
21 December 2024

UNIVERSITÀ POLITECNICA DELLE MARCHE
Repository ISTITUZIONALE

Stability in Parametric Resonance of a Controlled Stay Cable with Time Delay / Peng, Jian; Xia, Hui; Sun,
Hongxin; Lenci, Stefano. - In: INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY & DYNAMICS. - ISSN
0219-4554. - 24:21(2024). [10.1142/s021945542450233x]

Original

Stability in Parametric Resonance of a Controlled Stay Cable with Time Delay

Publisher:

Published
DOI:10.1142/s021945542450233x

Terms of use:

(Article begins on next page)

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. The use of
copyrighted works requires the consent of the rights’ holder (author or publisher). Works made available under a Creative Commons
license or a Publisher's custom-made license can be used according to the terms and conditions contained therein. See editor’s
website for further information and terms and conditions.
This item was downloaded from IRIS Università Politecnica delle Marche (https://iris.univpm.it). When citing, please refer to the
published version.

Availability:
This version is available at: 11566/327937 since: 2024-03-19T10:55:16Z

This is a pre print version of the following article:



Stability in parametric resonance of a controlled stay cable with time delay1

Jian Peng1, Yongyin Zhang2, Luxin Li3, Hongxin Sun4, and Stefano Lenci52

1School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, Hunan3

411201, PR China . (Corresponding author, E-mail:pengjian@hnu.edu.cn).4

2M.S.Student, School of Civil Engineering, Hunan University of Science and Technology,5

Xiangtan, Hunan 411201, PR China. E-mail:zhangyongyin@mail.hnust.edu.cn.6

3PhD.Student, State Key Laboratory of Structural Analysis for Industrial Equipment, Department7

of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China.8

E-mail:liluxin93@163.com.9

4School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, Hunan10

411201, PR China.E-mail: cehxsun@hnu.edu.cn.11

5Department of Civil and Building Engineering and Architecture, Polytechnic University of12

Marche, Ancona 60131, Italy. E-mail:lenci@univpm.it13

ABSTRACT14

The stability of the parametric resonance of the semiactive control of a stay cable with time15

delay is investigated. The in-plane nonlinear equations of motion are initially obtained via the16

Hamilton principle. Then, utilizing the method of multiple scales, the modulation equations that17

govern the nonlinear dynamics are obtained. These equations are then utilized to investigate the18

effect of time delays on the amplitude and frequency-response behavior and, subsequently, on the19

stability of the parametric resonance of the controlled cable, that it is shown to depend on the20

excitation amplitude and the commensurability of the delayed-response frequency to the excitation21

frequency. The stability region of the parameteric resonance is shifted, and the effects of control on22

the cable become worse by increasing time delay. The work plays a guiding role in the parametric23

design of the control system for stay cables.24
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INTRODUCTION25

As the main bearing member of long-span structure, the stayed cable is characterized by light26

weight and small damping, hence it vibrates easily due to external excitation, such as wind, rain,27

traffic or earthquake (Irvine, 1981; Warminski et al., 2016; Ni et al., 2007). In recent years, large-28

scale vibrations of the stayed cables of bridges have been observed at low wind speeds, which29

is generally considered to be the result of a parametric resonance phenomenon (Ni et al., 2007;30

da Costa et al., 1996). Therefore, it is important to investigate the vibration mechanism of cables.31

Hikami and Shiraishi (1988) and Matsumoto et al. (1992) investigated the mechanism of rain-32

wind induced vibration of cable of cable-stayed bridges and proposed aerodynamic countermeasures33

to suppress the vibration. Jafari et al. (2020) reviewed the past studies about different types of wind-34

induced cable vibration. Zhao et al. (2014) discussed the analytical solutions for resonant response35

of suspended cables subjected to external excitation. Lenci and Ruzziconi (2009) studied nonlinear36

phenomena in the single-mode dynamics of a cable-supported beam. Gattulli et al. (2019) analyzed37

the modal interactions in the nonlinear dynamics of a beam-cable-beam. It is worth pointing out38

that the parametric vibration of the stay cable is one of the main aspects. Wang and Zhao (2009)39

addressed the large amplitude motion mechanism and the non-planar vibration character of stay40

cables subject to the support motions. Ying et al. (2006) investigated the parametrically excited41

instability of a cable under two support motions. Guo and Rega (2021a,b) studied the modal42

dynamics of boundary-interior coupled structures. Cong and Kang (2019) considered the planar43

nonlinear dynamic behavior of a cable-stayed bridge under excitation of tower motion. Lu et al.44

(2020) studied nonlinear parametric vibration with different orders of small parameters for stayed45

cables.46

In parallel the the previous works, that are focused on understanding complex nonlinear phe-47

nomena, other studies focused on the vibration control of cables. Fujino and Susumpow (1994)48

studied active control of in-plane cable vibration by axial support motion via experiments. Wang49

et al. (2005) investigated optimal design of viscous dampers for multimode vibration control of50

bridge cables. Ying et al. (2007) studied parametrically excited instability analysis of a semi-51
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actively controlled cable. Dai et al. (2014) addressed an extended nonlinear elastic cable with52

an active vibration control strategy. Tehrani and Kalkowski (2016) investigated active control of53

parametrically excited systems. Raftoyiannis and Michaltsos (2016) studied movable anchorage54

system for vibration control of stay-cables in bridges. Huang et al. (2019) evaluated the perfor-55

mances of inerter-based damping devices for structural vibration control of stay cables. Peng et al.56

(2020) investigated nonlinear primary resonance in vibration control of cable-stayed beam via time57

delayed feedback control.58

It has been shown (Hu and Wang, 2002; Sipahi et al., 2011) that in the vibration control sys-59

tem the time delay is not negligible. Cha et al. (2012) studied time delay effects on large-scale60

MR damper based semi-active control strategies. Yan et al. (2020) considered energy determin-61

ing multiple stability in time-delayed systems. Udwadia et al. (2007) presented principles and62

applications of time-delayed control design for active control of structures. Ji and Zhou (2017)63

investigated coexistence of two families of sub-harmonic resonances in a time-delayed nonlinear64

system at different forcing frequencies. Wang et al. (2017) and Wang and Xu (2017) studied effect65

of delay combinations on stability and Hopf bifurcation of an oscillator with acceleration-derivative66

feedback and sway reduction of a pendulum on a movable support using a delayed proportional-67

derivative or derivative-acceleration feedback. Sun et al. (2018) studied parameter design of a68

multi-delayed isolator with asymmetrical nonlinearity. Their results showed that time delay can69

affect the damping performance of the control system, and, on the other hand, making good use of70

it can provide another control idea and improve control performance.71

As amatter of fact, very few studies concernedwith the time delay effects in nonlinear parametric72

resonance of controlled cables, and filling this gap is themain goal of thiswork. It leads to interesting73

and partially unexpected results in terms of performance (or better, loss of performance) of the74

considered control.75

(They should be better underlined the differences with respect to our previous paper (Peng et al.,76

2020))77

The mechanical model of controlled cable under axial excitation is considered. The method of78
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multiple scales is used to analyze the parametric vibration under the influence of time delay. The79

stability of parametric resonance of the controlled stay cable is discussed, and the time delay effect80

of the parametric vibration system is discussed by numerical examples.81

CONTROLLED CABLE MODEL AND EQUATIONS OF MOTION82

As shown in Fig. 1, a stayed cable subject to a vertical sinusoidal support motion 𝑍 sin𝜔𝑡83

(where 𝑍 and 𝜔 denote the amplitude and frequency, respectively), is considered. A Cartesian84

coordinate system𝑂−𝑥𝑦 is chosen, with the origin𝑂 placed at the left fixed support A of the cable.85

The displacements of the points are denoted by 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) along the 𝑥 and 𝑦 directions,86

respectively. 𝑎 is the distance between the right oscillating boundary B and the MR damper.87

The axial Lagrangian strain of the inclined cable can be written as88

𝜀(𝑥, 𝑡) = 𝑢′ + 𝑦′𝑣′ + 𝑣′2

2
, (1)89

where prime indicates differentiation with respect to the spatial coordinate 𝑥 and 𝑦(𝑥) is the static90

configuration of the cable, that can be approximately written as 𝑦(𝑥) =
𝑚𝑔𝑙 cos 𝜃

2𝐻 𝑥(1 − 𝑥). The91

equations of motions can be obtained by means of the Hamilton principle (Wang and Zhao, 2009)92

𝑚 ¥𝑢 + 𝑐𝑢 ¤𝑢 −
{
𝐸𝐴

[
𝑢′ + 𝑦′𝑣′ + 𝑣′2

2

]}′
= 0, (2)93

94

𝑚 ¥𝑣 + 𝑐𝑣 ¤𝑣 −
{
𝐻𝑣′ + 𝐸𝐴(𝑦′ + 𝑣′)

[
𝑢′ + 𝑦′𝑣′ + 𝑣′2

2

]}′
= 0, (3)95

where dot indicates differentiation with respect to time 𝑡, 𝑚 is the mass per unit length; 𝐸 is the96

Young modulus, 𝐴 is the area of the cross-section, 𝑐𝑢 and 𝑐𝑣 are the viscous damping coefficients97

per unit length, 𝐻 is the axial component of the initial tension (𝐻 ≪ 𝐸𝐴) and 𝑔 is the gravity98

acceleration. The boundary conditions can be written as99

𝑢(0, 𝑡) = 𝑣(0, 𝑡) = 0, 𝑢(𝑙, 𝑡) = 𝑍 sin 𝜃 sin(𝜔𝑡), 𝑣(𝑙, 𝑡) = 𝑍 cos 𝜃 sin(𝜔𝑡), (4)100
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where 𝑙 is the cable span and 𝜃 is the angle of inclination of the cable (see Fig. 1). It is worth to101

remark that the boundary conditions are nonhomogeneous both in the axial displacement component102

𝑢(𝑥, 𝑡) and in-plane transverse displacement component 𝑣(𝑥, 𝑡).103

Under the quasi-static assumption in the axial direction, i.e, neglecting the acceleration and104

velocity term in Eq. (2), and taking into account the boundary conditions, the displacement 𝑢(𝑥, 𝑡)105

can be expressed by106

𝑢(𝑥, 𝑡) = 𝑍 sin 𝜃 sin(𝜔𝑡) 𝑥
𝑙
+ 𝑥

𝑙

∫ 𝑙

0

(
𝑦′𝑣′ + 𝑣′2

2

)
𝑑𝑥 −

∫ 𝑥

0

(
𝑦′𝑣′ + 𝑣′2

2

)
𝑑𝑥. (5)107

Inserting Eq. (5) in Eq. (3) it is possible to obtain an equation in the primary unknown 𝑣(𝑥, 𝑡).108

Then, considering the concentrated force at 𝑥 = 𝑙 − 𝑎 due to the damper (introduced to reduce the109

cable oscillations) and the distributed external load, and proceeding in a manner similar to (Peng110

et al., 2020), the non-dimensional equations of motion can be written as111

¥𝑣+𝑐𝑣 ¤𝑣−𝑣′′−𝛼(𝑦′′+𝑣′′)
{
𝑧0 sin 𝜃 sin(Ω𝑡) +

∫ 𝑙

0

(
𝑦′𝑣′ + 𝑣′2

2

)
𝑑𝑥

}
= 𝐹𝑑𝛿(𝑥−(𝑙 − 𝑎))+𝐹 cos(Ω𝑡), (6)112

where 𝐹𝑑 = −𝐶𝑒𝑞 ¤𝑣(𝑡 − 𝜏) is the control force of the damper, 𝜏 the time delay of the control113

system, 𝐹 (𝑥) the spatial distribution of the distributed force and 𝛿 is the Dirac delta function. The114

non-dimensional variables are 𝑥∗ = 𝑥/𝑙, 𝑎∗ = 𝑎/𝑙, 𝑦∗ = 𝑦/𝑙, 𝑧0 = 𝑍/𝑙, 𝑣∗ = 𝑣/𝑙, 𝛼 = 𝐸𝐴/𝐻,115

𝑡∗ = 𝑡/𝑙
√︁
𝐻/𝑚, Ω = 𝜔𝑙/

√︁
𝑚/𝐻, 𝑐∗𝑣 = 𝑐𝑣𝑙/(𝑚)

√︁
𝑚/𝐻. Asterisks in Eq. (6) are dropped for116

simplicity.117

For the nonhomogeneous boundary value problem, it is convenient to introduce a suitable118

chosen particular solution, which satisfies the nonhomogeneous boundary conditions, to transform119

the nonhomogeneous problem to a homogeneous one. Then, the solution of the homogeneous120

problem can be approximated by a time-varying linear combination of known (and fixed) spatial121

functions, which are assumed to be the eigenfunctions of the homogeneous problem. In this study,122

according to the boundary condition of the inclined cable, the non-dimensional displacements123
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𝑣(𝑥, 𝑡) is sougth after in the form124

𝑣(𝑥, 𝑡) =
𝑁∑︁
𝑖=1

𝜙𝑖 (𝑥)𝑞𝑖 (𝑡) + 𝑥𝑧0 cos 𝜃 sin(Ω𝑡), (7)125

where 𝑞𝑖 (𝑡) are the generalized displacements, and 𝜙𝑖 (𝑥) =
√

2 sin(𝑖𝜋𝑥) the 𝑖th in-plane mode126

shapes. Substitution of Eq. (7) into Eq. (6) and application of the Galerkin method yield a set of127

nonlinear ordinary differential equations128

(in the following equation:129

• the term due to the damper (proportional to 𝐹𝑑) is missing;130

• 𝐹 is missing;131

• if the 𝜙𝑖 (𝑥) are the linear normal modes, the linear part (without excitation) should be132

decoupled, i.e. the Γ2𝑖 𝑗 should be 0 for 𝑖 ≠ 𝑗 ;133

• the definition of the coefficients Γ is strange/incosistent: the Γ1 are the time dependent,134

while all other not. I suggest to rewrite in such a way that all Γs are time independent, and135

the harmonic terms appear explicitly in the equation.136

Please check carefully the previous points)137

¥𝑞𝑖 + 2𝜔𝑖𝜉𝑖 ¤𝑞𝑖 + Γ1𝑖𝑞𝑖 +
𝑁∑︁
𝑗=1

(Γ2𝑖 𝑗𝑞 𝑗 + Γ3𝑖 𝑗𝑞
2
𝑗 + Γ4𝑖 𝑗𝑞 𝑗𝑞𝑖 + Γ5𝑖 𝑗𝑞

2
𝑗𝑞𝑖)

= Γ6𝑖 sin(Ω𝑡) + Γ7𝑖 cos(Ω𝑡) + Γ8𝑖 sin2(Ω𝑡), 𝑖 = 1, 2, ..., 𝑁,

(8)138

where 𝜉𝑖 are the viscous damping ratios, 𝜔𝑖 =
√
Γ1𝑖 + Γ2𝑖𝑖 (please check this) the 𝑖th in-plane natural
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frequencies, and the other coefficients are given by

Γ1𝑖 = 𝑖2(1 + 𝛼𝑧0 sin 𝜃 sin(Ω𝑡) + 1
2
𝛼𝑧2

0 cos2 𝜃 sin2(Ω𝑡)),

Γ2𝑖 𝑗 = 𝛼

∫ 1

0
𝑦′𝜙′𝑖 (𝑥)𝑑𝑥

∫ 1

0
𝑦′𝜙′𝑗 (𝑥)𝑑𝑥,

Γ3𝑖 𝑗 =
𝛼

2
𝑗2
∫ 1

0
𝑦′𝜙′𝑖 (𝑥)𝑑𝑥,

Γ4𝑖 𝑗 = 𝛼𝑖2
∫ 1

0
𝑦′𝜙′𝑗 (𝑥)𝑑𝑥,

Γ5𝑖 𝑗 =
𝛼

2
𝑖2 𝑗2,

Γ6𝑖 = 𝑧0Ω
2 cos 𝜃

∫ 1

0
𝑥𝜙𝑖 (𝑥)𝑑𝑥 − 𝛼𝑧0 sin 𝜃

∫ 1

0
𝑦′𝜙′𝑖 (𝑥)𝑑𝑥,

Γ7𝑖 = −2𝜉𝑖𝑖𝑧0Ω cos 𝜃
∫ 1

0
𝑥𝜙𝑖 (𝑥)𝑑𝑥,

Γ8𝑖 =
𝛼

2
𝑧2

0 cos2 𝜃

∫ 1

0
𝑦′′𝜙𝑖 (𝑥)𝑑𝑥. (9)

LINEAR STABILITY ANALYSIS139

In this section, the linear stability analysis of the single degree of freedom vibration mode is140

investigated. Considering only one equation 𝑖 = 𝑛 in Eq. (8), neglecting the nonlinear terms and141

the external excitation (𝑧0 = 0) the following equation is obtained (𝜇𝑛 = 2𝜔𝑛𝜉𝑛) (in the following142

equation 𝑘𝑛 is not defined)143

¥𝑞𝑛 (𝑡) + 𝜇𝑛 ¤𝑞𝑛 (𝑡) + 𝜔2
𝑛𝑞𝑛 (𝑡) = −𝑘𝑛 ¤𝑞𝑛 (𝑡 − 𝜏). (10)144

The solution of Eq. (10) is given by145

𝑞𝑛 = 𝐴𝑛e(𝜉𝑛+𝑖𝜆𝑛)𝑡 (11)146

where 𝐴𝑛, 𝜉𝑛 and 𝜆𝑛 are amplitude, damping coefficient and response frequency, respectively. All147
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are real numbers. Substituting Eq. (11) in Eq. (10), and separating real and imaginary parts, gives148

𝜆𝑛 (2𝜉𝑛 + 𝜇𝑛) 𝑒𝜉𝑛𝜏 + 𝑘𝑛 [𝜆𝑛 cos (𝜆𝑛𝜏) − 𝜉𝑛 sin (𝜆𝑛𝜏)] = 0 (12)149

150 (
𝜆2
𝑛 − 𝜉2

𝑛 − 𝜇𝑛𝜉𝑛 − 𝜔2
𝑛

)
𝑒𝜉𝑛𝜏 − 𝑘𝑛 [𝜉𝑛 cos (𝜆𝑛𝜏) + 𝜆𝑛 sin (𝜆𝑛𝜏)] = 0. (13)151

When 𝜉𝑛 < 0 the solution (11) converges to 0 for 𝑡 → ∞ and thus is stable, while for 𝜉𝑛 > 0152

the solution diverges to infinity and thus is unstable. The stability limit is then given by 𝜉𝑛 = 0.153

Substituting this value in Eq. (12) and Eq. (13) we obtain154

cos (𝜆𝑛𝜏) = −𝜇𝑛

𝑘𝑛
, sin (𝜆𝑛𝜏) =

𝜆2
𝑛 − 𝜔2

𝑛

𝑘𝑛𝜆𝑛
, (14)155

and thus the boundary of linear stability are156

𝜏 =
1
𝜆𝑛

[
tan−1

(
−
𝜆2
𝑛 − 𝜔2

𝑛

𝜆𝑛𝜇𝑛

)
+ 𝑗𝜋

]
, 𝑗 = 0, 1, · · · , 𝑘𝑛 = ±

√︁
𝜆2
𝑛𝜇

2
𝑛 + (𝜆2

𝑛 − 𝜔2
𝑛)2

𝜆𝑛
. (15)157

The stability regions described by Eq. (15) are shown in Fig. 2, where regions i, ii and iii158

corresponds to a small, medium and large values of time delay, respectively. The figure clearly159

shows that for small values of the delay the system is stable, and thus the control effective, even for160

very large values of the gain 𝑘𝑛. For medium and large values of 𝜏, on the other hand, the stability161

region is a narrow strip around 𝑘𝑛 = 0, namely the system is stable only for very low values of 𝑘𝑛,162

giving not good performance because with small values of the gain the damping is low and the163

vibration reduction is ineffective. For quite large values of 𝑘𝑛, the system is stable for low values of164

the delay, and loses stability for increasing 𝜏. This could be very dangerous from a practical point165

of view, because unplanned increasing delay of the control, due for example to the ageing of the166

structure, can destabilize the system, with unwanted phenomena up to collapse.167

STABILITY OF THE PARAMETRICALLY RESONANCE RESPONSE168

In this section, we continue to consider the single degree of freedom vibration mode, but extend169
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the analysis to the nonlinear regime, utilizing the method of multiple scales (Nayfeh and Mook,170

1979).171

It is convenient to introduce a small bookkeeping parameter 𝜀 to obtain the solution. The172

equation of the motion can be written as ( (16) is not consistent with (8): here - correctly from my173

point of view - the Γ are not time dependent, see my previous comments just before Eq. (8). Please174

check and modify)175

¥𝑞𝑛 + 𝜔𝑛
2𝑞𝑛 + 𝜀Γ1𝑛𝑛𝑞𝑛 cos(Ω𝑡) + 𝜀𝜇 ¤𝑞𝑛 + 𝜀(Γ3𝑛𝑛 + Γ4𝑛𝑛)𝑞2

𝑛 + 𝜀Γ5𝑛𝑛𝑞
3
𝑛 =

−𝜀𝑘𝑛 ¤𝑞𝑛 (𝑡 − 𝜏) + 𝜀Γ6𝑛𝑛 sin(Ω𝑡) + 𝜀Γ7𝑛𝑛 cos(Ω𝑡) + 𝜀Γ8𝑛𝑛 sin2(Ω𝑡),
(16)176

The solution of Eq. (16) is sought after in the form177

𝑞𝑛 (𝑡; 𝜀) = 𝑞𝑛0(𝑇0, 𝑇1, ...) + 𝜀𝑞𝑛1(𝑇0, 𝑇1, ...) + · · · (17)178

where 𝑇𝑛 = 𝜀𝑛𝑡, 𝑛 = 0, 1, 2,. It is further assumed that179

𝜔𝑛 =
Ω

2
+ 𝜀𝜔1 + 𝜀2𝜔2 + · · · (18)180

Substituting Eq. (17) and Eq. (18) in Eq. (16), and equating the coefficients of 𝜀0 and 𝜀1 on both181

sides, we obtain182

𝐷2
0𝑞𝑛0 +

Ω2

4
𝑞𝑛0 = 0, (19)183

184

𝐷2
0𝑞𝑛1 +

Ω2

4
𝑞𝑛1 = −2𝐷0𝐷1𝑞𝑛0 −Ω𝜔1𝑞𝑛0 − Γ1𝑛𝑛𝑞𝑛0 cos(Ω𝑡) − 𝜇𝐷0𝑞𝑛0 − (Γ3𝑛𝑛 + Γ4𝑛𝑛)𝑞2

𝑛0

−Γ5𝑛𝑛𝑞
3
𝑛0 − 𝑘𝑛 ¤𝑞𝑛0(𝑡 − 𝜏) + Γ6𝑛𝑛 sin(Ω𝑡) + Γ7𝑛𝑛 cos(Ω𝑡) + Γ8𝑛𝑛 sin2(Ω𝑡),

(20)185

where 𝐷𝑛 denotes the derivatives with respect to 𝑇𝑛.186

The general solution of Eq. (19) can be written as187

𝑞𝑛0 = 𝐴𝑛 (𝑇1) exp
(
𝑖Ω𝑇0

2

)
+ �̄�𝑛 (𝑇1) exp

(
−𝑖Ω𝑇0

2

)
. (21)188
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Substituting Eq. (21) in Eq. (20) we obtain (in the following equation sin(Ω𝑡) must be transformed189

in the exponential form. Furthermore, it is convenient to collect terms multiplying the same190

exponential terms (as is has been done for exp
(
𝑖Ω𝑇0

2

)
). Please check.)191

𝐷2
0𝑞𝑛1 +

Ω2

4
𝑞𝑛1 = −

[
𝑖Ω𝐴′

𝑛 +Ω𝜔1𝐴𝑛 +
Γ1𝑛𝑛

2
�̄�𝑛 +

1
2
𝑖𝜇Ω𝐴𝑛 + 3Γ5𝑛𝑛𝐴

2
𝑛 �̄�𝑛 +

1
2
𝑘𝑛𝑖Ω𝐴𝑛 exp

(
−𝑖Ω𝜏

2

)]
exp

(
𝑖Ω𝑇0

2

)
− Γ1𝑛𝑛

2
𝐴𝑛 exp

(
3𝑖Ω𝑇0

2

)
− (Γ3𝑛𝑛 + Γ4𝑛𝑛)𝐴2

𝑛 exp(𝑖Ω𝑇0) − (Γ3𝑛𝑛 + Γ4𝑛𝑛)

𝐴𝑛 �̄�𝑛 − Γ5𝑛𝑛𝐴
3
𝑛 exp

(
3𝑖Ω𝑇0

2

)
+ Γ7𝑛𝑛

2
exp(𝑖Ω𝑇0) + Γ6𝑛𝑛 sin(Ω𝑡) + Γ8𝑛𝑛 sin2(Ω𝑡)+𝑐𝑐,

(22)

192

where 𝑐𝑐 denotes the complex conjugate of the preceding terms. To eliminate secular terms from193

𝑞𝑛1 we must put194

𝑖Ω𝐴′
𝑛 +Ω𝜔1𝐴𝑛 +

Γ1𝑛𝑛
2

�̄�𝑛 +
1
2
𝑖𝜇Ω𝐴𝑛 + 3Γ5𝑛𝑛𝐴

2
𝑛 �̄�𝑛 +

1
2
𝑘𝑛𝑖Ω𝐴𝑛 exp

(
−𝑖Ω𝜏

2

)
= 0. (23)195

To solve Eq. (23), we write 𝐴𝑛 in the polar form:196

𝐴𝑛 =
1
2
𝑎𝑛 exp(𝑖𝛽𝑛), (24)197

where 𝑎𝑛 and 𝛽𝑛 are real functions of 𝑇1. Substituting Eq. (24) in Eq. (23) and separating real and198

imaginary parts, we have199

𝑎′𝑛 = −1
2
𝜇𝑒𝑎𝑛 +

Γ1𝑛𝑛𝑎𝑛
2Ω

sin 2𝛽𝑛, (25)200

201

𝛽′𝑛 = 𝜔1 +
𝑘𝑛

2
sin

(
Ω𝜏

2

)
+ 3Γ5𝑛𝑛

4Ω
𝑎2
𝑛 +

2Γ1𝑛𝑛
Ω

cos 2𝛽𝑛, (26)202

where 𝜇𝑒 = 𝜇 + 𝑘𝑛 cos
(
Ω𝜏
2

)
.203

When 𝑎′𝑛 = 𝛾′𝑛 = 0, the sought periodic solution is obtained. Considering the nontrivial204
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solutions (𝑎𝑛 ≠ 0), from Eq. (25) and Eq. (26) we can then obtain205

sin 2𝛽𝑛 =
Ω𝜇𝑒

Γ1𝑛𝑛
(27)206

Remembering that cos(2𝛽𝑛) = ±
√︃

1 − sin2(2𝛽𝑛) and substituting Eq. (27) in Eq. (26), we obtain207

the amplitude of the steady solution208

𝑎2
𝑛 = − 4Ω

3Γ5𝑛𝑛

[
𝜔1 +

𝑘𝑛

2
sin

(
Ω𝜏

2

)]
± 8Γ1𝑛𝑛

3Γ5𝑛𝑛

√︄
1 − Ω2𝜇2

𝑒

Γ2
1𝑛𝑛

, (28)209

which is the frequency-response equation, since the excitation amplitude 𝑧0 in within Γ1𝑛𝑛.210

It is worth to underline that Γ6𝑛𝑛, Γ7𝑛𝑛 and Γ8𝑛𝑛 do not appear in Eq. (28) because we are211

focusing on the parametric excitation (this is reflected in the choice (18)). They would appear if212

one consider the external resonance, i.e. 𝜔𝑛 ≈ Ω. This is left for future work.213

Since 𝑎𝑛 is a real function, from 𝑎2
𝑛 > 0 we obtain first order approximate region of existence214

of the periodic solution215

𝜔1 < − 𝑘𝑛

2
sin

(
Ω𝜏

2

)
± 2Γ1𝑛𝑛

Ω

√︄
1 − Ω2𝜇2

𝑒

Γ2
1𝑛𝑛

. (29)216

Inserting this expression in Eq. (18), and remembering that 𝜀𝑘𝑛 = �̂�𝑛, 𝜀𝜇𝑒 = �̂�𝑒 and 𝜀Γ1𝑛𝑛 = Γ̂1𝑛𝑛,217

yields218

2𝜔
Ω

< 1 − �̂�𝑛

Ω
sin

(
Ω𝜏

2

)
± 4Γ̂1𝑛𝑛

Ω2

√︄
1 − Ω2 �̂�𝑒2

Γ̂1𝑛𝑛2
. (30)219

In the frequency/amplitude parameter space (Ω, 𝑧0) the boundary of the existence region, which220

actually coincides with the stability region, is obtained by considering the equality instead of the221

inequality in Eq. (30). It has the classical V-shape with vertex in 𝜔 = Ω/2 (see for example222

forthcoming Fig. 3).223

NUMERICAL RESULTS AND DISCUSSIONS224

A stay cable of the Dongting Lake Bridge, in China, was chosen as an example to verify the225
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spatial motions of the cable. The dimensional parameters and material properties of the sample stay226

cable are (Wang and Zhao, 2009): span 𝑙 = 121.9m; inclination angle 𝜃 = 35.2o; cross-sectional227

area 𝐴 = 6 237 × 10−6m2; initial tension 𝐻 = 3 150kN; elastic modulus 𝐸 = 2.0 × 105MPa; mass228

per unit length 𝑚 = 51.8kg/m. (It could be helpful for the reader to report the numerical values of229

the coefficients appearing in (16))230

Figures 3-5 show the stability regions Eq. (30) of the controlled cable for different values of231

the parameters.232

The effect of the time delay on the stability of the parametric resonance of the controlled cable233

is shown in Fig. 3. It is clear that increasing the delay 𝜏 the unstable region (that above the234

stability boundary) increases is magnitude, confirming the findings of Sect. 3 that the delay has235

a destabilizing effect. Actually, 𝜏 has a strong effect on the minimum values of the curve, while236

mildly affects the frequency where this minimum occurs (always in the neighborhood of the perfect237

parametric resonance 𝜔 = Ω/2).238

Figure 4 analyzes the effect of the control gain on the stability of the controlled cable. According239

to the common sense, by increasing the absolute value of the feedback control gain 𝑘𝑛, the unstable240

region moves up. The minimum value of the limit curve is almost proportional to 𝑘𝑛, showing241

the effectiveness of control in reducing the parametric resonance instability. The frequency where242

the minimium occurs slightly increases, even if this is not expected to be relevant in practical243

applications.244

In the frequency/damping parameter space (Ω, 𝜇) the effect of the amplitude 𝑧0 of the excitation245

on the stability of the controlled cable is shown in Fig. 5. As expected, the larger 𝑧0 the larger246

is the instability region (now below the reported curves), meaning that a large gain is needed to247

control large excitation amplitudes. The case with no control (𝑘1 = 0) is also reported to appreciate248

the beneficial effect of control.249

We now illustrated the effect of control gain (Fig. 6) and control delay (Fig. 7) on the frequency250

response curves, which are very important for practical applications and for design. Figure 6 shows251

that the frequency response curve shifts to the right when the control gain increases (in absolute252
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value), confirming the beneficial effect of control on increasing the instability threshold of the rest253

position. The stable curve occurring for “large" displacements (that experienced by the system after254

the loss of the stability of the rest position), on the other hand, is not affected that much by 𝑘𝑛, apart255

from the left Saddle-Node bifurcation where it is born. This curve is instead much more influenced256

by the delay 𝜏, as shown in Fig. 7, that also confirms that increasing the delay destabilizes the rest257

position.258

Finally, Fig. 8 shows the comparison of the time history of the uncontrolled and controlled259

cable with different time delays. Comparing Fig. 8(a) with Fig. 8(b) it can be seen that with a small260

delay the control is very effective in reducing the vibration amplitudes of the cable. Increasing the261

delay, the destabilizing effect, already illustrated, can be seen also in the time history of Fig. 8(c).262

Note that the maximum displacement of Fig. 8(c) is quite similar to that of Fig. 8(a), showing how263

the large delay nullifies the effect of control.264

(I noted that in all simulations the gain 𝑘𝑛 is assumed to be negative. What happens for positive265

values?)266

CONCLUSIONS267

The stability of the parametric resonance of the controlled cable under the influence of time268

delay has been investigated both in the linear (with the exact solution) and in the nonlinear (by269

using the multi-scale method) regimes.270

The influence of the control gain, the time delay and the amplitude of the external excitation271

on the stability of the controlled region is analyzed. The results show that the unstable region272

increases with the time delay and decreases with the increase of the absolute value of the control273

gain. These findings have been obtained theoretically analyzing the closed form solutions, and have274

been confirmed by numerical simulations.275

The general conclusion of this paper is that when carrying out control design, especially when276

considering active and semi-active control, it is very important to properly take into account the277

influence of the time delay.278
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Fig. 1. The configuration of the controlled cable model.
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Fig. 2. Stability region (in white) of the single mode response of the controlled cable system.
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Fig. 3. The effect of the time delay on the stability of the controlled cable.
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Fig. 4. The effect of the control gain on the stability of the controlled cable.
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Fig. 5. The effect of the amplitude of the excitation on the stability of the controlled cable.
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Fig. 6. The frequency response curve of the controlled cable with time delay 𝜏 = 𝜋/16. (write 𝑘1
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Fig. 7. The frequency response curve of the controlled cable with control gain 𝑘1 = −0.15. (The
same comments on the previous figure apply. Furthermore, I believe that 𝜏 = 𝜋/32 refers to the
green curve, not to the red one)
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Fig. 8. Comparison of the time history of the controlled cable. (a) no control; (b) 𝑘1 = −1, 𝜏 = 𝜋/2;
(c) 𝑘1 = −1, 𝜏 = 𝜋. (report the values of Ω and 𝑧0 used for these figures)
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