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 21 

Abstract 22 

Promoting circularity in the aquaculture sector through the conversion of great amount of organic 23 

by-products produced on land is a valuable strategy for a further development of the aquaculture 24 

sector. In this regard, insects represent a very promising example of bio-converting organisms;  25 

their application in aquafeeds, however, still faces possible limitations because of their lack in 26 

polyunsaturated fatty acids and the presence of chitin.  27 

The aim of the present study was to apply circularity to Black Soldier Fly (BSF) (Hermetia 28 

illucens) culture and to improve the insect’s biomass fatty acid composition by culturing them on a 29 

land-produced by-product (coffee silverskin) enriched with a 10% Schizochytrium sp. The insect 30 

biomass was then used to formulate five fish diets containing 0, 25, 50, 75 and 100% of insect meal 31 

respect to fish meal, respectively. Diets were used for a feeding trial during zebrafish (Danio rerio) 32 

larval development (21 days) and a multidisciplinary approach including biometry, histology, gas 33 

chromatography, spectroscopy (FTIR), microbiota analyses and molecular biology was applied to 34 
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better understand fish responses to the new diets. Results showed that the 50% substitution of fish 35 

meal with insect meal represented the best compromise between ingredient sustainability and proper 36 

fish growth and welfare. Fish fed with higher BSF inclusions (75 and 100%) showed a severe 37 

degree of hepatic steatosis, microbiota modification, a higher lipid content (FTIR), fatty acid 38 

modification and higher expression of both stress and immune response markers.  39 

 40 

1. Introduction 41 

Aquaculture is the fastest growing food production sector worldwide, and it is estimated that by 42 

2030 62% of food-fish will come from aquaculture (FAO, 2018). The reason for this growth relies 43 

on several factors, including wild capture fisheries decline, increase in global demand for seafood 44 

products and the 9 billion people population expected on Earth by 2050, with the consequent 45 

doubling of farmed production required to meet the mid-century demand for seafood (Gerland et al., 46 

2014; Guillen et al., 2018).   47 

Because of the estimated increase in World’s population, a significant rise in waste and by-products 48 

production is expected. The EC Directive No. 2008/98, which establishes the order of priority in the 49 

choice of by-products treatments (with their reuse as favoured option and their landfill disposal as 50 

last option), will play a central role for further development of a European circular economy.  51 

In consideration of this, aquaculture should be more responsible, sustainable, innovative, based on 52 

the circular economy concept, and able to provide larger volumes of healthy food by using 53 

environmentally friendly ingredients while promoting fish needs and welfare (Merino et al., 2012; 54 

Tlusty and Thorsen, 2017; Stevens et al., 2018; Bohnes and Laurent, 2019). 55 

For many years aquaculture has relied on the use of fish meal (FM) and fish oil (FO) as main 56 

ingredients in aquafeeds (Tacon & Metian, 2008; Shepherd and Jackson, 2013). For its further 57 

development, however, nutritious and sustainable ingredients must be identified and tested 58 

(Alhazzaa et al., 2018; Sarker et al., 2018; Vargas et al., 2018). 59 
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Among such ingredients, several options have already been investigated and great attention has 60 

been addressed to animal by-products (Processed Animals Proteins, PAPs), vegetable sources and 61 

microalgae (Ayadi et al., 2012; Roy and Pal, 2014; Cardinaletti et al., 2018; Xu et al., 2019), but 62 

unfortunately each of them has some downsides in the application for aquafeed formulation 63 

(Francis et al., 2001; Naylor et al., 2009; Manceron et al., 2014; Bandara, 2018; Daniel, 2018). 64 

Insects represent a very promising example of bio-converting organisms (Barroso et al., 2014; 65 

Henry et al., 2015; Belghit et al., 2019).  66 

Most insect species are farmed on land-produced by-products  (van Huis, 2013; Čičková et al., 67 

2015; Webster et al., 2016; Spinelli et al., 2019;) and, in addition, farming of insects is sustainable 68 

in terms of land use, water consumption and CO2 production, because of their low environmental 69 

requirements (Berggren et al., 2019; Smetana et al., 2019).  70 

Land organic by-products are thus efficiently bio-converted in a highly nutritious biomass which, in 71 

turn, can provide sustainable new ingredients for fish nutrition. Specifically, every year up to 72 

200.000 tons of coffee silverskin are produced by the coffee industry as by-products (Murthy and 73 

Naidu, 2012; Mussatto et al., 2011). Therefore, in a circular economy perspective, coffee silverskin 74 

may represent a suitable substrate for insect production. 75 

Among several insect species, the Black Soldier Fly (Hermetia illucens; BSF) has a promising role 76 

for aquafeed production. From a nutritional point of view, the BSF accumulates good amounts of 77 

proteins and lipids (307.5-588.0 g kg-1 and 113.0-386.0 g kg-1, respectively; Caligiani et al., 2018; 78 

Nogales-Mérida et al., 2018). However, while the essential amino acid composition is 79 

approximately similar to that of fish meal (Müller et al., 2017), the fatty acid (FA) profile is 80 

extremely different, posing some limits in the full-fat BSF meal inclusion in aquafeeds 81 

(Zarantoniello et al., 2018; Cardinaletti et al., 2019). In terms of fatty acid profile, the BSF is 82 

usually rich in saturated fatty acids (SFAs) and poor in polyunsaturated (PUFAs) ones (Barroso et 83 

al., 2014), which are extremely important for fish (Sargent et al., 1999). PUFAs deficiencies during 84 

fish farming can cause a general decrease of fish health, poor growth, low feed efficiency, anaemia 85 
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and high mortality (Tocher, 2010; Olivotto et al., 2011; Piccinetti et al., 2012; Dumas et al., 2018). 86 

Because of their fatty acid profile, insects are mainly used as protein source in fish nutrition and 87 

often undergo a defatting process which represents an important cost in their manufacture (Jin et al., 88 

2012; Li et al., 2015; Wang et al., 2017). Therefore, in aquafeed production it is desirable to use 89 

full-fat insect meal. In this regard, it is known that insects are able to modulate their fatty acid 90 

composition in relation to the growth substrate (Komprda et al., 2013; Liland et al., 2017). 91 

Recently, some authors demonstrated that rearing BSF larvae on an organic substrate containing 92 

proper amounts of omega-3 fatty acids was a suitable procedure to improve the FAs profile of the 93 

final insect biomass (Barroso et al., 2017; St-Hilaire et al., 2007b). 94 

New ingredients to be introduced in aquafeeds must be carefully analysed, since it is well 95 

established that different feed ingredients may have modulatory effects of on fish physiological 96 

responses and gut microbiota (Li et al., 2019; Rimoldi et al., 2019). Besides zootechnical indexes, 97 

several molecular markers involved in fish growth, stress response, lipid metabolism, appetite and 98 

immuno response (Olivotto et al., 2002; Piccinetti et al., 2015; Cardinaletti et al., 2019; Vargas-99 

Abúndez et al., 2019) have been proposed as valid tools to precociously detect physiological 100 

responses in fish fed new diets and represent an up-to-date and important approach. 101 

In addition, it is already known that insects possess natural antibiotic properties, possibly modifying 102 

fish microflora (Huyben et al., 2019; Terova et al., 2019), but knowledge concerning interactions 103 

between insect-based diets, gut microbiota, and the aforementioned markers is still fragmentary and 104 

incomplete.  105 

The aim of the present study was to interconnect land and aquatic environment by: 1) recycling 106 

land-produced organic by-products (coffee silverskin) to rear BSF larvae; 2) enriching the insects’ 107 

growth substrate with Schizochytrium sp. to improve their FAs profile; 3) producing highly 108 

nutritious full-fat BSF prepupae meal; 4) testing the biological effects of diets including graded 109 

inclusions of BSF prepupae meal in an aquatic experimental model organism, the zebrafish (Danio 110 

rerio) and 5) applying a multidisciplinary approach integrating biometric, histological, gas 111 
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chromatographic, molecular, microbiological and spectroscopic analyses to better understand the 112 

physiological responses of the fish. Zebrafish represents an extraordinary experimental model for 113 

aquaculture, biomedical, developmental biology, genetics, toxicology studies, due to its high 114 

reproductive rate and abundant information that has recently become available from genome 115 

sequencing (Lawrence, 2007; Reed and Jennings, 2011). Particularly, zebrafish are used to 116 

generalize how several biological processes take place in related organisms (like finfish species) 117 

and contribute to understand the mechanisms involved in fish nutrition, welfare and growth, 118 

possibly providing useful information for finfish production (Aleström et al., 2006; Dahm and 119 

Geisler, 2006; De-Santis and Jerry, 2007; Johnston et al., 2008). 120 

 121 

2. Materials and methods 122 

2.1. Ethics 123 

All procedures involving animals were conducted in line with the Italian legislation on experimental 124 

animals and were approved by the Ethics Committee of the Università Politecnica delle Marche 125 

(Ancona, Italy) and the Italian Ministry of Health (626/2018-PR). Optimal rearing conditions (see 126 

further section for details) were applied throughout the study, and all efforts were made to minimize 127 

animal suffering by using an anaesthetic (MS222; Sigma Aldrich, Saint Louis, Missouri, USA). 128 

 129 

2.2. Insect feeding substrate preparation 130 

The main component of the insect feeding substrate consisted of coffee silverskin, a coffee industry 131 

by-product provided by Saccaria Caffe` S.R.L. (Marina di Montemarciano, Ancona, Italy). Coffee 132 

by-product (moisture 44%) was collected and grinded in an Ariete 1769 food processor (De Longhi 133 

Appliances Srl, Italy) to a 0.4±2 mm particle size before the feeding substrate preparation. The 134 

insect diet was formulated including a 10% (w/w) of Schizochytrium sp to the coffee by-product 135 

(for details, please see Truzzi et al., in press). The freeze-dried Schizochytrium sp. was provided by 136 
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AlghItaly Società Agricola S.R.L. (Sommacampagna, VR, Italy). Insect feeding substrate was 137 

added with distilled water to reach a final moisture of ~70% (Makkar et al., 2014).  138 

 139 

2.3. Insect rearing 140 

Insects were reared in a climatic chamber at a 27±1 °C temperature, relative humidity of 65±5% 141 

(Spranghers et al., 2017), in continuous darkness. Six days old larvae [purchased from Smart Bugs 142 

s.s. Ponzano Veneto (TV), Italy] were hand counted and divided in groups of 640 larvae per 143 

replicate (n=65) for a total of 41,600 specimens. Each replicate consisted of a plastic box 144 

(57x38x16cm) screened with fine‐mesh cotton gauze and covered with a lid provided with 90 145 

ventilation holes of 0.05cm Ø (Spranghers et al., 2017). Larvae were reared at a density of 0.3/cm2 146 

(Barragan-Fonseca et al., 2018). Each larva was provided with a feeding rate of 100 mg/day (Diener 147 

et al., 2009) that was prepared and added once a week (448 g for each box). Insects were visually 148 

inspected every day and, when prepupae were identified by the change in tegument colour from 149 

white to black (May, 1961), they were collected, washed, dried and stored at -80 °C. 150 

 151 

2.4. Fish diets production  152 

Full-fat BSF prepupae were freeze dried, grinded with Retsch Centrifugal Grinding Mill ZM 1000 153 

(Retsch GmbH, Haan, Germany) and used to prepare the experimental diets. A control diet (Hi0) 154 

containing FM, wheat gluten, pea protein concentrates and FO as major ingredients, was prepared 155 

according to a commercially available standard diet for zebrafish (Zebrafeed, Sparos ltd, Portugal). 156 

The experimental diets were isonitrogenous (50%) and isolipidic (13%). Insect-based diets were 157 

prepared by including graded levels of insect meal (25%, 50%, 75%, and 100%, referred to as Hi25 158 

and Hi50, Hi75 and Hi100, respectively) in the Hi0 formulation. The conventional vegetable 159 

ingredients (pea protein concentrate and wheat gluten) used to formulate the experimental diets 160 

were maintained approximatively at constant (0.7:1 w:w) ratio in all diets. In summary, all the 161 

grounded ingredients (0.5 mm) and fish oil were thoroughly blended (Kenwood kMix KMX53 162 
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stand Mixer; Kenwood, De Longhi S.p.a., Treviso, Italy) for 20 min and then water was added to 163 

the mixture to obtain an appropriate consistency for pelleting. Pellets were obtained by using a 1 164 

mm die meat grinder and dried at 40 °C for 48–72 h. The obtained diets were then grinded and 165 

stored in vacuum bags at −20 °C until used. Feed samples were analyzed for moisture (AOAC 166 

#950.46), crude protein, CP (AOAC #976.05), ash (AOAC #920.153) and ether extract (EE; AOAC 167 

#991.36) contents according to AOAC 2006.   168 

The total lipid fraction of the test diets was extracted using chloroform-methanol (2:1 v:v) (Merck 169 

KGaA, Darmstadt, Germany) mixture according to Folch et al., 1957. Diet formulation and 170 

proximate composition are shown in Table 1. 171 

TABLE 1. INGREDIENTS (g Kg−1) AND PROXIMATE COMPOSITION (g 100 g−1) OF 172 

THE EXPERIMENTAL DIETS USED IN THIS STUDY. 173 

 
Hi0 

(Control) 
Hi25 Hi50 Hi75 Hi100 

Ingredients (g/kg)      

Fish meal 1 470 400 250 110 - 

Vegetable mix 2 220 230 298 385 440 

Hi meal  - 150 275 350 460 

Wheat flour 3 198 172 120 110 72 

Fish oil 80 51 25 10 - 

Soy lecithin 8 8 8 11 4 

Mineral and Vitamin 

supplements $ 
14 14 14 14 14 

Binder 10 10 10 10 10 

Proximate composition (%) 
   

  

Dry Matter  97.08 ± 0.06 95.78 ± 0.13 94.93 ± 0.05 93.63 ± 0.05 92.70 ± 0.04 

Crude protein, CP 51.57 ± 0.13 50.75 ± 2.57 50.39 ± 0.28 51.23 ± 1.49 50.50 ± 3.15 

Ether extract, EE 14.38 ± 0.64 13.10 ± 0.42 12.93 ± 0.38 13.24 ± 0.46 12.99 ± 0.51 

NFE 21.32 ± 0.34 20.82 ± 1.00 20.64 ± 0.55 19.03 ± 0.67 18.47 ± 1.26 

Ash 9.81 ± 0.25 11.11± 0.01 10.97 ± 0.00 10.13 ± 0.06 10.74 ± 0.13 

1 Raw ingredients kindly supplyed by Skretting Italia; 2 Vegetable mix (pea protein concentrate : wheat gluten, 174 
0.7:1 w/w) Lombarda trading srl, Casalbuttano & Uniti (CR, Italy) and Sacchetto spa (Torino, Italy); 3 Consorzio 175 
Agrario (Pordenone, Italy); $ Mineral and Vitamin supplement composition (% mix): CaHPO4.2H2O, 78.9; MgO, 176 
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2.725; KCl, 0.005; NaCl, 17.65; FeCO3, 0.335; ZnSO4.H2O, 0.197; MnSO4.H2O, 0.094; CuSO4.5H2O, 0.027; 177 
Na2SeO3, 0.067; thiamine hydrochloride (vitamin B1), 0.16; riboflavin (vitamin B2), 0.39; pyridoxine 178 
hydrocloride (vitamin B6), 0.21; cyanocobalamine (vitamin B12), 0.21; niacin (vitamin PP or B3), 2.12; calcium 179 
pantotenate, 0.63; folic acid, 0.10; biotin (vitamin H), 1.05; myo-inositol (vitamin B7), 3.15; stay C Roche 180 
(vitamin C), 4.51; tocopherol (vitamin E), 3.15; menadione (vitamin K3), 0.24; retinol (vitamin A 2500 UI kg−1 181 
diet), 0.026; cholecalciferol (vitamin D3 2400 UI kg−1 diet), 0.05; choline chloride, 83.99; * Values reported as 182 
mean of triplicate analyses; 6 n.d.: not determined 183 

 184 

2.5. Fish 185 

Zebrafish AB embryos were maintained for 48h in a Tecniplast system (Varese, Italy) in the 186 

following conditions: 28 °C temperature, pH 7.0, NO2 and NH3 concentrations < 0.01 mg/L, NO3 187 

concentration < 10 mg/L, and photoperiod 12L/12D, respectively (Randazzo et al., 2017). After this  188 

period, embryos were gently collected, counted under a stereomicroscope (Leica Wild M3B, Leica 189 

Microsystems, Nussloch, Germany) and randomly divided in five experimental groups (in 190 

triplicate) according to the five test diets. 191 

 192 

2.6. Experimental design 193 

Zebrafish larvae were maintained in fifteen 20L tanks to set up the five experimental dietary 194 

treatments; each experimental group was composed of 1500 larvae (500 larvae per tank). The water 195 

in the larval tanks had the same chemical-physical characteristics of the parent’s tank and was 196 

gently replaced 10 times a day by a dripping system (Olivotto et al., 2004). The sides of each tank 197 

were covered with black panels to reduce light reflection. All tanks were siphoned 30 min after 198 

feeding (twice a day) to remove possible feed excess and dead larvae. The required larvae were 199 

sampled 20 days after fertilization (dpf), euthanized with a lethal dose of MS222 (1g/L) and 200 

properly stored for further analyses. 201 

 202 

2.7. Feeding schedule 203 

Starting from 5 dpf to 20 dpf, zebrafish larvae were fed as follows: Control group: larvae fed on diet 204 

0% insect meal (Hi0 diet); Group A: larvae fed on the diet including 25% BSF full-fat prepupae 205 
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meal (Hi25 diet); Group B: larvae fed on the diet including 50% of BSF full-fat prepupae meal 206 

(Hi50 diet); Group C: larvae fed on the diet including 75% BSF full-fat prepupae meal (Hi75 diet); 207 

Group D: larvae fed on the diet including 100% BSF full-fat prepupae meal (Hi100 diet). Zebrafish 208 

larvae were fed on the experimental diets (2% body weight, BW; 100-250 m size) twice a day and, 209 

in addition, from 5 to 10 dpf, all groups were fed (one feeding in the morning) on the rotifer 210 

Brachionus plicatilis (5 ind/mL) according to Lawrence et al. (2012) and Piccinetti et al. (2014).  211 

 212 

2.8. Biometry 213 

Five zebrafish larvae (15 per dietary group) were randomly collected from the different tanks of 214 

each experimental group at hatching (3 dpf) and at the end of the experiment (20 dpf). The standard 215 

length was determined using a sliding calliper (Measy 2000 Typ 5921, Swiss; precision: 0.1 mm) 216 

and the wet weight using an OHAUS Explorer (OHAUS Europe GmbH, Greifensee, Switzerland) 217 

analytical balance (precision: 0.1 mg) according to Zarantoniello et al. (2018). At 3 dpf, wet weight 218 

was measured on pools of five larvae in triplicate. For each experimental group, specific growth 219 

rate (SGR) was calculated as follows: SGR%= [(lnWf – lnWi)/t) x 100, where Wf is the final wet 220 

weight, Wi, the initial wet weight, and t, the number of days (17). Survival rate in all experimental 221 

groups was about 85%. 222 

 223 

2.9. Fatty acid composition 224 

The experimental diets and fish larvae samples were analyzed for fatty acid composition. Samples 225 

were minced and homogenized (homogenizer MZ 4110, DCG Eltronic, Monza, Italy), and larvae 226 

were also freeze-dried (Edwards EF4, Crawley, Sussex, England). Aliquots of 200 mg of each 227 

sample were added with 100 µl of Internal Standard (methyl ester of nonadecanoic acid, 99.6%, Dr. 228 

Ehrenstorfer GmbH, Germany), and extracted overnight following the method of Folch et al., 1957. 229 

Analyses were carried out on three aliquots per sample. All lipid extracts were evaporated under 230 

laminar flow inert gas (N2) until constant weight and re-suspended in 0.5 ml of n-epthane.  231 
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Fatty acid methyl esters (FAMEs) were prepared according to Canonico et al., 2016 using methyl 232 

ester of nonadecanoic acid (19:0; Dr. Ehrenstorfer GmbH, Augsburg, Germany) as internal 233 

standard. FAMEs were determined using an Agilent-6890 GC System (Milano, Italy) coupled to an 234 

Agilent-5973N quadrupole Mass Selective Detector (MSD) (Milano, Italy). A CPS ANALITICA 235 

CC-wax-MS (30 m × 0.25 mm ID, 0.25 μm film thickness) capillary column was used to separate 236 

FAMEs. Instrumental conditions for the studied matrices were set up according to Truzzi et al. 237 

(2017, 2018). For each analysed aliquot of sample, at least three runs were performed on the 238 

GCMS. 239 

 240 

2.10. Histology 241 

Nine zebrafish larvae per dietary group (3 larvae per tank, at 20 dpf), randomly collected from the 242 

different tanks, were fixed by immersion in Bouin’s solution (Sigma-Aldrich, Milano, Italy) and 243 

then stored at 4°C for 24h. Larvae were washed three times in ethanol (70%) for ten minutes and 244 

preserved in the same ethanol solution. Larvae were then dehydrated in increasing ethanol solutions 245 

(80, 95 and 100%), washed in xylene (Bio-Optica, Milano, Italy) and embedded in paraffin (Bio-246 

Optica). Solidified paraffin blocks were cut with a microtome (Leica RM2125 RTS, Nussloch, 247 

Germany) and 5 µm sections were stained with Mayer hematoxylin and eosin Y (Sigma-Aldrich, 248 

Milano, Italy). Sections were observed using a Zeiss Axio Imager.A2 (Oberkochen, Germany) 249 

microscope in order to study the hepatic parenchyma and intestine morphology. Images were 250 

acquired by mean of a combined color digital camera Axiocam 503 (Zeiss, Oberkochen, Germany). 251 

Moreover, to ascertain the extent of fat accumulation in liver, a quantitative analysis was performed 252 

on a significant number of histological sections from each experimental group in triplicate (n=9). 253 

No-n-evaluable areas, such as blood vessels were not considered. The percentage of fat fraction 254 

(PFF) on the total tissue areas was calculated using the ImageJ software setting a homogeneous 255 

threshold value. 256 

 257 
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 258 

2.11. FTIR analysis 259 

Fifteen zebrafish larvae per dietary group (5 per tank) were randomly collected at 20 dpf. Samples 260 

were minced, homogenized (homogenizer MZ 4110, DCG Eltronic, Monza, Italy) and freeze-dried 261 

(Edwards EF4, Crawley, Sussex, England) for FTIR analysis. For each group, five aliquots of 5 mg 262 

each were analysed. FTIR analysis was performed using a Spectrum GX1 Spectrometer equipped 263 

with a U-ATR accessory and a diamond/SeZn crystal (Perkin Elmer, Waltham, Massachusetts, USA). 264 

Measurements were carried out in reflectance in the MIR region from 4000 to 800 cm-1 (spectral 265 

resolution 4 cm-1). Each spectrum was the result of 64 scans. Before each sample acquisition, a 266 

background spectrum was collected on the clean surface of the crystal. Raw IR spectra were 267 

converted in absorbance, two-points baseline linear fitted in the 4000-800 cm-1 spectral range and 268 

vector normalized in the same interval (OPUS 7.1 software package).  269 

For all experimental groups, the average absorbance spectra were calculated together with their 270 

standard deviation spectra (average absorbance spectrum ± standard deviation spectra) and analysed 271 

to identify the most featuring IR peaks (in terms of position/wavenumbers). Then, average absorbance 272 

spectra and their standard deviation spectra were curve-fitted in the 3050-2800 cm-1 and 1790-900 cm-273 

1 regions upon two-points baseline correction and vector normalization. A Gaussian algorithm was 274 

adopted, and the number and position of the underlying peaks was defined by second derivative 275 

analysis of the spectra (GRAMS/AI 9.1, Galactic Industries, Inc., Salem, NH). In the 3050-2800 cm-1 276 

region, the following underlying peaks were identified: 3010 cm-1 (=CH moieties in unsaturated 277 

lipid alkyl chains); 2959 cm-1 and 2872 cm-1 (CH3 groups in lipid alkyl chains); 2925 cm-1 and 278 

2854 cm-1 (CH2 groups in lipid alkyl chains). In the 1790-900 cm-1 region, the following underlying 279 

peaks were identified: 1744 cm-1 (C=O moiety in lipids and fatty acids); 1639 and 1536 cm-1 280 

(respectively Amide I and II bands of proteins); 1457 cm-1 (proteins side chains); 1390 cm-1 281 

(COO- groups in aspartate and glutamate amino acids); 1234 cm-1 (collagen); 1157 cm-1 282 
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(glycosylated compounds); 1080 cm-1 (phosphate groups), and 1055 cm-1 (mucin). The integrated 283 

areas of the most relevant peaks were calculated and used to evaluate the following band area ratios: 284 

LIP/TBM (representing the overall amount of lipids), 1744/LIP (representing the amount of fatty 285 

acids compared to lipids), 2928/LIP (representing the amount of saturated fatty acids with respect to 286 

lipids), and 3010/LIP (representing the amount of unsaturated fatty acids compared to lipids); 287 

PRT/TBM (representing the overall amount of proteins), 1234/PRT (representing the amount of 288 

collagen compared to proteins), and 1055/PRT (representing the amount of  mucin compared to 289 

proteins). TBM was the sum of the integrated areas of all peaks in the 3050-2800 cm-1 and 1790-900 290 

cm-1 regions; LIP was the sum of the integrated areas of all peaks in the 3050-2800 cm-1 region, while 291 

PRT was the sum of the integrated areas of the bands at 1639 and 1536 cm-1. 292 

2.12. Microbiome  293 

RNA extraction and cDNA synthesis. Prior to analysis, zebrafish larvae (60 larvae per dietary group) 294 

were disinfected by washing in 50 mL of ethanol (70%) on a laboratory shaker (VDRL Stirrer with 295 

thermostatic cupola, ASAL s.r.l, Milan, Italy) at 150 rpm for 1 min at room temperature, in order to 296 

analyse only the gut microbiome. These samples were thus identified as G (gut) Hi0, 25, 50, 75 and 297 

100 for these analyses. After discharging the ethanol, the samples were rinsed in two additional 298 

washing steps in 50 mL of sterile deionized water. Subsequently, 31.5 mL of sterile peptone water 299 

(peptone, 1 g/L) was added to each sample, which was then homogenized in a Stomacher apparatus 300 

(400 Circulator, International PBI, Milan, Italy) for 3 min at 260 rpm. Then, 1.5 mL of each tenfold 301 

diluted (10-1 dilution) homogenate were centrifuged at 14,000 rpm for 10 min, the supernatants 302 

were discarded, the obtained cell pellets covered with RNA later Stabilization Solution (Ambion, 303 

Foster City, CA, USA) and stored at -80°C until use. The Quick-RNA Fungal/Bacterial Microprep 304 

kit (Zymo Research, CA, USA) was used for the extraction of total microbial RNA from the cell 305 

pellets following the manufacturer’s instructions. The extracted RNAs were checked for quantity, 306 

purity and integrity as previously described by Garofalo et al. (2017). Moreover, the extracts were 307 

amplified using the PCR universal prokaryotic primers 27f and 1495r (Weisburg et al., 1991) to 308 
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exclude the presence of bacterial DNA contamination. Five µL of each RNA sample were reverse- 309 

transcribed in cDNA using the SensiFAST cDNA Synthesis Kit for RT-qPCR (Bioline, London, 310 

UK) following the manufacturer’s instructions. 311 

 312 

16S rRNA amplicon target sequencing. cDNA was used as template in the PCR amplifying the V3-313 

V4 region of the 16S rRNA gene using the primers and protocols described by Klindworth et al. 314 

(2013).  315 

PCR amplicons were cleaned using the Agencourt AMPure kit (Beckman Coulter, Milan, Italy) and 316 

tagged using the Nextera XT Index Kit (Illumina Inc. San Diego, CA) according to the 317 

manufacturer’s instructions. After the 2nd clean-up step, amplicons were quantified using a QUBIT 318 

dsDNA Assay kit and an equimolar amount of amplicons from different samples were pooled. The 319 

library was denatured with 0.2 N NaOH, diluted to 12 pM, and combined with 20% (vol/vol) 320 

denatured 12 pM PhiX, prepared according to Illumina guidelines. The sequencing was performed 321 

with a MiSeq Illumina instrument (Illumina) with V3 chemistry and generated 250 bp paired-end 322 

reads according to the manufacturer’s instructions. 323 

 324 

2.13. Molecular analyses 325 

RNA extraction and cDNA synthesis. Total RNA extraction from 5 zebrafish larvae from each tank 326 

(15 larvae per dietary group) was optimized using the RNAzol RT reagent (Sigma-Aldrich, R4533) 327 

according to Piccinetti et al. (2013). The total RNA extracted was eluted in 40 µl of RNase-free 328 

water (Qiagen). The final RNA concentration was determined using a NanoPhotometer P-Class 329 

(Implen, München, Germany). RNA integrity was verified by GelRedTM staining of 28S and 18S 330 

ribosomal RNA bands on 1% agarose gel. RNA was stored at -80°C until use. Finally, 2 µg of RNA 331 

were used for cDNA synthesis, using the High Capacity cDNA Reverse Transcription Kit (Bio-Rad, 332 

Milan, Italy) following the manufacturer's instructions. 333 

 334 
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Real-Time PCR. PCRs were performed with SYBER green method in an iQ5 iCycler thermal cycler 335 

(Bio-Rad Laboratories) following Vargas et al. (2018).  336 

Relative quantification of the expression of genes involved in fish growth (igf1, igf2a and mstnb), 337 

stress response (nr3c1 and hsp70.1), long-chain polyunsaturated fatty acids biosynthesis (elovl2, 338 

elovl5 and fads2), appetite response (ghrl, npy, cnr1 and lepa), immune response (il1b, il10 and 339 

tnfa) and enzymatic hydrolysis of chitin (chia.2 and chia.3) was performed. Actin-related protein 340 

2/3 complex, subunit 1A (arpc1a) and ribosomal protein, large, 13 (rpl13) were used as internal 341 

standards in each sample in order to standardize the results by eliminating variation in mRNA and 342 

cDNA quantity and quality. No amplification products were observed in negative controls and no 343 

primer-dimer formations were observed in the control templates. Amplification products were 344 

sequenced, and homology was verified. The data obtained were analysed using the iQ5 optical 345 

system software version 2.0 (Bio-Rad) including GeneEx Macro iQ5 Conversion and genex Macro 346 

iQ5 files. Primer sequences were designed using Primer3 (210 v. 0.4.0) starting from zebrafish 347 

sequences available in ZFIN Primer sequences used were reported in Table 2. 348 

 349 
TABLE 2. PRIMER SEQUENCES AND THE ZEBRAFISH INFORMATION NETWORK 350 
(ZFIN) USED IN THIS STUDY 351 

Gene Forward primer (5'- 3') Reverse primer (5'- 3') ZFIN ID 

igf1 5'-GGCAAATCTCCACGATCTCTAC-3' 5'-CGGTTTCTCTTGTCTCTCTCAG-3' ZDB-GENE-010607-2 

igf2a 5'-GAGTCCCATCCATTCTGTTG-3' 5'-GTGGATTGGGGTTTGATGTG-3' ZDB-GENE-991111-3 

mstnb 5'-GGACTGGACTGCGATGAG-3' 5'-GATGGGTGTGGGGATACTTC-3' ZDB-GENE-990415-165 

nr3c1 5'-AGACCTTGGTCCCCTTCACT-3' 5'-CGCCTTTAATCATGGGAGAA-3' ZDB-GENE-050522-503 

hsp70.1 5'-TGTTCAGTTCTCTGCCGTTG-3' 5'-AAAGCACTGAGGGACGCTAA-3' ZDB-GENE-990415-91 

elovl2 5'-CACTGGACGAAGTTGGTGAA-3' 5'-GTTGAGGACACACCACCAGA-3' ZDB-GENE-060421-5612 

elovl5 5'-TGGATGGGACCGAAATACAT-3' 5'-GTCTCCTCCACTGTGGGTGT-3' ZDB-GENE-040407-2 

fads2 5'-CATCACGCTAAACCCAACA-3' 5'-GGGAGGACCAATGAAGAAGA-3' ZDB-GENE-011212-1 

ghrl 5'-CAGCATGTTTCTGCTCCTGTG-3' 5'TCTTCTGCCCACTCTTGGTG-3' ZDB-GENE-070622-2 

npy 5'-GTCTGCTTGGGGACTCTCAC-3' 5'CGGGACTCTGTTTCACCAAT-3' ZDB-GENE-980526-438 

cnr1 5'-AGCAAAAGGAGCAACAGGCA-3' 5'GTTGGTCTGGTACTTTCACTTGAC-3' ZDB-GENE-040312-3 

lepa 5'-CTCCAGTGACGAAGGCAACTT-3' 5'GGGAAGGAGCCGGAAATGT-3' ZDB-GENE-081001-1 
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 352 

2.14. Statistical analysis 353 

All data (except for microbiome) were analyzed by one-way ANOVA, with diet as the explanatory 354 

variable. All ANOVA tests were followed by Tukey’s post-hoc tests. The statistical software 355 

package Prism5 (GraphPad Software) was used. Significance was set at p<0.05 and all results are 356 

presented as mean ± SD. For microbiome analyses, paired-end reads were first merged using the 357 

FLASH software (Magoč and Salzberg, 2011). Joint reads were quality filtered (at Phred < Q20) by 358 

QIIME 1.9.0 software (Caporaso et al., 2010) and the pipeline recently described (Osimani et al., 359 

2019). Briefly, the USEARCH software version 8.1 (Edgar et al., 2011) was used for chimera 360 

filtering and clean sequences were clustered into Operational Taxonomic Units (OTUs) at 97% of 361 

similarity by UCLUST algorithms. Centroids sequences of each cluster were used for taxonomic 362 

assignment using the Greengenes 16S rRNA gene database. OTU tables were rarefied at 44412 363 

sequences. The OTU table displays the higher taxonomy resolution that was reached. 364 

 365 

3. Results 366 

3.1. Biometry 367 

The increasing inclusion levels of BSF full-fat prepupae meal resulted in a statistically significant 368 

(p<0.05) increase in the larval specific growth rate. In particular, no significant differences (p>0.05) 369 

were detected between Control (25.4±0.7%) and Hi25 group (25.7±1.0%), while Hi50, Hi75 and 370 

il1b 5'-GCTGGGGATGTGGACTTC-3' 5'-GTGGATTGGGGTTTGATGTG-3' ZDB-GENE-040702-2 

il10 5'-ATTTGTGGAGGGCTTTCCTT-3' 5'AGAGCTGTTGGCAGAATGGT-3' ZDB-GENE-051111-1 

tnfα 5'-TTGTGGTGGGGTTTGATG-3' 5'-TTGGGGCATTTTATTTTGTAAG-3' ZDB-GENE-050317-1 

chia.2 5'-GGTGCTCTGCCACCTTGCCTT-3' 5'-GGCATGGTTGATCATGGCGAAAGC-3' ZDB-GENE-040426-2014 

chia.3 5'-TCGACCCTTACCTTTGCACACACCT-3' 5'-ACACCATGATGGAGAACTGTGCCGA-3' ZDB-GENE-040426-2891 

arpc1a 5'-CTGAACATCTCGCCCTTCTC-3' 5'-TAGCCGATCTGCAGACACAC-3' ZDB-GENE-040116-1 

rpl13 5'-TCTGGAGGACTGTAAGAGGTATGC-3' 5'-AGACGCACAATCTTGAGAGCAG-3' ZDB-GENE-031007-1 
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Hi100 groups (27.6±0.5, 27.8±0.4, 28.4±0.3 %, respectively) showed significantly (p<0.05) higher 371 

values compared to both Control and Hi25 ones.   372 

 373 

3.2. Fatty acid content and composition 374 

Diets. The FAs classes percentages of the five experimental diets are presented in Figure 2a. Insect-375 

based diets showed significantly higher (p<0.05) percentages of SFAs (40.9±0.7, 40.0±2.0, 376 

35.9±0.7 and 37.6±2.8 % for Hi25, Hi50, Hi75 and Hi100 diets, respectively) compared to Control 377 

diet (27.8±1.3%). Considering mono-unsaturated fatty acids (MUFAs), all insect-based diets 378 

showed significantly lower percentages (p<0.05) compared to Control (24.7±0.6, 19.8±0.3, 379 

19.0±0.9, 21.5±0.2 and 20.0±1.0 % for Control, Hi25, Hi50, Hi75 and Hi100, respectively). Finally, 380 

insect-based diets showed significantly (p<0.05) lower (39.3±1.0, 41.0±1.0, 42.6±0.3 and 42.2±3.2 381 

% for Hi25, Hi50, Hi75 and Hi100, respectively) percentages of PUFAs compared to Control diet 382 

(47.4±1.4 %). In addition, increasing inclusion levels of BSF full-fat prepupae meal in the diets 383 

resulted in a significant decrease (p<0.05) of n3 percentages (from 38.8±1.4% for Control diet to 384 

11.1±3.1 % for Hi100 diet) and a parallel significant (p<0.05) increase in n6 percentages (from 385 

8.6±0.1 for Control diet to 31.3±0.9 % for Hi100 diet; Fig. 2a). Consequently, the n6/n3 ratio 386 

showed significant differences (p<0.05) among experimental diets, increasing from Control diet 387 

(0.22±0.01) to Hi100 diet (2.8±0.2) diets (Fig. 2b). Finally, considering the insect-based diets, the 388 

higher was the BSF meal dietary inclusion, the higher was the n9 content (10.7±0.2, 12.1±0.7, 389 

14.6±0.2 and 15.2±0.7 % for Hi25, Hi50, Hi75 and Hi100, respectively). The control diet 390 

(13.9±0.3%) showed an intermediate n9 content between Hi50 and Hi75 diets.  391 

Zebrafish larvae. Figure 2c illustrates the FAs classes percentages of zebrafish larvae fed on the 392 

different diets. The FA classes of zebrafish larvae fed on the different diets was deeply influenced 393 

by the BSF meal dietary inclusion. In particular, SFAs percentage increased with the inclusion of 394 

insect meal in the diets, while both MUFAs and PUFAs generally decreased with the increasing 395 
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BSF inclusion levels in the diets (Fig. 2c). Specifically, the higher was the dietary BSF meal 396 

inclusion level, the lower was the n3 and the higher was the n6 percentage detected. Considering the 397 

n6/n3 ratio (Fig. 2d), no significant differences (p>0.05) were detected among Control, Hi25 and 398 

Hi50 groups (0.5±0.1, 0.5±0.1 and 0.6±0.1, respectively), while Hi75 and Hi100 (0.8±0.1 and 399 

1.0±0.1, respectively) showed a significantly (p<0.05) higher value compared to the other 400 

experimental groups.  401 

Finally, in terms of n9 percentage, only Hi25 and Hi50 groups (17.7±0.4 and 17.9±0.3 %, 402 

respectively) showed significantly (p<0.05) higher values compared to Control group (17.3±0.2 %).  403 

Table 3 shows the FA composition of total lipids of zebrafish larvae. The FA profile of larvae 404 

reared on the Control diet was characterized by high percentages of 16:0, 18:1n9, 22:6n3 405 

(docosahexaenoic acid, DHA), and 20:5n3 (eicosapentaenoic acid, EPA) fatty acids, followed by 406 

18:2n6, 16:1n7 and 18:0. The increasing inclusion levels of BSF meal in the diets triggered some 407 

changes in the FA composition of the larvae and the major changes are reported here.  408 

A substantial (up to ~30-folds) increase in the lauric acid (12:0) and a significant decrease in EPA 409 

(20:5n3) percentage was detected in fish fed diets with increasing BSF meal inclusion levels. In 410 

terms of DHA, a similar, but milder trend was observed respect to EPA. Because of this the 411 

DHA/EPA ratio significantly increased with the increasing BSF meal inclusion levels in the diets 412 

(Tab. 3). 413 

 414 

TABLE 3: FATTY ACID COMPOSITION (AS % OF TOTAL FAS) OF ZEBRAFISH LARVAE FED DIETS 415 

WHERE FM WAS REPLACED WITH 25, 50, 75 AND 100 % OF BSF MEAL (Hi25, Hi50, Hi75 AND 416 
Hi100 GROUPS).  417 

 Zebrafish larvae 
 CTRL Hi25 Hi50 Hi75 Hi100 

10:0 0.02±0.01 0.05±0.01 0.10±0.01 0.08±0.01 0.09±0.02 

12:0 0.20±0.03a 2.6±0.1b 4.5±0.1c 4.7±0.4c 5.7±0.4d 

13:0 0.06±0.01 0.06±0.01 0.07±0.01 0.06±0.01 0.07±0.01 

14:0 4.0±0.1a,b 4.0±0.1a 4.2±0.1b 3.9±0.2a 4.3±0.2b 

15:0 0.86±0.04 0.80±0.03 0.82±0.01 0.79±0.02 0.84±0.04 

16:0 14.7±1.0c 14.0±0.7a,b 13.8±0.5a 14.6±0.1b,c 15.5±0.9d 
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16:1n9 1.2±0.1a 1.3±0.1b 1.3±0.1c 1.5±0.1d 1.5±0.1d 

16:1n7 8.7±0.6c 9.0±0.3c 8.3±0.1b 7.6±0.4a 7.9±0.1a 

17:0 1.2±0.1b 1.1±0.1a 1.1±0.1a 1.1±0.1a 1.2±0.1b 

18:0 6.3±0.2c 5.5±0.1a 5.8±0.2b 6.3±0.4c 6.7±0.4d 

18:1n9 14.7±0.1a 15.3±0.3b 15.7±0.7c 15.1±0.3b 15.3±0.1b 

18:1n7 5.2±0.1d 4.9±0.2c 4.6±0.2b 4.3±0.1a 4.5±0.2b 

18:2n6 9.6±0.1a 10.6±0.2b 11.0±0.2c 12.6±0.3d 12.7±0.7d 

18:3n6 0.43±0.01 0.41±0.02 0.50±0.01 0.47±0.03 0.53±0.03 

18:3n3 3.7±0.1c 3.3±0.2b 3.5±0.2c 2.7±0.2a 2.8±0.3a 

20:0 0.22±0.01 0.18±0.01 0.19±0.01 0.23±0.02 0.21±0.01 

20:1n9 0.90±0.05 0.75±0.01 0.63±0.02 0.48±0.02 0.39±0.02 

20:2n6 0.29±0.02 0.29±0.01 0.31±0.01 0.35±0.02 0.38±0.02 

20:3n6 0.46±0.04a 0.52±0.02b 0.70±0.04c 0.98±0.06d 1.1±0.1e 

20:4n6 2.3±0.2a 2.3±0.1a 2.4±0.1b 3.2±0.3c 3.5±0.1d 

20:3n3 0.21±0.03 0.19±0.01 0.21±0.01 0.17±0.01 0.17±0.02 

20:5n3 10.2±0.2e 8.7±0.7d 7.2±0.3c 4.6±0.1b 3.5±0.2a 

22:1n9 0.31±0.02 0.28±0.01 0.18±0.02 0.12±0.01 0.04±0.01 

22:6n3 14.0±1.3c 13.9±1.2c 12.9±0.8b 14.0±1.3c 11.2±1.0a 

24:1n9 0.18±0.02 0.09±0.01 0.08±0.01 0.05±0.01 0.03±0.01 

DHA/EPA 1.4±0.1a 1.6±0.2b 1.8±0.1b 3.0±0.3c 3.2±0.2c 

Means within rows bearing different letters are significantly different (p<0.05). Statistical analysis was performed only 418 
for FAs > 1%. FAs with a percentage <1% were excluded from any statistical analyses because their concentrations 419 
were close to the limit of detection. 420 
 421 

 422 

 423 

 424 

 425 

3.3. Histology 426 

Histological analyses were performed in order to detect possible inflammatory events in the 427 

intestine and to evaluate lipid accumulation or steatosis in the liver. The intestine mucosa appeared 428 

unaltered and did not show any appreciable inflammatory influx in all experimental groups and fish 429 

fed on BFS-based diets showed a normal intestinal morphology, comparable to Control (Fig. 3a-j).  430 

Coversely, results evidenced a variable degree of lipid accumulation in the liver of the experimental 431 

groups (Fig. 3k-o). The most appreciable visual differences were observed in the Hi75 and Hi100 432 
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groups. Indeed, while all experimental groups presented a modest fat liver parenchima, Hi75 and 433 

Hi100 showed a severe degree of steatosis with swollen hepatocytes and abundant intracytoplasmic 434 

lipid accumulation (Fig. 3n,o). These results were confirmed by the statistical quantification of the 435 

fat percentage fraction (PFF) on liver sections that showed a significant increase in response to 436 

dietary treatments (Fig. 4). In particular, Hi50 showed a significant increase in PPF (48.7±2.4) 437 

compared to Control (41.7 ±2.1) and Hi25 (42.5±1.2) groups. However, the highest values in PFF 438 

were detected in Hi75 and Hi100 with a significant difference (58.7±0.9 and 60.6±1.5 respectively) 439 

compared to the other groups. 440 

 441 

3.4. FTIR analysis 442 

The average absorbance spectra of Control, Hi25, Hi50, Hi75 and Hi100 larval groups are shown in 443 

Figure 5. The analysis of IR spectra allowed to distinguish the vibrational modes of lipids, proteins, 444 

carbohydrates and phosphates (see Materials and Methods section) (Vargas et al., 2018).  445 

In terms of biochemical composition of zebrafish larvae samples belonging to the different dietary 446 

groups, the following considerations can be drawn: (i) statistically significant higher amounts of 447 

overall lipids (LIP/TBM, Fig. 6a) were detected in Hi50, Hi75 and Hi100 zebrafish larvae 448 

compared to Control and Hi25 ones; (ii) in all zebrafish larvae fed on diets with different inclusion 449 

levels of BSF meal, a significant increase in saturated fatty acids (1744/LIP and 2925/LIP, Fig. 6b 450 

and 6c) and a significant decrease in unsaturated ones (3010/LIP, Fig. 6d) were observed; (iii) in 451 

terms of protein composition, no statistically significant changes were detected in the overall 452 

amount of proteins (PRT/TBM, Fig. 7a) among the experimental groups; (iv) a slight but 453 

statistically significant decrease of collagen (1234/PRT, Fig. 7b) was observed in all zebrafish 454 

larvae fed on diets including BFS meal, and (v) a higher amount of mucin (1055/PRT, Fig. 7c) was 455 

found in Hi50, Hi75 and Hi100 zebrafish larvae.  456 

 3.5. Microbiome 457 
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A total of 247,654 reads passed the filters applied through QIIME, with an average value of 49,530 458 

reads/sample, and a mean sequence length of 464 bp. The Good’s coverage indicated also 459 

satisfactory coverage for all samples (>99%) (Supplementary Table 1A). Alpha-diversity indicated 460 

the highest number of OTUs after 50% of BSF inclusion if compared with control and with 25% of 461 

inclusion. Beta diversity calculation based on weighted and on unweight UniFrac distance matrix 462 

showed a clear separation of the control samples if compared with those including BSF (Fig. 8). 463 

Furthermore, 50 and 75% of BSF meal inclusion in the diets showed a similar effect on microbial 464 

composition.  465 

As shown in Figure 9, the main OTUs shared among the data sets were Cetobacterium that reached 466 

50% of the relative abundance in sample GHi50 and about 30% in the other samples. Vibrio and 467 

Mycoplasmataceae decreased with the increasing inclusion of BSF meal in the diets; 468 

Flavobacterium and Plesiomonas were present at very low abundance in GHi100 sample, whereas 469 

in the other samples the same two genera showed a remarkable presence. Finally, among other 470 

bacteria, Aeromonadaceae, Ochrobactrum and Tetrathiobacter were also detected. 471 

 472 

3.6. Real-time PCR results 473 

Real-time PCR analyses were performed on genes involved in fish growth (igf1, igf2a and mstnb), 474 

stress response (hsp70.1 and nr3c1), long-chain polyunsaturated fatty acids biosynthesis (elovl2, 475 

elovl5 and fads2), appetite (ghrl, npy, cnr1 and lepa), immune response (il1b, il10 and tnfa) and 476 

enzymatic hydrolysis of chitin (chia.2 and chia.3).  477 

Growth factors. Higher mean levels in the expression of the igf1 and igf2a genes were detected in 478 

all experimental groups fed on BSF-based diets compared to Control (with the exception of igf1 479 

gene expression in Hi25 group). In particular, the Hi75 and Hi100 groups showed significantly 480 

(p<0.05) higher levels in comparison to the Hi25 group in terms of igf1 gene expression, and to 481 

Control in terms of igf2a gene expression. Only the Hi50 and Hi100 groups showed significantly 482 

(p<0.05) higher levels of expression of the mstn gene than Control (Fig. 10c). 483 
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Stress response. Considering stress markers (nr3c1 and hsp70.1; Fig. 10d,e), all groups fed on BSF-484 

based diets showed a significantly (p<0.05) higher gene expression compared to Control (with the 485 

exception of nr3c1 gene expression in Hi25 group). Furthermore, no significant differences 486 

(p>0.05) were evident among the Hi50, Hi75 and Hi100 groups, while the Hi25 group showed 487 

significantly (p<0.05) lower values compared to groups fed on diets with higher BSF meal inclusion 488 

level (with the exception of nr3c1 gene expression in Hi50 group).  489 

 490 

Lipid metabolism. The highest BSF meal inclusion (Hi100) caused the highest expression of the 491 

genes involved in long-chain polyunsaturated fatty acid elongation (elovl2 and elovl5) and 492 

desaturation (fads2). As illustrated in Figure 10f-h, the Hi100 group presented the highest gene 493 

expression (p<0.05) compared to all the other experimental groups. More specifically, no 494 

significant differences (p>0.05) in the expression of the elovl2 gene were detected between Control 495 

and Hi25 group (Fig. 10f), while both Hi50 and Hi75 had a significantly (p<0.05) higher expression 496 

than Control. No significant differences (p>0.05) in the expression of the elovl5 and fads2 genes 497 

(Fig. 10g,h) were observed among the Control, Hi25, Hi50 and Hi75 groups. 498 

 499 

Appetite. As shown in Figure 10i,l, the higher was the BSF meal inclusion in the diets, the higher 500 

was the ghrl and npy gene expression. However, no significant differences (p>0.05) were observed 501 

between Control and Hi25 in terms of ghrl gene expression and among Control, Hi25 and Hi50 in 502 

terms of npy gene expression. Figure 10m shows cnr1 gene expression. No BSF meal dose 503 

dependency was observed in the expression of this specific gene, since only Hi25 and Hi50 groups 504 

evidenced significantly (p<0.05) higher values than Control. , Groups fed on the highest BSF 505 

inclusion (Hi75 and Hi100) showed significantly (p<0.05) higher gene expression of the lepa gene 506 

(Fig. 10n) compared to the other groups, while no significant differences (p<0.05) were detected 507 

among Control, Hi25 and Hi50 groups.  508 

 509 
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Immune response. Considering genes involved in the immune response, higher BSF meal dietary 510 

inclusions resulted in a significantly (p<0.05) higher gene expression compared to Control. 511 

Specifically, no significant differences (p>0.05) were evident in the expression of the il1b gene (Fig 512 

10o) among the Control, Hi25 and Hi50 groups, while the Hi75 and Hi100 groups showed 513 

significantly (p<0.05) higher values compared to the other experimental groups. Similarly, the 514 

Hi50, Hi75 and Hi100 groups showed a significantly (p<0.05) higher expression of the il10 gene 515 

(Fig 10p) compared to the Control and Hi25 groups, which did not differ significantly from each 516 

other (p>0.05). Finally, as reported in Figure 10q, the increasing levels of inclusion of BSF meal in 517 

the diets resulted in a statistically significant (p<0.05) dose-dependent increase in tnfa gene 518 

expression. 519 

 520 

Chitinases. All the experimental groups fed on BSF-based diets showed an increase in chitinases 521 

gene expression (Fig. 10r,s). Specifically, no significant differences (p>0.05) were evident in the 522 

expression of the chia.2 and chia.3 genes among all the experimental groups, with the exception of 523 

the Hi100 group for chia.2 and both Hi75 and Hi100 groups for chia.3, which showed a 524 

significantly (p<0.05) higher gene expression than Control. 525 

 526 

4. Discussion 527 

The use of insects in aquafeed still faces possible limitations because of their lack in PUFAs  528 

(Barroso et al., 2017) and presence of chitin (Kroeckel et al., 2012; Xiao et al., 2018). 529 

Insects are usually farmed on vegetable organic by-products, and previous studies showed that the 530 

final insect biomass had a very low PUFAs and a high SFA content (Vargas et al., 2018; 531 

Zarantoniello et al., 2018). However, it is now well established  that the quantity and quality of FAs 532 

in insects can be modified by the growth substrate (Barroso et al., 2014; Spranghers et al., 2017; St-533 

Hilaire et al., 2007a). Specifically, in the present study we demonstrated that the addition of a 10% 534 
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(w/w) of Schyzochitrium sp. to the growth substrate is an efficient approach to increase the PUFAs 535 

content of the final insect biomass.   536 

This “enrichment” procedure of the insect biomass caused a progressive increase in PUFAs content 537 

in the Hi25, 50, 75 and 100 diets, respectively, highlighting that the enrichment method used is 538 

appropriate and represents, in this sense, an interesting and innovative approach on how food by-539 

products produced on land (coffee silverskin) can be enriched and bio-converted  into a valuable 540 

biomass for aquafeed production (Meneguz et al., 2018; Pinotti et al., 2019).  541 

Compared to previous insect-based diets already tested on zebrafish (Vargas et al., 2018; 542 

Zarantoniello et al., 2019), the diets tested in this study showed good performances on fish growth, 543 

since higher BSF meal inclusion levels in the experimental diets resulted in higher larval SGR%. 544 

This result was  supported by the analysed molecular markers of growth but is in contrast with 545 

previous studies reporting that BSF meal inclusion levels higher than 40% often resulted in negative 546 

effects on fish growth and welfare (Sánchez-Muros et al., 2014; Barragan-Fonseca et al., 2018; 547 

Secci et al., 2019) . In particular, previous studies evidenced that such high inclusion levels affected 548 

both intestine and liver integrity and, thus, dietary nutrients absorption (Henry et al., 2015; Li et al., 549 

2017; Cardinaletti et al., 2019). 550 

The different diets tested in the present study also affected larval fish FA composition. However, 551 

differences among FA classes were less evident in zebrafish larvae compared to those detected in 552 

the diets. In fact, as a freshwater species, zebrafish are able to convert shorter-chain FAs in highly 553 

unsaturated ones through the elongation and desaturation pathways (Tocher, 2010). This was clearly 554 

documented in the present study by a higher elovl2, elovl5 and fads gene expression in all the 555 

experimental groups fed on BSF meal-based diets (with emphasis on the Hi100 group).  556 

Gas chromatographic results were also confirmed and integrated by FTIR analyses which provided 557 

data about the macromolecular composition of the analysed biological samples (Giorgini et al., 558 

2018). Specifically, FTIR analyses showed that there were no differences in the total amount of 559 

proteins (PRT/TBM ratio) (with the exception of collagen (1234/PRT ratio) that slightly decreased) 560 
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among the experimental groups, highlighting that BSF meal is a valuable protein source for 561 

aquafeeds (Al-Qazzaz and Ismail, 2016; Lock et al., 2016; Nogales-Mérida et al., 2018). 562 

Concerning lipids, the same analyses revealed that the increase of BSF meal percentage in the diets 563 

was associated with a general increase in total larval lipid content. Additionally, analysing specific 564 

wavelengths, FTIR confirmed the gas chromatographic results, evidencing an overall increase in 565 

saturated FA (1744/LIP and 2925/LIP ratios) and a decrease in unsaturated (3010/LIP ratio).  566 

Molecular markers related to the appetite stimulus were fully supported by the biometric results. 567 

Fish food intake is regulated by specific regions in the brain that interpret and integrate positive 568 

(orexigenic) and negative (anorexigenic) signals derived from the hypothalamic area 569 

(neurohormones) and from the body periphery (Copeland et al., 2011; Sobrino Crespo et al., 2014). 570 

Specifically, the orexigenic signals ghrl and npy analysed in the present study, showed a dose-571 

dependent gene expression increase related to the BSF meal inclusion levels in the diets (the higher 572 

the BSF meal inclusion level, the higher their gene expression), while the cnr1 gene expression was 573 

always higher in all the larval groups fed on BSF-based diets. Conversely, the results obtained from 574 

the anorexigenic signal lepa was not obvious. Leptin is usually involved in the inhibition of 575 

orexigenic pathways and in the stimulation of anorexigenic (Piccinetti et al., 2010; Volkoff, 2006); 576 

in the present study, however, an opposite activity was evidenced. 577 

This anomalous pattern could be explained by the FTIR analyses that revealed an increasing total 578 

lipid content (LIP/TBM ratio) in larvae fed on diets with increasing BSF meal levels. In fact, 579 

previous studies, performed both on mammals and fish species, demonstrated a positive correlation 580 

between leptin levels and amount of adipose tissue (Chisada et al., 2014; Park and Ahima, 2015; Li 581 

et al., 2016).  582 

Alternatively, an interconnection between leptin and proinflammatory cytokines exist (Lafrance et 583 

al., 2010). Leptin is known to enhance the production of proinflammatory cytokines, as well as 584 

proinflammatory cytokines are able to trigger leptin release (Carlton et al., 2012). In the present 585 

study, the increasing lepa gene expression observed in larvae fed on insect-based diets might have 586 
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promoted the immune-response observed in the same experimental groups. However, it should be 587 

mentioned that all insect-based diets contain chitin (Borrelli et al., 2017; Gasco et al., 2018), a 588 

molecule which still has a controversial role in aquafeeds. Indeed, some studies reported a 589 

beneficial modulatory role of chitin on fish immune system and microbiota (Ringø et al., 2012; 590 

Zhang et al., 2012; Zhou et al., 2013; Bruni et al., 2018; Henry et al., 2018), while others showed 591 

that, especially at high inclusion levels, chitin may induce inflammation of the intestinal tract and a 592 

reduction in nutrient assimilation (Kroeckel et al., 2012; Magalhães et al., 2017; Su et al., 2017; 593 

Xiao et al., 2018). In support of this conclusion, Hi50, Hi75 and Hi100 larvae showed a significant 594 

increase of mucin (1055/PRT ratio), possibly associated to a higher intestine lubrication necessary 595 

for a proper intestinal transit of these diets. 596 

In the present study, no specific inflammatory events were detected through the histological 597 

analysis of the intestine samples, suggesting: 1) a possible digestion of chitin by zebrafish larvae 598 

through specific chitinases (chia.2 and chia.3); 2) a possible intestinal anti-inflammatory role of 599 

lauric acid (C12). This fatty acid, which in the present study increased its dietary amount with the 600 

increasing BSF meal inclusion in the diets, has been demonstrated to have beneficial effects on fish 601 

gut’s welfare by mitigating inflammatory conditions (Aleström et al., 2006; Dahm and Geisler, 602 

2006; De-Santis and Jerry, 2007; Zarantoniello et al., 2019).  603 

The histological analysis of the liver showed a lipid accumulation in the hepatic parenchyma in all 604 

analysed samples, regardless of the dietary treatment. Specifically, the Hi75 and Hi100 groups 605 

showed a severe level of hepatic steatosis, a pathological condition that has previously been related 606 

to a high n-6/n-3 ratio (Di Minno et al., 2012; Leamy et al., 2013; Zarantoniello et al., 2018, 2019). 607 

This hepatic disorder is probably the cause of the higher gene expression of the stress markers 608 

(nr3c1 and hsp70.1). Finally, insects are known to possess natural bioactive molecules that are 609 

known to modulate fish microbiota (Huyben et al., 2019; Terova et al., 2019) and, therefore, the 610 

bacterial community is expected to impact host metabolism and health status. 611 
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Although autochthonous bacterial communities were dominated by the same phyla regardless of the 612 

diet, the present study showed that bacterial populations are dynamic and can be modulated by 613 

dietary inclusion of insect meal.  614 

Some bacteria were almost present in all the samples analysed, while others were mainly modulated 615 

by the insect-based diets. Among the ubiquitous species, the massive presence of Cetobacterium in 616 

all gut samples suggested that graded BSF inclusion levels in the diets did not influence the 617 

presence of such a fish associated microorganism. In fact, Cetobacterium has already been found as 618 

core genus in the gut of zebrafish with beneficial effect on fish health because of its ability to 619 

produce cobalamin (vitamin B12) (Roeselers et al., 2011; Merrifield et al., 2013; Ghanbari et al., 620 

2015; Earley et al., 2018;). Mycoplasmataceae were also dominant in the present study, and have 621 

already been found among the dominant microorganisms in fish intestines (e.g. rainbow trout), with 622 

a possible beneficial action on host health by producing lactic acid with antibacterial effect 623 

(Rimoldi et al., 2019). Finally, Aeromonadaceae were also detected in all analysed gut samples, 624 

irrespective of the diet used. This bacterial family has already been found as naturally associated 625 

with the gut of fish or insects (Grabowski and Klein, 2017; Udayangani et al., 2017; Rimoldi et al., 626 

2019), suggesting a contribution of BSF-based diets in the occurrence of such a bacterial family in 627 

the gut of the analysed zebrafish. 628 

BSF meal inclusion in the diets modified the presence of some bacteria. Specifically, the presence 629 

of Vibrio was negatively influenced by the addition of increasing graded levels of BSF meal in the 630 

diets. As reported by Brugman et al., (2015), in the zebrafish intestine T lymphocytes can control 631 

the outgrowth of Vibrio species. As shown by the Real Time PCR analyses, the supply of BSF-632 

based diets stimulated immune-response related genes that might be implied in Vibrio species 633 

control. However, further research is needed to better understand the involvement of BSF in this 634 

aspect. Finally, both Ochrobactrum and Tetrathiobacter were detected in the samples GHi100. The 635 

occurrence of Ochrobactrum was already reported in zebrafish gut (Cantas et al., 2012) as well as in 636 

the microbiota of insects as coleoptera and lepidoptera (Grabowski and Klein, 2017), while 637 
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Tetrathiobacter has already been isolated from the midgut of ticks (Li et al., 2014). These data 638 

suggest that the inclusion of BSF meal in fish diets can contribute to modify the fish microbiota 639 

with a specific possible involvement in the allochthonous microbiota modification. 640 

As a general remark about gut microbiota, bacterial diversity is considered a positive indicator of 641 

gut health while a reduced diversity is often associated to dysbiosis and risk of disease in fish 642 

(Terova et al., 2019). In the present study, the PCA analyses revealed a difference between the Hi0-643 

25 and Hi50-75-100 groups, thus suggesting a possible influence of BFS-based diets on the 644 

zebrafish gut microbiota, to be further investigated.  645 

 646 

 647 

5. Conclusion 648 

In order to meet aquafeed requirements, BSF biomass should be enriched in PUFAs. The present 649 

study showed that the addition of a 10% (W/W) Schizochytrium sp to the growth substrate is a valid 650 

method to achieve this objective. The present study evidenced that a 50% BSF meal inclusion level 651 

in the diet sustains a better fish growth and does not have any major negative effects on the fish. 652 

Higher inclusion levels affect larval liver histology and induce a general increase in lipid 653 

accumulation and stress response. This novel approach represents an interesting example of how, in 654 

the long term, a circular economy applied to the aquaculture sector may sustain animal’s welfare 655 

and encourage sustainability and competitiveness. 656 
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 1065 

8. Appendix 1066 

TABLE 1A. OBSERVED DIVERSITY, GOOD’S COVERAGE AND NUMBER OF SEQUENCES FOR 1067 
THE 16S RRNA AMPLICONS OBTAINED FROM ZEBRAFISH GUT (G) SAMPLES. 1068 
 1069 
Sample Goods_coverage PD_whole_tree chao1 Observed_species Shannon 

GHi0 99.77 19.37 418.40 299 3.41 

GHi25 99.88 13.26 294.02 259 4.01 

GHi50 99.80 20.37 462.88 380 3.25 

GHi75 99.75 21.23 470.88 388 3.49 

GHi100 99.75 19.97 419.85 332 3.72 

Zebrafish insect-based diets were prepared by including graded levels of insect meal (25, 50, 75, and 100 %, 1070 
referred to as Hi25 and Hi50, Hi75 and Hi100, respectively) in the Hi0 formulation (control diet without 1071 
insect addition). 1072 
 1073 

 1074 

Figure Legends 1075 

Figure 1. Specific Growth Rate (% weight growth day-1) of zebrafish larvae. Zebrafish larvae fed diets including 0, 1076 
25, 50, 75 and 100% of BSF meal (Control, Hi25, Hi50, Hi75 and Hi100). Boxplots show minimum and maximum 1077 
(whiskers), first quartile, median and third quartile (box). Different letters denote statistically significant differences 1078 
among experimental groups. 1079 
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 1080 
 1081 
Figure 2. Content of SFA, MUFA and PUFA (as % of total FA) and contribution of omega 3 (n3), omega 6 (n6) 1082 
and omega 9 (n9) fatty acids to lipid profile. (a,b) experimental diets; (c,d) zebrafish larvae. Control, Hi25, Hi50, 1083 
Hi75 and Hi100 diets were characterized by 0, 25, 50, 75 or 100% inclusion of BSF meal. Zebrafish larvae fed diets 1084 
including 0, 25, 50, 75 and 100% of BSF meal (Control, Hi25, Hi50, Hi75 and Hi100). Different letters indicate 1085 
statistically significant differences among experimental groups compared within the same fatty acid class (p<0.05). 1086 
Values are presented as mean ± SD (n = 12). 1087 
 1088 
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 1089 

 1090 
Figure 3. Example of histomorphology of intestine and liver of zebrafish larvae. (a-j) intestine; (k-o) liver. 1091 
Zebrafish larvae fed diets including 0, 25, 50, 75 and 100% of BSF meal (Control, Hi25, Hi50, Hi75 and Hi100). Scale 1092 
bars: (a-e) 50 µm; (f-j) 20 µm; (k-o) 10 µm. * indicates lipid accumulation. 1093 
 1094 
 1095 
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 1096 
Figure 4. Percentage of fat fraction (PFF) in liver tissue calculated on histological sections.in control, Hi25, Hi50, 1097 
Hi75 and Hi100 groups. Values are presented as mean ± SD (n=9). Different letters indicate statistically significant 1098 
differences among the experimental groups. 1099 

 1100 
 1101 
Figure 5. IR spectra of zebrafish larvae. Average absorbance spectra of zebrafish larvae fed diets including 0, 25, 50, 1102 
75 and 100% of BSF meal (Control, Hi25, Hi50, Hi75 and Hi100). For clarity reasons, spectra are shifted along y-axis. 1103 
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The position (in terms of wavenumbers) of the most featuring IR peaks is reported, together with (colored boxes) the 1104 
corresponding biochemical meaning.  1105 

 1106 
Figure 6. Statistical analysis of lipid composition. Numerical variation of IR band area ratios in zebrafish larvae fed 1107 
diets including 0, 25, 50, 75 and 100% of BSF meal (Control, Hi25, Hi50, Hi75 and Hi100): (a) LIP/TBM (overall 1108 
amount of lipids); (b) 1744/LIP (amount of fatty acids with respect to lipids); (c) 2925/LIP (amount of saturated fatty 1109 
acids with respect to lipids) and (d) 3010/LIP (amount of unsaturated fatty acids with respect to lipids). Different letters 1110 
above histograms indicate statistically significant differences among groups (p<0.05). 1111 
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 1112 
 1113 
Figure 7. Statistical analysis of protein composition. Numerical variation of IR band area ratios in Zebrafish larvae 1114 
fed diets including 0, 25, 50, 75 and 100% of BSF meal (Control, Hi25, Hi50, Hi75 and Hi100): (a) PRT/TBM (overall 1115 
amount of proteins); (b) 1234/PRT (amount of collagen with respect to proteins) and (c) 1055/PRT (amount of mucin 1116 
with respect to proteins). Different letters above histograms indicate statistically significant differences among groups 1117 
(p<0.05). 1118 

 1119 
 1120 
Figure 8. PCA based on the OTU abundance of the zebrafish samples grouped as a function of the amount of 1121 
BSF added to the diet. The first component (PC1) accounts for the 43.14% of the variance, the second component 1122 
(PC2) accounts for the 22.64 % of the variance, the third component (PC3) accounts for the 18.94% of the variance. 1123 
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Zebrafish insect-based diets were prepared by including graded levels of BSF meal (25, 50, 75 and 100%, referred to as 1124 
Hi25 and Hi50, Hi75 and Hi100, respectively) in the Hi0 formulation (control diet without insect addition). 1125 

 1126 
 1127 
Figure 9. Relative abundances as identified by MiSeq Illumina expressed as the percent ratio between the sum of reads 1128 
of each OTUs and the total number of reads found in the zebrafish gut (G) samples. 1129 

 1130 
 1131 
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Figure 10. Relative mRNA levels of genes analyzed in zebrafish larvae. (a) igf1, (b) igf2a, (c) mstnb, (d) nr3c1, (e) 1132 
hsp70.1, (f) elovl2, (g) elovl5, (h) fads, (i) ghrl, (l) npy, (m) cnr1, (n) lepa, (o) il1b, (p) il10, (q) tnfa, (r) chia.2, (s) 1133 
chia.3. Different letters indicate statistically significant differences among experimental groups compared within the 1134 
same sampling time (p<0.05). Values are presented as mean ± SD (n = 5). Zebrafish larvae fed diets including 0, 25, 50, 1135 
75 and 100% of BSF meal (Control, Hi25, Hi50, Hi75 and Hi100). 1136 
 1137 

 1138 
 1139 
 1140 

 1141 

 1142 

 1143 


