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Comparison of Feature Extraction Methods for
Sound-based Classification of Honey Bee Activity

Alessandro Terenzi, Nicola Ortolani, Inês Nolasco, Emmanouil Benetos, Senior Member, IEEE Stefania
Cecchi, Member, IEEE

Abstract—Honey bees are one of the most important insects
on the planet since they play a key role in the pollination
services of both cultivated and spontaneous flora. Recent years
have seen an increase in bee mortality which points out the
necessity of intensive beehive monitoring in order to better
understand this phenomenon and try to help these important
insects. In this scenario, this work presents an algorithm for
sound-based classification of honey bee activity reporting a
preliminary comparison between various extracted features used
separately as input to a convolutional neural network classifier.
In particular, the orphaned colony situation has been considered
using a dataset acquired in a real situation. Different experiments
with different setups have been carried out in order to test
the performance of the proposed system, and the results have
confirmed its potentiality.

Index Terms—Convolutional neural networks, feature extrac-
tion, continuous wavelet transform, Hilbert-Huang transform,
mel frequency cepstrum coefficients, honey bees.

I. INTRODUCTION

HONEY bees are probably one of the most important
insects on the planet. Their importance is not only

related to the production of honey, beeswax, royal jelly and
propolis but mainly to their key role in pollination services
[1] for both spontaneous and cultivated flora. The last decades
have seen a large increase in bee mortality [2] which has led to
serious ecological and economical consequences. The causes
of these phenomena can be found in the so called “colony
collapse disorder” (CCD), which is a situation characterized
by a sudden disappearance of honey bees from the hive [3],
[4]. Many bee scientists agree that the decline of honey bee
colonies is the result of multiple stressors, acting indepen-
dently, in combination, or synergistically to impact honey
bees’ health [5]; in this scenario, it the necessity of an intensive
honey bee monitoring process is clear in order to understand
the problems and the causes of this mortality. While several
different approaches could be used for honey bee monitoring
[6]–[8], one of the most promising is based on sound analysis.
Indeed, sounds are used by bees to communicate within the
colony [9], [10] and an interpretation of these signals could
lead to the identification of critical situations. Specifically,
these sounds are generated through vibroacoustic signals pro-
duction that include gross body movements, wing movements,
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high-frequency muscle contractions without wing movements,
and pressure of the thorax against the substrates or another bee
[11]–[13]. It has been shown that, under some circumstances,
some correlations can be detected between beehive sounds and
prediction of events like swarming [14]–[18], the presence
of airborne toxic substances in the hive [19], the presence
of a young queen inside the hive [20] and the presence or
the absence of the queen inside the colony, as reported in
the review paper of [13], where also vibrations have been
considered.

We need to point out that the presence of the queen bee
is a key point for the hive survival. In case the queen bee
should die, the hive would not have any chance of surviving
because the queen is the only fertile female. If the beekeeper
is informed about this event, he/she can act to add another
queen bee in the hive. Focusing on this aspect, an innovative
approach has been presented in [21] where both convolu-
tional neural networks (CNNs) and support vector machines
(SVMs) were used to classify the presence of the queen
bee in the hive from audio signals exploiting as features the
traditional approach based on mel frequency cepstral coef-
ficients (MFCCs) [22] combined with an innovative feature
extraction technique based on the Hilbert-Huang transform
(HHT) [23]. The obtained results have shown that the proposed
combination is capable of improving the results with SVM
classifiers. In this paper, starting from the results of [21], an
extended investigation on the performance of other innovative
feature extraction techniques exploiting CNNs is presented. In
particular, the following novelties are introduced in this work:

• the use of HHT as standalone feature is investigated;
• the use of CNN with HHT as feature is used;
• the introduction of continuous wavelet transform (CWT)

and discrete wavelet transform (DWT) [24] as new fea-
tures for the CNN approach is considered starting from
the analysis reported in [25], [26].

Several CNN experiments have been carried out using the
same network architecture presented in [21]. The same dataset
of [21] has been used with the following differences:

• some changes to the preprocessing section have been
performed such as removing the pitch-shift data augmen-
tation and using shorter audio frames;

• the data obtained from the feature extraction has been
used as image instead of data matrix [27]–[30] to allow
a compact management of the feature coefficients and to
have the same number of coefficients for different feature
extraction methodologies;
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• since the dataset includes recordings from two micro-
phones in a different position inside the hive, data from
both microphones has been analyzed independently.

The paper is organized as follows: Section II describes the
related work on honey bee monitoring problems, Section III
shows the proposed approach based on several feature ex-
traction techniques and a convolutional neural network, with
Section III-A describing the feature extraction techniques used
for sound analysis, and Section III-B presents the CNN archi-
tecture with special attention to the layers and the parameters
employed in the system. Section IV introduces the dataset, the
experimental setup and the obtained results. Finally, Section V
reports conclusions and future work.

II. RELATED WORK

In recent years, several works have analyzed the problems of
developing effective honey bee monitoring systems exploiting
different techniques and analyzing different colony parameters.
Several approaches are based on continuous beehive monitor-
ing for the health of honey bees exploiting a wide range of
sensors, such as [31]–[34]. While some of these systems are
complete acquisition platforms with several sensors, there are
other works which are mainly focused on a specific parameter
and sensor. In [8] weight variations of the colony have been
studied in order to detect events such as swarming and rainfall.
In [7] humidity and temperature have been analyzed in order
to detect the presence of Varroa destructor inside the colony.
In [35] machine learning algorithms have been used to analyze
several parameters such as weight and temperature to detect
if there are health problems inside the colony.
In [17] the recorded sound inside the colony is analyzed
by means of short time Fourier transform (STFT) in order
to obtain different spectral parameters (e.g., peak frequency)
able to detect the presence of the Varroa mite inside the
hive. In [16] STFT spectrograms derived from bee sounds
have been used to find in advance the swarming of bees:
in particular, authors showed that before this specific event
there is an increase in low frequency contributions produced
by honey bees. In [36] sound during swarming has been
analyzed in combination with weight variations, showing that
there is a sound amplitude variation at the same time that
the weight drops due to the swarming. Spectral analysis has
also been used for studying and monitoring the so called
“waggle dance” of bees [10]: in fact, authors explain that
there is a correlation between bee dance and the presence
of harmonics near 320 Hz in the recorded signals, showing
that it is possible to generate signals at which bees react. On
[37], authors use accelerometers to acquire the bees sound
inside the colony, and then by means of multidimensional
FFT and discriminant functions, swarming events have been
predicted. In [38], machine learning methods are proposed
capable of distinguishing bee buzzing from cricket chirping
and ambient noise. In [21], [39] beehive sounds have been
used in combination with machine learning methods to develop
systems capable of distinguishing different states of a hive.

III. PROPOSED APPROACH

The proposed approach can be divided in two parts: the
feature extraction methods and the use of convolutional neural
networks as classifiers. A detailed description of each part is
reported in the next sections.
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Fig. 1. MFCC, HHT and CWT Feature Extraction procedures.

A. Feature Extraction Techniques

Six different techniques have been considered to extract
information from the recorded sounds. In particular, STFT
spectrograms, mel spectrograms, mel frequency cepstral
coefficients (MFCCs), Hilbert Huang transform (HHT),
continuous wavelet transform (CWT) and discrete wavelet
transform (DWT) have been used following the preliminary
analysis reported in [25], [26].

The first exploited technique is the STFT spectrogram
following [22]. It allows a visual representation of the signal,
showing its spectral content as it varies with time. The
spectrogram is based on short time Fourier transform (STFT),
i.e., the signal is first windowed by means of a sliding time
window then each frame is frequency transformed through the
fast Fourier transform (FFT) with a sample frequency of 32
kHz. For the experiments a Hann window has been used, with
a window length of 10 ms with a 50% overlap; the results are
visible in Fig. 3. Similar to the STFT spectrogram also mel
spectrograms have been computed. In this representation, the
audio input is first buffered into frames, which are overlapped.
A periodic Hamming window is then applied to each frame,
and then the frame is converted to a frequency-domain repre-
sentation by means of the STFT. Each frame of the frequency-
domain representation passes through a mel filter bank. The
spectral values output from the mel filter bank are summed,
and finally the channels are concatenated. The window length
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used is of 960 samples, the FFT length has the same value,
adjacent frames are overlapped of 640 samples and the filter
bank has 32 bands; the obtained results are visible in Fig.
4. Derived from the mel spectrogram, also mel frequency
cepstral coefficients (MFCCs) have been considered. MFCCs
are a signal representation widely used in speech processing
[40]. As reported in Fig. 1, it consists of five steps:

1) Compute the short time Fourier transform (STFT) of the
input signal.

2) Calculate the squared absolute value of the STFT result
to get the magnitude spectrogram of the input.

3) Filter the results of the previous step with a mel-filter
bank composed of triangular filters.

4) Apply a logarithmic non-linearity to the filtered signals.
5) Compute the discrete cosine transform (DCT) of the

result to obtain the mel-scale cepstral coefficients.
In this specific case, MFCC computation returned 20
coefficients; for the first step, hop length and number of
STFT points were set to 512 and 2048 respectively. Fig. 5
shows the result of the described procedure.

Hilbert Huang transform (HHT) [23] was already dis-
cussed in [21] with an application limited to the SVM classifier
and in combination with MFCCs. The approach presented here
is derived from the one presented in [26] but it is capable
of working in combination with CNN classifiers. HHT is
an algorithm for time-frequency analysis based on empirical
mode decomposition (EMD) and the Hilbert transform (HT).
The schematic of this extraction procedure can be found in
Fig. 1. EMD decomposes the original signal generating a
series of basis functions called intrinsic mode functions (IMF).
The IMFs are obtained through an adaptive procedure directly
from the analyzed signal. Each IMF must satisfy the following
properties: (A) The number of extrema and the number of
zero-crossings must be either equal or differ at most by one
extrema. (B) The mean value of the envelope defined by the
local maxima and the local minima is zero.
Once the properties of the IMFs have been defined, for a
given x(n) signal in the time domain with n = 1, . . . , N ,
an iterative procedure for IMF estimation can be derived with
the following steps:

1) Identify all local extrema.
2) Connect all the local maxima by a cubic spline.
3) Repeat the procedure to produce the lower envelope.
4) Estimate their mean m1(n).
5) The first estimation of the IMF can now be written as

h1(n) = x(n)−m1(n).
6) Repeat the procedure up to k times until the function

h1k(n) = h1(k−1)(n)−m1k(n)
does not satisfy the IMF properties.

7) Now the first IMF component is equal to c1(n) =
h1k(n).

8) Remove from the original signal the component c1(n)
obtaining the first residue r1(n) = x(n)− c1(n).

9) Treat r1(n) as the new signal for the decomposition
procedure.

Now the original signal can be reconstructed as a superim-

position of a certain number M of IMF plus a residue r(n)
i.e.,

x(n) =

M∑
j=1

cj(n) + r(n), (1)

where cj(n) is the j-th IMF. Once the signal has been
decomposed, the Hilbert transform [41] is applied to each IMF
and used for the estimation of the analytic signal aj(n) as
follows:

aj(n) = cj(n) + jH{cj(n)} (2)

where H indicates the Hilbert transform with j = 1, . . . ,M .
Then, Eq. (2) can be expressed in polar coordinates, i.e.,
aj(n) = Aj(n)e

iφj(n) where Aj(n) is the instantaneous
amplitude of the signal from which the instantaneous energy
|Aj(n)|2 is extracted, and φj(n) is the phase from which the
instantaneous frequency can be derived according to:

fj(n) =
fs
2π

[
φj(n+ 1)− φj(n)

]
, (3)

where fs is the sampling frequency. In this way, for each
time instant n, the energy |Aj(n)|2 corresponding to a specific
frequency fj(n) is derived from the original signal. Finally, the
Hilbert marginal spectrum for the j-th IMF is derived as the
sum of the instantaneous energy for each specific frequency
according to the following equation:

Hj(w) =


∑

n∈{fj(n)=w}
|Aj(n)|2, if w = fj(n)

0, otherwise
(4)

with n = 1...N the time instants and w the frequency index.
Thus, the result is a frequency amplitude representation

for each Hilbert function which can be represented in a three
dimensional map where for each IMF the spectral content is
clearly visible. In this work, after several experiments, a five
level decomposition has been used. Fig. 6 shows the results
of the described procedure.

Another approach proposed here is based on the wavelet
transform (WT). Wavelets are mathematical functions that
decompose the signal by means of properly amplitude and
time shifted basis functions called mother wavelets. Wavelets
allow a time-frequency analysis of non stationary signals,
and wavelet based approaches have been already applied
successfully to animal sound analysis as reported in [42], [43].
For a given signal x(t) its wavelet transform is defined by the
following formula:

X(s, u) =
1√
| s |

∫ +∞

−∞
x(t)ψ∗

(
t− u
s

)
dt, (5)

where s is the scale index, u the wavelet temporal index, and ψ
is the mother wavelet. Variation of scale index is related to the
signal frequencies, i.e., a higher scale value means a dilated
wavelet which approximates well low frequencies, while a low
scale value means a compressed wavelet which is closer to
high frequencies. The choice of the mother wavelet is strictly
related to the type of signal which has to be analyzed, and a
complete description of the most important mother wavelets
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can be found in [44]. When a signal is analyzed by means of
WT, a graphic time-frequency representation can be derived
using the square modulus of the transformed signal, i.e.,

S(s, u) =
1

s

∣∣∣∣∫ +∞

−∞
x(t)ψ∗

(
t− u
s

)
dt

∣∣∣∣2 , (6)

where S(u, s) is defined as the scalogram. In Eq. (5) and
Eq. (6) indices u and s change continuously realizing the
continuous wavelet transform (CWT). Scalograms generated
by means of CWT are visible in Fig. 8; using non-overlapped
frames of one second. The bump wavelet [45] has been
selected after several experiments, due to its performance with
this type of signals. The number of scale values adopted
for a signal representation is chosen automatically from the
algorithm itself according to the signal properties and in this
application a typical number of coefficients is around 110. On
CWT, scale values and time indices change continuously but
can be discretized generating the discrete wavelet transform
(DWT), limiting the s and u values according to:{

s = s−m0 , with s0 > 1, m ∈ Z

u = nu0s
−m
0 , with u0 > 0, n ∈ Z.

(7)

The DWT has already been used for feature extraction and
animal sound analysis [42], [46]. One of the main advantages
of the DWT is its reduced computational cost due to the
fact that the transform can be easily implemented with a
three structure filter bank as the one reported in Fig. 2.
The filter bank implements a multi-resolution analysis of the
signal, i.e., the lower frequencies are analyzed with a higher
resolution. Each branch of the filter bank is composed by
a high-pass filter H(z) and a low-pass filter G(z) and two
decimators. Each level generates two distinct outputs: the
detailed coefficients (i.e., the output of the high-pass filter),
and the approximation coefficients (i.e., the output of the
low-pass filter). The detailed coefficients are stored, while
the approximation coefficients are used as input for the next
decomposition level. Since the taps for the low-pass and high-
pass filter are generated from the mother wavelet [47], the
output of the filter bank corresponds to the output of the
discrete wavelet transform. Due to non-uniform decimation,
each wavelet coefficient vector has a different length. In
order to obtain a more clear graphic representation, each
DWT coefficient has been properly interpolated replicating its
samples and thus obtaining a set of uniform length vectors
with the same length of the input signal. This operation has
been tested through several experiments verifying the impact
of the interpolation on the system classification. The selected
interpolation values guarantee the best classification results
without data alteration. For this work, a ten level filter bank
has been used obtaining eleven coefficients (i.e., ten detailed
coefficients and one approximation coefficient). For the mother
wavelet many different wavelet families have been tested and
then the discrete Meyer [48] has been selected due to its results
with the analyzed signals. For both continuous and discrete
wavelet transform, the estimated coefficients have been first
rescaled within the range between 0 and 1.

G(z)

H(z)x(n) 2

2

G(z)

H(z) 2

2

G(z)

H(z) 2

2 y(n)
3

y(n)
2

y(n)
1

y(n)
0

level 1 level 2 level 3

Fig. 2. A 3-Level asymmetric dyadic analysis filter Bank. G(z) and H(z)
are respectively the low-pass and the high-pass filters derived from the mother
wavelet.

B. Network Architecture

The network architecture, visible in Figure 9, was derived
from the one presented in [21]. Table I illustrates the details of
it, with a focus on the output sizes and the parameter values
used in each layer. The output dimensions refer to an input
obtained considering an RGB image as input with a dimension
of 256x256 pixels. As it can be seen from Table I, there are
four convolutional layers composed of 16 filters, each one
followed by a max-pool layer and a dropout layer; the first
two convolutional layers have a kernel size of 3 × 3 and a
max-pool size of 3 × 3 with a 2 × 2 stride, whereas the last
two convolutional layers have a 3× 1 kernel size and a pool
size of the same dimensions (2×2). The last block, instead, has
three dense layers composed of 256, 32, 1 units respectively.
To regularize the training procedure, dropout layers with a
rate of 0.5 were used after each max-pooling layers and
after the first two dense layers. A leaky rectifier linear unit
(LReLU) [49] was employed for all convolutional and dense
layers except the last one, which uses a sigmoid function
for the classification. The network training was performed
by optimizing the binary cross-entropy between predictions
and targets; root mean square propagation (RMSProp) [50]
was used as optimizer with a learning rate of 0.001 and
the batch size was set to 145. The training was stopped
when the validation loss did not decrease for more than five
epochs. As regards the initialization of the network weights, a
uniform distribution with zero biases [51] was used for both
the convolutional and dense layers.

IV. ALGORITHMS EVALUATION

A. NU-Hive Dataset

Data used in this work came from the NU-Hive project
[52]. NU-Hive is a project which acquires continuously several
different parameters from three different hives of Apis mel-
lifera L. located inside the University campus; the acquired
parameters include weight, temperature, humidity, CO2 and
sound. More details about the acquisition platform can be
found in [36]. For this work, the same data of [21] has
been used, focusing on the orphaned colony situations and the
dataset is publicly available in [53]. In particular, the sound
used for the classifier was recorded with a Behringer UCA22
sound card at a sampling rate of 32 kHz and ADMP401
MEMS microphones. The sound came from a total of two
different hives, these were both recorded in a normal condition
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(a) (b)

Fig. 3. STFT spectrograms considering (a) normal colony, and (b) an orphaned colony.

(a) (b)

Fig. 4. Mel spectrograms considering (a) normal colony, and (b) an orphaned colony.
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Fig. 5. Mel frequency cepstrum coefficients feature extractions considering (a) normal colony, and (b) an orphaned colony.
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Fig. 6. Hilbert-Huang transform feature extractions considering (a) normal colony, and (b) an orphaned colony.
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Fig. 7. Discrete wavelet transform feature extractions considering (a) normal colony, and (b) an orphaned colony.
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Fig. 8. Continuous wavelet transform feature extraction considering (a)a normal colony, and (b) an orphaned colony.

Input
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Output
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Fig. 9. Schematic of the proposed convolutional neural network, containing four convolution layers each followed by max-pooling layers. The last three
layers are dense layers, with 256, 32, 1 units respectively.

(i.e., the queen bee is present) and in an orphaned situation
(i.e., the queen bee is dead). Four days of continuous recording
have been used, with a total amount of 576 files of ten
minutes duration each (96 hours). The number of orphaned
and normal colony recordings are almost of the same length
(i.e., the same number of files). Each recording consists of two
separated tracks which belong to two different microphones
placed inside the colony. The microphones have been placed
according to entomologists’ indications in order to achieve
the best results: in particular, microphone 1 is placed near
the hive entrance and microphone 2 is placed near the bees
brood in the center back of the hive, where the brood cluster
is firstly initialized (as visible in Figure 10(a)). Furthermore,
to avoid propolization of the microphones, they have been

positioned in a groove covered by a particular type of fabric.
Figure 10(b) shows the microphones’ status inside the hive
after the installation. Since the position of the two microphones
has been chosen in order to monitor different parts of the
colony (i.e., the activity near the brood and the activity near
the colony entrance), data from both microphones has been
analyzed independently, comparing the results in order to see
if there is a difference between the two recordings.

Before applying any feature extraction techniques, each ten
minute audio file was segmented into 1 second slices in order
to increase the number of training/testing samples (345 600
files in total). The frame length of one second has been chosen
according to several experiments with different frame length,
moreover this frame length was already used in other work
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TABLE I
PROPOSED NETWORK ARCHITECTURE.

Layer Output Description
input (256, 256, 3) RGB Image
convolution (256, 256, 16) 3×3 kernel size, 16 filters
max-pooling (128, 128, 16) 3×3 pool size, 2×2 strides
dropout (128, 128, 16) 0.5 rate
convolution (128, 128, 16) 3×3 kernel size, 16 filters
max-pooling (64, 64, 16) 3×3 pool size, 2×2 strides
dropout (64, 64, 16) 0.5 rate
convolution (64, 64, 16) 3×1 kernel size, 16 filters
max-pooling (32, 32, 16) 3×1 pool size, 2×2 strides
dropout (32, 32, 16) 0.5 rate
convolution (32, 32, 16) 3×1 kernel size, 16 filters
max-pooling (16, 16, 16) 3×1 pool size, 2×2 strides
dropout (16, 16, 16) 0.5 rate
dense (256) 256 units
dropout (256) 0.5 rate
dense (32) 32 units
dropout (32) 0.5 rate
dense (1) 1 unit

(a)

(b)

Fig. 10. (a) Microphone positions inside the hive, and (b) detail of the
microphone after three months from the first installation.

[54].The data augmentation method used in [21] was not
employed here since according to [10], [12], [16] most of the
information is carried by the signal frequencies, and a pitch
shifting in these signals could be misleading. Finally, images
were derived from each of the one second slices and then
normalized dividing each pixel by the maximum permitted
value (i.e., 255), in order to have values between 0 and 1. The
exact same procedure was applied for training/validation/test
datasets. The choice of using images as input for the neural
network is related to the different dimensionality of each
approach as also used and reported in [27]–[30]. The use of
images allows a simpler data management using the exact
same neural network and normalization procedure for each
approach tested. In this case ”.jpg” format has been considered
without data compression guaranteeing a reliable data rep-
resentation. Furthermore, several experiments have also been
carried out in order to find the best colormap to represent the
data without loss of information.

B. Experimental Setup

In order to evaluate the performance of the proposed feature
extraction methods, two different experimental setups have
been considered, following [21]. In the first scenario, called
“random-split” setup, the entire dataset was divided in three
parts: in particular, 5% of the whole dataset was reserved for
the testing set and the remaining 95% was randomly split in
half for the training and the validation sets. In the second
scenario, called “hive-independent” setup, the data was divided
according to which hive it belongs: in this way, the network
can be trained using only data coming from hive 1, and tested
on independent data coming from hive 2. In particular, the
validation set was obtained by randomly selecting 10% of
training data of hive 1. This second scenario is more interesting
especially for a real-world application scenario, since the
system needs to have good generalization properties toward
unseen hives.

Following the evaluation method used in [21], the perfor-
mance of the various systems has been evaluated using the
area under the curve (AUC) score [55], which is a metric
that describes the performance of a binary classifier across all
possible classification thresholds. In particular, a model whose
predictions are 100% correct has an AUC score of 1.0; on
the contrary, a model whose predictions are completely wrong
has an AUC score of 0.0. Precision, recall and F1 measure,
which are evaluation metrics widely used in sound recognition
tasks [56], [57], have also been computed. They are defined
respectively as:

Pl =
tpl

tpl + fpl
(8)

Rl =
tpl

tpl + fnl
(9)

F1l =
2PlRl
Pl +Rl

(10)

where tpl is the number of the true positives, fpl the number
of false positives and fnl the number of false negatives for
each of the two considered labels l (i.e., queen-bee presence
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or absence). In other words, precision quantifies how many
of the predicted results are relevant, while recall measures
how many truly relevant results are returned. F1 measure
quantifies instead the overall performance of the network and
it is computed as the harmonic mean of precision and recall.

The experiments were run two times each, changing the
random seed for the data split. Averaged results are reported
in the next section.

C. Results

Qualitative evaluations
In the next section, the approaches adopted will be discussed
from a qualitative point of view. For the sake of brevity the
image discussed came from only one of the two colonies,
however similar results have been obtained also for the
recordings of the other hive. Fig. 3 shows the STFT
spectrograms obtained from the analyzed data. Comparing
the normal situation with the orphaned bees some differences
are visible especially in the higher frequency regions. In
particular, some lines are evident in Fig. 3(a) that are not
present in Fig. 3(b), lower frequencies show also a different
energy spread, in particular the orphaned colony seems to
have more energy and a more uniform energy distribution.
Taking into consideration mel spectrograms of Fig. 4, the
same differences between the normal colony on Fig. 4(a) and
orphaned 4(b) of STFT spectrograms are visible. However,
the non-uniform scale resolution of mel spectrograms allows
a clearer analysis of the different harmonic content of the
two signals.
Fig. 5 shows the MFCC results. According to Section III-A
the first two coefficients have been discharged. Comparing
the two figures, the first two coefficients (the third and
the fourth considering the two discharged) show the major
difference. In particular on Fig. 5(a), with the normal colony
recording, the first coefficient has more energy, while for
the orphaned colony on Fig. 5(b) it is the second one that
is the most energetic. Fig. 6 shows the obtained results for
the HHT-based approach in terms of decomposition level and
frequency range. Comparing the two situations, the harmonic
content is different since the orphaned colony on Fig. 6(b)
shows more harmonics at the higher and lower frequencies
in contrast with the normal colony on Fig. 6(a), that has
more energy in the middle frequencies, i.e., second level of
IMF. With respect to other techniques, this approach gives
a better estimation of the fundamental frequencies of the
original signal. The shifting process used for empirical mode
decomposition [23] removes riding waves and smooths uneven
amplitudes, leaving only the mode of oscillation contained in
the original signal. In comparison with STFT spectrograms
and mel spectrograms, the HHT shows differences in the
harmonic content with a better resolution, while with respect
to MFCC and wavelet transform, the HHT is more clear in
representing the harmonics actually included in the analyzed
signal.
Focusing on the wavelet transform, both discrete and
continuous cases have been considered and applied. Fig. 8
shows the results for the CWT case. Fig. 8(a) shows the

WT-analysis from a normal colony, while Fig. 8(b) shows
scalograms from an orphaned colony, and it is evident that
we have obtained different spectral contents in the two
situations. The orphaned colony figure shows a behaviour
with less and more limited frequencies, while the normal
situation shows more harmonics. Finally the DWT approach
shows different harmonic content, in particular the differences
between normal colony on Fig. 7(a) and the orphaned one on
Fig. 7(b) are more visible on medium-high frequencies, i.e.,
on lower scale coefficients, where the normal colony seems
to have less energy on the first and third coefficient.

Objective evaluation
The six feature extraction techniques have been evaluated
comparing the AUC scores obtained by analyzing microphone
1 and 2 individually. As can be seen from Table II, for the
random split case the STFT spectrograms have the highest
AUC score, even if the CWT and the mel spectrograms are
quite similar; for the hive-independent setup, on the contrary,
the CWT has the highest score on channel 1, while on channel
2 seems to perform better the mel spectrograms. As regards
the HHT, for both the random split and the hive-independent
setups the performance is worse than the other two techniques,
indicating that this particular method is not well suited for this
classification task; this approach probably should work better
with other colony health status (i.e., the swarming as reported
in [25]). Since the hive-independent setup, as said, is the most
interesting for a real-world implementation, CWT as a feature
extraction method applied to honey bees is definitely to be
taken into consideration. Another interesting thing that can be
seen from Table II is that, for the random split experiments,
all six approaches have shown better performance on channel
2, while for the hive-independent this is not true. This aspect
should be taken into consideration for those situations in
which the installation of two microphones within the hives
is not feasible. Furthermore, we have to point out that the
microphone positions are very important because the hive
modifies its dimension during different seasons and years.
When the colony is young or during the winter, the brood
and the bees’ activities are focused at the center of the hive,
and microphone 1 is more close to the center. Microphone 2
is positioned inside the hive but near the landing pad, so it
gives important information when the colony is sufficiently
large to have extended the brood inside the hive and during
the spring and summer when the bees go outside for the
pollen. It is probably that for depending on the season, the
two microphone positions could be different importance. This
aspect will be investigated in future works. To clarify the
results reported in Table II, Figure 11 shows the receiver
operating characteristic (ROC) curve for microphone 1 and
considering the discrete wavelet transform algorithm. It is
evident that the random split approach obtains better results
than hive independent approach. Similar results have been
achieved for the other algorithms but for the sake of brevity
they have been omitted.

Focusing on precision, recall and F1, the scores are pre-
sented in Table III for the orphaned colony and in Table
IV for the normal colony. The results for the random split
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experiment are positive for almost all the techniques proposed,
again as for the AUC scores the best performance is reached
by STFT spectrograms and CWT. It is interesting to underline
that comparing the two tables for the the hive independent
experiment the network tends to classify most of the images on
the normal colony class. However, while STFT spectrograms
and mel spectrograms seem to suffer more from this problem,
the approaches based on HHT and wavelets seem to have less
issues.

TABLE II
AUC COMPARISON BETWEEN THE SIX FEATURE EXTRACTION

TECHNIQUES.

AUC
Random Split Hive-Independent

Mic.1 Mic.2 Mic.1 Mic.2
STFT spectrograms 0.9967 0.9997 0.3247 0.7082
Mel spectrograms 0.9866 0.9950 0.4429 0.7858
MFCCs 0.9757 0.9906 0.5060 0.6555
HHT 0.9195 0.9514 0.6301 0.6290
DWT 0.9189 0.9480 0.7589 0.4892
CWT 0.9814 0.9968 0.7648 0.5937

Fig. 11. ROC curves for random split and hive independent experiments,
considering microphone 1 and discrete wavelet transform as algorithm.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a comparison of different feature extraction
techniques for sound-based classification of honey bee activity
has been presented. In particular, starting from well-known
approaches of the state of the art (i.e., STFT spectrograms,
mel spectrograms, MFCCs), HHT, DWT and CWT techniques
have been used exploiting a convolutional neural network for
classification of beehive activity.

Two experimental setups have been considered, the first one
with a random split of the data and the other one considering a
hive-dependent split. Different metrics have been used to eval-
uate the overall performance of the network with the different
approaches and with the different microphones. Focusing on
the AUC results, the best performance is achieved by the
STFT spectrograms and CWT on random split experiments,

where microphone 2 seems also to have the best performance.
On the hive independent case, CWT and mel spectrograms
have the best performance, in particular on channel 1 the
CWT and on channel 2 the mel spectrograms. In comparison
with the random split case some techniques perform better
on channel 1 and other on channel 2, so even if a difference
seems present, it is not clear which microphone has the best
positioning. Focusing on precision, recall and F1 metrics, the
results show that the network seems to overestimate the normal
colony situation, but the innovative approaches seem to have
less problems. Some of the errors in the classification could
be related to the fact that the dataset used in this work has
not been checked manually and some recordings could have
unwanted sound such as car noises. Future works will consider
an improvement to the acquisition system including an external
microphone to detect unwanted noise, and a manual check of
the dataset similar to the one reported in [58].

Future work will also deeper analyze the performance of
the proposed algorithms using a bigger dataset (the NU-Hive
project is still acquiring data until now) and considering a
multi-channel classifier and a late fusion or ensemble approach
in order to improve the classification results. The focus will be
also on the hive independent case which is the most important
for these applications. Different microphone positions could
be also considered, in order to evaluate the sound in different
colony locations also with relation to the hive dimensions
and the different activities of the bees during seasons. The
proposed approach will be also used to classify other important
beehive states such as swarming detection, pest presence or
dangerous situations. Regarding the implementation, the final
system should be able to acquire and analyze the data in real-
time in order to give an immediate alert to the beekeeper.
Furthermore, the influence of ambient noise on the obtained
results will be investigated. Finally, the classification algorithm
will be also implemented in a low cost board (e.g., a Raspberry
Pi) in order to allow a direct evaluation of the colony health
status.
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