous lemma.

Theorem 5.1 Under the assumptions (ay)-(as) and Assumption 1.1, suppose u €
CO=T,0; L2(Q,RV)) N LY(=T,0; W1 (Q, RN)) is a weak solution to (1.1) such that
o(|Dul) € L'(=T,0; LY(Q)). Let Q,(z0) C Qr be a standard parabolic cylinder. Then,
for any N-function \r satisfying Ay(W, ¥*) < oo and any A € RN, we have

U — ()z,p — Alx — xo)

foo )a:
Qp(ZO) p
< Du — A)|)dz +

& [][Qp(zo)w u— Al dz w(][g(

0(2

)<p1+|A‘(|Du - A|)> dzi|
0

with ¢y depending onn, N, po, p1, Vv, L, and Ay (yr, ™).

Proof Without loss of generality we can assume that zo = (0,0). Exploiting (1.1)
and using the fact that / Ax - ¢ dz =0 and / a(A) - D¢ dz =0 for any function
Qr Qr

¢ € C®(Qr,RY), we have
o [(u — Ax) - & — (a(Du) — a(A)) - D¢] dz = 0.

Therefore, we can apply the Lemma 5.1 with w = u — Ax and & = a(Du) — a(A). As Ax
has zero-mean on Q,, we obtain:

][ w( )dzicl ][ Y (|Du — A|)dz
Q,(z0) Q,(z0)
+y ][ la(Du) —a(A)|dz | |.
Qp(ZU)

By means of Remark 2.4, we can estimate the right-hand side of the above inequality, and
we get

/ w( Jazzal|f wapu-apa:

Qp(ZO) Qp(ZU)

Q/?(ZO)

We conclude this section by proving a weird Sobolev-Poincaré inequality for solutions of
(1.1). The proof follows the same lines as [31, Lemma 3.4]. A special application of the
inequality is required for Theorem 5.3, which we ultimately use to establish the main regu-
larity result in Theorem 1.2.

u—(u), — Ax

u— (u), — Ax
P

m}
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Theorem 5.2 Under the assumptions (ay)-(as) and Assumption 1.1, suppose u €
CO=T,0; L2(2, RV) N LY(=T, 0; WL (Q, RN)) is a weak solution to (1.1) such that
o(|Dul) € LY (=T,0; LY(Q)). Let Q,(z0) € Qr be a standard parabolic cylinder and
be an N-function satisfying Assumption 1.1 (for some exponents 1 < qo < q1). Then, for
any A € RN any 6y > 0 satisfying

AL gy <1, (5.3)

6oqo € (1,n) and — <
nqi + 2qo

and each g <r < R < p, we have

][Qr(zo) v (

< o3y (T, B2 V

Qr(20)

u— (u)zo,r — A(x — xo)
r

)dz

0o
v (1Du — ADdz + <][Q @14 (1Du — A\)dz) ] ,
)

54

r (20

with ¢z < 0o depending onn, N, po, p1,qo. 41, V, L. Here

T(r,R):][ |: ):|dz.
QRr(20)

Proof Without loss of generality we can assume that zo = (0,0). Suppose 6y > 0
satisfies (5.3). We use the Gagliardo-Nirenberg inequality (see [31, Lemma 2.13] with
1

(. 7.0.p.q1.92) = (¥, qo. 60, O0q0. &.2)) to get

Ao
v < )dx <o (f [w(u)ﬂ)@o Tty (‘{ ) }u) v (][
r r By
With f = u — (u), — Ax, we apply the previous inequality to each time slice:
fo )
r 90
§c|:][ |:1p(|Du—A|)0“+1/f< ) i|dz:| x
' 1\ =60
2 2
v ( sup ][ dx)
—r2<1<0Y By

Observe that 1% satisfies Assumption 1.1 with exponents 1 < 6ogo < 0pq. It follows that

%040
A (1//90, (WQO)*> < max {290‘“, 2%40-1 } < 00. We may therefore use the Poincaré type

u— (U)zy,r — Alx — x0)
R—r

u— (U)zo,r — Alx — x0)
R—r

2
+ @144 (

f

r

2 \2
fdx)

r

u— (u), — Ax
r

u— (u), — Ax

u— (u), — Ax
r

inequality in Theorem 5.1, with v replaced with ¥, to bound the second term in the right
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hand side. Thus,

fo( )

r 90

<c [][ Y (|Du — ADPdz 4 <][ @144/ (1 DU — Al)dz> } X
Q, Qr

1\ 1=6o
2 2
v sup ][ dx
—r2<t<0Y B

Now, to estimate the sup-term, we apply the Caccioppoli inequality on the cylinders Q, and
Qg (see Theorem 4.1). Since R < 2r,

f s [ [ oo
sup X = P1+]A|
—r2<t<0Y By, rn+2 Qr

u— (u), — Ax
R —r

u— (u), — Ax
r

u— (u), — Ax

r

u— (u), — Ax

-
2
dzi|
u— (u), — Ax
< cp2"t? ][ (/’1+\A|< s
QR

R—r
To replace (u), with (1) g, we note that

u— (u), — Ax
R—r

NS

< 2"+2][ lu — (u)g — Ax|dz.
QR

u— (u), —Ax
R—r

[(u)r — ()Rl = ‘][Q [u— (u)g — Ax]dz

The result follows from Jensen’s inequality and the A»-condition. O

To establish the main regularity result, Theorem 1.2, we will need the following inequality,
which is proved using Theorem 5.2 with the special choice ¢ > ¥ () = 12,

Theorem 5.3 Letru € CO(—T,0; L>(,R¥) N L' (=T, 0; W-1(Q2, RN)) be a weak solu-
tion to (1.1) satisfying ¢(|Du|) € LY(=T,0; LY(Q)). Under assumptions (a1)-(aq) and

Assumption 1.1, given any standard cylinder Q,(z0) € Qr, with center zg = (xo, to), and
any A € RN we have
u— Wpp— Al — xo)

][Qp/z(zo) p/2

2
o
<c4 ][ @1414|(|1Du — ADdz + ][ [Du — A|P0dz
Q,(20) Qp(ZO)

P

2
o ][ @0 (1Du — Aldz | + ][ @ (D — ADdz) |,
Qp(z()) Qp(z())

where c4 depends onn, N, po, p1, v, and L.

2
dz

Proof As usual, we may assume zog = (0, 0). Let % < r < R < p. For convenience, put
M =1+ |A|. We use Theorem 5.2 with the N-function t — ¥ () = 2, qo = ¢q1 = 2, and
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. 2
6o = po/2. Observe that, since ﬁ < po < 2,

n__ _ nq
n+2  ngi+2qo

6ogo = po € (1,n) and < 6p <1.

The inequality (5.4) becomes

pPo
[][ |Du — A|Pdz + <][ @y (|Du — A|)dz> } , (5.5
. o,

2
+<PM< )dz

2

—w), —A
Uz = A @ R x

r

where

T(r,R) :][

u—(u)g — Ax
R—r

u—(u)g — Ax
R—r

R \’? u— (g — Ax|? R \/ u— (u)g — Ax
S(R—r) ][QR R dz+(R—r> ][QRW( R )dz
R 7/ u— (u)g — Ax 2 u— (u)g — Ax
(o) [ s )]

Here, we have taken advantage of (2.2), p; > 2, and R’i -
2

inequality in (5.5), with % = = and its conjugate 171f00 = This produces

Po
2 1 2 1
][ dz 57][ dz-‘rf][ <pM< )dz
r 2 QOr 2 Or
r12=pg)

u— (u)p — Ax
R Po Z
: 2
+c< ) " [][ |Du — A|™dz + (][ 0y (IDu — Al)dz) ] °
R—r o, o,

R
For the second term in the upper bound, we can use Theorem 5.1 with ¥ (t) = @y (¢). The
previous inequality becomes

l ‘
S 2
QR
P12=pg)

R 0 , Po %
+el p ][ |Du — A|Podz + ][ 0y (IDu — A)dz .

Enlarging the domain of integration (recall that g <r < R < p), we get

1 t
< —
2 QR

> 1. Now, we use Young’s

2
2—po”
u—(u)g — Ax
R

u— (u), — Ax
r

2

u— (u), — Ax dz

r

u— (u)p — Ax

R @y (|1 Du — A|)dz>

2
dz + c][ o (|Du — Al)dz + op <][
QR

Qr

2

u— (u), — Ax dz

r

u— (u)r — Ax
R

2
dz+c][ om(|Du — ADdz + om (][ so’M(IDu—AI)dz>

Qp Qp
P12=pQ) po %
p P() !
—l—c( ) ][ |Du — A|P°dz + ][ oy (|1Du — Adz .
R—r Qp Qp
We are now in position to apply [29, Lemma 6.1] to conclude the proof. O
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6 Linearization

We now prove a lemma that facilitates the comparison of solutions to our system (1.1) to
solutions for a linear system with constant coefficients.

Lemma 6.1 Suppose u € CO(—T,0; L*(Q2, RV)) N LY(—T,0; WH1(Q, RN)) is a weak
solution to (1.1) that satisfies ¢(|Du|) € L'(—=T,0; L' (Q)). Let a generic parabolic
cylinder Q, :(z0) C K1, with center zo = (xo,ty), be given. Under the hypothe-
ses (a1)-(as) and Assumption 1.1, given any affine map £ : R" — RN and any map
1n € CX(Qp2,7/4(20), RY), we have

f (u—2)-n — Da(De)(Du — D¢, Dn)dz
Qp/2,1/4(z())

1
< esprepa() iw (s2)"s7+ S} sup |Dn|
Qp/2,7/4(20)

where c5 depends only onn, N, L, v, pg, p1. Here

Du — D¢
S:][ ¢1+De|(| Du D 2.
Q,/2,1/4(20) @1+p) (1)

Proof We may assume zo = (0, 0). For convenience, we write Q, ; = Q, ¢(z0) and M =
1+ |Df|. Letn € CX(Qp)2,7/4» RM) be given. We first note:

][ [(u—2¢)-n — Da(Dt)(Du — D¢, Dn)]dz
Qp/2.7/4
=][ [(w—£) - n —a(Du)- Dnldz

Qp/2.7/4

—i-][ [(a(Du) —a(D¥)) - Dy — Da(D£)(Du — D¢, Dn)]dz =: I + 1.
Qp/2.1/4

Since u is a weak solution to (1.1) and][ £-n;dz =0, we infer that I = 0. On the
Qp/2,t/4
other hand,

1
][ (a(Du) —a(D?)) - Dndz =][ / i [a(D€ + s(Du — D¥))] - Dndsdz
Qp2,t/4 Qp2e4 YO ds
1
:][ / Da(D{ + s(Du — D2))(Du — D¢, Dn)ds dz,
Qp/2.e/a Y0
so that
1
11 =][ / [Da(Dt + s(Du — D)) — Da(D{)](Du — D¢, Dn) ds dz.
Qp/2.7/4 40
Using the continuity assumption (a4),

|II|<L][ /lw< s|Du = D] )
B Qp/2.t/4 Y0 I+ |D€+ s(Du — D{)| + | D{|

¢" (M + |DC + s(Du — D0)|)| Du — De||Dn|ds dz
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1
< L][ w (|Du — D¢|) |Du — DE||Dn| / ¢" (M + |Dt + s(Du — Dt)|) ds dz.
Qp/2.1/4 0

As ¢’ is nondecreasing, Assumption 1.1, Lemma 2.2, and (2.4) yield

¢'(M + |Du| + | DL|) -0 ¢'(M + |Dul)
M+ |Dul+ D¢ — M+ |Dul

1
/ ¢"(M + D€+ s(Du— D)|)ds < c
0

Thus,

¢'(M + |Dul)

| <c sup|D Du — D) |Du — D¢
Il < c sup|Dn o (|Du D |Du | M+ |Du]

Qp/2.7/4 Qp/2.7/4

Now, we distinguish in Q2 ;/4 the points where |Du — D{| < M from those where
|Du — D£| > M. Denote by X the first set and by Y the second. On X, we have |Du| < 2M,
s0 (2.4) implies ¢’ (M + |Du|) ~ ¢'(M). Thus

¢'(M +[Du) _ (w’(M))i (wu _ pep M+ 1Du sz)é

|Du — D¢|
M + [Dul M M + [Du — DY
1
/M 2
<c (“’fw )) o (1Du — DED*,

where we have used (2.8). Moreover,

|Du — DE| <c

M + |Du| ((/J’(M)

1
2 1

: D D¢ 2
< _ 2.
C( ’(M)) em (| Du D

It follows that

(M +|D
][ o (|Du — D)) | Du — pe) L PuD
o) M + |Du|

p/2,7/4

¢/ (M)\? M O\ ) ;
= C( M ) ][Q @ ((p’(M)) oy (|Du — DE)? | op(|Du — DE))2 dz.
p/2.t/4

Applying Holder’s inequality and using the concavity of w and the bound w < 1, we continue
with

@' (M + |Dul)
M + |Du|

1 1 2
@' (M)\? M \? 1
Sc( I ) fgp/z,,/4w(<¢/(M)) §0M(|Du—D£|)2> dz| x
1
2
(][ om(|Du — Dzl)d2>
Qp/2.t/4
1 1 1\ 2
<C(¢’(M)>7w (L)z ][ (|Du — De))d ).
- M @' (M) Qp/2.1/4 o :
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1

2
][ om(|Du — DL|)dz
Qp/2.t/4
1

<o (90 ((SE) stount) stowt
=c\ =y w o (M) oM pm(1)2.

To complete the bound on X, we use (2.4) and (2.8) to deduce that
o' M) ¢’ (M+1)

~ om ().
M w1 em@
We conclude that
"(M +|D 3
][ o (1Du — D)) |Du — ey EXPUD G o (Do (S%)2 S2. (6.1)
Qp/2.7/4 M + [Du|

Turning to the set Y, we have | < M < |Du — D{| < |Du — D€|2. Recalling (2.4) and (2.8)
once more, we have

(M +|D '(M + |Du — D¢
\pu— poEMFIDUD e M+ 1Du D < copr(1Du — D).
M + |Du| M + |Du — D¢|
Thus
(M +|D
][ wvo (|Du — D)) | Du — pe) E L 1PuD
Qp/2,t/4 M + [Du|
< c][ ou(IDu — DEl)ydz = cou (1S, 62)
Qp/2.7/4

Here, we have again used @ < 1. The lemma follows from summing (6.1) and (6.2). To verify
the claim for the parameter dependencies of the constant cs, we review the proof and note
that only the hypothesis (a4), Assumption 1.1, and properties (2.4) and (2.8) were required.

]

7 Decay Estimates

For convenience, we recall the excess functional introduced in Section 1. Given zg € Q7,
a > 0,r > 0, and an affine map ¢ : R" — R", define
u—17
D) dz.
-

2
‘Ija(ZOsr»g):][ < +§0a<
Qr(z0)

In the following lemma we provide the decay of the excess Wit pe,, (20, £, £z,p). Recall
that £, , is defined in (2.11) and denotes the time-independent affine map closest to u with
respect to the L2-norm on Q,(20).

u—=~

r

Lemma 7.1 (Decay Estimate) Suppose that hypotheses (a1)-(as) and Assumption 1.1 hold
andthatu € C°(—T,0; L*(Q, RV )NL (—T, 0; Wh1(Q, RY)) is a weak solution to (1.1)
satisfying ¢ (|Dul|) € LY(=T,0; LY (Q)). Let My > 0and 0 < a < 1 be given. There exist
0 < &,0 < Lwiththe following property: if zo € Qr and p > 0 are such that Q,(z0) € Qr,

DLy, ol < Mo, and — Wiype, (20, Py Lzg,p) < €,
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then

V111Dt 4,1(20, 0P, £2g,0p) < 92“‘I’l+|Dlzo.p| (20, p5 Lzg,0)

and
1 n+3 )
|D£z(),9p| = |D£z(),p| +@m+2) (5) ‘Ij1+\D£p|(ZO» P, Kz(),p)7~

Proof ForeachO < r < p,wewrite{, = £, , and W, (r) = W,(20, 1, {;). Definev = u—£,
and M =1+ |D€,| < My + 1. Let A denote the bilinear form Da (D). Thus

A€, &) = v (1 +|DEDIER  and  AE, )| < L" (1 4 |DE,DIENIn].

Let us recall that Az (ppr) < 2P'; with 0 < « < 1 given, define

A {1 1 2(11)}
0<6=0(M,a) =min —( ) , (7.1)

32"\ 1+cs6
and suppose that

Wy(p) < & = e(M)
. {W(l) 52 1 (e"+3)
< min , ——

61 g, (wn+Degsces \n+2

2 (49)n+p1+4

, , (7.2
c6,3¢6,5 (2+ Na(pm)?) } (%)

where the precise values of the constants ¢ ; > 1 will be determined in the course of the
proof. The constant 0 < § < 1 is specified by Theorem 3.2, while the constant C appearing
below may change from line to line but will depend on only n, N, L/v, po, p1.

As £, is independent of 7, the map v is a weak solution to (1.1). Our first objective is to take
advantage of the A-caloric approximation lemma to produce an .A-caloric map close to v.
With S defined in Lemma 6.1, the Caccioppoli inequality in Corollary 4.1 implies

Du — D¢
sof ewD_DLD .
Qpn (pM(l)

002n+p1+2
<
em(l) Jg,

Note that cg. | = co2" 72, Now, Lemma 6.1 delivers the bound

v

2
- +(PM<‘ED dz < —2L @y (p) < 1.
Jo om (1)

0

1
< cspp(l) [a) (S%)2 S% + S’ sup |Dn|
0p2

][ (v-dn— A(Dv, Dn)) dz
Qp2

1 1 1
< 2cscq om ()2 Wy (p)2 sup | Dy

Q/)/Z
1
= c62¥Ym(p)2 sup |Dn|
Qp/2
< § sup |Dn].
Qo2

The smallness condition (7.2) was applied in the last inequality. This verifies the requirement
in (3.3) of Theorem 3.2. For the other requirement in (3.4), we again use the Caccioppoli
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inequality:

p/2

2
sup ][ dx +][ <¢M < D + gaM(|Dv|>>
to—p? /A<t <ty Bp2 Qp2 p/2

<4c61¥Yu(p) + Az2(pm) oM <‘ D dz
Qp/2 P
< 02" P (p) = c 3 W (p) = ¥* < min{l/w,, 1}.

With the hypotheses of Theorem 3.2 satisfied, taking into account Remarks 2.3 and 3.1 , we
obtain an A-caloric map h € C*°(Q,/4; R¥) such that

2
]/]’l n+2 2
— Dh dz <2"™°K 7.3
][gp/4<p/4 +§0M<‘ /4D+§0M(|V I)> 7 < ou? (7.3)
v—yh

2
v—yh )
+¢M< D dz <ey~”.
prM( IO/4 p/4

Recall that 0 < 6 < 1/16 by definition (7.1). As in Lemma 2.8, for 0 < r < p/4, we define
the affine map Zﬁh)(x) = (W) zy,r + (Dh)g,, - (x — x0). We want to produce a bound for

and

2
o

N
Q@p

Op

o

v—Yy
QBp P

0

)dz::l—i—l[.

We will focus on /1. The argument for / is similar. We may write

v—yh
< Az(pr)][ ou (' 4 D +oum dz
Qﬂp 6’0
yh

1 p1+n+2 v —
< Aa(pm) (*) ][ oM ( D dz + Aa(pm) oM
40 Q4 p/4 Qop
1\ pitn+2 s y(h — oM
< Ao(om) (@) ey” + A2(<PM)][ om||———
QGp

20, Qp)
Observe that Lemma 2.5-(b) and (7.3) imply

Op
) 2
][ dz 56][ dz +3 ][ lyDh|| dz
Q4 Qs | P/4 Qp/a

5 2
Szn+ K((JM y

2

1 2H2K¢w)’ 2 g yz
@" (M) om(1)? o

1 1
<22n+5K2 1 C - 2 — 2 < 1.
=R [T\ gan Towan ) |7 T =

()
yh =€, ,)

Op

(h)
y(h =L 7,)

Op

)

) dz. (7.4)

yh—e® D[
p/4

yh

S2n+5]<(0My2 +C (
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We may therefore use the inequality in Lemma 2.8, Remark 2.3, (2.7), and Jensen’s inequality

to deduce that
dz < C92][ oM dz.  (1.5)
Qp/a

o

On the other hand Jensen’s inequality and the A,-property imply

yh—e )
][ oM ( T wp/d ) dz <Ax(pm)? <§0M ( D +90M(|7/Dh|))
Qp/4 Qp/4 r/4

p/4
<2 Ky Ao (om)* Y. (7.6)
With (7.5) and (7.6) we return to (7.4) to obtain

1 p1+n+2
][ oM dz =11 < As(py)? (49) e+ C2"2K,, 0% | y?
Qé)p

We similarly obtain

‘é(‘)p

Thus, since 8 < 1/4,

f. L

1 n+p1+2 X
- (@) (2+ Aalgan)’) ¢ + Caos (14 Aalgan)’) 67 | 7.

(h)
y(h — 620 gp)

0p

y(h =2 )
p/4

v— yﬁ(h)
Op

v — yﬂ(h)

0p

ve®

20,0p 20,0p

Op

2
v — E()

Op
Let us point out that 1 4 | D€g,| < M + 1. Indeed, from (2.13) we obtain

2
=% dz<M—1+<”n++3>][
6 o,

Op

|Deop| < |DEy| + |DE, — Dyl
u—~L,
o

2\ 2
dZ> (1.7)

SM-1+n+2)
QH/)

n—+2
5M—l+(9n+3>(][g
0

n+2 1
<M-1+ s Yi41pe,|(0)2

n—+2 1
e (52

pn+3 2
ided ¢ < .
provided ¢ < <n+2)

Now, using Lemma 2.4 (with M replaced by M + 1) and Lemma 2.6 (with £ = ¢, yE 20.0 p)
and defining ¢ 5 = ko 4711 (M + 1)P1+2 (ko from Lemma 2.6), we have

)

dz

u—~Lp,
0

u—4Lop

2
u—~Ly
—t + @14|De, | <‘ op

0p

Wit Degp) (20, 00, Lop) =
Qop
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2
<4P|+1(M+1)P1+2][ u—top " dz
B Qop Op
) )
SC(),S][ M dz
Qop

2
u—~L, —yt uf(fpfyﬁzo’gp
v—ypl
::Cﬁj;{
Qop

20,0p
op
Op
1 n+p1+2
3 3\ g2
<63 6.5 ( ) (24 A2(@m)’) e + Ceoa (14 Aalom)’) 07 | War(p)

u—Lgp
6p

Op

()
20,0p

()

v—yt 20.60p

0p

()

<[0% + c6.60%] Wur (0),

where ce 6 = Cc6.3c6,4c6,5(l+A2(<pM)3). So, under the smallness assumption that W, (p) <
g,

141Dy, (20, 0P, Lop) < 92“‘P1+|D2p| (20, P, £p).

Combined with (7.7), we conclude that

1\ |
|Dlgp| < |DELp| + (n+2) <5> Vitipe, ()2
]
In the following lemma we will iterate the excess-decay estimate from the previous lemma.

Lemma 7.2 (Iteration Argument) Suppose that the assumptions, for u and ¢, in Lemma 7.1
hold. Let My > 1 and 0 < a < 1 be given. There exist 0 < ¢y < 6y < 1 and
c¢71 = c¢7(Mo, 0o, n, N, L/v, po, p1) with the following property: given a standard parabolic
cylinder Qp,(20) € Qr, if

L+ Dy pol = Mo and  Wiyipe, 01205 05 €zy.p9) = 0,
then for each j € N, we have the following:
J 2ja
(a) ‘I/1+|Dzzoﬁgpo|(Z0, 9 ,Oo,ﬁmﬂgpo) <0y V14Dt (205 PO £2,00)s

(b) |DC | < My —6]°.

20,03 po

Moreover,

][ P1+1(Du)yy | (|1 Du — (D)7, r|) dz
r(z0)

2a
r
<c7 <%) \Ij1+|Dezo.po|(Z0’ 00, Zzo,po)v for all0 <r < ,()()/2. (7.8)

Proof Parts (a) and () follow from an induction argument. With 0 < o < 1, p = pp, and
M fixed, let 0 < ¢, 60 < 1 be provided by Lemma 7.1. Put

65" (1 - 68)?

6y :=6, &p:=min {8, 127

I, and p; = ({,00, foreach j € N.

(7.9)
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Clearly | D¢y, po| < My, and the base case, j = 1, immediately follows from Lemma 7.1.
With j € N given, suppose that (@) and (b) are both true for all k = 1, ..., j. We observe
that (a) implies

ja
\F1+|Dezo_pj|(zo, Pjs L) =05 WigiDey ,01(205 PO, Lzg,p0) < €0 < €.
By the inductive assumption,
Jja
|Dlyp, | < Mo — 60" < Mo.

We may therefore use Lemma 7.1, with p replaced with p; and the other parameters the same
as in (7.9), to obtain

2a
‘111+|Dz,0,,,j+1 120, Pj+1:Lzg,pi11) <65 ‘P1+|Dezo_pj|(zo, PjsLz.0;)
2(j+ e
<6y V111Dt 5y 1(205 P05 £2.0)-

For part (b), we have
1 n+3 |
(Dl pji]| <IDLzy p; 1 + (n+2) (6—()) \IJ1+|D/420,,,1.|(20, PjsLzo.p;)?

. 1\ 1 . .
<My — 6" + (n +2) <%> 00%eg < Mo — 63" + (1 —05)8)"
=My —oUthe,

By induction, we deduce (@) and (b) for all j € N.
It remains to verify (7.8). Given 0 < r < pg/2, we may select j € N U {0} such that
pj+1 < 2r < p;. Using Remark 2.6 and Corollary 4.1, we have

][ P1+1(Du)yy 1 (|1 Dt — (Dut)zy,r ) dz Skz][
0, (z0)

Q141D | (1D = Dl 1) dz
0, (20)

K2 ][
=— V14Dt ,.|(|1Du — DEyy ».]) dz
6y 2 Qp;/2(z0) 0F !

+pi+4 [ K2
<co2"TP! (9n+2 Y141Dezy p,1(205 0j 20,0;)
)

4 K2 2ja
Prviard (9n+2 0 ‘I"1+\Dl;0,p0\(zo’ P0, £z9,p0)
0

2a
R
<c7 <%> Wi41Dez 001 (205 P05 L20.0)-

Since Az (¢, ¢™) depends on only p; and pg, the lemma is proved. O

8 Partial regularity

We are now in position to prove the main result of the paper.

Proof of Theorem 1.2 Let zo € Q7 be such that

lim inf][ |V(Du) — (V(Du))zo,p|2dz =0,
=0 J9,(z0)
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and

lim sup [(Du),,p| < +o0. (8.1)

p—0

Using (2.10), we deduce that

lim inf][ §01+\(Du)20,,,|(|DM) — (D), p)dz = 0.
r=0 JQ,(20)

Exploiting Lemma 2.7 and Poincaré’s inequality in Theorem 5.1, we get

P1+|DL;, | ( ) dz
][Qp(zo) o’

u— (U)zg,p — (Dt)z,p(x — X0)
= Kl][ P1+|(Du)zg | ( 20,9 20,P
Q,(z0)

o
<kic2 ][ PL{(Duyyg o (1D — (Dut)z, 1) dz
»(20)

FTPL+(Du)z, ][
Hort\Jo,

P

u—~Lyp

)

8.2)

)<Pi+|(Du)zo,p|(|Du — (Du)zo,p|)dz):| .
0

Thanks to (2.5) and Jensen’s inequality, we may write

][ PLt{(Duyy o (| DU = (Di)zg,p]) dz
Qp(ZO)

< (¢T+\(Du)zo4ﬂ|)71 (fg o ‘P1+|(Du)20,p\(|Du — (Du)zo’p|)dz> . (8.3)
P

On the other hand, Theorem 5.3 implies

][Qp(zo)
<
Qp(z())

<cq4 ][ PL|(Du)z 201 (1Dt = (D) z5,2p dz + (][
20(20)

u—"~Lyp ?
o

dz

2

u— (u)z(),p - (Du)zg,Zp(x — X0) dz

0

2
Po

|Du — (Du), 2,|7°dz
Qap(20) o ) 8.4)

+ P1+(Du) 20 ][ ¢i+|(Du)ZO,2ﬂ|(IDu - (Du)zo,Zpl)dZ>
Q2,(z0)

2
i ¢i+ Du)., (IDu (Du)z ,2p|)dz
( QZp (z0) . “)No.zﬁl 0

We can use Lemma 2.5 to control the upper bound’s second integral:

o
2

1
[Du — (Du)zy2,|7dz < C | DL+(Du)zy 2| (| Dt — (Dt) 79 2p]) dz
][sz(m 0.2 ¢+ 1Du)zg 20D J 0y ey | TP 0% o

1
11Dz 201 (DS 0y 2,

(8.5)

@L4((Du) g 2| (|1 DU — (DU)z 2p]) dz.
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Finally, from (2.13)

u— (u)za,p - (D”):(;,/J(x — X0)
o

‘Dem,p - (D“)z().p| <(n+2) dz

Qp(z0)

< @riDu ) ][ P1|(Du); \( )dZ ,
o Q,(0) o’

which in turn can be bounded via (8.2) and (8.3). Let g > 0 be as defined in (7.9). Keeping
in mind the definition of zg, the estimates (8.2), (8.4), and (8.6), supported by (8.1), (8.3),
and (8.5), imply the existence of My > 1 and aradius Ry > O such that |[D{,; g,| < Mo —1
and Wy Dtz gy (20, Ro, £z,,Ry) < €0. By the absolute continuity of the integrals, there exists
Ry < Rg such that, for any z € Qg, (zo) we have

(8.6)

u— (U)zy,p — (Du)z,p(x — X0)
P

1+ [Dl gyl <My and Wiy ipe, g (2, Ro, €z Ry) < 0.

Applying Lemma 7.2 to each point z € Qg, (z0), we deduce that, for any r < Ry/2,

/ |V (Du) — (V(Du)). ,|*dz ~ / P1+/(Duy, | (| Du — (Du) r)dz
Q,(2) Qr(2)

rn+2+2a
=< C(M, 90) Rigae().

This means that V (Du) belongs to the parabolic Campanato space Ez’"% (Qr, (z0), RN
and by the usual embedding we have V (Du) € CO’%’O‘(QRI (z0), RMM). o

Remark 8.1 Note, as indicated in Sect. 1, the Holder continuity of V (Du) implies the Holder
continuity of Du with a different exponent depending on ¢.
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