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1. Introduction

Brain-Computer Interface (BCI) is a noninvasive technology that allows communication between the user’s brain and 
a digital device (e.g. smart wheelchairs, computers, or prothesis), usually named agent. BCI allows the recognition of the 
user intention by decoding his neural activity through electroencephalography (EEG) in order to control the agent and 
improve its performances. Reaching this goal implies high cognitive attention and effort, since the user is asked to 
continuously pay close attention to the stimuli provided when operating a BCI.

In literature, many works analysed the capability of the BCI to recognize erroneous behaviours of agents directly from 
the user’s brain signals [1–7]. Errors in the recognition of the user’s intention elicited potentials called evoked Error-
related EEG Potentials (ErrPs).  ErrPs were analysed the first time in 1990, in a study about choice-reaction tasks [8]; in 
the same work the typical wave shape of ErrPs was defined. In this paradigm, the user monitors the agent’s actions 
providing a feedback that can be used to improve the overall performance of the agent. ErrP is physiologically defined as 
a two-components brain signal, consisting in negative and positive peaks, associated to the response monitoring and error 
detection processes. Both peaks have originated in the anterior cingulate cortex, a frontal brain structure involved in the 
cognitive and affective brain processes [9]. Typically, the signal is generated within 500 ms from the erroneous agent 
decision and the first component is a negative peak at almost 50-100 ms. After the negative peak, a positive peak is 
generated, further divided into frontocentral and centroparietal components [10].

Works [1,2] are examples where ErrP signals are generated when a user monitors the performance of an agent upon, 
without performing a direct control. Unlike traditional BCI systems, the user does not provide continuous commands, but 
only monitors the agent’s performance, thus making possible to tailor the agent’s behaviour to the user’s needs and 
preferences [3]. Particularly, in the experimental protocol proposed in [1] the user tried to move a cursor towards a target 
location (either using a keyboard or mental commands). Moreover, that work showed the possibility to recognize and 
correct erroneous decision of the agent exploiting the user’s EEG signals.

The application of ErrPs in BCI technology has increased during the last years, especially for the correction of the 
system behaviour through what is called reinforcement learning. Precisely, the most common application of ErrP was 
done in BCI spellers, where during the spelling of a word, a character can be discarded if it is wrong  [4]. ErrPs can be 
involved as a suitable alternative or complementary signal for BCI systems, especially as supervision or feedback signal 
during the execution of the task [7]. ErrPs have turned out to be used for fixing this problem, as demonstrated in an 
experiment carried in [5], where a biofeedback based on ErrPs is applied in a closed-loop system for the behavioural 
correction of a robot. The feasibility to use the ErrPs in combination with brain-machine interface signal to decode the 
action commands, where the ErrPs solve the erroneous ones, was investigated in [6], whereas, in the context of BCI, 
authors in [11], investigated whether ErrPs are also elicited when the error is made by the interface during the recognition 
of the subject's intent. Another research proposed the classification of error-related potentials from EEG during a real-
word driving task. While subject was driving, a directional cue was shown before reaching an intersection and the 
proposed system infers whether the cued direction coincided with the subject's intention [12]. Other works investigated 
the co-adaptation of human-agent using ErrPs and decoding of ErrPs in tasks with continuous feedback [13,14].

However, the most important challenge of BCI applications relates to the performance, since the control cannot offer 
a constant level of assistance due to weakness of EEG signals. Consequently, the application of spatial filters to improve 
the signal-to-noise ratio (SNR) and the single-trial classification is worthy of investigation. Spatial filters are proposed in 
the literature with the aim to increase the SNR by using a weighted sum of all electrodes rather than relying on a single, 
or a small sub-set, of EEG channels. Some examples of spatial filters are the so-called xDAWN and the common spatial 
filter (CSP) [15,16]. Variants and extensions of CSP are proposed in [16–18], trying to overcome the drawbacks of CSP 
and improve the classification of single-trial EEG. In [19,20], the authors proposed adaptive spatial filters, the former 
based on ensembles of common spatial pattern patches whereas the latter combines blind source separation and regression 
analysis.

In this work, Functional Source Separation (FSS) was used to estimate a spatial filter for learning the ErrPs in BCI and 
it was designed by considering the ErrPs as a functional constraint [21–24]. The final aim was a direct comparison of the 
FSS [21] with the xDAWN algorithm [15,25] to show the capability of the spatial filters to enhance the evoked ErrPs. 
Moreover, a single-trial classification was considered to assess the performances of FSS with respect to xDAWN. The 
FSS- and xDAWN-based methods are also compared with the single channels Cz and FCz, usually selected to monitor 
ErrPs [1], in terms of single-trial classification.

Section I of this paper presents the experimental protocol, the spatial filters and the classification algorithm used in the 
study. Section 2 introduces also the idea of using the FSS as spatial filter for learning the ErrPs in BCI. Experimental 
results are presented in Section 3 including a qualitative evaluation of the spatial filters and the single-trial classification. 
The conclusions are presented in Section 4.



2. Materials and Methods

In this section the experimental details are presented and the algorithms FSS, xDAWN and Bayesian Linear 
Discriminant Analysis (BLDA) are described.

2.1 Experimental protocol and dataset description

The considered dataset, whose signals were acquired in the experimental protocols proposed by [1], served as an 
experiment on EEG ErrPs. Specifically, six subjects (mean age 27.83 ± 2.23 years old) performed two recording sessions 
(session 1 and session 2) separated by several weeks. Both session 1 and session 2 consisted of 10 blocks: each block 
corresponded to approximately 50 trials and each trial was about 2000 ms long. In each trial, the user, without sending 
any command to the agent, only assessed whether an autonomous agent performed properly the task, which consisted in 
a cursor reaching a target on a computer screen. Specifically, at the beginning of each trial the user was asked to fixate 
the centre of the screen, and during the trial he/she was asked to monitor the movement of the cursor, knowing the goal 
of the task. Thus, ErrPs were elicited by monitoring the behaviour of the agent.

Practically, each user was asked to seat in front of a computer screen where a moving cursor, identified by a green 
square, and a target location, identified by a blue or red square, were displayed. Target could be placed on the left or on 
the right of the cursor: in the first case it was blue, while in the second case it was red. The working area consisted of 20 
locations along the middle horizontal plane of the computer monitor. At each time step (i.e., at each trial) the cursor 
moved horizontally of discretized steps toward the target location, either the left or right. 

Once the target was reached, the cursor remains in place and a new target location was drawn at no more than three 
positions away from the current cursor position. If the new location fell outside of the working area, it was relocated at 
the centre of the screen. The probability for the cursor to move in the wrong direction (i.e., opposite to the target location) 
was set to 0.20. In the paper, the corrected trials (C) refer to trials where the cursor reaches the target, whereas the non-
corrected trials (NC) refer to the trials where the cursor moves in the wrong direction and then fails to reach the target.

During the trial, EEG data were recorded at a sampling rate of 512 Hz using a Biosemi ActiveTwo system and placing 
64 electrodes according to the standard 10/20 international system.

2.2 EEG pre-processing

The data were re-referenced to common average reference. Off-line bandpass forward–backward filtering between 1 
and 10 Hz (Butterworth second order filter) was applied [1]. Since the nature of the experiments may induce lateral eye 
movements, a semiautomatic independent component analysis (ICA)-based procedure to identify and remove ocular 
artefacts, cardiac artefacts and environmental noise, without rejecting the contaminated epochs, was applied [26][27].

In this work, the session 1 of each subject was used to train the considered spatial filters and the BLDA classifier while 
session 2 was used to test the algorithms.

2.3 Functional Source Separation Algorithm

FSS [21,28–34] is a semi-blind source separation method [35] which uses some well-known distinctive features of 
electrophysiological signals. The aim of FSS is to enhance the separation of relevant signals by exploiting a priori 
knowledge without renouncing the advantages of using only information contained in original signal waveforms. FSS, 
analogous to ICA, models the set of EEG recorded signals  as a linear combination of an equal number of sources  via 𝑿 𝒔
a mixing matrix . Differing from other constrained ICA models [36–38], FSS identifies a single source at a time, building 𝑨
a contrast function for that source that exploits fingerprint information associated to the neuronal pool to be identified 
[35]. In general, FSS starts from the original EEG data matrix  for each source and returns one functional source with 𝑿
the required functional property. This scheme gives us the possibility to extract the functional sources that maximizes the 
functional behavior in agreement with the functional constraint [35]. A modified cost function (with respect to standard 
ICA) is defined as:  where  is the statistical constraint normally used in ICA, while  accounts for the a priori 𝑭 = 𝑱 + 𝜆𝑹 𝑱 𝑹
information known about the sources. The relative weight of these two parameters can be adjusted via  [31].  were 𝜆 𝜆
chosen to both minimize computational time and maximize the functional constraint . Moreover, the FSS contrast 𝑹
function  is optimized by means of simulated annealing [39], thus allowing prior information about the FS to be 𝑭
described by a non-differentiable function. 

In the experimental condition proposed in [1], the a priori information to be identified is the ERP around 300 ms 
activated during the target identification. Thus, we identified the functional source underlying the P300 processes 
maximizing the P300 response named FSP300. The functional constraints used were defined as follows:



𝑅𝐹𝑆𝑃300 =
1

(1𝑡𝑘 + 2𝑡𝑘)

𝑡𝑘 + 2𝑡𝑘

∑
𝑡𝑘 ‒ 2𝑡𝑘

|𝐸𝐴(𝑡)| ‒
1

500

0

∑
𝑡 =‒ 500

|𝐸𝐴(𝑡)| (1)

with the evoked activity (EA), computed by averaging signal epochs of the source FSP300, triggered on the stimulus (𝑡 = 0
);  is the time point at which the electric potential power is maximum on the EEG channels around 300 ms post-stimulus; 𝑡𝑘

 is the time point at which the signal amplitude is 50% of the maximum value before (after) ; the baseline 1𝑡𝑘 (2𝑡𝑘) 𝑡𝑘
was computed in the time interval from -500 to 0 ms.

2.4 xDAWN

The xDAWN spatial filter allows to enhance the SNR through the unsupervised estimation of the evoked subspace so 
that the evoked potentials are enhanced by projecting [15,25].

Let  the matrix of the recorded EEG signals, where  is the number of samples and  the number of 𝑿 ∈ ℝ𝑁𝑡 × 𝑁𝑠 𝑁𝑡 𝑁𝑠
channels, the target stimuli elicited by evoked potential leads to the following model:

𝑿 = 𝑫𝑾 + 𝑵 (2)

where  is the noise term,  is the Toeplitz matrix and  represents the synchronous response with target stimuli. 𝑁 𝑫 𝑾
The spatial filter  is designed in such a way that maximizes the signal-to-signal plus noise ratio (SSNR) of . This idea 𝑼 𝑿
is formulated by the generalized Rayleigh quotient:

𝑼 = argmax
𝑼

𝑡𝑟𝑎𝑐𝑒(𝑼𝑇𝑾𝑇𝑫𝑇𝑫𝑾𝑼)
𝑡𝑟𝑎𝑐𝑒(𝑼𝑇𝑿𝑇𝑿𝑼)

(3)

where  and the optimization problem in (3) can be solved by a QR factorization with a singular 𝑾 = (𝑫𝑇𝑫) ‒ 1𝑫𝑇𝑿
value decomposition. In order to improve the performance of the xDAWN algorithm, we considered to use a 
regularization term during the learning stage [40].
The regularization operation allows to overcome the issues related to high-dimensional situations where the applicability 
of the spatial filter is reduced since it makes direct high dimension matrix operation [40]. To overcome these issues, the 
empirical, polled covariance matrices considered in the generalized Rayleigh quotient were replaced with:

𝑺 = (1 ‒ 𝛾)𝑺 + 𝛾 ∙
𝑡𝑟𝑎𝑐𝑒(𝑺)

𝑑 𝑰 (4)

where  is a hyperparameter to be set and the matrix  is both  and . The experimental results described 𝛾 𝑺 𝑿𝑇𝑿 𝑾𝑇𝑫𝑇𝑫𝑾
in the paper refer to the xDAWN algorithm with the addition of the regularization term (γ).

2.5 Bayesian LDA

The detection of the evoked ErrP is performed by the BLDA classifier, which was used in [15] to detect the evoked 
related potentials spatially filtered by the xDAWN. In this paper, BLDA was adopted also to evaluate FSS based spatial 
filter and the single-trial classification by using the channels FCz and Cz as well.

Among the proposed classifiers for BCIs, BLDA [41,42] was chosen since it was efficient and fully automatic (i.e., no 
hyperparameters to adjust).

BLDA aims to fit data  using a linear function of the form:𝒙

𝑦(𝒙,𝒘) =
𝑀

∑
𝑗 = 1

𝑤𝑗𝜙𝑗(𝑥) = 𝒘𝑇𝝓(𝒙) (5)

where  is the feature vector and assuming that the target variable is equal to , where  is Gaussian 𝝓(𝒙) 𝑡 = 𝑦(𝒙,𝒘) + 𝜖 𝜖
noise. The objective of BLDA is to minimize the function:



𝐽(𝒘) =
𝛽
2

‖𝑡 ‒ 𝒘𝑇𝝓(𝒙)‖2
2 +

𝛼
2𝒘𝑇𝒘 (6)

where  and  are inferred automatically from data by using a Bayesian framework.𝛼 𝛽

2.6 Error-Related Potentials behaviour 

Once the ErrPs were identified from Cz and FCz electrodes, xDAWN and FSS algorithms, form both sessions (session 
1 and session 2) and C and NC conditions ERP analysis at the average and single trial levels were calculated to 
characterize and validate the quality of the results obtained. In particular, ERP analysis was performed on Session 1 and 
Session 2 to evaluate the stability of ERP at different periods of time and between NC and C. All the trials were epoched 
(-1000 to 1000 ms) and were baseline corrected for the interval from -1000 to 0 ms. We performed pointwise statistical 
analysis on the averaged waveforms conducting two-sample permutation t-tests (5000 permutations) on every point of 
the ERP waveform (0-1000 ms). We used False Discovery Rate (FDR) to correct for multiple comparisons.

3. Results

In this section, a qualitative and quantitative comparison among single-channels (FCz and Cz), xDAWN and FSS 
spatial filter is presented. Afterwards, classification results among single-channels (FCz and Cz), xDAWN and FSS is 
reported as well. 

3.1 Error-Related Potentials on Cz and FCz

Consistently with previous studies [1][21], EEG error-related activity appears in fronto-central areas, as illustrated by 
the scalp topographical maps in Fig. 1. The figure 1 also shows the grand average ERP for the C and NC conditions for 
Cz and FCz electrodes in both sessions (sessions 1: thick blue line and session 2: red dashed line). In particular, NC 
condition refers to the trials that elicited ErrPs (i.e., the cursor moves in the wrong direction) and C condition refers to 
the trials that do not elicited ErrPs (i.e., the cursor moves in the right direction).

Fig. 1. ERPs and topography map session 1 vs. session 2 - Grand average event related potentials between session 1 (blue thick line) 
and session 2 (red dashed line) for non-corrected trials (NC: first row) and corrected trials (C: second row). First column shows the 
ERPs on the Cz electrode for the two recording sessions and second column shows the ERPs on the FCz electrode for the two recording 
sessions as well. Last column shows scalp topographical maps at 300ms for session 1 (blue square thick line) and session 2 (red square 
dashed line). Shaded area of the same color highlighting standard error. No sessions differences were observed between NC Session 1 
vs. NC Session 2 and C Session 1 vs. C Session 2 (point-by-point permutation t-test at p < 0.05).

In all cases, in Fig. 1, the waveforms are characterized by a small positive peak near 200 ms after delivery of feedback 
for the NC and a negative one for the C, followed by a positive peak around 330 and 300 ms for the NC and C respectively. 
It should be noted that for the NC a negative deflection around 260 ms is also shown. The stability observed between 
Session 1 and Session 2 of these signals is a key issue for their use especially for BCI applications. In fact, comparison 
of the ERPs for the two different recording days (Session 1 and Session 2) shows that the signal remains stable over 
several weeks (see Fig. 1). In particular, the first three ERP components for the NC (i.e., negative peak at 260 ms and two 
positive peaks at 200 ms and 330 ms) and the first two peaks for the C (i.e. negative peak at 200 ms and the positive one 
at 300 ms) are stable between the two recording sessions. No significant difference was found between sessions (point-
by-point permutation t-test at p < 0.05). 

On the other hand, statistically significant differences (point-by-point permutation test p<0.05) between NC and C 
ERPs were found in both sessions (Fig. 2). 



Fig. 2. ERPs non-corrected trials (NC) vs. corrected trials (C) - Grand average event related potentials between non-corrected trials 
(NC: blue line) and corrected trials (C: red line) for session 1 (first row) and session 2 (second row). First column shows the ERPs on 
the Cz electrode for NC and C and second column shows the ERPs on the FCz electrode for the NC and C as well. Shaded area of the 
same colour highlighting standard error. Horizontal black and magenta lines, on the bottom of the figure, indicate a significant group 
difference between NC vs. C for Session 1 (first row) and Session 2 (second row). Permutation t-test at p < 0.05 (black line); pFDR < 
0.05 (magenta line).

3.2 Event-Related Potentials extracted by xDAWN and FSS

xDAWN and FSS (Fig. 3) as well as Cz and FCz electrodes, show the stability between the two sessions (no significant 
difference was found, point-by-point permutation t-test at p < 0.05). Instead, statistical difference was observed comparing 
NC vs. C in both xDAWN and FSS algorithms. In particular, we can observe that only the FSS survive for the multiple 
comparison correction (pFDR<0.05) emphasising that FSS at the average level is more robust in discriminating NC vs. 
C conditions (Fig. 4).

Fig. 3. ERPs session 1 vs. session 2 - Grand average event related potentials between session 1 (blue line) and session 2 (red line) for 
non-corrected trials (NC: first column) and corrected trials (C: second column). First row shows the ERPs for the xDAWN for the two 
recording sessions and second row shows the ERPs for the FSS for the two recording sessions as well. Shaded area of the same color 
highlighting standard error. No sessions differences were observed between NC Session 1 vs. NC Session 2 and C Session 1 vs. C 
Session 2 (point-by-point permutation t-test at p < 0.05).



Fig. 4. ERPs non-corrected trials (NC) vs. corrected trials (C) - Grand average event related potentials between non-correct trials (NC: 
blue line) and corrected trials (C: red line) for session 1 (first row) and session 2 (second row). First column shows the ERPs for the 
xDAWN for NC and C and second column shows the ERPs for the FSS for the NC and C as well. Shaded area of the same color 
highlighting standard error. Horizontal black and magenta lines, on the bottom of the figure, indicate a significant group difference 
between NC vs. C for Session 1 (first row) and Session 2 (second row). Permutation t-test at p < 0.05 (black line); pFDR < 0.05 
(magenta line).

3.3 Single-Trial Classification 

The use of ErrPs in practical BCI applications requires their accurate recognition on a single-trial basis. Following 
previous studies, we classify the signals using a classifier based on the BLDA, as described in [15][25].

Classification analysis was performed on Cz, FCz electrodes and using advanced source extraction algorithms such as 
FSS  [21][35] and xDAWN. In this work, for xDAWN training we considered γ=0.8 since with this value we achieved 
the best classification accuracy in the training dataset. We assess single trial classification of ErrPs using the first dataset 
to train the spatial filters and the BLDA classifier and the second session as testing set. This allows us to evaluate the 
feasibility of recognizing such signals using classifiers built on data recorded several weeks before. 

Fig. 5 shows the Receiver Operating Characteristic (ROC) curves for classification using the training data (i.e., session 
1). The methods FSS, xDAWN and the single channels Cz, FCz are compared. The panels 5(a), 5(b), 5(c), 5(d), 5(e) and 
5(f) show the classification results for each subject. The FSS algorithm is able to detect the elicited ErrPs better than the 
other methods. Fig. 6 shows the ROC curves for classification using the testing data (i.e., session 2). It is clear as the FSS 
algorithm is able to detect the elicited ErrPs better than the other methods, whereas the xDAWN achieves comparable 
results to the single channels FCz and Cz.

Table 1 shows in detail the classification accuracy and the Area Under Curve (AUC) for each subject and method using 
the training data (i.e., session 1). The results, shown in the Table 1, reveals as the FSS outperforms the other methods in 
terms of classification accuracy both in the case of NC and C. Table 2 shows the classification accuracy for each subject 
and method using the testing data (i.e., session 2). The results of FSS, shown in Table 2, reveals successful single-trial 
classification is achieved for both classes with higher detection of C (mean classification accuracy of 95% and 81% for 
C and NC, respectively).

Best performances are observed for subjects 1, 2, 3, 4 and 5 for whom the recordings were about seven weeks apart 
for subjects 1, 2 and 3 and 200 days apart for subject 4 and finally 600 days apart for subject 5. In addition, it must be 
noticed that reasonably good performances are also achieved for subject 6, whose recordings were around 650 days apart. 
The comparison of the ERPs for the two different recording days shows that classification accuracy remains stable over 
a long time.

Finally, Table 3 shows the overall performances in terms of accuracy, sensitivity, specificity and F1-score, revealing 
that the FSS based spatial filter overcomes the other methods of about 20% in all indexes.

It is worth to note that the average classification accuracy reached by the FSS algorithm outperforms the classification 
results obtained in [1].



(a) (b)

(c) (d)

(e) (f)
Fig. 5. ROC for classification by BLDA, training data (i.e., session 1) and single channel. The single channels are FCz, Cz and the best 
channel of FSS and XDAWN. (a) ROC for classification of ErrPs elicited by subject 1, (b) ROC for classification of ErrPs elicited by 
subject 2, (c) ROC for classification of ErrPs elicited by subject 3, (d) ROC for classification of ErrPs elicited by subject 4, (e) ROC 
for classification of ErrPs elicited by subject 5, (f) ROC for classification of ErrPs elicited by subject 6.

(a) (b)

(c) (d)

(e) (f)
Fig. 6. ROC for classification by BLDA, testing data (i.e., session 2) and single channel. The single channels are FCz, Cz and the best 
channel of FSS and XDAWN. (a) ROC for classification of ErrPs elicited by subject 1, (b) ROC for classification of ErrPs elicited by 
subject 2, (c) ROC for classification of ErrPs elicited by subject 3, (d) ROC for classification of ErrPs elicited by subject 4, (e) ROC 
for classification of ErrPs elicited by subject 5, (f) ROC for classification of ErrPs elicited by subject 6.



Table 1
Classification accuracy and area under curve of training data (session 1)

Subjects FCz Cz xDAWN FSS
S1 NC 0.88 0.83 0.78 0.98
S1 C 0.85 0.80 0.83 1.00
S1 AUC 0.93 0.86 0.89 0.99
S2 NC 0.64 0.76 0.87 1.00
S2 C 0.80 0.79 0.77 1.00
S2 AUC 0.78 0.83 0.90 1.00
S3 NC 0.81 0.76 0.86 0.99
S3 C 0.84 0.80 0.81 1.00
S3 AUC 0.89 0.85 0.91 1.00
S4 NC 0.71 0.72 0.72 0.98
S4 C 0.76 0.73 0.89 0.99
S4 AUC 0.78 0.81 0.87 0.99
S5 NC 0.78 0.71 0.81 0.99
S5 C 0.75 0.75 0.81 1.00
S5 AUC 0.83 0.80 0.87 1.00
S6 NC 0.68 0.73 0.67 0.96
S6 C 0.74 0.61 0.80 0.95
S6 AUC 0.75 0.73 0.80 0.96
AVG NC 0.75±0.09 0.75±0.04 0.78±0.08 0.98±0.02
AVG C 0.79±0.05 0.75±0.07 0.82±0.04 0.99±0.02

Table 2
Classification accuracy and area under curve of testing data (session 2)
Subjects FCz Cz xDAWN FSS
S1 NC 0.77 0.65 0.79 0.87
S1 C 0.85 0.86 0.82 0.90
S1 AUC 0.89 0.84 0.88 0.90
S2 NC 0.53 0.61 0.67 0.81
S2 C 0.77 0.78 0.76 1.00
S2 AUC 0.71 0.79 0.79 0.93
S3 NC 0.81 0.69 0.75 0.84
S3 C 0.71 0.72 0.73 0.99
S3 AUC 0.85 0.79 0.84 0.96
S4 NC 0.63 0.61 0.51 0.80
S4 C 0.70 0.71 0.75 0.95
S4 AUC 0.73 0.68 0.67 0.89
S5 NC 0.57 0.61 0.52 0.79
S5 C 0.69 0.73 0.85 0.99
S5 AUC 0.67 0.72 0.74 0.90
S6 NC 0.37 0.61 0.41 0.76
S6 C 0.76 0.63 0.84 0.84
S6 AUC 0.63 0.66 0.70 0.82
AVG NC 0.61±0.16 0.63±0.03 0.61±0.15 0.81±0.04
AVG C 0.75±0.06 0.74±0.08 0.79±0.05 0.95±0.06

Table 3
Overall performances

Accuracy Sensitivity Specificity F1-score

FCz 0.78 0.79 0.75 0.79

Cz 0.75 0.75 0.75 0.75

xDAWN 0.81 0.82 0.78 0.82

Tr
ai

ni
ng

FSS 0.99 0.99 0.98 0.99

FCz 0.72 0.75 0.61 0.75

Cz 0.72 0.74 0.63 0.74

xDAWN 0.75 0.79 0.61 0.79

Te
st

in
g

FSS 0.92 0.95 0.81 0.95



4. Conclusions

In this work, a semi-supervised algorithm named Functional Source Separation (FSS) that increases signal-to-noise 
ratio by using a weighted sum of all electrodes rather than relying on a single, or a small sub-set, of EEG channels was 
presented and compared with single channel (Cz, FCz) approach and using xDAWN spatial filter as well. Although 
noninvasive electrophysiological techniques, such as EEG, provide the opportunity to directly measure the activity of 
large-scale neuronal populations, different challenges remain in characterizing this activity. In particular, electrical 
potentials generated by neuronal activity are not only detected close to neuronal sources but also at distant sites due to 
electric field propagation. Therefore, each channel positioned across the whole head derives its signal from more than 
one source [21,35,43,44]. Since the P300 undeniably arises from a widely distributed network [45–48], electing a channel 
or averaging a group of channels based on the topographic representation might be misleading if one aims to describe a 
distributed brain network. In this respect, we believe that methods capable of extracting the neural source under 
investigation (such as FSS and xDAWN) are suitable to avoid selection of channels and to overcome possibly misleading 
results. On this respect using ErrPs EEG dataset proposed by [1] as a benchmark we tested channels approach (Cz, FCz) 
and spatial filter approach such as xDAWN vs. FSS. Despite, a similar behavior obtained for the averaged ERP among 
methods (Cz, FCz, xDAWN and FSS), at the single trial levels the FSS outperforms the other methods. Quantitatively, 
the same results are obtained using classification approach as summarized in Table 1 where for each of the subjects, the 
FSS based spatial filter provides a better single-trial classification in the training and testing data.
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