

UNIVERSITÀ POLITECNICA DELLE MARCHE Repository ISTITUZIONALE

Black Soldier Fly (Hermetia illucens) reared on roasted coffee by-product and Schizochytrium sp. as a sustainable terrestrial ingredient for aquafeeds production

This is the peer reviewd version of the followng article:

Original

Black Soldier Fly (Hermetia illucens) reared on roasted coffee by-product and Schizochytrium sp. as a sustainable terrestrial ingredient for aquafeeds production / Zarantoniello, Matteo; Zimbelli, Andrea; Randazzo, Basilio; Compagni, Martina Delli; Truzzi, Cristina; Antonucci, Matteo; Riolo, Paola; Loreto, Nino; Osimani, Andrea; Milanović, Vesna; Giorgini, Elisabetta; Cardinaletti, Gloriana; Tulli, Francesca; Cipriani, Renato; Gioacchini, Giorgia; Olivotto, Ike. - In: AQUACULTURE. - ISSN 0044-8486. - ELETTRONICO. - 518:(2020). [10.1016/j.aquaculture.2019.734659]

This version is available at: 11566/272119 since: 2024-03-27T14:27:15Z

Publisher:

Published

DOI:10.1016/j.aquaculture.2019.734659

Terms of use:

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. The use of copyrighted works requires the consent of the rights' holder (author or publisher). Works made available under a Creative Commons license or a Publisher's custom-made license can be used according to the terms and conditions contained therein. See editor's website for further information and terms and conditions.

This item was downloaded from IRIS Università Politecnica delle Marche (https://iris.univpm.it). When citing, please refer to the published version.

note finali coverpage

(Article begins on next page)

- 1 Black Soldier Fly (Hermetia illucens) reared on roasted coffee by-product and Schizochytrium
- 2 sp. as a sustainable terrestrial ingredient for aquafeeds production
- 3 Matteo Zarantoniello^a, Andrea Zimbelli^a, Basilio Randazzo^a, Martina Delli Compagni^a, Cristina
- 4 Truzzi^a, Matteo Antonucci^a, Paola Riolo^b, Nino Loreto^b, Andrea Osimani^b, Vesna Milanović^b;
- 5 Elisabetta Giorgini^a, Gloriana Cardinaletti^c, Francesca Tulli^c, Renato Cipriani^d, Giorgia Gioacchini^a,
- 6 Ike Olivotto**.

- 8 ^a Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via 9 Brecce Bianche, 60131 Ancona, Italy.
- 10 b Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche,
- via Brecce Bianche, 60131 Ancona, Italy.
- ^c Department of Agricultural, Food, Environmental and Animal Science, University of Udine,
- 13 *33100, Udine, Italy.*
- ¹⁴ Società Agricola Alghitaly srl, 37066, Sommacampagna, Verona, Italy.

15

- **Corresponding author: Prof. Ike Olivotto; e-mail: i.olivotto@univpm.it; Dipartimento di
- 17 Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131
- 18 Ancona, Italy

19

20 **Key words**: insect meal; polyunsaturated fatty acids; circular economy; zebrafish; microbiota.

- 22 Abstract
- 23 Promoting circularity in the aquaculture sector through the conversion of great amount of organic
- by-products produced on land is a valuable strategy for a further development of the aquaculture
- sector. In this regard, insects represent a very promising example of bio-converting organisms;
- 26 their application in aquafeeds, however, still faces possible limitations because of their lack in
- 27 polyunsaturated fatty acids and the presence of chitin.
- 28 The aim of the present study was to apply circularity to Black Soldier Fly (BSF) (Hermetia
- 29 *illucens*) culture and to improve the insect's biomass fatty acid composition by culturing them on a
- 30 land-produced by-product (coffee silverskin) enriched with a 10% Schizochytrium sp. The insect
- biomass was then used to formulate five fish diets containing 0, 25, 50, 75 and 100% of insect meal
- respect to fish meal, respectively. Diets were used for a feeding trial during zebrafish (*Danio rerio*)
- larval development (21 days) and a multidisciplinary approach including biometry, histology, gas
- 34 chromatography, spectroscopy (FTIR), microbiota analyses and molecular biology was applied to

better understand fish responses to the new diets. Results showed that the 50% substitution of fish meal with insect meal represented the best compromise between ingredient sustainability and proper fish growth and welfare. Fish fed with higher BSF inclusions (75 and 100%) showed a severe degree of hepatic steatosis, microbiota modification, a higher lipid content (FTIR), fatty acid modification and higher expression of both stress and immune response markers.

40

35

36

37

38

39

1. Introduction

41 Aquaculture is the fastest growing food production sector worldwide, and it is estimated that by 42 2030 62% of food-fish will come from aquaculture (FAO, 2018). The reason for this growth relies 43 on several factors, including wild capture fisheries decline, increase in global demand for seafood 44 products and the 9 billion people population expected on Earth by 2050, with the consequent 45 doubling of farmed production required to meet the mid-century demand for seafood (Gerland et al., 46 2014; Guillen et al., 2018). 47 Because of the estimated increase in World's population, a significant rise in waste and by-products 48 production is expected. The EC Directive No. 2008/98, which establishes the order of priority in the 49 choice of by-products treatments (with their reuse as favoured option and their landfill disposal as 50 last option), will play a central role for further development of a European circular economy. 51 52 In consideration of this, aquaculture should be more responsible, sustainable, innovative, based on the circular economy concept, and able to provide larger volumes of healthy food by using 53 54 environmentally friendly ingredients while promoting fish needs and welfare (Merino et al., 2012; Tlusty and Thorsen, 2017; Stevens et al., 2018; Bohnes and Laurent, 2019). 55 For many years aquaculture has relied on the use of fish meal (FM) and fish oil (FO) as main 56 ingredients in aquafeeds (Tacon & Metian, 2008; Shepherd and Jackson, 2013). For its further 57 development, however, nutritious and sustainable ingredients must be identified and tested 58 (Alhazzaa et al., 2018; Sarker et al., 2018; Vargas et al., 2018). 59

- Among such ingredients, several options have already been investigated and great attention has
- been addressed to animal by-products (Processed Animals Proteins, PAPs), vegetable sources and
- microalgae (Ayadi et al., 2012; Roy and Pal, 2014; Cardinaletti et al., 2018; Xu et al., 2019), but
- unfortunately each of them has some downsides in the application for aquafeed formulation
- 64 (Francis et al., 2001; Naylor et al., 2009; Manceron et al., 2014; Bandara, 2018; Daniel, 2018).
- Insects represent a very promising example of bio-converting organisms (Barroso et al., 2014;
- 66 Henry et al., 2015; Belghit et al., 2019).
- Most insect species are farmed on land-produced by-products (van Huis, 2013; Čičková et al.,
- 68 2015; Webster et al., 2016; Spinelli et al., 2019;) and, in addition, farming of insects is sustainable
- 69 in terms of land use, water consumption and CO₂ production, because of their low environmental
- requirements (Berggren et al., 2019; Smetana et al., 2019).
- Land organic by-products are thus efficiently bio-converted in a highly nutritious biomass which, in
- 72 turn, can provide sustainable new ingredients for fish nutrition. Specifically, every year up to
- 73 200.000 tons of coffee silverskin are produced by the coffee industry as by-products (Murthy and
- Naidu, 2012; Mussatto et al., 2011). Therefore, in a circular economy perspective, coffee silverskin
- 75 may represent a suitable substrate for insect production.
- Among several insect species, the Black Soldier Fly (*Hermetia illucens*; BSF) has a promising role
- for aquafeed production. From a nutritional point of view, the BSF accumulates good amounts of
- 78 proteins and lipids (307.5-588.0 g kg⁻¹ and 113.0-386.0 g kg⁻¹, respectively; Caligiani et al., 2018;
- 79 Nogales-Mérida et al., 2018). However, while the essential amino acid composition is
- approximately similar to that of fish meal (Müller et al., 2017), the fatty acid (FA) profile is
- 81 extremely different, posing some limits in the full-fat BSF meal inclusion in aquafeeds
- 82 (Zarantoniello et al., 2018; Cardinaletti et al., 2019). In terms of fatty acid profile, the BSF is
- usually rich in saturated fatty acids (SFAs) and poor in polyunsaturated (PUFAs) ones (Barroso et
- al., 2014), which are extremely important for fish (Sargent et al., 1999). PUFAs deficiencies during
- 85 fish farming can cause a general decrease of fish health, poor growth, low feed efficiency, anaemia

and high mortality (Tocher, 2010; Olivotto et al., 2011; Piccinetti et al., 2012; Dumas et al., 2018). 86 87 Because of their fatty acid profile, insects are mainly used as protein source in fish nutrition and often undergo a defatting process which represents an important cost in their manufacture (Jin et al., 88 2012; Li et al., 2015; Wang et al., 2017). Therefore, in aquafeed production it is desirable to use 89 90 full-fat insect meal. In this regard, it is known that insects are able to modulate their fatty acid composition in relation to the growth substrate (Komprda et al., 2013; Liland et al., 2017). 91 92 Recently, some authors demonstrated that rearing BSF larvae on an organic substrate containing proper amounts of omega-3 fatty acids was a suitable procedure to improve the FAs profile of the 93 final insect biomass (Barroso et al., 2017; St-Hilaire et al., 2007b). 94 95 New ingredients to be introduced in aquafeeds must be carefully analysed, since it is well 96 established that different feed ingredients may have modulatory effects of on fish physiological responses and gut microbiota (Li et al., 2019; Rimoldi et al., 2019). Besides zootechnical indexes, 97 98 several molecular markers involved in fish growth, stress response, lipid metabolism, appetite and immuno response (Olivotto et al., 2002; Piccinetti et al., 2015; Cardinaletti et al., 2019; Vargas-99 Abúndez et al., 2019) have been proposed as valid tools to precociously detect physiological 100 responses in fish fed new diets and represent an up-to-date and important approach. 101 102 In addition, it is already known that insects possess natural antibiotic properties, possibly modifying 103 fish microflora (Huyben et al., 2019; Terova et al., 2019), but knowledge concerning interactions 104 between insect-based diets, gut microbiota, and the aforementioned markers is still fragmentary and incomplete. 105 106 The aim of the present study was to interconnect land and aquatic environment by: 1) recycling land-produced organic by-products (coffee silverskin) to rear BSF larvae; 2) enriching the insects' 107 growth substrate with Schizochytrium sp. to improve their FAs profile; 3) producing highly 108 nutritious full-fat BSF prepupae meal; 4) testing the biological effects of diets including graded 109 inclusions of BSF prepupae meal in an aquatic experimental model organism, the zebrafish (Danio 110 rerio) and 5) applying a multidisciplinary approach integrating biometric, histological, gas 111

chromatographic, molecular, microbiological and spectroscopic analyses to better understand the physiological responses of the fish. Zebrafish represents an extraordinary experimental model for aquaculture, biomedical, developmental biology, genetics, toxicology studies, due to its high reproductive rate and abundant information that has recently become available from genome sequencing (Lawrence, 2007; Reed and Jennings, 2011). Particularly, zebrafish are used to generalize how several biological processes take place in related organisms (like finfish species) and contribute to understand the mechanisms involved in fish nutrition, welfare and growth, possibly providing useful information for finfish production (Aleström et al., 2006; Dahm and Geisler, 2006; De-Santis and Jerry, 2007; Johnston et al., 2008).

2. Materials and methods

2.1. Ethics

All procedures involving animals were conducted in line with the Italian legislation on experimental animals and were approved by the Ethics Committee of the Università Politecnica delle Marche (Ancona, Italy) and the Italian Ministry of Health (626/2018-PR). Optimal rearing conditions (see further section for details) were applied throughout the study, and all efforts were made to minimize animal suffering by using an anaesthetic (MS222; Sigma Aldrich, Saint Louis, Missouri, USA).

- 2.2. Insect feeding substrate preparation
- The main component of the insect feeding substrate consisted of coffee silverskin, a coffee industry by-product provided by Saccaria Caffe` S.R.L. (Marina di Montemarciano, Ancona, Italy). Coffee by-product (moisture 44%) was collected and grinded in an Ariete 1769 food processor (De Longhi Appliances Srl, Italy) to a 0.4±2 mm particle size before the feeding substrate preparation. The insect diet was formulated including a 10% (w/w) of *Schizochytrium* sp to the coffee by-product (for details, please see Truzzi et al., in press). The freeze-dried *Schizochytrium* sp. was provided by

AlghItaly Società Agricola S.R.L. (Sommacampagna, VR, Italy). Insect feeding substrate was added with distilled water to reach a final moisture of ~70% (Makkar et al., 2014).

139

140

- 2.3. Insect rearing
- Insects were reared in a climatic chamber at a 27±1 °C temperature, relative humidity of 65±5% 141 (Spranghers et al., 2017), in continuous darkness. Six days old larvae [purchased from Smart Bugs 142 s.s. Ponzano Veneto (TV), Italy] were hand counted and divided in groups of 640 larvae per 143 replicate (n=65) for a total of 41,600 specimens. Each replicate consisted of a plastic box 144 (57x38x16cm) screened with fine-mesh cotton gauze and covered with a lid provided with 90 145 146 ventilation holes of 0.05cm Ø (Spranghers et al., 2017). Larvae were reared at a density of 0.3/cm² 147 (Barragan-Fonseca et al., 2018). Each larva was provided with a feeding rate of 100 mg/day (Diener et al., 2009) that was prepared and added once a week (448 g for each box). Insects were visually 148 inspected every day and, when prepupae were identified by the change in tegument colour from 149 white to black (May, 1961), they were collected, washed, dried and stored at -80 °C. 150

- 152 *2.4. Fish diets production*
- Full-fat BSF prepupae were freeze dried, grinded with Retsch Centrifugal Grinding Mill ZM 1000 153 154 (Retsch GmbH, Haan, Germany) and used to prepare the experimental diets. A control diet (Hi0) containing FM, wheat gluten, pea protein concentrates and FO as major ingredients, was prepared 155 according to a commercially available standard diet for zebrafish (Zebrafeed, Sparos ltd, Portugal). 156 157 The experimental diets were isonitrogenous (50%) and isolipidic (13%). Insect-based diets were prepared by including graded levels of insect meal (25%, 50%, 75%, and 100%, referred to as Hi25 158 and Hi50, Hi75 and Hi100, respectively) in the Hi0 formulation. The conventional vegetable 159 ingredients (pea protein concentrate and wheat gluten) used to formulate the experimental diets 160 were maintained approximatively at constant (0.7:1 w:w) ratio in all diets. In summary, all the 161 162 grounded ingredients (0.5 mm) and fish oil were thoroughly blended (Kenwood kMix KMX53

stand Mixer; Kenwood, De Longhi S.p.a., Treviso, Italy) for 20 min and then water was added to the mixture to obtain an appropriate consistency for pelleting. Pellets were obtained by using a 1 mm die meat grinder and dried at 40 °C for 48–72 h. The obtained diets were then grinded and stored in vacuum bags at –20 °C until used. Feed samples were analyzed for moisture (AOAC #950.46), crude protein, CP (AOAC #976.05), ash (AOAC #920.153) and ether extract (EE; AOAC #991.36) contents according to AOAC 2006.

The total lipid fraction of the test diets was extracted using chloroform-methanol (2:1 v:v) (Merck KGaA, Darmstadt, Germany) mixture according to Folch et al., 1957. Diet formulation and proximate composition are shown in Table 1.

172 TABLE 1. INGREDIENTS (g Kg^{-1}) AND PROXIMATE COMPOSITION (g 100 g^{-1}) OF 173 THE EXPERIMENTAL DIETS USED IN THIS STUDY.

	Hi0 (Control)	Hi25	Hi50	Hi75	Hi100
Ingredients (g/kg)					
Fish meal ¹	470	400	250	110	-
Vegetable mix ²	220	230	298	385	440
Hi meal	-	150	275	350	460
Wheat flour ³	198	172	120	110	72
Fish oil	80	51	25	10	-
Soy lecithin	8	8	8	11	4
Mineral and Vitamin supplements \$	14	14	14	14	14
Binder	10	10	10	10	10
Proximate composition (%)					
Dry Matter	97.08 ± 0.06	95.78 ± 0.13	94.93 ± 0.05	93.63 ± 0.05	92.70 ± 0.04
Crude protein, CP	51.57 ± 0.13	50.75 ± 2.57	50.39 ± 0.28	51.23 ± 1.49	50.50 ± 3.15
Ether extract, EE	14.38 ± 0.64	13.10 ± 0.42	12.93 ± 0.38	13.24 ± 0.46	12.99 ± 0.51
NFE	21.32 ± 0.34	20.82 ± 1.00	20.64 ± 0.55	19.03 ± 0.67	18.47 ± 1.26
Ash	9.81 ± 0.25	11.11 ± 0.01	10.97 ± 0.00	10.13 ± 0.06	10.74 ± 0.13

¹ Raw ingredients kindly supplyed by Skretting Italia; ² Vegetable mix (pea protein concentrate: wheat gluten, 0.7:1 w/w) Lombarda trading srl, Casalbuttano & Uniti (CR, Italy) and Sacchetto spa (Torino, Italy); ³ Consorzio

Agrario (Pordenone, Italy); \$ Mineral and Vitamin supplement composition (% mix): CaHPO4.2H2O, 78.9; MgO,

- 2.725; KCl, 0.005; NaCl, 17.65; FeCO₃, 0.335; ZnSO₄.H₂O, 0.197; MnSO₄.H₂O, 0.094; CuSO₄.5H₂O, 0.027;
- Na₂SeO₃, 0.067; thiamine hydrochloride (vitamin B1), 0.16; riboflavin (vitamin B2), 0.39; pyridoxine
- hydrocloride (vitamin B6), 0.21; cyanocobalamine (vitamin B12), 0.21; niacin (vitamin PP or B3), 2.12; calcium
- pantotenate, 0.63; folic acid, 0.10; biotin (vitamin H), 1.05; myo-inositol (vitamin B7), 3.15; stay C Roche
- 181 (vitamin C), 4.51; tocopherol (vitamin E), 3.15; menadione (vitamin K3), 0.24; retinol (vitamin A 2500 UI kg⁻¹
- diet), 0.026; cholecalciferol (vitamin D3 2400 UI kg⁻¹ diet), 0.05; choline chloride, 83.99; * Values reported as
- mean of triplicate analyses; ⁶ n.d.: not determined

- 185 *2.5. Fish*
- Zebrafish AB embryos were maintained for 48h in a Tecniplast system (Varese, Italy) in the
- 187 following conditions: 28 °C temperature, pH 7.0, NO₂ and NH₃ concentrations < 0.01 mg/L, NO₃
- concentration < 10 mg/L, and photoperiod 12L/12D, respectively (Randazzo et al., 2017). After this
- period, embryos were gently collected, counted under a stereomicroscope (Leica Wild M3B, Leica
- 190 Microsystems, Nussloch, Germany) and randomly divided in five experimental groups (in
- triplicate) according to the five test diets.

192

- 193 2.6. Experimental design
- 20L tanks to set up the five experimental dietary
- treatments; each experimental group was composed of 1500 larvae (500 larvae per tank). The water
- in the larval tanks had the same chemical-physical characteristics of the parent's tank and was
- 197 gently replaced 10 times a day by a dripping system (Olivotto et al., 2004). The sides of each tank
- were covered with black panels to reduce light reflection. All tanks were siphoned 30 min after
- 199 feeding (twice a day) to remove possible feed excess and dead larvae. The required larvae were
- sampled 20 days after fertilization (dpf), euthanized with a lethal dose of MS222 (1g/L) and
- 201 properly stored for further analyses.

- 203 2.7. Feeding schedule
- Starting from 5 dpf to 20 dpf, zebrafish larvae were fed as follows: Control group: larvae fed on diet
- 205 0% insect meal (Hi0 diet); Group A: larvae fed on the diet including 25% BSF full-fat prepupae

meal (Hi25 diet); Group B: larvae fed on the diet including 50% of BSF full-fat prepupae meal (Hi50 diet); Group C: larvae fed on the diet including 75% BSF full-fat prepupae meal (Hi75 diet); Group D: larvae fed on the diet including 100% BSF full-fat prepupae meal (Hi100 diet). Zebrafish larvae were fed on the experimental diets (2% body weight, BW; 100-250 µm size) twice a day and, in addition, from 5 to 10 dpf, all groups were fed (one feeding in the morning) on the rotifer *Brachionus plicatilis* (5 ind/mL) according to Lawrence et al. (2012) and Piccinetti et al. (2014).

2.8. Biometry

Five zebrafish larvae (15 per dietary group) were randomly collected from the different tanks of each experimental group at hatching (3 dpf) and at the end of the experiment (20 dpf). The standard length was determined using a sliding calliper (Measy 2000 Typ 5921, Swiss; precision: 0.1 mm) and the wet weight using an OHAUS Explorer (OHAUS Europe GmbH, Greifensee, Switzerland) analytical balance (precision: 0.1 mg) according to Zarantoniello et al. (2018). At 3 dpf, wet weight was measured on pools of five larvae in triplicate. For each experimental group, specific growth rate (SGR) was calculated as follows: SGR%= $[(\ln Wf - \ln Wi)/t) \times 100$, where Wf is the final wet weight, Wi, the initial wet weight, and t, the number of days (17). Survival rate in all experimental groups was about 85%.

2.9. Fatty acid composition

The experimental diets and fish larvae samples were analyzed for fatty acid composition. Samples were minced and homogenized (homogenizer MZ 4110, DCG Eltronic, Monza, Italy), and larvae were also freeze-dried (Edwards EF4, Crawley, Sussex, England). Aliquots of 200 mg of each sample were added with 100 μl of Internal Standard (methyl ester of nonadecanoic acid, 99.6%, Dr. Ehrenstorfer GmbH, Germany), and extracted overnight following the method of Folch et al., 1957. Analyses were carried out on three aliquots *per* sample. All lipid extracts were evaporated under laminar flow inert gas (N₂) until constant weight and re-suspended in 0.5 ml of n-epthane.

Fatty acid methyl esters (FAMEs) were prepared according to Canonico et al., 2016 using methyl ester of nonadecanoic acid (19:0; Dr. Ehrenstorfer GmbH, Augsburg, Germany) as internal standard. FAMEs were determined using an Agilent-6890 GC System (Milano, Italy) coupled to an Agilent-5973N quadrupole Mass Selective Detector (MSD) (Milano, Italy). A CPS ANALITICA CC-wax-MS (30 m \times 0.25 mm ID, 0.25 μ m film thickness) capillary column was used to separate FAMEs. Instrumental conditions for the studied matrices were set up according to Truzzi et al. (2017, 2018). For each analysed aliquot of sample, at least three runs were performed on the GCMS.

2.10. Histology

Nine zebrafish larvae per dietary group (3 larvae per tank, at 20 dpf), randomly collected from the different tanks, were fixed by immersion in Bouin's solution (Sigma-Aldrich, Milano, Italy) and then stored at 4°C for 24h. Larvae were washed three times in ethanol (70%) for ten minutes and preserved in the same ethanol solution. Larvae were then dehydrated in increasing ethanol solutions (80, 95 and 100%), washed in xylene (Bio-Optica, Milano, Italy) and embedded in paraffin (Bio-Optica). Solidified paraffin blocks were cut with a microtome (Leica RM2125 RTS, Nussloch, Germany) and 5 µm sections were stained with Mayer hematoxylin and eosin Y (Sigma-Aldrich, Milano, Italy). Sections were observed using a Zeiss Axio Imager.A2 (Oberkochen, Germany) microscope in order to study the hepatic parenchyma and intestine morphology. Images were acquired by mean of a combined color digital camera Axiocam 503 (Zeiss, Oberkochen, Germany). Moreover, to ascertain the extent of fat accumulation in liver, a quantitative analysis was performed on a significant number of histological sections from each experimental group in triplicate (n=9). No-n-evaluable areas, such as blood vessels were not considered. The percentage of fat fraction (PFF) on the total tissue areas was calculated using the ImageJ software setting a homogeneous threshold value.

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

2.11. FTIR analysis

Fifteen zebrafish larvae per dietary group (5 per tank) were randomly collected at 20 dpf. Samples were minced, homogenized (homogenizer MZ 4110, DCG Eltronic, Monza, Italy) and freeze-dried (Edwards EF4, Crawley, Sussex, England) for FTIR analysis. For each group, five aliquots of 5 mg each were analysed. FTIR analysis was performed using a Spectrum GX1 Spectrometer equipped with a U-ATR accessory and a diamond/SeZn crystal (Perkin Elmer, Waltham, Massachusetts, USA). Measurements were carried out in reflectance in the MIR region from 4000 to 800 cm⁻¹ (spectral resolution 4 cm⁻¹). Each spectrum was the result of 64 scans. Before each sample acquisition, a background spectrum was collected on the clean surface of the crystal. Raw IR spectra were converted in absorbance, two-points baseline linear fitted in the 4000-800 cm⁻¹ spectral range and vector normalized in the same interval (OPUS 7.1 software package). For all experimental groups, the average absorbance spectra were calculated together with their standard deviation spectra (average absorbance spectrum ± standard deviation spectra) and analysed to identify the most featuring IR peaks (in terms of position/wavenumbers). Then, average absorbance spectra and their standard deviation spectra were curve-fitted in the 3050-2800 cm⁻¹ and 1790-900 cm⁻² ¹ regions upon two-points baseline correction and vector normalization. A Gaussian algorithm was adopted, and the number and position of the underlying peaks was defined by second derivative analysis of the spectra (GRAMS/AI 9.1, Galactic Industries, Inc., Salem, NH). In the 3050-2800 cm⁻¹ region, the following underlying peaks were identified: ~3010 cm⁻¹ (=CH moieties in unsaturated lipid alkyl chains); ~2959 cm⁻¹ and ~2872 cm⁻¹ (CH₃ groups in lipid alkyl chains); ~2925 cm⁻¹ and ~2854 cm⁻¹ (CH₂ groups in lipid alkyl chains). In the 1790-900 cm⁻¹ region, the following underlying peaks were identified: ~1744 cm⁻¹ (C=O moiety in lipids and fatty acids); ~1639 and ~1536 cm⁻¹ (respectively Amide I and II bands of proteins); ~1457 cm⁻¹ (proteins side chains); ~1390 cm⁻¹ (COO groups in aspartate and glutamate amino acids); ~1234 cm⁻¹ (collagen); ~1157 cm⁻¹

(glycosylated compounds); ~1080 cm⁻¹ (phosphate groups), and ~1055 cm⁻¹ (mucin). The integrated areas of the most relevant peaks were calculated and used to evaluate the following band area ratios: LIP/TBM (representing the overall amount of lipids), 1744/LIP (representing the amount of fatty acids compared to lipids), 2928/LIP (representing the amount of saturated fatty acids with respect to lipids), and 3010/LIP (representing the amount of unsaturated fatty acids compared to lipids); PRT/TBM (representing the overall amount of proteins), 1234/PRT (representing the amount of collagen compared to proteins), and 1055/PRT (representing the amount of mucin compared to proteins). TBM was the sum of the integrated areas of all peaks in the 3050-2800 cm⁻¹ and 1790-900 cm⁻¹ regions; LIP was the sum of the integrated areas of all peaks in the 3050-2800 cm⁻¹ region, while PRT was the sum of the integrated areas of the bands at 1639 and 1536 cm⁻¹.

2.12. Microbiome

RNA extraction and cDNA synthesis. Prior to analysis, zebrafish larvae (60 larvae per dietary group) were disinfected by washing in 50 mL of ethanol (70%) on a laboratory shaker (VDRL Stirrer with thermostatic cupola, ASAL s.r.l, Milan, Italy) at 150 rpm for 1 min at room temperature, in order to analyse only the gut microbiome. These samples were thus identified as G (gut) Hi0, 25, 50, 75 and 100 for these analyses. After discharging the ethanol, the samples were rinsed in two additional washing steps in 50 mL of sterile deionized water. Subsequently, 31.5 mL of sterile peptone water (peptone, 1 g/L) was added to each sample, which was then homogenized in a Stomacher apparatus (400 Circulator, International PBI, Milan, Italy) for 3 min at 260 rpm. Then, 1.5 mL of each tenfold diluted (10-1 dilution) homogenate were centrifuged at 14,000 rpm for 10 min, the supernatants were discarded, the obtained cell pellets covered with RNA later Stabilization Solution (Ambion, Foster City, CA, USA) and stored at -80°C until use. The Quick-RNA Fungal/Bacterial Microprep kit (Zymo Research, CA, USA) was used for the extraction of total microbial RNA from the cell pellets following the manufacturer's instructions. The extracted RNAs were checked for quantity, purity and integrity as previously described by Garofalo et al. (2017). Moreover, the extracts were amplified using the PCR universal prokaryotic primers 27f and 1495r (Weisburg et al., 1991) to

and exclude the presence of bacterial DNA contamination. Five μL of each RNA sample were reverse-

transcribed in cDNA using the SensiFAST cDNA Synthesis Kit for RT-qPCR (Bioline, London,

UK) following the manufacturer's instructions.

312

313

314

316

317

318

319

320

321

322

310

311

16S rRNA amplicon target sequencing. cDNA was used as template in the PCR amplifying the V3-

V4 region of the 16S rRNA gene using the primers and protocols described by Klindworth et al.

315 (2013).

PCR amplicons were cleaned using the Agencourt AMPure kit (Beckman Coulter, Milan, Italy) and

tagged using the Nextera XT Index Kit (Illumina Inc. San Diego, CA) according to the

manufacturer's instructions. After the 2nd clean-up step, amplicons were quantified using a QUBIT

dsDNA Assay kit and an equimolar amount of amplicons from different samples were pooled. The

library was denatured with 0.2 N NaOH, diluted to 12 pM, and combined with 20% (vol/vol)

denatured 12 pM PhiX, prepared according to Illumina guidelines. The sequencing was performed

with a MiSeq Illumina instrument (Illumina) with V3 chemistry and generated 250 bp paired-end

reads according to the manufacturer's instructions.

324

325

326

327

328

329

330

331

332

333

323

2.13. Molecular analyses

RNA extraction and cDNA synthesis. Total RNA extraction from 5 zebrafish larvae from each tank

(15 larvae per dietary group) was optimized using the RNAzol RT reagent (Sigma-Aldrich, R4533)

according to Piccinetti et al. (2013). The total RNA extracted was eluted in 40 µl of RNase-free

water (Qiagen). The final RNA concentration was determined using a NanoPhotometer P-Class

(Implen, München, Germany). RNA integrity was verified by GelRedTM staining of 28S and 18S

ribosomal RNA bands on 1% agarose gel. RNA was stored at -80°C until use. Finally, 2 µg of RNA

were used for cDNA synthesis, using the High Capacity cDNA Reverse Transcription Kit (Bio-Rad,

Milan, Italy) following the manufacturer's instructions.

(Bio-Rad Laboratories) following Vargas et al. (2018).

Relative quantification of the expression of genes involved in fish growth (*igf1*, *igf2a* and *mstnb*), stress response (*nr3c1* and *hsp70.1*), long-chain polyunsaturated fatty acids biosynthesis (*elov12*, *elov15* and *fads2*), appetite response (*ghrl*, *npy*, *cnr1* and *lepa*), immune response (*il1b*, *il10* and *mfa*) and enzymatic hydrolysis of chitin (*chia.2* and *chia.3*) was performed. Actin-related protein 2/3 complex, subunit 1A (*arpc1a*) and ribosomal protein, large, 13 (*rpl13*) were used as internal standards in each sample in order to standardize the results by eliminating variation in mRNA and cDNA quantity and quality. No amplification products were observed in negative controls and no primer-dimer formations were observed in the control templates. Amplification products were sequenced, and homology was verified. The data obtained were analysed using the iQ5 optical system software version 2.0 (Bio-Rad) including GeneEx Macro iQ5 Conversion and genex Macro iQ5 files. Primer sequences were designed using Primer3 (210 v. 0.4.0) starting from zebrafish sequences available in ZFIN Primer sequences used were reported in Table 2.

Real-Time PCR. PCRs were performed with SYBER green method in an iQ5 iCycler thermal cycler

TABLE 2. PRIMER SEQUENCES AND THE ZEBRAFISH INFORMATION NETWORK (ZFIN) USED IN THIS STUDY

Gene	Forward primer (5'- 3')	Reverse primer (5'- 3')	ZFIN ID
igf1	5'-GGCAAATCTCCACGATCTCTAC-3'	5'-CGGTTTCTCTTGTCTCTCAG-3'	ZDB-GENE-010607-2
igf2a	5'-GAGTCCCATCCATTCTGTTG-3'	5'-GTGGATTGGGGTTTGATGTG-3'	ZDB-GENE-991111-3
mstnb	5'-GGACTGGACTGCGATGAG-3'	5'-GATGGGTGTGGGGATACTTC-3'	ZDB-GENE-990415-165
nr3c1	5'-AGACCTTGGTCCCCTTCACT-3'	5'-CGCCTTTAATCATGGGAGAA-3'	ZDB-GENE-050522-503
hsp70.1	5'-TGTTCAGTTCTCTGCCGTTG-3'	5'-AAAGCACTGAGGGACGCTAA-3'	ZDB-GENE-990415-91
elovl2	5'-CACTGGACGAAGTTGGTGAA-3'	5'-GTTGAGGACACACCACCAGA-3'	ZDB-GENE-060421-5612
elovl5	5'-TGGATGGGACCGAAATACAT-3'	5'-GTCTCCTCCACTGTGGGTGT-3'	ZDB-GENE-040407-2
fads2	5'-CATCACGCTAAACCCAACA-3'	5'-GGGAGGACCAATGAAGAAGA-3'	ZDB-GENE-011212-1
ghrl	5'-CAGCATGTTTCTGCTCCTGTG-3'	5'TCTTCTGCCCACTCTTGGTG-3'	ZDB-GENE-070622-2
пру	5'-GTCTGCTTGGGGACTCTCAC-3'	5'CGGGACTCTGTTTCACCAAT-3'	ZDB-GENE-980526-438
cnr1	5'-AGCAAAAGGAGCAACAGGCA-3'	5'GTTGGTCTGGTACTTTCACTTGAC-3'	ZDB-GENE-040312-3
lepa	5'-CTCCAGTGACGAAGGCAACTT-3'	5'GGGAAGGAGCCGGAAATGT-3'	ZDB-GENE-081001-1

il1b	5'-GCTGGGGATGTGGACTTC-3'	5'-GTGGATTGGGGTTTGATGTG-3'	ZDB-GENE-040702-2
il10	5'-ATTTGTGGAGGGCTTTCCTT-3'	5'AGAGCTGTTGGCAGAATGGT-3'	ZDB-GENE-051111-1
tnfα	5'-TTGTGGTGGGGTTTGATG-3'	5'-TTGGGGCATTTTATTTTGTAAG-3'	ZDB-GENE-050317-1
chia.2	5'-GGTGCTCTGCCACCTTGCCTT-3'	5'-GGCATGGTTGATCATGGCGAAAGC-3'	ZDB-GENE-040426-2014
chia.3	5'-TCGACCCTTACCTTTGCACACACCT-3'	5'-ACACCATGATGGAGAACTGTGCCGA-3'	ZDB-GENE-040426-2891
arpc1a	5'-CTGAACATCTCGCCCTTCTC-3'	5'-TAGCCGATCTGCAGACACAC-3'	ZDB-GENE-040116-1
rpl13	5'-TCTGGAGGACTGTAAGAGGTATGC-3'	5'-AGACGCACAATCTTGAGAGCAG-3'	ZDB-GENE-031007-1

2.14. Statistical analysis

All data (except for microbiome) were analyzed by one-way ANOVA, with diet as the explanatory variable. All ANOVA tests were followed by Tukey's post-hoc tests. The statistical software package Prism5 (GraphPad Software) was used. Significance was set at p<0.05 and all results are presented as mean ± SD. For microbiome analyses, paired-end reads were first merged using the FLASH software (Magoč and Salzberg, 2011). Joint reads were quality filtered (at Phred < Q20) by QIIME 1.9.0 software (Caporaso et al., 2010) and the pipeline recently described (Osimani et al., 2019). Briefly, the USEARCH software version 8.1 (Edgar et al., 2011) was used for chimera filtering and clean sequences were clustered into Operational Taxonomic Units (OTUs) at 97% of similarity by UCLUST algorithms. Centroids sequences of each cluster were used for taxonomic assignment using the Greengenes 16S rRNA gene database. OTU tables were rarefied at 44412 sequences. The OTU table displays the higher taxonomy resolution that was reached.

3. Results

3.1. Biometry

The increasing inclusion levels of BSF full-fat prepupae meal resulted in a statistically significant (p<0.05) increase in the larval specific growth rate. In particular, no significant differences (p>0.05) were detected between Control (25.4 \pm 0.7%) and Hi25 group (25.7 \pm 1.0%), while Hi50, Hi75 and

Hi100 groups (27.6±0.5, 27.8±0.4, 28.4±0.3 %, respectively) showed significantly (p<0.05) higher values compared to both Control and Hi25 ones.

373

374

3.2. Fatty acid content and composition

Diets. The FAs classes percentages of the five experimental diets are presented in Figure 2a. Insect-375 based diets showed significantly higher (p<0.05) percentages of SFAs (40.9±0.7, 40.0±2.0, 376 377 35.9±0.7 and 37.6±2.8 % for Hi25, Hi50, Hi75 and Hi100 diets, respectively) compared to Control diet (27.8±1.3%). Considering mono-unsaturated fatty acids (MUFAs), all insect-based diets 378 showed significantly lower percentages (p<0.05) compared to Control (24.7±0.6, 19.8±0.3, 379 380 19.0±0.9, 21.5±0.2 and 20.0±1.0 % for Control, Hi25, Hi50, Hi75 and Hi100, respectively). Finally, insect-based diets showed significantly (p<0.05) lower (39.3 \pm 1.0, 41.0 \pm 1.0, 42.6 \pm 0.3 and 42.2 \pm 3.2 381 % for Hi25, Hi50, Hi75 and Hi100, respectively) percentages of PUFAs compared to Control diet 382 (47.4±1.4 %). In addition, increasing inclusion levels of BSF full-fat prepupae meal in the diets 383 resulted in a significant decrease (p<0.05) of n3 percentages (from 38.8±1.4% for Control diet to 384 385 11.1±3.1 % for Hi100 diet) and a parallel significant (p<0.05) increase in n6 percentages (from 8.6±0.1 for Control diet to 31.3±0.9 % for Hi100 diet; Fig. 2a). Consequently, the n6/n3 ratio 386 showed significant differences (p<0.05) among experimental diets, increasing from Control diet 387 388 (0.22±0.01) to Hi100 diet (2.8±0.2) diets (Fig. 2b). Finally, considering the insect-based diets, the higher was the BSF meal dietary inclusion, the higher was the n9 content (10.7±0.2, 12.1±0.7, 389 390 14.6±0.2 and 15.2±0.7 % for Hi25, Hi50, Hi75 and Hi100, respectively). The control diet (13.9±0.3%) showed an intermediate n9 content between Hi50 and Hi75 diets. 391 Zebrafish larvae. Figure 2c illustrates the FAs classes percentages of zebrafish larvae fed on the 392 393 different diets. The FA classes of zebrafish larvae fed on the different diets was deeply influenced by the BSF meal dietary inclusion. In particular, SFAs percentage increased with the inclusion of 394 insect meal in the diets, while both MUFAs and PUFAs generally decreased with the increasing 395

BSF inclusion levels in the diets (Fig. 2c). Specifically, the higher was the dietary BSF meal inclusion level, the lower was the n3 and the higher was the n6 percentage detected. Considering the n6/n3 ratio (Fig. 2d), no significant differences (p>0.05) were detected among Control, Hi25 and Hi50 groups $(0.5\pm0.1,\ 0.5\pm0.1)$ and 0.6 ± 0.1 , respectively), while Hi75 and Hi100 (0.8 ± 0.1) and 1.0±0.1, respectively) showed a significantly (p<0.05) higher value compared to the other experimental groups. Finally, in terms of n9 percentage, only Hi25 and Hi50 groups (17.7±0.4 and 17.9±0.3 %, respectively) showed significantly (p<0.05) higher values compared to Control group (17.3±0.2 %). Table 3 shows the FA composition of total lipids of zebrafish larvae. The FA profile of larvae reared on the Control diet was characterized by high percentages of 16:0, 18:1n9, 22:6n3 (docosahexaenoic acid, DHA), and 20:5n3 (eicosapentaenoic acid, EPA) fatty acids, followed by 18:2n6, 16:1n7 and 18:0. The increasing inclusion levels of BSF meal in the diets triggered some changes in the FA composition of the larvae and the major changes are reported here. A substantial (up to ~30-folds) increase in the lauric acid (12:0) and a significant decrease in EPA (20:5n3) percentage was detected in fish fed diets with increasing BSF meal inclusion levels. In terms of DHA, a similar, but milder trend was observed respect to EPA. Because of this the DHA/EPA ratio significantly increased with the increasing BSF meal inclusion levels in the diets (Tab. 3).

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

Table 3: Fatty Acid Composition (as % of total fas) of Zebrafish Larvae Fed Diets where FM was Replaced with 25, 50, 75 and 100 % of BSF Meal (Hi25, Hi50, Hi75 and Hi100 groups).

	Zebrafish larvae					
	CTRL	Hi25	Hi50	Hi75	Hi100	
10:0	0.02±0.01	0.05 ± 0.01	0.10 ± 0.01	0.08 ± 0.01	0.09±0.02	
12:0	$0.20{\pm}0.03^a$	2.6 ± 0.1^{b}	4.5 ± 0.1^{c}	4.7 ± 0.4^{c}	5.7 ± 0.4^{d}	
13:0	0.06 ± 0.01	0.06 ± 0.01	0.07 ± 0.01	0.06 ± 0.01	0.07 ± 0.01	
14:0	$4.0\pm0.1^{a,b}$	4.0 ± 0.1^{a}	4.2 ± 0.1^{b}	3.9 ± 0.2^{a}	4.3 ± 0.2^{b}	
15:0	0.86 ± 0.04	0.80 ± 0.03	0.82 ± 0.01	0.79 ± 0.02	0.84 ± 0.04	
16:0	14.7 ± 1.0^{c}	$14.0\pm0.7^{a,b}$	13.8 ± 0.5^{a}	$14.6 \pm 0.1^{b,c}$	15.5 ± 0.9^{d}	

16:1n9	1.2 ± 0.1^{a}	1.3 ± 0.1^{b}	1.3 ± 0.1^{c}	1.5 ± 0.1^{d}	1.5 ± 0.1^d
16:1n7	8.7 ± 0.6^{c}	9.0 ± 0.3^{c}	8.3 ± 0.1^{b}	7.6 ± 0.4^{a}	7.9 ± 0.1^{a}
17:0	1.2 ± 0.1^{b}	1.1 ± 0.1^{a}	1.1 ± 0.1^{a}	1.1±0.1 ^a	1.2 ± 0.1^{b}
18:0	6.3 ± 0.2^{c}	5.5 ± 0.1^{a}	5.8 ± 0.2^{b}	6.3 ± 0.4^{c}	$6.7{\pm}0.4^d$
18:1n9	14.7 ± 0.1^{a}	15.3 ± 0.3^{b}	15.7 ± 0.7^{c}	15.1 ± 0.3^{b}	15.3 ± 0.1^{b}
18:1n7	5.2 ± 0.1^{d}	4.9 ± 0.2^{c}	4.6 ± 0.2^{b}	4.3 ± 0.1^{a}	$4.5{\pm}0.2^b$
18:2n6	9.6 ± 0.1^{a}	10.6 ± 0.2^{b}	11.0 ± 0.2^{c}	12.6 ± 0.3^{d}	$12.7{\pm}0.7^d$
18:3n6	0.43 ± 0.01	0.41 ± 0.02	0.50 ± 0.01	0.47 ± 0.03	0.53 ± 0.03
18:3n3	3.7 ± 0.1^{c}	3.3 ± 0.2^{b}	3.5 ± 0.2^{c}	2.7 ± 0.2^{a}	2.8 ± 0.3^a
20:0	0.22 ± 0.01	0.18 ± 0.01	0.19 ± 0.01	0.23 ± 0.02	0.21 ± 0.01
20:1n9	0.90 ± 0.05	0.75 ± 0.01	0.63 ± 0.02	0.48 ± 0.02	0.39 ± 0.02
20:2n6	0.29 ± 0.02	0.29 ± 0.01	0.31 ± 0.01	0.35 ± 0.02	0.38 ± 0.02
20:3n6	0.46 ± 0.04^{a}	0.52 ± 0.02^{b}	0.70 ± 0.04^{c}	0.98 ± 0.06^{d}	1.1 ± 0.1^{e}
20:4n6	2.3 ± 0.2^{a}	2.3 ± 0.1^{a}	2.4 ± 0.1^{b}	3.2 ± 0.3^{c}	3.5 ± 0.1^{d}
20:3n3	0.21 ± 0.03	0.19 ± 0.01	0.21 ± 0.01	0.17 ± 0.01	0.17 ± 0.02
20:5n3	10.2 ± 0.2^{e}	8.7 ± 0.7^{d}	7.2 ± 0.3^{c}	4.6 ± 0.1^{b}	3.5 ± 0.2^a
22:1n9	0.31 ± 0.02	0.28 ± 0.01	0.18 ± 0.02	0.12 ± 0.01	0.04 ± 0.01
22:6n3	14.0 ± 1.3^{c}	13.9 ± 1.2^{c}	12.9 ± 0.8^{b}	14.0 ± 1.3^{c}	$11.2{\pm}1.0^a$
24:1n9	0.18 ± 0.02	0.09 ± 0.01	0.08 ± 0.01	0.05 ± 0.01	0.03 ± 0.01
DHA/EPA	1.4 ± 0.1^{a}	1.6 ± 0.2^{b}	1.8 ± 0.1^{b}	3.0 ± 0.3^{c}	3.2 ± 0.2^{c}

Means within rows bearing different letters are significantly different (p<0.05). Statistical analysis was performed only for FAs > 1%. FAs with a percentage <1% were excluded from any statistical analyses because their concentrations were close to the limit of detection.

3.3. Histology

Histological analyses were performed in order to detect possible inflammatory events in the intestine and to evaluate lipid accumulation or steatosis in the liver. The intestine mucosa appeared unaltered and did not show any appreciable inflammatory influx in all experimental groups and fish fed on BFS-based diets showed a normal intestinal morphology, comparable to Control (Fig. 3a-j). Coversely, results evidenced a variable degree of lipid accumulation in the liver of the experimental groups (Fig. 3k-o). The most appreciable visual differences were observed in the Hi75 and Hi100

groups. Indeed, while all experimental groups presented a modest fat liver parenchima, Hi75 and Hi100 showed a severe degree of steatosis with swollen hepatocytes and abundant intracytoplasmic lipid accumulation (Fig. 3n,o). These results were confirmed by the statistical quantification of the fat percentage fraction (PFF) on liver sections that showed a significant increase in response to dietary treatments (Fig. 4). In particular, Hi50 showed a significant increase in PPF (48.7 ± 2.4) compared to Control (41.7 ± 2.1) and Hi25 (42.5 ± 1.2) groups. However, the highest values in PFF were detected in Hi75 and Hi100 with a significant difference (58.7 ± 0.9 and 60.6 ± 1.5 respectively) compared to the other groups.

3.4. FTIR analysis

The average absorbance spectra of Control, Hi25, Hi50, Hi75 and Hi100 larval groups are shown in

Figure 5. The analysis of IR spectra allowed to distinguish the vibrational modes of lipids, proteins,

carbohydrates and phosphates (see Materials and Methods section) (Vargas et al., 2018).

In terms of biochemical composition of zebrafish larvae samples belonging to the different dietary groups, the following considerations can be drawn: (i) statistically significant higher amounts of overall lipids (LIP/TBM, Fig. 6a) were detected in Hi50, Hi75 and Hi100 zebrafish larvae compared to Control and Hi25 ones; (ii) in all zebrafish larvae fed on diets with different inclusion levels of BSF meal, a significant increase in saturated fatty acids (1744/LIP and 2925/LIP, Fig. 6b and 6c) and a significant decrease in unsaturated ones (3010/LIP, Fig. 6d) were observed; (iii) in terms of protein composition, no statistically significant changes were detected in the overall amount of proteins (PRT/TBM, Fig. 7a) among the experimental groups; (iv) a slight but statistically significant decrease of collagen (1234/PRT, Fig. 7b) was observed in all zebrafish larvae fed on diets including BFS meal, and (v) a higher amount of mucin (1055/PRT, Fig. 7c) was

3.5. Microbiome

found in Hi50, Hi75 and Hi100 zebrafish larvae.

A total of 247,654 reads passed the filters applied through QIIME, with an average value of 49,530 reads/sample, and a mean sequence length of 464 bp. The Good's coverage indicated also satisfactory coverage for all samples (>99%) (Supplementary Table 1A). Alpha-diversity indicated the highest number of OTUs after 50% of BSF inclusion if compared with control and with 25% of inclusion. Beta diversity calculation based on weighted and on unweight UniFrac distance matrix showed a clear separation of the control samples if compared with those including BSF (Fig. 8). Furthermore, 50 and 75% of BSF meal inclusion in the diets showed a similar effect on microbial composition.

As shown in Figure 9, the main OTUs shared among the data sets were *Cetobacterium* that reached 50% of the relative abundance in sample GHi50 and about 30% in the other samples. Vibrio and Mycoplasmataceae decreased with the increasing inclusion of BSF meal in the diets; *Flavobacterium* and *Plesiomonas* were present at very low abundance in GHi100 sample, whereas in the other samples the same two genera showed a remarkable presence. Finally, among other bacteria, Aeromonadaceae, *Ochrobactrum* and *Tetrathiobacter* were also detected.

- *3.6. Real-time PCR results*
- Real-time PCR analyses were performed on genes involved in fish growth (igf1, igf2a and mstnb),
- stress response (hsp70.1 and nr3c1), long-chain polyunsaturated fatty acids biosynthesis (elovl2,
- 476 elov15 and fads2), appetite (ghrl, npy, cnrl and lepa), immune response (il1b, il10 and tnfa) and
- enzymatic hydrolysis of chitin (*chia.2* and *chia.3*).
- 478 Growth factors. Higher mean levels in the expression of the igf1 and igf2a genes were detected in
- all experimental groups fed on BSF-based diets compared to Control (with the exception of igfl
- 480 gene expression in Hi25 group). In particular, the Hi75 and Hi100 groups showed significantly
- 481 (p<0.05) higher levels in comparison to the Hi25 group in terms of igfI gene expression, and to
- Control in terms of *igf2a* gene expression. Only the Hi50 and Hi100 groups showed significantly
- (p<0.05) higher levels of expression of the *mstn* gene than Control (Fig. 10c).

Stress response. Considering stress markers (nr3c1 and hsp70.1; Fig. 10d,e), all groups fed on BSF-based diets showed a significantly (p<0.05) higher gene expression compared to Control (with the exception of nr3c1 gene expression in Hi25 group). Furthermore, no significant differences (p>0.05) were evident among the Hi50, Hi75 and Hi100 groups, while the Hi25 group showed significantly (p<0.05) lower values compared to groups fed on diets with higher BSF meal inclusion level (with the exception of nr3c1 gene expression in Hi50 group).

Lipid metabolism. The highest BSF meal inclusion (Hi100) caused the highest expression of the genes involved in long-chain polyunsaturated fatty acid elongation (elovl2 and elovl5) and desaturation (fads2). As illustrated in Figure 10f-h, the Hi100 group presented the highest gene expression (p<0.05) compared to all the other experimental groups. More specifically, no significant differences (p>0.05) in the expression of the elovl2 gene were detected between Control and Hi25 group (Fig. 10f), while both Hi50 and Hi75 had a significantly (p<0.05) higher expression than Control. No significant differences (p>0.05) in the expression of the elovl5 and fads2 genes (Fig. 10g,h) were observed among the Control, Hi25, Hi50 and Hi75 groups.

Appetite. As shown in Figure 10i,l, the higher was the BSF meal inclusion in the diets, the higher was the *ghrl* and *npy* gene expression. However, no significant differences (p>0.05) were observed between Control and Hi25 in terms of *ghrl* gene expression and among Control, Hi25 and Hi50 in terms of *npy* gene expression. Figure 10m shows *cnrl* gene expression. No BSF meal dose dependency was observed in the expression of this specific gene, since only Hi25 and Hi50 groups evidenced significantly (p<0.05) higher values than Control. , Groups fed on the highest BSF inclusion (Hi75 and Hi100) showed significantly (p<0.05) higher gene expression of the *lepa* gene (Fig. 10n) compared to the other groups, while no significant differences (p<0.05) were detected among Control, Hi25 and Hi50 groups.

Immune response. Considering genes involved in the immune response, higher BSF meal dietary inclusions resulted in a significantly (p<0.05) higher gene expression compared to Control. Specifically, no significant differences (p>0.05) were evident in the expression of the il1b gene (Fig 10o) among the Control, Hi25 and Hi50 groups, while the Hi75 and Hi100 groups showed significantly (p<0.05) higher values compared to the other experimental groups. Similarly, the Hi50, Hi75 and Hi100 groups showed a significantly (p<0.05) higher expression of the il10 gene (Fig 10p) compared to the Control and Hi25 groups, which did not differ significantly from each other (p>0.05). Finally, as reported in Figure 10q, the increasing levels of inclusion of BSF meal in the diets resulted in a statistically significant (p<0.05) dose-dependent increase in tnfa gene expression.

Chitinases. All the experimental groups fed on BSF-based diets showed an increase in chitinases gene expression (Fig. 10r,s). Specifically, no significant differences (p>0.05) were evident in the expression of the *chia.2* and *chia.3* genes among all the experimental groups, with the exception of the Hi100 group for *chia.2* and both Hi75 and Hi100 groups for *chia.3*, which showed a significantly (p<0.05) higher gene expression than Control.

4. Discussion

- The use of insects in aquafeed still faces possible limitations because of their lack in PUFAs
- 529 (Barroso et al., 2017) and presence of chitin (Kroeckel et al., 2012; Xiao et al., 2018).
- Insects are usually farmed on vegetable organic by-products, and previous studies showed that the
- final insect biomass had a very low PUFAs and a high SFA content (Vargas et al., 2018;
- Zarantoniello et al., 2018). However, it is now well established that the quantity and quality of FAs
- in insects can be modified by the growth substrate (Barroso et al., 2014; Spranghers et al., 2017; St-
- Hilaire et al., 2007a). Specifically, in the present study we demonstrated that the addition of a 10%

(w/w) of Schyzochitrium sp. to the growth substrate is an efficient approach to increase the PUFAs 535 536 content of the final insect biomass. This "enrichment" procedure of the insect biomass caused a progressive increase in PUFAs content 537 in the Hi25, 50, 75 and 100 diets, respectively, highlighting that the enrichment method used is 538 539 appropriate and represents, in this sense, an interesting and innovative approach on how food byproducts produced on land (coffee silverskin) can be enriched and bio-converted into a valuable 540 biomass for aquafeed production (Meneguz et al., 2018; Pinotti et al., 2019). 541 Compared to previous insect-based diets already tested on zebrafish (Vargas et al., 2018; 542 Zarantoniello et al., 2019), the diets tested in this study showed good performances on fish growth, 543 544 since higher BSF meal inclusion levels in the experimental diets resulted in higher larval SGR%. 545 This result was supported by the analysed molecular markers of growth but is in contrast with previous studies reporting that BSF meal inclusion levels higher than 40% often resulted in negative 546 547 effects on fish growth and welfare (Sánchez-Muros et al., 2014; Barragan-Fonseca et al., 2018; Secci et al., 2019). In particular, previous studies evidenced that such high inclusion levels affected 548 both intestine and liver integrity and, thus, dietary nutrients absorption (Henry et al., 2015; Li et al., 549 2017; Cardinaletti et al., 2019). 550 551 The different diets tested in the present study also affected larval fish FA composition. However, 552 differences among FA classes were less evident in zebrafish larvae compared to those detected in 553 the diets. In fact, as a freshwater species, zebrafish are able to convert shorter-chain FAs in highly unsaturated ones through the elongation and desaturation pathways (Tocher, 2010). This was clearly 554 555 documented in the present study by a higher elovl2, elovl5 and fads gene expression in all the experimental groups fed on BSF meal-based diets (with emphasis on the Hi100 group). 556 557 Gas chromatographic results were also confirmed and integrated by FTIR analyses which provided data about the macromolecular composition of the analysed biological samples (Giorgini et al., 558 2018). Specifically, FTIR analyses showed that there were no differences in the total amount of 559

among the experimental groups, highlighting that BSF meal is a valuable protein source for 561 562 aquafeeds (Al-Qazzaz and Ismail, 2016; Lock et al., 2016; Nogales-Mérida et al., 2018). Concerning lipids, the same analyses revealed that the increase of BSF meal percentage in the diets 563 was associated with a general increase in total larval lipid content. Additionally, analysing specific 564 565 wavelengths, FTIR confirmed the gas chromatographic results, evidencing an overall increase in saturated FA (1744/LIP and 2925/LIP ratios) and a decrease in unsaturated (3010/LIP ratio). 566 567 Molecular markers related to the appetite stimulus were fully supported by the biometric results. Fish food intake is regulated by specific regions in the brain that interpret and integrate positive 568 (orexigenic) and negative (anorexigenic) signals derived from the hypothalamic area 569 570 (neurohormones) and from the body periphery (Copeland et al., 2011; Sobrino Crespo et al., 2014). Specifically, the orexigenic signals ghrl and npy analysed in the present study, showed a dose-571 dependent gene expression increase related to the BSF meal inclusion levels in the diets (the higher 572 573 the BSF meal inclusion level, the higher their gene expression), while the *cnr1* gene expression was always higher in all the larval groups fed on BSF-based diets. Conversely, the results obtained from 574 the anorexigenic signal lepa was not obvious. Leptin is usually involved in the inhibition of 575 orexigenic pathways and in the stimulation of anorexigenic (Piccinetti et al., 2010; Volkoff, 2006); 576 577 in the present study, however, an opposite activity was evidenced. 578 This anomalous pattern could be explained by the FTIR analyses that revealed an increasing total lipid content (LIP/TBM ratio) in larvae fed on diets with increasing BSF meal levels. In fact, 579 previous studies, performed both on mammals and fish species, demonstrated a positive correlation 580 581 between leptin levels and amount of adipose tissue (Chisada et al., 2014; Park and Ahima, 2015; Li et al., 2016). 582 Alternatively, an interconnection between leptin and proinflammatory cytokines exist (Lafrance et 583 al., 2010). Leptin is known to enhance the production of proinflammatory cytokines, as well as 584 proinflammatory cytokines are able to trigger leptin release (Carlton et al., 2012). In the present 585

promoted the immune-response observed in the same experimental groups. However, it should be mentioned that all insect-based diets contain chitin (Borrelli et al., 2017; Gasco et al., 2018), a molecule which still has a controversial role in aquafeeds. Indeed, some studies reported a beneficial modulatory role of chitin on fish immune system and microbiota (Ringø et al., 2012; Zhang et al., 2012; Zhou et al., 2013; Bruni et al., 2018; Henry et al., 2018), while others showed that, especially at high inclusion levels, chitin may induce inflammation of the intestinal tract and a reduction in nutrient assimilation (Kroeckel et al., 2012; Magalhães et al., 2017; Su et al., 2017; Xiao et al., 2018). In support of this conclusion, Hi50, Hi75 and Hi100 larvae showed a significant increase of mucin (1055/PRT ratio), possibly associated to a higher intestine lubrication necessary for a proper intestinal transit of these diets. In the present study, no specific inflammatory events were detected through the histological analysis of the intestine samples, suggesting: 1) a possible digestion of chitin by zebrafish larvae through specific chitinases (chia.2 and chia.3); 2) a possible intestinal anti-inflammatory role of lauric acid (C12). This fatty acid, which in the present study increased its dietary amount with the increasing BSF meal inclusion in the diets, has been demonstrated to have beneficial effects on fish gut's welfare by mitigating inflammatory conditions (Aleström et al., 2006; Dahm and Geisler, 2006; De-Santis and Jerry, 2007; Zarantoniello et al., 2019). The histological analysis of the liver showed a lipid accumulation in the hepatic parenchyma in all analysed samples, regardless of the dietary treatment. Specifically, the Hi75 and Hi100 groups showed a severe level of hepatic steatosis, a pathological condition that has previously been related to a high n-6/n-3 ratio (Di Minno et al., 2012; Leamy et al., 2013; Zarantoniello et al., 2018, 2019). This hepatic disorder is probably the cause of the higher gene expression of the stress markers (nr3c1 and hsp70.1). Finally, insects are known to possess natural bioactive molecules that are known to modulate fish microbiota (Huyben et al., 2019; Terova et al., 2019) and, therefore, the bacterial community is expected to impact host metabolism and health status.

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

Although autochthonous bacterial communities were dominated by the same phyla regardless of the diet, the present study showed that bacterial populations are dynamic and can be modulated by dietary inclusion of insect meal. Some bacteria were almost present in all the samples analysed, while others were mainly modulated by the insect-based diets. Among the ubiquitous species, the massive presence of *Cetobacterium* in all gut samples suggested that graded BSF inclusion levels in the diets did not influence the presence of such a fish associated microorganism. In fact, Cetobacterium has already been found as core genus in the gut of zebrafish with beneficial effect on fish health because of its ability to produce cobalamin (vitamin B12) (Roeselers et al., 2011; Merrifield et al., 2013; Ghanbari et al., 2015; Earley et al., 2018;). Mycoplasmataceae were also dominant in the present study, and have already been found among the dominant microorganisms in fish intestines (e.g. rainbow trout), with a possible beneficial action on host health by producing lactic acid with antibacterial effect (Rimoldi et al., 2019). Finally, Aeromonadaceae were also detected in all analysed gut samples, irrespective of the diet used. This bacterial family has already been found as naturally associated with the gut of fish or insects (Grabowski and Klein, 2017; Udayangani et al., 2017; Rimoldi et al., 2019), suggesting a contribution of BSF-based diets in the occurrence of such a bacterial family in the gut of the analysed zebrafish. BSF meal inclusion in the diets modified the presence of some bacteria. Specifically, the presence of Vibrio was negatively influenced by the addition of increasing graded levels of BSF meal in the diets. As reported by Brugman et al., (2015), in the zebrafish intestine T lymphocytes can control the outgrowth of Vibrio species. As shown by the Real Time PCR analyses, the supply of BSFbased diets stimulated immune-response related genes that might be implied in Vibrio species control. However, further research is needed to better understand the involvement of BSF in this aspect. Finally, both Ochrobactrum and Tetrathiobacter were detected in the samples GHi100. The occurrence of Ochrobactrum was already reported in zebrafish gut (Cantas et al., 2012) as well as in the microbiota of insects as coleoptera and lepidoptera (Grabowski and Klein, 2017), while

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

Tetrathiobacter has already been isolated from the midgut of ticks (Li et al., 2014). These data suggest that the inclusion of BSF meal in fish diets can contribute to modify the fish microbiota with a specific possible involvement in the allochthonous microbiota modification.

As a general remark about gut microbiota, bacterial diversity is considered a positive indicator of gut health while a reduced diversity is often associated to dysbiosis and risk of disease in fish (Terova et al., 2019). In the present study, the PCA analyses revealed a difference between the Hi0-25 and Hi50-75-100 groups, thus suggesting a possible influence of BFS-based diets on the zebrafish gut microbiota, to be further investigated.

5. Conclusion

In order to meet aquafeed requirements, BSF biomass should be enriched in PUFAs. The present study showed that the addition of a 10% (W/W) *Schizochytrium* sp to the growth substrate is a valid method to achieve this objective. The present study evidenced that a 50% BSF meal inclusion level in the diet sustains a better fish growth and does not have any major negative effects on the fish. Higher inclusion levels affect larval liver histology and induce a general increase in lipid accumulation and stress response. This novel approach represents an interesting example of how, in the long term, a circular economy applied to the aquaculture sector may sustain animal's welfare and encourage sustainability and competitiveness.

6. Acknowledgments

This study was funded by, Ricerca Scientifica 2017 Cariverona, NUTRIFISH project N° 2017.0571 and the authors wish to thank Prof. F. Rindi for the English revision.

7. References

663 Al-Qazzaz, M.F., Ismail, D.B., 2016. Insect meal as a source of protein in animal diet. Anim. Nutr. Feed Technol. 16, 527–547. https://doi.org/10.5958/0974-181X.2016.00038.X

- Aleström, P., Holter, J.L., Nourizadeh-Lillabadi, R., 2006. Zebrafish in functional genomics and aquatic biomedicine. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2005.11.004
- Alhazzaa, R., Nichols, P.D., Carter, C.G., 2018. Sustainable alternatives to dietary fish oil in tropical fish aquaculture. Rev. Aquac. https://doi.org/10.1111/raq.12287
- Ayadi, F.Y., Rosentrate, K.A., Muthukumar, K., 2012. Alternative Protein Sources for Aquaculture
 Feeds. J. Aquac. Feed Sci. Nutr. 4, 1–26. https://doi.org/10.3923/joafsnu.2012.1.26
- Bandara, T., 2018. Alternative feed ingredients in aquaculture: Opportunities and challenges. J. Entomol. Zool. Stud. 6, 3087–3094.
- Barragan-Fonseca, K.B., Dicke, M., van Loon, J.J.A., 2018. Influence of larval density and dietary nutrient concentration on performance, body protein, and fat contents of black soldier fly larvae (Hermetia illucens). Entomol. Exp. Appl. https://doi.org/10.1111/eea.12716
- Barroso, F.G., de Haro, C., Sánchez-Muros, M.J., Venegas, E., Martínez-Sánchez, A., Pérez-Bañón,
 C., 2014. The potential of various insect species for use as food for fish. Aquaculture 422–423,
 193–201. https://doi.org/10.1016/j.aquaculture.2013.12.024
- Barroso, F.G., Sánchez-Muros, M.J., Segura, M., Morote, E., Torres, A., Ramos, R., Guil, J.L.,
 2017. Insects as food: Enrichment of larvae of Hermetia illucens with omega 3 fatty acids by
 means of dietary modifications. J. Food Compos. Anal.
 https://doi.org/10.1016/j.jfca.2017.04.008
- Belghit, I., Liland, N.S., Gjesdal, P., Biancarosa, I., Menchetti, E., Li, Y., Waagbø, R., Krogdahl, Å., Lock, E.J., 2019. Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture. https://doi.org/10.1016/j.aquaculture.2018.12.032
- Berggren, Å., Jansson, A., Low, M., 2019. Approaching Ecological Sustainability in the Emerging
 Insects-as-Food Industry. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2018.11.005
- Bohnes, F.A., Laurent, A., 2019. LCA of aquaculture systems: methodological issues and potential improvements. Int. J. Life Cycle Assess. https://doi.org/10.1007/s11367-018-1517-x
- 691 Borrelli, L., Coretti, L., Dipineto, L., Bovera, F., Menna, F., Chiariotti, L., Nizza, A., Lembo, F., Fioretti, A., 2017. Insect-based diet, a promising nutritional source, modulates gut microbiota 692 composition and **SCFAs** production in laying hens. Rep. 7, 16269. 693 Sci. https://doi.org/10.1038/s41598-017-16560-6 694
- Brugman, S., Schneeberger, K., Witte, M., Klein, M.R., van den Bogert, B., Boekhorst, J., Timmerman, H.M., Boes, M.L., Kleerebezem, M., Nieuwenhuis, E.E.S., 2015. T lymphocytes control microbial composition by regulating the abundance of Vibrio in the zebrafish gut. Gut Microbes. https://doi.org/10.4161/19490976.2014.972228
- Bruni, L., Pastorelli, R., Viti, C., Gasco, L., Parisi, G., 2018. Characterisation of the intestinal microbial communities of rainbow trout (Oncorhynchus mykiss) fed with Hermetia illucens (black soldier fly) partially defatted larva meal as partial dietary protein source. Aquaculture 487, 56–63. https://doi.org/10.1016/J.AQUACULTURE.2018.01.006
- Caligiani, A., Marseglia, A., Leni, G., Baldassarre, S., Maistrello, L., Dossena, A., Sforza, S., 2018. 703 704 Composition of black soldier fly prepupae and systematic approaches for extraction and proteins, fractionation lipids and chitin. Food Int. 705 of Res. https://doi.org/10.1016/j.foodres.2017.12.012 706
- 707 Canonico, L., Ashoor, S., Taccari, M., Comitini, F., Antonucci, M., Truzzi, C., Scarponi, G., Ciani,

- M., 2016. Conversion of raw glycerol to microbial lipids by new Metschnikowia and Yarrowia lipolytica strains. Ann. Microbiol. https://doi.org/10.1007/s13213-016-1228-0
- Cantas, L., Sørby, J.R.T., Aleström, P., Sørum, H., 2012. Culturable Gut Microbiota Diversity in Zebrafish. Zebrafish. https://doi.org/10.1089/zeb.2011.0712
- Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer,
- N., Peña, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig,
- J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J.,
- Sevinsky, J.R., Turnbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J.,
- Knight, R., 2010. QIIME allows analysis of high-throughput community sequencing data. Nat.
- 717 Methods. https://doi.org/10.1038/nmeth.f.303
- 718 Cardinaletti, G., Messina, M., Bruno, M., Tulli, F., Poli, B.M., Giorgi, G., Chini-Zittelli, G.,
- 719 Tredici, M., Tibaldi, E., 2018. Effects of graded levels of a blend of Tisochrysis lutea and
- 720 Tetraselmis suecica dried biomass on growth and muscle tissue composition of European sea
- bass (Dicentrarchus labrax) fed diets low in fish meal and oil. Aquaculture 485, 173–182.
- 722 https://doi.org/10.1016/J.AQUACULTURE.2017.11.049
- 723 Cardinaletti, G., Randazzo, B., Messina, M., Zarantoniello, M., Giorgini, E., Zimbelli, A., Bruni, L.,
- Parisi, G., Olivotto, I., Tulli, F., 2019. Effects of Graded Dietary Inclusion Level of Full-Fat
- Hermetia illucens Prepupae Meal in Practical Diets for Rainbow Trout (Oncorhynchus
- 726 mykiss). Animals 9, 251. https://doi.org/10.3390/ani9050251
- 727 Carlton, E.D., Demas, G.E., French, S.S., 2012. Leptin, a neuroendocrine mediator of immune
- responses, inflammation, and sickness behaviors. Horm. Behav. 62, 272–279
- 729 https://doi.org/10.1016/j.yhbeh.2012.04.010
- 730 Chisada, S., Kurokawa, T., Murashita, K., Rønnestad, I., Taniguchi, Y., Toyoda, A., Sakaki, Y.,
- Takeda, S., Yoshiura, Y., 2014. Leptin receptor-deficient (knockout) medaka, Oryzias latipes,
- show chronical up-regulated levels of orexigenic neuropeptides, elevated food intake and stage
- specific effects on growth and fat allocation. Gen. Comp. Endocrinol. 195, 9–20.
- 734 https://doi.org/10.1016/J.YGCEN.2013.10.008
- Čičková, H., Newton, G.L., Lacy, R.C., Kozánek, M., 2015. The use of fly larvae for organic waste treatment. Waste Manag. 35, 68–80. https://doi.org/10.1016/J.WASMAN.2014.09.026
- Copeland, D.L., Duff, R.J., Liu, Q., Prokop, J., Londraville, R.L., 2011. Leptin in teleost fishes: An argument for comparative study. Front. Physiol. https://doi.org/10.3389/fphys.2011.00026
- Dahm, R., Geisler, R., 2006. Learning from small fry: The zebrafish as a genetic model organism for aquaculture fish species. Mar. Biotechnol. https://doi.org/10.1007/s10126-006-5139-0
- Daniel, D., 2018. A review on replacing fish meal in aqua feeds using plant protein sources. Int. J. Fish. Aquat. Stud.
- De-Santis, C., Jerry, D.R., 2007. Candidate growth genes in finfish Where should we be looking? Aquaculture. https://doi.org/10.1016/j.aquaculture.2007.08.036
- Diener, S., Zurbrügg, C., Tockner, K., 2009. Conversion of organic material by black soldier fly larvae: Establishing optimal feeding rates. Waste Manag. Res.
- 747 https://doi.org/10.1177/0734242X09103838
- Dumas, A., Raggi, T., Barkhouse, J., Lewis, E., Weltzien, E., 2018. The oil fraction and partially
- defatted meal of black soldier fly larvae (Hermetia illucens) affect differently growth
- performance, feed efficiency, nutrient deposition, blood glucose and lipid digestibility of

- 751 rainbow trout (Oncorhynchus mykiss). Aquaculture.
- 752 https://doi.org/10.1016/j.aquaculture.2018.03.038
- Earley, A.M., Graves, C.L., Shiau, C.E., 2018. Critical Role for a Subset of Intestinal Macrophages
- 754 in Shaping Gut Microbiota in Adult Zebrafish. Cell Rep.
- 755 https://doi.org/10.1016/j.celrep.2018.09.025
- 756 Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., Knight, R., 2011. UCHIME improves
- 757 sensitivity and speed of chimera detection. Bioinformatics.
- 758 https://doi.org/10.1093/bioinformatics/btr381
- FAO, 2018. State of Fisheries and Aquaculture in the world. State World Fish. Aquac. 2018 Meet.
- 760 Sustain. Dev. goals. https://doi.org/issn 10
- 761 FOLCH, J., LEES, M., SLOANE STANLEY, G.H., 1957. A simple method for the isolation and
- purification of total lipides from animal tissues. J. Biol. Chem.
- Francis, G., Makkar, H.P.S., Becker, K., 2001. Antinutritional factors present in plant-derived
- 764 alternate fish feed ingredients and their effects in fish. Aquaculture.
- 765 https://doi.org/10.1016/S0044-8486(01)00526-9
- Garofalo, C., Bancalari, E., Milanović, V., Cardinali, F., Osimani, A., Sardaro, M.L.S., Bottari, B.,
- Bernini, V., Aquilanti, L., Clementi, F., Neviani, E., Gatti, M., 2017. Study of the bacterial
- 768 diversity of foods: PCR-DGGE versus LH-PCR. Int. J. Food Microbiol.
- 769 https://doi.org/10.1016/j.ijfoodmicro.2016.11.008
- Gasco, L., Finke, M., van Huis, A., 2018. Can diets containing insects promote animal health? J.
- 771 Insects as Food Feed 4, 1–4. https://doi.org/10.3920/JIFF2018.x001
- Gerland, P., Raftery, A.E., Ševčíková, H., Li, N., Gu, D., Spoorenberg, T., Alkema, L., Fosdick,
- B.K., Chunn, J., Lalic, N., Bay, G., Buettner, T., Heilig, G.K., Wilmoth, J., 2014. World
- population stabilization unlikely this century. Science (80-.).
- 775 https://doi.org/10.1126/science.1257469
- 776 Ghanbari, M., Kneifel, W., Domig, K.J., 2015. A new view of the fish gut microbiome: Advances
- 777 from next-generation sequencing. Aquaculture.
- 778 https://doi.org/10.1016/j.aquaculture.2015.06.033
- Giorgini, E., Randazzo, B., Gioacchini, G., Cardinaletti, G., Vaccari, L., Tibaldi, E., Olivotto, I.,
- 780 2018. New insights on the macromolecular building of rainbow trout (O. mykiss) intestine:
- 781 FTIR Imaging and histological correlative study. Aquaculture 497, 1–9
- 782 https://doi.org/10.1016/j.aquaculture.2018.07.032
- 783 Grabowski, N.T., Klein, G., 2017. Bacteria encountered in raw insect, spider, scorpion, and
- centipede taxa including edible species, and their significance from the food hygiene point of
- view. Trends Food Sci. Technol. https://doi.org/10.1016/j.tifs.2017.01.007
- Guillen, J., Natale, F., Carvalho, N., Casey, J., Hofherr, J., Druon, J.N., Fiore, G., Gibin, M., Zanzi,
- 787 A., Martinsohn, J.T., 2018. Global seafood consumption footprint. Ambio
- 788 https://doi.org/10.1007/s13280-018-1060-9
- Henry, M., Gasco, L., Piccolo, G., Fountoulaki, E., 2015. Review on the use of insects in the diet of
- 790 farmed fish: Past and future. Anim. Feed Sci. Technol.
- 791 https://doi.org/10.1016/j.anifeedsci.2015.03.001
- Henry, M.A., Gasco, L., Chatzifotis, S., Piccolo, G., 2018. Does dietary insect meal affect the fish
- 793 immune system? The case of mealworm, Tenebrio molitor on European sea bass,

- 794 Dicentrarchus labrax. Dev. Comp. Immunol. 81, 204–209.
- 795 https://doi.org/10.1016/J.DCI.2017.12.002
- Huyben, D., Vidaković, A., Werner Hallgren, S., Langeland, M., 2019. High-throughput sequencing
- of gut microbiota in rainbow trout (Oncorhynchus mykiss) fed larval and pre-pupae stages of
- 798 black soldier fly (Hermetia illucens). Aquaculture.
- 799 https://doi.org/10.1016/j.aquaculture.2018.10.034
- Jin, G., Yang, F., Hu, C., Shen, H., Zhao, Z.K., 2012. Enzyme-assisted extraction of lipids directly
- from the culture of the oleaginous yeast Rhodosporidium toruloides. Bioresour. Technol.
- 802 https://doi.org/10.1016/j.biortech.2012.01.152
- Johnston, I.A., Macqueen, D.J., Watabe, S., 2008. Molecular Biotechnology of Development and Growth in Fish Muscle, in: Fisheries for Global Welfare and Environment.
- Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., Glöckner, F.O., 2013.
- Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation
- sequencing-based diversity studies. Nucleic Acids Res. https://doi.org/10.1093/nar/gks808
- 808 Komprda, T., Zorníková, G., Rozíková, V., Borkovcová, M., Przywarová, A., 2013. The effect of
- dietary Salvia hispanica seed on the content of n-3 long-chain polyunsaturated fatty acids in
- tissues of selected animal species, including edible insects. J. Food Compos. Anal.
- 811 https://doi.org/10.1016/j.jfca.2013.06.010
- Kroeckel, S., Harjes, A.G.E., Roth, I., Katz, H., Wuertz, S., Susenbeth, A., Schulz, C., 2012. When
- a turbot catches a fly: Evaluation of a pre-pupae meal of the Black Soldier Fly (Hermetia
- illucens) as fish meal substitute Growth performance and chitin degradation in juvenile turbot
- 815 (Psetta maxima). Aquaculture. https://doi.org/10.1016/j.aquaculture.2012.08.041
- 816 Lafrance, V., Inoue, W., Kan, B., Luheshi, G.N., 2010. Leptin modulates cell morphology and
- cytokine release in microglia. Brain. Behav. Immun. 24, 358–365.
- 818 https://doi.org/10.1016/j.bbi.2009.11.003
- Lawrence, C., 2007. The husbandry of zebrafish (Danio rerio): A review. Aquaculture 269, 1–20.
- 820 https://doi.org/10.1016/j.aquaculture.2007.04.077
- Lawrence, C., Adatto, I., Best, J., James, A., Maloney, K., 2012. Generation time of zebrafish
- (Danio rerio) and medakas (Oryzias latipes) housed in the same aquaculture facility. Lab
- 823 Anim. (NY). https://doi.org/10.1038/laban0612-158
- 824 Li, A., Yuan, X., Liang, X.-F., Liu, L., Li, Jie, Li, B., Fang, J., Li, Jiao, He, S., Xue, M., Wang, J.,
- Tao, Y.-X., 2016. Adaptations of lipid metabolism and food intake in response to low and high
- fat diets in juvenile grass carp (Ctenopharyngodon idellus). Aquaculture 457, 43–49.
- 827 https://doi.org/10.1016/J.AQUACULTURE.2016.01.014
- Li, C.H., cao, J., Zhou, Y.Z., Zhang, H.S., Gong, H.Y., Zhou, J.L., 2014. The midgut bacterial flora
- of laboratory-reared hard ticks, haemaphysalis longicornis, hyalomma asiaticum, and
- rhipicephalus haemaphysaloides. J. Integr. Agric. https://doi.org/10.1016/S2095-
- 831 3119(13)60517-1
- Li, S., Ji, H., Zhang, B., Zhou, J., Yu, H., 2017. Defatted black soldier fly (Hermetia illucens) larvae
- meal in diets for juvenile Jian carp (Cyprinus carpio var. Jian): Growth performance,
- antioxidant enzyme activities, digestive enzyme activities, intestine and hepatopancreas
- 835 histological structure. Aquaculture 477, 62–70.
- 836 https://doi.org/10.1016/J.AQUACULTURE.2017.04.015

- Li, W., Li, Q., Zheng, L., Wang, Y., Zhang, J., Yu, Z., Zhang, Y., 2015. Potential biodiesel and
- biogas production from corncob by anaerobic fermentation and black soldier fly. Bioresour.
- 839 Technol. https://doi.org/10.1016/j.biortech.2015.06.112
- Li, Y., Kortner, T.M., Chikwati, E.M., Munang'andu, H.M., Lock, E.J., Krogdahl, Å., 2019. Gut
- health and vaccination response in pre-smolt Atlantic salmon (Salmo salar) fed black soldier
- 842 fly (Hermetia illucens) larvae meal. Fish Shellfish Immunol.
- 843 https://doi.org/10.1016/j.fsi.2018.12.057
- Liland, N.S., Biancarosa, I., Araujo, P., Biemans, D., Bruckner, C.G., Waagbø, R., Torstensen,
- B.E., Lock, E.J., 2017. Modulation of nutrient composition of black soldier fly (Hermetia
- 846 illucens) larvae by feeding seaweed-enriched media. PLoS One.
- 847 https://doi.org/10.1371/journal.pone.0183188
- Lock, E.R., Arsiwalla, T., Waagbø, R., 2016. Insect larvae meal as an alternative source of nutrients
- in the diet of Atlantic salmon (Salmo salar) postsmolt. Aquac. Nutr. 22, 1202–1213.
- 850 https://doi.org/10.1111/anu.12343
- Magalhães, R., Sánchez-López, A., Leal, R.S., Martínez-Llorens, S., Oliva-Teles, A., Peres, H.,
- 2017. Black soldier fly (Hermetia illucens) pre-pupae meal as a fish meal replacement in diets
- for European seabass (Dicentrarchus labrax). Aquaculture 476, 79–85.
- https://doi.org/10.1016/J.AQUACULTURE.2017.04.021
- Magoč, T., Salzberg, S.L., 2011. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics. https://doi.org/10.1093/bioinformatics/btr507
- Makkar, H.P.S., Tran, G., Heuzé, V., Ankers, P., 2014. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. https://doi.org/10.1016/j.anifeedsci.2014.07.008
- Manceron, S., Ben-Ari, T., Dumas, P., 2014. Feeding proteins to livestock: Global land use and food vs. feed competition . OCL. https://doi.org/10.1051/ocl/2014020
- May, B.M., 1961. The occurrence in New Zealand and the life-history of the soldier fly *Hermetia illucens* (L.) (Diptera: Stratiomyiidae). New Zeal. J. Sci.
- Meneguz, M., Schiavone, A., Gai, F., Dama, A., Lussiana, C., Renna, M., Gasco, L., 2018. Effect of
- rearing substrate on growth performance, waste reduction efficiency and chemical composition
- of black soldier fly (Hermetia illucens) larvae. J. Sci. Food Agric.
- 866 https://doi.org/10.1002/jsfa.9127
- Merino, G., Barange, M., Blanchard, J.L., Harle, J., Holmes, R., Allen, I., Allison, E.H., Badjeck,
- M.C., Dulvy, N.K., Holt, J., Jennings, S., Mullon, C., Rodwell, L.D., 2012. Can marine
- fisheries and aquaculture meet fish demand from a growing human population in a changing
- climate? Glob. Environ. Chang. https://doi.org/10.1016/j.gloenvcha.2012.03.003
- Merrifield, D.L., Shaw, B.J., Harper, G.M., Saoud, I.P., Davies, S.J., Handy, R.D., Henry, T.B.,
- 872 2013. Ingestion of metal-nanoparticle contaminated food disrupts endogenous microbiota in
- zebrafish (Danio rerio). Environ. Pollut. https://doi.org/10.1016/j.envpol.2012.11.017
- Müller, A., Wolf, D., Gutzeit, H.O., 2017. The black soldier fly, Hermetia illucens a promising
- source for sustainable production of proteins, lipids and bioactive substances. Zeitschrift für
- 876 Naturforsch. C 72, 351–363. https://doi.org/10.1515/znc-2017-0030
- 877 Murthy, P.S., Naidu, M.M., 2012. Resources, Conservation and Recycling Sustainable
- management of coffee industry by-products and value addition A review. Resour. Conserv.
- 879 Recycl. 66, 45–58. https://doi.org/10.1016/j.resconrec.2012.06.005

- 880 Mussatto, S.I., Machado, E.M.S., Martins, S., Teixeira, J.A., 2011. Production, Composition, and
- Application of Coffee and Its Industrial Residues. Food Bioprocess Technol. 4, 661–672.
- https://doi.org/10.1007/s11947-011-0565-z
- Naylor, R.L., Hardy, R.W., Bureau, D.P., Chiu, A., Elliott, M., Farrell, A.P., Forster, I., Gatlin,
- D.M., Goldburg, R.J., Hua, K., Nichols, P.D., 2009. Feeding aquaculture in an era of finite
- resources. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.0905235106
- Nogales-Mérida, S., Gobbi, P., Józefiak, D., Mazurkiewicz, J., Dudek, K., Rawski, M., Kierończyk,
- B., Józefiak, A., 2018. Insect meals in fish nutrition. Rev. Aquac. 1–24.
- 888 https://doi.org/10.1111/raq.12281
- Official Methods of Analysis of the Association of Official Analytical Chemists, 2006. J. Pharm. Sci. https://doi.org/10.1002/jps.2600600253
- 891 Olivotto, I., Di Stefano, M., Rosetti, S., Cossignani, L., Pugnaloni, A., Giantomassi, F., Carnevali,
- O., 2011. Live prey enrichment, with particular emphasis on HUFAs, as limiting factor in false
- 893 percula clownfish (Amphiprion ocellaris, Pomacentridae) larval development and
- metamorphosis: Molecular and biochemical implications. Comp. Biochem. Physiol. A Mol.
- 895 Integr. Physiol. https://doi.org/10.1016/j.cbpa.2011.02.004
- 896 Olivotto, I., Mosconi, G., Maradonna, F., Cardinali, M., Carnevali, O., 2002. Diplodus sargus
- interrenal-pituitary response: Chemical communication in stressed fish. Gen. Comp.
- 898 Endocrinol. https://doi.org/10.1016/S0016-6480(02)00024-2
- Olivotto, I., Yasumasu, S., Gioacchini, G., Maradonna, F., Cionna, C., Carnevali, O., 2004. Cloning
- and expression of high choriolytic enzyme, a component of the hatching enzyme system,
- during embryonic development of the marine ornamental fish Chrysiptera parasema. Mar.
- 902 Biol. https://doi.org/10.1007/s00227-004-1404-9
- 903 Osimani, A., Ferrocino, I., Agnolucci, M., Cocolin, L., Giovannetti, M., Cristani, C., Palla, M.,
- 904 Milanović, V., Roncolini, A., Sabbatini, R., Garofalo, C., Clementi, F., Cardinali, F.,
- Petruzzelli, A., Gabucci, C., Tonucci, F., Aquilanti, L., 2019. Unveiling hákarl: A study of the
- 906 microbiota of the traditional Icelandic fermented fish. Food Microbiol.
- 907 https://doi.org/10.1016/j.fm.2019.03.027
- Park, H.-K., Ahima, R.S., 2015. Physiology of leptin: energy homeostasis, neuroendocrine function
- and metabolism. Metabolism 64, 24–34. https://doi.org/10.1016/J.METABOL.2014.08.004
- 910 Piccinetti, C.C., Donati, M., Radaelli, G., Caporale, G., Mosconi, G., Palermo, F., Cossignani, L.,
- Salvatori, R., Lopez, R.P., Olivotto, I., 2015. The effects of starving and feeding on Dover sole
- 912 (Solea solea, Soleidae, Linnaeus, 1758) stress response and early larval development. Aquac.
- 913 Res. https://doi.org/10.1111/are.12410
- Piccinetti, C.C., Migliarini, B., Olivotto, I., Coletti, G., Amici, A., Carnevali, O., 2010. Appetite
- regulation: The central role of melatonin in Danio rerio. Horm. Behav. 58, 780–785.
- 916 https://doi.org/10.1016/J.YHBEH.2010.07.013
- 917 Piccinetti, C.C., Migliarini, B., Olivotto, I., Simoniello, M.P., Giorgini, E., Carnevali, O., 2013.
- Melatonin and Peripheral Circuitries: Insights on Appetite and Metabolism in Danio Rerio .
- 919 Zebrafish. https://doi.org/10.1089/zeb.2012.0844
- 920 Piccinetti, C.C., Montis, C., Bonini, M., Laurà, R., Guerrera, M.C., Radaelli, G., Vianello, F.,
- 921 Santinelli, V., Maradonna, F., Nozzi, V., Miccoli, A., Olivotto, I., 2014. Transfer of Silica-
- Coated Magnetic (Fe 3 O 4) Nanoparticles Through Food: A Molecular and Morphological
- 923 Study in Zebrafish. Zebrafish. https://doi.org/10.1089/zeb.2014.1037

- 924 Piccinetti, C.C., Ricci, L.A., Tokle, N., Radaelli, G., Pascoli, F., Cossignani, L., Palermo, F.,
- 925 Mosconi, G., Nozzi, V., Raccanello, F., Olivotto, I., 2012. Malnutrition may affect common
- sole (Solea solea L.) growth, pigmentation and stress response: Molecular, biochemical and
- 927 histological implications. Comp. Biochem. Physiol. A Mol. Integr. Physiol.
- 928 https://doi.org/10.1016/j.cbpa.2011.12.009
- 929 Pinotti, L., Giromini, C., Ottoboni, M., Tretola, M., Marchis, D., 2019. Review: Insects and former
- foodstuffs for upgrading food waste biomasses/streams to feed ingredients for farm animals.
- 931 Animal 1–11. https://doi.org/10.1017/s1751731118003622
- 932 Randazzo, B., Chemello, G., Tortarolo, I., Chiarello, G.L., Zalas, M., Santini, A., Liberatore,
- 933 Margaret, Liberatore, Marco, Selli, E., Olivotto, I., 2017. A Novel Photocatalytic Purification
- 934 System for Fish Culture. Zebrafish. https://doi.org/10.1089/zeb.2017.1448
- Reed, B., Jennings, M., 2011. Guidance on the housing and care of zebrafish Danio rerio. Guid. Hous. care zebrafish Danio rerio.
- 937 Rimoldi, S., Gini, E., Iannini, F., Gasco, L., Terova, G., 2019. The Effects of Dietary Insect Meal
- 938 from Hermetia illucens Prepupae on Autochthonous Gut Microbiota of Rainbow Trout
- 939 (Oncorhynchus mykiss). Animals. https://doi.org/10.3390/ani9040143
- 940 Ringø, E., Zhou, Z., Olsen, R.E., Song, S.K., 2012. Use of chitin and krill in aquaculture the effect
- on gut microbiota and the immune system: a review. Aquac. Nutr. 18, 117–131.
- 942 https://doi.org/10.1111/j.1365-2095.2011.00919.x
- P43 Roeselers, G., Mittge, E.K., Stephens, W.Z., Parichy, D.M., Cavanaugh, C.M., Guillemin, K.,
- Rawls, J.F., 2011. Evidence for a core gut microbiota in the zebrafish. ISME J.
- 945 https://doi.org/10.1038/ismej.2011.38
- 946 Roy, S. Sen, Pal, R., 2014. Microalgae in Aquaculture: A Review with Special References to
- Nutritional Value and Fish Dietetics. Proc. Zool. Soc. https://doi.org/10.1007/s12595-013-
- 948 0089-9
- 949 Sánchez-Muros, M.J., Barroso, F.G., Manzano-Agugliaro, F., 2014. Insect meal as renewable
- 950 source of food for animal feeding: A review. J. Clean. Prod.
- 951 https://doi.org/10.1016/j.jclepro.2013.11.068
- 952 Sargent, J., Mcevoy, L., Estevez, A., Bell, G., Bell, M., Henderson, J., Tocher, D., 1999. Lipid
- nutrition of marine fish during early development: current status and future directions,
- 954 Aquaculture.
- 955 Sarker, P.K., Kapuscinski, A.R., Bae, A.Y., Donaldson, E., Sitek, A.J., Fitzgerald, D.S., Edelson,
- 956 O.F., 2018. Towards sustainable aquafeeds: Evaluating substitution of fishmeal with lipid-
- extracted microalgal co-product (nannochloropsis oculata) in diets of juvenile nile tilapia
- 958 (oreochromis niloticus). PLoS One. https://doi.org/10.1371/journal.pone.0201315
- 959 Secci, G., Mancini, S., Iaconisi, V., Gasco, L., Basto, A., Parisi, G., 2019. Can the inclusion of
- black soldier fly (Hermetia illucens) in diet affect the flesh quality/nutritional traits of
- rainbow trout (*Oncorhynchus mykiss*) after freezing and cooking? Int. J. Food Sci. Nutr. 70,
- 962 161–171. https://doi.org/10.1080/09637486.2018.1489529
- 963 Shepherd, C.J., Jackson, A.J., 2013. Global fishmeal and fish-oil supply: Inputs, outputs and
- 964 marketsa. J. Fish Biol. https://doi.org/10.1111/jfb.12224
- Smetana, S., Schmitt, E., Mathys, A., 2019. Sustainable use of Hermetia illucens insect biomass for
- feed and food: Attributional and consequential life cycle assessment. Resour. Conserv. Recycl.

- 967 https://doi.org/10.1016/j.resconrec.2019.01.042
- 968 Sobrino Crespo, C., Perianes Cachero, A., Puebla Jiménez, L., Barrios, V., Arilla Ferreiro, E.,
- 969 2014. Peptides and Food Intake. Front. Endocrinol. (Lausanne). 5, 58.
- 970 https://doi.org/10.3389/fendo.2014.00058
- 971 Spinelli, R., Neri, P., Pini, M., Barbi, S., Montorsi, M., Ferrari, A.M., 2019. Using black soldier
- 972 flies (Hermetia illucens) to bioconvert waste from the livestock production chain: A life cycle
- assessment case study, in: WIT Transactions on Ecology and the Environment.
- 974 https://doi.org/10.2495/WM180051
- 975 Spranghers, T., Ottoboni, M., Klootwijk, C., Ovyn, A., Deboosere, S., De Meulenaer, B., Michiels,
- J., Eeckhout, M., De Clercq, P., De Smet, S., 2017. Nutritional composition of black soldier fly
- 977 (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agric.
- 978 https://doi.org/10.1002/jsfa.8081
- 979 St-Hilaire, S., Cranfill, K., McGuire, M.A., Mosley, E.E., Tomberlin, J.K., Newton, L., Sealey, W.,
- Sheppard, C., Irving, S., 2007a. Fish offal recycling by the black soldier fly produces a
- foodstuff high in omega-3 fatty acids. J. World Aquac. Soc. https://doi.org/10.1111/j.1749-
- 982 7345.2007.00101.x
- 983 St-Hilaire, S., Sheppard, C., Tomberlin, J.K., Irving, S., Newton, L., McGuire, M.A., Mosley, E.E.,
- Hardy, R.W., Sealey, W., 2007b. Fly prepupae as a feedstuff for rainbow trout, Oncorhynchus
- 985 mykiss. J. World Aquac. Soc. https://doi.org/10.1111/j.1749-7345.2006.00073.x
- 986 Stevens, J.R., Newton, R.W., Tlusty, M., Little, D.C., 2018. The rise of aquaculture by-products:
- Increasing food production, value, and sustainability through strategic utilisation. Mar. Policy.
- 988 https://doi.org/10.1016/j.marpol.2017.12.027
- 989 Su, J., Gong, Y., Cao, S., Lu, F., Han, D., Liu, H., Jin, J., Yang, Y., Zhu, X., Xie, S., 2017. Effects
- of dietary Tenebrio molitor meal on the growth performance, immune response and disease
- resistance of yellow catfish (Pelteobagrus fulvidraco). Fish Shellfish Immunol. 69, 59-66.
- 992 https://doi.org/10.1016/J.FSI.2017.08.008
- 993 Tacon A. G. J., Metian, M., 2008. Global overview on the use of fish meal and fish oil in
- 994 industrially compounded aquafeeds. Aquaculture.
- 995 https://doi.org/10.1016/j.aquaculture.2008.08.015
- 996 Terova, G., Rimoldi, S., Ascione, C., Gini, E., Ceccotti, C., Gasco, L., 2019. Rainbow trout
- 997 (Oncorhynchus mykiss) gut microbiota is modulated by insect meal from Hermetia illucens
- 998 prepupae in the diet. Rev. Fish Biol. Fish. https://doi.org/10.1007/s11160-019-09558-y
- 999 Tlusty, M.F., Thorsen, Ø., 2017. Claiming seafood is 'sustainable' risks limiting improvements.
- 1000 Fish Fish. https://doi.org/10.1111/faf.12170
- Tocher, D.R., 2010. Fatty acid requirements in ontogeny of marine and freshwater fish. Aquac. Res.
- 41, 717–732. https://doi.org/10.1111/j.1365-2109.2008.02150.x
- 1003 Truzzi, C., Illuminati, S., Annibaldi, A., Antonucci, M., Scarponi, G., 2017. Quantification of fatty
- acids in the muscle of Antarctic fish Trematomus bernacchii by gas chromatography-mass
- spectrometry: Optimization of the analytical methodology. Chemosphere.
- 1006 https://doi.org/10.1016/j.chemosphere.2016.12.140
- Truzzi, C., Illuminati, S., Antonucci, M., Scarponi, G., Annibaldi, A., 2018. Heat shock influences
- the fatty acid composition of the muscle of the Antarctic fish Trematomus bernacchii. Mar.
- Environ. Res. https://doi.org/10.1016/j.marenvres.2018.03.017

- 1010 Truzzi, C., Giorgini, E., Annibaldi, A., Antonucci, M., Illuminati, S., Scarponi, G. Riolo, P., Isidoro,
- 1011 N., Conti[,] C., Zarantoniello, M., Cipriani, R., Olivotto, I. (In press). Fatty acids profile of black
- soldier fly (*Hermetia illucens*): influence of feeding substrate based on coffee-waste silverskin
- enriched with microalgae. Animal Feed Science and Technology, In press
- 1014 Udayangani, R.M.C., Dananjaya, S.H.S., Nikapitiya, C., Heo, G.J., Lee, J., De Zoysa, M., 2017.
- Metagenomics analysis of gut microbiota and immune modulation in zebrafish (Danio rerio)
- 1016 fed chitosan silver nanocomposites. Fish Shellfish Immunol.
- 1017 https://doi.org/10.1016/j.fsi.2017.05.018
- van Huis, A., 2013. Potential of Insects as Food and Feed in Assuring Food Security. Annu. Rev.
- Entomol. 58, 563–583. https://doi.org/10.1146/annurev-ento-120811-153704
- Vargas-Abúndez, A.J., Randazzo, B., Foddai, M., Sanchini, L., Truzzi, C., Giorgini, E., Gasco, L.,
- Olivotto, I., 2019. Insect meal based diets for clownfish: Biometric, histological, spectroscopic,
- 1022 biochemical and molecular implications. Aquaculture.
- https://doi.org/10.1016/j.aquaculture.2018.08.018
- Vargas, A., Randazzo, B., Riolo, P., Truzzi, C., Gioacchini, G., Giorgini, E., Loreto, N., Ruschioni,
- S., Zarantoniello, M., Antonucci, M., Polverini, S., Cardinaletti, G., Sabbatini, S., Tulli, F.,
- Olivotto, I., 2018. Rearing Zebrafish on Black Soldier Fly (Hermetia illucens): Biometric,
- Histological, Spectroscopic, Biochemical, and Molecular Implications . Zebrafish 15, 404-
- 1028 419. https://doi.org/10.1089/zeb.2017.1559
- Volkoff, H., 2006. The role of neuropeptide Y, orexins, cocaine and amphetamine-related
- transcript, cholecystokinin, amylin and leptin in the regulation of feeding in fish. Comp.
- Biochem. Physiol. Part A Mol. Integr. Physiol. 144, 325–331.
- https://doi.org/10.1016/J.CBPA.2005.10.026
- Wang, C., Qian, L., Wang, W., Wang, T., Deng, Z., Yang, F., Xiong, J., Feng, W., 2017. Exploring
- the potential of lipids from black soldier fly: New paradigm for biodiesel production (I).
- 1035 Renew. Energy. https://doi.org/10.1016/j.renene.2017.04.063
- Webster, C.D., Rawles, S.D., Koch, J.F., Thompson, K.R., Kobayashi, Y., Gannam, A.L., Twibell,
- 1037 R.G., Hyde, N.M., 2016. Bio-Ag reutilization of distiller's dried grains with solubles (DDGS)
- as a substrate for black soldier fly larvae, Hermetia illucens, along with poultry by-product
- meal and soybean meal, as total replacement of fish meal in diets for Nile tilapia, Oreochr.
- 1040 Aquac. Nutr. 22, 976–988. https://doi.org/10.1111/anu.12316
- Weisburg, W.G., Barns, S.M., Pelletier, D.A., Lane, D.J., 1991. 16S ribosomal DNA amplification
- for phylogenetic study. J. Bacteriol.
- 1043 Xiao, X., Jin, P., Zheng, L., Cai, M., Yu, Z., Yu, J., Zhang, J., 2018. Effects of black soldier fly
- (Hermetia illucens) larvae meal protein as a fishmeal replacement on the growth and immune
- index of yellow catfish (Pelteobagrus fulvidraco). Aquac. Res.
- 1046 https://doi.org/10.1111/are.13611
- 1047 Xu, W.J., Jin, J.Y., Zou, T., Han, D., Liu, H.K., Zhu, X.M., Yang, Y.X., Xie, S.Q., 2019. Growth,
- feed utilization and metabolic responses of three gibel carp (Carassius gibelio) strains to
- fishmeal and plant protein-based diets. Aguac. Nutr. https://doi.org/10.1111/anu.12855

Zarantoniello, M., Bruni, L., Randazzo, B., Vargas, A., Gioacchini, G., Truzzi, C., Annibaldi, A.,
 Riolo, P., Parisi, G., Cardinaletti, G., Tulli, F., Olivotto, I., 2018. Partial Dietary Inclusion of
 Hermetia illucens (Black Soldier Fly) Full-Fat Prepupae in Zebrafish Feed: Biometric,
 Histological, Biochemical, and Molecular Implications. Zebrafish 15, 519–532.
 https://doi.org/10.1089/zeb.2018.1596

Zarantoniello, M., Randazzo, B., Truzzi, C., Giorgini, E., Marcellucci, C., Vargas-Abúndez, J.A.,
 Zimbelli, A., Annibaldi, A., Parisi, G., Tulli, F., Riolo, P., Olivotto, I., 2019. A six-months
 study on Black Soldier Fly (Hermetia illucens) based diets in zebrafish. Sci. Rep. 9, 8598.
 https://doi.org/10.1038/s41598-019-45172-5

Zhang, Y., Feng, S., Chen, J., Qin, C., Lin, H., Li, W., 2012. Stimulatory effects of chitinase on growth and immune defense of orange-spotted grouper (Epinephelus coioides). Fish Shellfish Immunol. 32, 844–854. https://doi.org/10.1016/J.FSI.2012.02.009

Zhou, Z., Karlsen, Ø., He, S., Olsen, R.E., Yao, B., Ringø, E., 2013. The effect of dietary chitin on the autochthonous gut bacteria of Atlantic cod (*Gadus morhua* L.). Aquac. Res. 44, 1889–1900. https://doi.org/10.1111/j.1365-2109.2012.03194.x

8. Appendix

1062 1063

1064

1065

1066

1069

1070 1071

1072

1073

1074

1075

TABLE 1A. OBSERVED DIVERSITY, GOOD'S COVERAGE AND NUMBER OF SEQUENCES FOR THE 16S RRNA AMPLICONS OBTAINED FROM ZEBRAFISH GUT (G) SAMPLES.

Sample	Goods_coverage	PD_whole_tree	chao1	Observed_species	Shannon
GHi0	99.77	19.37	418.40	299	3.41
GHi25	99.88	13.26	294.02	259	4.01
GHi50	99.80	20.37	462.88	380	3.25
GHi75	99.75	21.23	470.88	388	3.49
GHi100	99.75	19.97	419.85	332	3.72

Zebrafish insect-based diets were prepared by including graded levels of insect meal (25, 50, 75, and 100 %, referred to as Hi25 and Hi50, Hi75 and Hi100, respectively) in the Hi0 formulation (control diet without insect addition).

Figure Legends

Figure 1. Specific Growth Rate (% weight growth day-1) of zebrafish larvae. Zebrafish larvae fed diets including 0, 25, 50, 75 and 100% of BSF meal (Control, Hi25, Hi50, Hi75 and Hi100). Boxplots show minimum and maximum (whiskers), first quartile, median and third quartile (box). Different letters denote statistically significant differences among experimental groups.

Figure 2. Content of SFA, MUFA and PUFA (as % of total FA) and contribution of omega 3 (n3), omega 6 (n6) and omega 9 (n9) fatty acids to lipid profile. (a,b) experimental diets; (c,d) zebrafish larvae. Control, Hi25, Hi50, Hi75 and Hi100 diets were characterized by 0, 25, 50, 75 or 100% inclusion of BSF meal. Zebrafish larvae fed diets including 0, 25, 50, 75 and 100% of BSF meal (Control, Hi25, Hi50, Hi75 and Hi100). Different letters indicate statistically significant differences among experimental groups compared within the same fatty acid class (p<0.05). Values are presented as mean \pm SD (n = 12).

Figure 3. Example of histomorphology of intestine and liver of zebrafish larvae. (**a-j**) intestine; (**k-o**) liver. Zebrafish larvae fed diets including 0, 25, 50, 75 and 100% of BSF meal (Control, Hi25, Hi50, Hi75 and Hi100). Scale bars: (**a-e**) 50 μm; (**f-j**) 20 μm; (**k-o**) 10 μm. * indicates lipid accumulation.

Figure 4. Percentage of fat fraction (PFF) in liver tissue calculated on histological sections.in control, Hi25, Hi50, Hi75 and Hi100 groups. Values are presented as mean \pm SD (n=9). Different letters indicate statistically significant differences among the experimental groups.

Figure 5. IR spectra of zebrafish larvae. Average absorbance spectra of zebrafish larvae fed diets including 0, 25, 50, 75 and 100% of BSF meal (Control, Hi25, Hi50, Hi75 and Hi100). For clarity reasons, spectra are shifted along y-axis.

The position (in terms of wavenumbers) of the most featuring IR peaks is reported, together with (colored boxes) the corresponding biochemical meaning.

Figure 6. Statistical analysis of lipid composition. Numerical variation of IR band area ratios in zebrafish larvae fed diets including 0, 25, 50, 75 and 100% of BSF meal (Control, Hi25, Hi50, Hi75 and Hi100): (a) LIP/TBM (overall amount of lipids); (b) 1744/LIP (amount of fatty acids with respect to lipids); (c) 2925/LIP (amount of saturated fatty acids with respect to lipids) and (d) 3010/LIP (amount of unsaturated fatty acids with respect to lipids). Different letters above histograms indicate statistically significant differences among groups (p<0.05).

Figure 7. Statistical analysis of protein composition. Numerical variation of IR band area ratios in Zebrafish larvae fed diets including 0, 25, 50, 75 and 100% of BSF meal (Control, Hi25, Hi50, Hi75 and Hi100): (a) PRT/TBM (overall amount of proteins); (b) 1234/PRT (amount of collagen with respect to proteins) and (c) 1055/PRT (amount of mucin with respect to proteins). Different letters above histograms indicate statistically significant differences among groups (p<0.05).

Figure 8. PCA based on the OTU abundance of the zebrafish samples grouped as a function of the amount of BSF added to the diet. The first component (PC1) accounts for the 43.14% of the variance, the second component (PC2) accounts for the 22.64 % of the variance, the third component (PC3) accounts for the 18.94% of the variance.

Zebrafish insect-based diets were prepared by including graded levels of BSF meal (25, 50, 75 and 100%, referred to as Hi25 and Hi50, Hi75 and Hi100, respectively) in the Hi0 formulation (control diet without insect addition).

Figure 9. Relative abundances as identified by MiSeq Illumina expressed as the percent ratio between the sum of reads of each OTUs and the total number of reads found in the zebrafish gut (G) samples.

Figure 10. Relative mRNA levels of genes analyzed in zebrafish larvae. (a) igf1, (b) igf2a, (c) mstnb, (d) nr3c1, (e) hsp70.1, (f) elovl2, (g) elovl5, (h) fads, (i) ghrl, (l) npy, (m) cnr1, (n) lepa, (o) il1b, (p) il10, (q) tnfa, (r) chia.2, (s) chia.3. Different letters indicate statistically significant differences among experimental groups compared within the same sampling time (p<0.05). Values are presented as mean \pm SD (n = 5). Zebrafish larvae fed diets including 0, 25, 50, 75 and 100% of BSF meal (Control, Hi25, Hi50, Hi75 and Hi100).

1133

1134

1135

11361137