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NON-DEFECTIVITY OF SEGRE–VERONESE VARIETIES
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AND ALESSANDRO ONETO

(Communicated by Gregory G. Smith)

Abstract. We prove that Segre–Veronese varieties are never secant defective
if each degree is at least three. The proof is by induction on the number of
factors, degree, and dimension. As a corollary, we give an almost optimal non-
defectivity result for Segre–Veronese varieties with one degree equal to one and
all the others at least three.

1. Introduction

A Segre–Veronese variety is the embedding of a multi-projective space by a very
ample line bundle. It parameterizes the rank-one partially symmetric tensors, and
the compactification of the space parameterizing those with partially symmetric
rank at most m is called the mth secant variety of the Segre–Veronese variety. This
paper concerns the problem of classifying the so-called defective secant varieties of
Segre–Veronese varieties, the ones with dimensions smaller than expected. This
problem is very classical and has its roots in XIX century algebraic geometry, see
[BCC+18]. It is also closely related to partially symmetric tensor rank, partially
symmetric tensor border rank, simultaneous rank, and partially symmetric tensor
decompositions, as well as their uniqueness, which are relevant topics to many
branches of modern applied sciences, see [Lan12]. Hence, it has the potential to
impact a variety of areas, including mathematics, computer science, and statistics.

Our goal is to establish non-defectivity for a large family of Segre–Veronese
varieties. The simplest examples of Segre–Veronese varieties are Veronese vari-
eties, whose defectivity is completely understood due to the celebrated theorem by
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Alexander and Hirschowitz [AH95]. Beyond Veronese varieties, this classification
problem, however, is still far from complete.

Some cases are better understood than the others. For example, the conjecturally
complete list of defective secant varieties for Segre–Veronese varieties with two
factors was suggested by Abo and Brambilla in [AB13]. Significant progress towards
this conjecture was made by Galuppi and Oneto in [GO22]: they proved that if the
bi-projective space is embedded by a linear system of degree at least three in both
factors, then its secant varieties are all non-defective. In this paper, we extend this
result to an arbitrary number of factors.

Catalisano, Geramita, and Gimigliano carried out the first systematic study
of the secant varieties of Segre–Veronese varieties in [CGG05, CGG08]. In these
papers, they discovered many defective cases, including unbalanced cases (where
one of the factors of the multi-projective space has a much larger dimension than the
rest). Several of these defective cases were later generalized by Abo and Brambilla
[AB12], as well as Laface, Massaranti, and Richter [LMR22].

Regarding the secant non-defectivity, Laface and Postinghel in [LP13] employed
toric approaches to show that the secant varieties of Segre–Veronese varieties of an
arbitrary number of copies of the projective line are never defective. Ballico [Bal23]
and Ballico, Bernardi, and Mańdziuk [BBM24] proved non-defectivity for more
families of Segre–Veronese varieties, with some assumptions on the dimensions.

Araujo, Massarenti, and Rischter [AMR19] developed a new approach using
osculating projections and obtained an asymptotic bound under which the secant
varieties of Segre–Veronese varieties always have the expected dimensions. Their
bound was improved by Laface, Massarenti, and Richter [LMR22].

Very recently, Taveira Blomenhofer and Casarotti [BC23] significantly improved
the bound from [LMR22], showing that most secant varieties of Segre–Veronese
varieties are not defective. However, there is still a range of values of m for which
the non-defectivity of the mth secant variety of a Segre–Veronese variety is not
known. As the longevity of the classification problem of the defective cases suggests,
making this final stretch is the most difficult part. The primary goal of this paper is
to fill this gap for Segre–Veronese varieties embedded with degree at least three in
all factors. In the remaining part of this introduction, we introduce basic notation
and state our main results.

For given k-tuples n = (n1, n2, . . . , nk) and d = (d1, d2, . . . , dk) of positive in-

tegers, we write Pn for Pn1 × Pn2 × · · · × Pnk and SVd
n for the Segre–Veronese

variety obtained by embedding Pn by the morphism associated with its complete
linear system |OPn(d)|. The closure of the union of secant (m − 1)-planes to SVd

n

is called the mth secant variety of SVd
n and denoted by σm(SVd

n). We say that it
is non-defective if it is not m-defective for any positive integer m, that is, if the di-
mension of σm(SVd

n) equals the expected one, defined by a näıve parameter count.
See Section 2 for explicit definitions.

Theorem 1.1. Let k ≥ 2. If d1, d2, . . . , dk ≥ 3, then SVd
n is not defective.

The proof of this theorem, presented in Section 3, is an application of the dif-
ferential Horace method, which enables us to show the secant non-defectivity of
a Segre–Veronese variety by induction on dimension and degree. This type of ap-
proach often leads to a complicated nested induction. The significance of this paper
is to overcome this complication and to give a clean proof.
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As a consequence of Theorem 1.1, we deduce an almost optimal non-defectivity
result for the Segre–Veronese variety having one factor embedded in degree 1 and
all the others at least three.

Theorem 1.2. Let k ≥ 2, let n = (n1, n2, . . . , nk) and d = (d1, d2, . . . , dk) be k-

tuples of positive integers, let |n| = n1+n2+ · · ·+nk, and let Nn,d =
∏k

i=1

(
ni+di

ni

)
.

If d1, d2, . . . , dk ≥ 3 and if

m ≤ (n0 + 1)

⌊
Nn,d

n0 + |n|+ 1

⌋
or m ≥ (n0 + 1)

⌈
Nn,d

n0 + |n|+ 1

⌉
,

then SV
(1,d)
(n0,n)

is not m-defective.

The proof, presented in Section 4, is based on an inductive method which allows
to deduce non-defectivity results for a Segre product Pn×X from the non-defectivity
of the algebraic variety X, see Proposition 4.1. It is worth noting that Theorem 1.2
is stronger than [BC23, Theorem 4.8] for these specific multidegrees, see Remark
4.6 for more details.

While the rank of a tensor tells us about the length of a minimal decomposition as
a sum of rank-one elements, identifiability is the uniqueness of such decomposition.
For applied purposes, it is very important to know when the Segre–Veronese variety
is identifiable, namely when the general partially symmetric tensor has a unique
decomposition. Thanks to [MM22, Theorem 1.5], the non-defectivity of a variety
has direct consequences on its identifiability, so we immediately get the following
corollaries of Theorems 1.1 and 1.2.

Corollary 1.3. Let k ≥ 2, let n,d ∈ Nk be tuples of positive integers with

d1, d2, . . . , dk ≥ 3. Let |n| = n1 + n2 + · · ·+ nk and let Nn,d =
∏k

i=1

(
ni+di

ni

)
.

(1) If m(|n|+ 1) ≤ Nn,d, then SVd
n is (m− 1)-identifiable.

(2) If m ≤ (n0 + 1)
⌊

Nn,d

n0+|n|+1

⌋
, then SV

(1,d)
(n0,n)

is (m− 1)-identifiable.

In order to complete the classification of Segre–Veronese varieties, it remains
to solve the cases in which one of the degrees is 1 or 2. A major difficulty here
is that, besides the unbalanced ones, several defective cases are known, and it is
complicated to shape a general inductive strategy that avoids them. We underline
that all known balanced defective cases appear when the number of factors is four or
less. For this reason, we want to explicitly draw attention to the following question.

Question. Is it true that the only defective cases for Segre–Veronese varieties with
at least five factors are the unbalanced cases?

During the final part of the preparation of the present manuscript, Ballico pri-
vately informed us that he indipendently obtained a result similar to Theorem 1.1,
which eventually appeared in [Bal24].

2. Tools and background

We work over an algebraically closed field k of characteristic zero.
Given an algebraic variety X ⊂ PN , the mth secant variety

σm(X) =
⋃

x1,x2,...,xm∈X

〈x1, x2, . . . , xm〉 ⊂ PN
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of X is the Zariski-closure of the union of all linear spaces spanned by m points
of X.

The notion of expected dimension of σm(X) ⊂ PN follows from a straightforward
parameter count:

exp . dimσm(X) = min{N,m dim(X) +m− 1}.
It is immediate to see that this is always an upper bound for the actual dimension:
we say that X is m-defective if dim σm(X) < exp . dimσm(X).

Let us fix some notation we will use throughout the paper.

Notation 2.1. Let a = (a1, a2, . . . , ak),b = (b1, b2, . . . , bk) ∈ Nk:

• For any j ∈ N, we write a(j) = (a1 − j, a2, . . . , ak).
• We write a � b if ai ≥ bi for every i ∈ {1, 2, . . . , k}.
• We write |a| = a1 + a2 + · · ·+ ak.

If n = (n1, n2, . . . , nk) and d = (d1, d2, . . . , dk) are k-tuples of positive integers,
then we set

Nn,d =

k∏
i=1

(
ni + di

di

)
,

and we define

(2.1) r∗(n,d) =

⌈
Nn,d

|n|+ 1

⌉
and r∗(n,d) =

⌊
Nn,d

|n|+ 1

⌋
.

Remark 2.2. The two values defined in (2.1) are critical in the following sense:

• r∗(n,d) is the smallest positive integerm such that themth secant variety is
expected to fill the ambient space; namely, it is expected to have dimension
Nn,d − 1. Since dim σm(X) is increasing with respect to m, if SVd

n is not
r∗(n,d)-defective then it is not m-defective for any m ≥ r∗(n,d). For these

values of m we say that σm(SVd
n) is superabundant.

• r∗(n,d) is the largest integerm such that themth secant variety is expected
to have dimension equal to the parameter count m(|n|+ 1)− 1. Since the

difference of the dimensions of two consecutive secant varieties of SVd
n is at

most |n|+1, if SVd
n is not r∗(n,d)-defective then it is notm-defective for any

m ≤ r∗(n,d). For these values of m we say that σm(SVd
n) is subabundant.

Therefore, in order to prove that a Segre–Veronese variety SVd
n is never defective,

it is enough to prove non-defectiveness at the critical values.

The Horace method is an inductive approach that goes back to Castelnuovo and
was improved by Alexander and Hirschowitz, leading to the classification of defec-
tive Veronese varieties. This is a degeneration technique to study the dimension of
complete linear systems of divisors with base points in general position with some
multiplicities. We refer to [BCC+18, Section 2.2] for a detailed presentation of the
method and its extensions. For the purpose of the present paper, we will employ
the Horace method in the following formulation.

Theorem 2.3 ([AB13, Theorem 1.1]). Let n,d ∈ Nk be such that d1 ≥ 3 and let
r ∈ N. Let

sr = sr(n,d) =

⌊
(|n|+ 1)r −Nn,d(1)

|n|

⌋
and

εr = εr(n,d) = (|n|+ 1)r −Nn,d(1) − |n|sr(n,d).
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If all the following conditions are satisfied:

(1) SVd
n(1) is not sr-defective;

(2) SVd(1)
n is not (r − sr)-defective and sr ≥ εr;

(3) SVd(2)
n is not (r − sr − εr)-defective and (r − sr − εr)(|n|+ 1) ≥ Nn,d(2);

then SVd
n is not r-defective.

Remark 2.4. The numerical assumption in condition (2) guarantees that

σr−sr(SV
d(1)
n ) is a subabundant case. On the contrary, the numerical condition

(3) implies that σr−sr−εr(SV
d(2)
n ) is a superabundant case.

While it may be difficult to prove that a variety is not defective, in the literature,
several varieties have been proven to not be m-defective when m is sufficiently
far from the critical ones. One example is [BC23], where Taveira Blomenhofer
and Casarotti generalize a result by Ådlandsvik [Åd88] and prove non-defectivity
for varieties that are invariant under the action of a group G and contained in
irreducible G-module. The precise statement that we need in the case of Segre–
Veronese varieties is as follows.

Theorem 2.5 ([BC23, Theorem 4.8]). Let n,d ∈ Nk. If m ≤ r∗(n,d)− |n| − 1 or

m ≥ r∗(n,d) + |n|+ 1, then SVd
n is not m-defective.

3. Proof of Theorem 1.1

We prove Theorem 1.1 by induction on the number k of factors, on the dimension
n1, and on the degree d1. First we give the necessary results to deal with the base
case for n1 = 1 and two base cases for d1 ∈ {3, 4}.

We recall the following result by Ballico.

Theorem 3.1 ([Bal23, Theorem 2]). Let X ⊂ PN be an irreducible non-degenerate
variety with dim(X) ≥ 3. Let

r =

⌊
N + 1

dim(X)

⌋
,

and assume that X is not r-defective. Let d ≥ 2 and consider Y = P1×X embedded
in P(d+1)(N+1)−1 by the line bundle OP1(d)⊗OX(1). If N + 1 > dim(X)2, then Y
is not defective.

By applying this theorem, we prove a technical result that will be useful in the
proof of Theorem 1.1.

Corollary 3.2. Let k ≥ 2. Let n′ = (n2, n3, . . . , nk) and d′ = (d2, d3, . . . , dk) �
3k−1 be (k− 1)-tuples of positive integers. If SVd′

n′ is not defective and d1 ≥ 2, then

SV
(d1,d

′)
(1,n′) is never defective.

Proof. We start by proving that

k∏
i=2

(
ni + di

ni

)
> (n2 + n3 + · · ·+ nk)

2.(3.1)

The left-hand side is increasing with respect to d2, d3, . . . , dk, so it is enough to
prove (3.1) for d = 3k−1. On the left-hand side n2

i appears with coefficient 1, while
ninj (i 
= j) appears with coefficient 112/62 > 2.
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If k = 2 and n2 = n3 = 1, then SV
(d1,d2,d3)
(1,1,1) is not defective by [LP13, Theorem

3.1]. In any other cases, we have n2+n3+ · · ·+nk ≥ 3, so we can apply Proposition

3.1 to the variety X = SVd′

n′ , which is not defective by hypothesis. �

In Theorem 2.3, there are no assumptions about the order of all the di and ni. Up
to permuting the factors, it is not restrictive to suppose that n1 ≤ n2 ≤ · · · ≤ nk.
This is crucial for some of our numerical computations.

Now we deal with the case d1 = 3. In order to make our arguments easier to
read, we postpone some of the arithmetic computations to Appendix A.

Proposition 3.3. Let k ≥ 2 and let n′ = (n2 ≤ n3 ≤ · · · ≤ nk) and d′ =

(d2, d3, . . . , dk) � 3k−1 be (k−1)-tuples of positive integers. If SVd′

n′ is not defective

and n1 is a positive integer, then SV
(3,d′)
(n1,n′) is not defective.

Proof. We argue by induction on n1. The initial case n1 = 1 is Lemma 3.2. For n1 ≥
2, we prove that SVd

n is not r-defective for the critical values r ∈ {r∗(n,d), r∗(n,d)}
by applying Theorem 2.3. We check all conditions:

(1) SVd
n(1) is not defective by our inductive hypothesis on n1.

(2) By Lemma A.1, r − sr ≤ r∗(n,d(1)) − |n| − 1, so SVd(1)
n is not (r − sr)-

defective by Theorem 2.5. The numerical condition of Theorem 2.3(2) is
Lemma A.2.

(3) By Lemma A.3, r−sr−εr ≥ r∗(n,d(2))+|n|+1, so SVd(2)
n is not (r−sr−εr)-

defective by Theorem 2.5. The numerical condition of Theorem 2.3(3) also

follows from Theorem A.3, because r∗(n,d(2)) + |n|+ 1 ≥ Nn,d(2)

|n|+1 . �

Next, we consider the case d1 = 4. The proof is very similar to the previous one.
The only difference is that we apply Proposition 3.3 to check the second condition
in Theorem 2.3.

Proposition 3.4. Let k ≥ 2 and let n′ = (n2 ≤ n3 ≤ · · · ≤ nk) and d′ =

(d2, d3, . . . , dk) � 3k−1 be (k−1)-tuples of positive integers. If SVd′

n′ is not defective

and n1 is a positive integer, then SV
(4,d′)
(n1,n′) is not defective.

Proof. We argue by induction on n1. The initial case n1 = 1 is Lemma 3.2. For
n1 ≥ 2, we prove that SVd

n is not r-defective for r ∈ {r∗(n,d), r∗(n,d)} by applying
Theorem 2.3. We check all conditions:

(1) SVd
n(1) is not defective by the inductive hypothesis.

(2) SVd(1)
n is not defective by Proposition 3.3. The numerical condition of

Theorem 2.3(2) is Lemma A.2.

(3) By Lemma A.3, we have r − sr − εr ≥ r∗(n,d(2)) + |n| + 1, so SVd(2)
n

is not (r − sr − εr)-defective by Theorem 2.5. The numerical condition of
Theorem 2.3(3) also follows from Lemma A.3, because r∗(n,d(2))+|n|+1 ≥
Nn,d(2)

|n|+1 . �

Proof of Theorem 1.1. As we pointed out, without loss of generality, we may
assume that n1 ≤ n2 ≤ · · · ≤ nk. We argue by induction on k ≥ 2. The base case
k = 2 is [GO22, Theorem 1.2]. We assume that k ≥ 3 and that SVd2,...,dk

n2,...,nk
is not

defective, and we prove that SVd
n is not defective. We proceed by one-step induction

on n1 and by two-step induction on d1. The base case n1 = 1 is a consequence
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of Lemma 3.2, while the base cases d1 ∈ {3, 4} follow from Propositions 3.3 and

3.4. Now we suppose that n1 ≥ 2, d1 ≥ 5 and that SVd
n(1), SV

d(1)
n and SVd(2)

n

are not defective. Thanks to Theorem 2.3, in order to conclude Theorem 1.1, it is
enough to show that the two numerical conditions hold. The numerical condition of
Theorem 2.3(2) is Lemma A.2. The numerical condition of Theorem 2.3(3) follows

from Lemma A.3, because r∗(n,d(2)) + |n|+ 1 ≥ Nn,d(2)

|n|+1 . �

4. The splitting lemma and proof of Theorem 1.2

Let V and W be k-vector spaces with dimV = n0 + 1 and dimW = α+ 1. Let
X ⊆ PW be a non-degenerate algebraic variety and let Y = PV ×X ⊂ P(V ⊗W )
be the Segre product. In this section we describe an inductive method useful to
derive non-defectivity of Y from the non-defectivity of X. Using this method, we
prove Theorem 1.2.

Let T̂pY denote the affine cone over the tangent space to Y at p. It is immediate

to observe that if p = [v ⊗ w] ∈ Y , then T̂pY = V ⊗ w + v ⊗ T̂[w]X.

Proposition 4.1 (Segre induction). Let

a∗ =

⌊
α+ 1

n0 + dimX + 1

⌋
and a∗ =

⌈
α+ 1

n0 + dimX + 1

⌉
.

Suppose that X is neither a∗-defective nor a∗-defective. If m ≤ (n0 + 1)a∗ or
m ≥ (n0 + 1)a∗, then Y is not m-defective.

By combining Proposition 4.1 and Theorem 1.1, we immediately deduce Theo-
rem 1.2. The rest of this section is devoted to proving Proposition 4.1. We will
employ the so-called splitting lemma, which is a variation of the inductive approach
successfully employed in studying secant varieties of various classically known va-
rieties such as Segre varieties [BCS13, AOP09] and Segre–Veronese varieties with
two factors embedded in bi-degree (1, 2) [AB09]. The splitting lemma is based on
the classical Terracini’s lemma.

Lemma 4.2 (Terracini’s lemma, [Ter11]). Let Z ⊂ PN be an algebraic variety. Let
p1, . . . , pm ∈ Z be generic and let q ∈ 〈p1, . . . , pm〉 be generic. Then

T̂qσm(Z) =
m∑
i=1

T̂pi
Z.

Notation 4.3. Fixed X and Y as above, we set x = dimX and we denote by
T (n0, s, t) the following property:

For generic p1, . . . , pm, q1, . . . , qt ∈ Y , with pi = [vi ⊗ wi] and qi =
[v′i ⊗ w′

i],

dim

(
m∑
i=1

T̂pi
Y +

t∑
i=1

V ⊗ w′
i

)
= min{(n0 + 1)(α+ 1),m (n0 + x+ 1) + t (n0 + 1)}.

Moreover, analogously to the terminology introduced in Section 2, we say that the
triple (n0,m, t) is subabundant if m(n0+x+1)+ t(n0+1) ≤ (n0+1)(α+1); while
we say that it is superabundant if m(n0 + x+ 1) + t(n0 + 1) ≥ (n0 + 1)(α+ 1).

Remark 4.4. By Terracini’s lemma, the property T (n0,m, 0) is equivalent to saying
that Y is not m-defective. For example, Remark 2.2 can be rephrased as follows:
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• T (n0,m, 0) implies T (n0,m
′, 0) for every m′ ≤ m whenever (n0,m, 0) is

subabundant;
• T (n0,m, 0) implies T (n0,m

′, 0) for every m′ ≥ m whenever (n0,m, 0) is
superabundant.

Lemma 4.5 (Splitting lemma). Let m′∈{0, 1, . . . ,m} and let n′∈{0, 1, . . . , n0−1}.
(1) If (n′,m′, t+m−m′) and (n0−n′−1,m−m′, t+m′) are both subabundant

(resp., superabundant), then (n0,m, t) is subabundant (resp., superaban-
dant).

(2) If T (n′,m′, t +m −m′) and T (n0 − n′ − 1,m −m′, t +m′) are both true,
then T (n0,m, t) is true.

Proof. For (1), if (n′,m′, t+m−m′) and (n0−n′−1,m−m′, t+m′) are subabundant,
then

m(n0 + x+ 1) + t(n0 + 1) = m′(n′ + x+ 1) + (t+m−m′)(n′ + 1)

+ (m−m′)(n0 − n′ + x) + (t+m′)(n0 − n′)

≤ (n′ + 1)(α+ 1) + (n0 − n′)(α+ 1)

= (n0 + 1)(α+ 1),

and hence (n0,m, t) is subabundant. An analogous proof holds for the superabun-
dant case.

For (2), by semicontinuity, in order to prove T (n0, s, t) it is enough to prove that
the property holds for a special choice of the points. Let V1 be of dimension (n′+1)
and let V2 be a subspace of V such that V = V1⊕V2. Let Yi = PVi×X be the Segre
product in P(Vi ⊗W ) for i = 1, 2. If we specialize all the pi such that v1, . . . , vm′

are generic in V1 and vm′+1, . . . , vm are generic in V2, then

T̂pi
Y = (V1 ⊕ V2)⊗ wi + vi ⊗ T̂[wi]X

=

{
T̂pi

Y1 + V2 ⊗ wi for each i ∈ {1, 2, . . . ,m′},
T̂pi

Y2 + V1 ⊗ wi for each i ∈ {s′ + 1, . . . ,m}.

Thus,
∑m

i=1 T̂pi
Y +

∑t
i=1 V ⊗ w′

i is the direct sum⎛⎝ m′∑
i=1

T̂pi
Y1 +

t∑
i=1

V1 ⊗ w′
i +

m∑
i=m′+1

V1 ⊗ wi

⎞⎠
⊕

⎛⎝ m∑
i=m′+1

T̂pi
Y2 +

t∑
i=1

V2 ⊗ w′
i +

m′∑
i=1

V2 ⊗ wi

⎞⎠ .

By the assumption that both T (n′,m′, t+m−m′) and T (n0−n′−1,m−m′, t+m′)
hold, we have that both summands have the expected dimensions and then also
T (n0,m, t) holds. �
Proof of Proposition 4.1. By Remark 4.4, it is enough to show that

(1) (n0, (n0 + 1) a∗, 0) is subabundant and T (n0, (n0 + 1) a∗, 0) is true;
(2) (n0, (n0 + 1) a∗, 0) is superabundant and T (n0, (n0 + 1) a∗, 0) is true.

We only prove the first statement because the proof of (2) is similar.
Note that (0, a∗, n0a∗) is subabundant by the definition of a∗. Moreover, since

T (0, a∗, 0) is true by the assumption of non-defectivity of X and adding generic
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points always imposes the expected number of conditions, T (0, a∗, n0a∗) is true.
Thus, by Lemma 4.5, it is enough to prove that (n0 − 1, n0a∗, a∗) is subabundant
and T (n0 − 1, n0a∗, a∗) is true.

In order to prove this, we show that (n0 − i, (n0 − i+ 1)a∗, ia∗) is subabundant
and T (n0 − i, (n0 − i + 1)a∗, ia∗) is true for all i ∈ {1, 2, . . . , n0}. We proceed by
backward induction on i. The case i = n0 is true, as commented above. If we
assume that (n0 − i, (n0 − i + 1)a∗, ia∗) is subabundant for any i ∈ {1, 2, . . . , n0}
and T (n0 − i, (n0 − i + 1)a∗, ia∗) is true, then it follows from Lemma 4.5 that
(n0− (i−1), (n0− (i−1)+1)a∗, (i−1)a∗) is subabundant and T (n0− (i−1), (n0−
(i− 1) + 1)a∗, (i− 1)a∗) holds. In particular, it holds for i = 1. �

Remark 4.6. Recall that (n0, (n0+1) a∗, 0) is subabundant and that (n0, (n0+1) a
∗, 0)

is superabundant. Furthermore,

(n0 + 1) a∗ − (n0 + 1) a∗ = (n0 + 1)(a∗ − a∗) ≤ n0 + 1.

Thus, (n0+1) a∗ is the greatest multiple of n0+1 which is smaller than or equal to

 (n0+1)(α+1)
n0+dimX+1�, while (n0+1) a∗ is the least multiple of n0 +1 which is greater than

or equal to � (n0+1)(α+1)
n0+dimX+1�. Observe that the gap between the thresholds is 2|n|+ 2

in Theorem 2.5, while it is n0 + 1 in Theorem 1.2.

Remark 4.7. If X is a dth Veronese embedding of Pn1 with n1, d ≥ 5, then the
Alexander-Hirschowitz Theorem implies that σa∗(X) and σa∗(X) have the expected
dimensions. By Proposition 4.1, if m ≤ (n0+1) a∗ or m ≥ (n0+1) a∗, then σm(Y )
has the expected dimension. This gives an alternative proof to almost all cases of
[BCC11, Corollary 2.2], and it extends it to any number of factors.

Appendix A. Numerical computations

In this section, we prove the numerical conditions needed in the main proofs.
Let k ≥ 3, let n = (n1 ≤ n2 ≤ · · · ≤ nk), and let d � 3k be k-tuples of positive
integers such that n1 ≥ 2. As in Theorem 2.3, we write sr and εr for sr(n,d) and
εr(n,d), respectively.

Lemma A.1. If r ∈ {r∗(n,d), r∗(n,d)}, then r − sr ≤ r∗(n,d(1))− |n| − 1.

Proof. We prove that r − sr − r∗(n,d(1)) + |n| + 1 ≤ 0. By the definitions of sr
and r∗(n,d(1)), and by the fact that −a

b � ≤ −a−b+1
b , it suffices to show that

r −
(|n|+ 1)r −Nn,d(1) − (|n| − 1)

|n| −
Nn,d(1) − |n|

|n|+ 1
+ |n|+ 1 ≤ 0.

Clearing the denominators, one gets

−(|n|+ 1)r +Nn,d(1) + |n|3 + 4|n|2 + |n| − 1 ≤ 0.

Recall that r ≥ r∗(n,d). So, again by −a
b � ≤ −a−b+1

b , it is enough to show that

(A.1) −Nn,d +Nn,d(1) + |n|3 + 4|n|2 + 2|n| − 1 ≤ 0.

Since

−Nn,d +Nn,d(1) = −
(
n1 + d1 − 1

d1

) k∏
i=2

(
ni + di

di

)
is decreasing with respect to d1, d2, . . . , dk, it is enough to prove (A.1) for d = 3k.
We do it by induction on k.
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Base case: we prove (A.1) for d = (3, 3, 3). Since n1 ≤ n2 ≤ n3, it is enough to
prove that

(A.2) −
(
n1 + 2

3

)(
n1 + 3

3

)(
n3 + 3

3

)
+(n1+2n3)

3+4(n1+2n3)
2+2(n1+2n3)−1 ≤ 0.

As a univariate polynomial in Q[n1][n3], the left-hand side is equal to(
− 1

216
n6
1 −

1

24
n5
1 −

31

216
n4
1 −

17

72
n3
1 −

5

27
n2
1 −

1

18
n1 + 8

)
n3
3

+

(
− 1

36
n6
1 −

1

4
n5
1 −

31

36
n4
1 −

17

12
n3
1 −

10

9
n2
1 +

35

3
n1 + 16

)
n2
3

+

(
− 11

216
n6
1 −

11

24
n5
1 −

341

216
n4
1 −

187

72
n3
1 +

107

27
n2
1 +

277

18
n1 + 4

)
n3

− 1

36
n6
1 −

1

4
n5
1 −

31

36
n4
1 −

5

12
n3
1 +

26

9
n2
1 +

5

3
n1 − 1.

It is immediate that all coefficients are negative for n1 ≥ 3, allowing us to conclude
that (A.2), and hence (A.1), holds for d = (3, 3, 3) and n1 ≥ 3.

We are left with the case n1 = 2, for which (A.2) does not hold for n3 � 0.
Therefore, we prove directly (A.1) by substituting n1 = 2, i.e., we consider

(A.3) −4

(
n2 + 3

3

)(
n3 + 3

3

)
+(2+n2+n3)

3+4(2+n2+n3)
2+2(2+n2+n3)−1 ≤ 0.

As a univariate polynomial in Q[n2][n3], the left-hand side is equal to(
−1

9
n3
2 −

2

3
n2
2 −

11

9
n2 +

1

3

)
n3
3 +

(
−2

3
n3
2 − 4n2

2 −
13

3
n2 + 6

)
n2
3

+

(
−11

9
n3
2 −

13

3
n2
2 +

59

9
n2 +

68

3

)
n3 +

1

3
n3
2 + 6n2

2 +
68

3
n2 + 23

For n2 ≥ 2 the first and the second coefficients are negative and the fourth is
positive, so, independently on the sign of the third one, there is only one change of
sign in the coefficients. Hence, by Descartes’ rule of signs, it has only one positive
real root. In order to show that (A.3) holds for every n3 ≥ 2, it is enough to show
that such a polynomial is negative for n3 = 2. For n3 = 2 it becomes

−17

3
n2

3 − 24n2
2 +

26

3
n2 + 95 ≤ 0.

Hence (A.1) holds for d = (3, 3, 3) and n1 = 2.
Inductive step: we prove (A.1) for d = 3k and k ≥ 4. Let n′ = (n1, n2, . . . , nk−1).

By inductive assumption

−
(
n1 + 2

3

) k−1∏
i=2

(
ni + 3

3

)(
nk + 3

3

)
+ (|n|3 + 4|n|2 + 2|n| − 1)

≤ −
(
nk + 3

3

)
(|n′|3 + 4|n′|2 + 2|n′| − 1) + (|n|3 + 4|n|2 + 2|n| − 1).



NON-DEFECTIVITY OF SEGRE–VERONESE VARIETIES 599

We express this as univariate polynomial in Q[|n′|][nk]:(
−1

6
|n′|3 − 2

3
|n′|2 − 1

3
|n′|+ 7

6

)
n3
k

+
(
−|n′|3 − 4 |n′|2 + |n′|+ 5

)
n2
k

+

(
−11

6
|n′|3 − 13

3
|n′|2 + 13

3
|n′|+ 23

6

)
nk.

Since 2 ≤ n1 ≤ n2 ≤ · · · ≤ nk−1 and k ≥ 4, we have |n′| ≥ 6. Under this condition,
all coefficients of this polynomial are negative, and hence (A.1) also holds for d = 3k

for any k ≥ 4. �

Lemma A.2. If r ∈ {r∗(n,d), r∗(n,d)}, then sr ≥ εr.

Proof. Note that

sr − εr = sr − (|n|+ 1)r +Nn,d(1) + |n|sr
= (|n|+ 1)(sr − r) +Nn,d(1)

≥ (|n|+ 1)(−r∗(n,d(1)) + |n|+ 1) +Nn,d(1)

≥ (|n|+ 1)

(
−
Nn,d(1)

|n|+ 1
+ |n|+ 1

)
+Nn,d(1)

= (|n|+ 1)2,

where the first inequality follows from Lemma A.1 and the second one follows from
the definition of r∗. �

Lemma A.3. If r ∈ {r∗(n,d), r∗(n,d)}, then r∗(n,d(2)) + |n|+ 1 ≤ r − sr − εr.

Proof. By definition, εr ≤ |n| − 1. So r− sr − εr − r∗(n,d(2))− |n| − 1 ≥ r− sr −
r∗(n,d(2)) − 2|n|. We prove that the latter is greater than equal to zero. By the
definition of sr

r − sr − r∗(n,d(2))− 2|n| ≥ r −
(|n|+ 1)r −Nn,d(1)

|n| − r∗(n,d(2))− 2|n|.

Clear the denominator. It suffices to show that

−r +Nn,d(1) − |n|r∗(n,d(2))− 2|n|2 ≥ 0.

Since r ≤ r∗(n,d), we obtain

− r +Nn,d(1) − |n|r∗(n,d(2))− 2|n|2

≥ −
⌈

Nn,d

|n|+ 1

⌉
+Nn,d(1) − |n|

⌈
Nn,d(2)

|n|+ 1

⌉
− 2|n|2

≥ −Nn,d + |n|
|n|+ 1

+Nn,d(1) − |n|
Nn,d(2) + |n|

|n|+ 1
− 2|n|2.

Clearing the denominator, we are left to prove that

(A.4) −Nn,d + (|n|+ 1)Nn,d(1) − |n|Nn,d(2) − |n|(|n|+ 1)(2|n|+ 1) ≥ 0.
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Observe that

−Nn,d + (|n|+ 1)Nn,d(1) − |n|Nn,d(2)

=
(n1 + d1 − 2)!

(n1 − 1)!d1!

k∏
i=2

(
ni + di

ni

)
(|n|d1 − n1 − d1 + 1) .

The left-hand side of (A.4) is increasing when all the di are positive and increasing.
Therefore, it is enough to prove (A.4) for d = 3k. We do it by induction on k.

Base case: we prove (A.4) for d = (3, 3, 3). We employ the fact that n1 ≤ n2 ≤ n3

to deduce that the left-hand side of (A.4) for d = (3, 3, 3) is greater than or equal
to

1

3

(
n1 + 1

2

)(
n1 + 3

3

)(
n3 + 3

3

)
(5n1 + 3n3 − 2)

− (n1 + 2n3)(n1 + 2n3 + 1)(2n1 + 4n3 + 1)

=

(
1

72
n5
1 +

7

72
n4
1 +

17

72
n3
1 +

17

72
n2
1 +

1

12
n1

)
n4
3

+

(
5

216
n6
1 +

17

72
n5
1 +

197

216
n4
1 +

119

72
n3
1 +

151

108
n2
1 +

4

9
n1 − 16

)
n3
3

+

(
5

36
n6
1 +

77

72
n5
1 +

73

24
n4
1 +

289

72
n3
1 +

179

72
n2
1 −

281

12
n1 − 12

)
n2
3

+

(
55

216
n6
1 +

127

72
n5
1 +

907

216
n4
1 +

289

72
n3
1 −

1 165

108
n2
1 −

109

9
n1 − 2

)
n3

+
5

36
n6
1 +

11

12
n5
1 +

71

36
n4
1 −

7

12
n3
1 −

28

9
n2
1 −

4

3
n1.

Regarding it as a univariate polynomial inQ[n1][n3], we observe that each coefficient
is positive under our assumption that n1 ≥ 2. Hence, (A.4) holds for d = (3, 3, 3).

Inductive step: we prove (A.4) for d = 3k with k ≥ 4. Let n′=(n1, n2, . . . , nk−1).
By inductive assumption and by replacing |n| = |n′|+ nk, we have

1

3

(
n1 + 1

2

) k∏
i=2

(
ni + 3

ni

)
(3|n| − n1 − 2)− |n|(|n|+ 1)(2|n|+ 1)

≥
(
nk + 3

3

)
· 1
3

(
n1 + 1

2

) k−1∏
i=2

(
ni + 3

ni

)
(3|n′| − n1 − 2)− |n|(|n|+ 1)(2|n|+ 1)

≥
(
nk + 3

nk

)
|n′|(|n′|+ 1)(2|n′|+ 1)− (|n′|+ nk)(|n′|+ nk + 1)(2|n′|+ 2nk + 1).

We express this latter polynomial as a univariate polynomial in Q[|n′|][nk]:(
1

3
|n′|3 + 1

2
|n′|2 + 1

6
|n′| − 2

)
n3
k

+
(
2 |n′|3 + 3 |n′|2 − 5 |n′| − 3

)
n2
k

+

(
11

3
|n′|3 − 1

2
|n′|2 − 25

6
|n′| − 1

)
nk.
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Since 2 ≤ n1 ≤ n2 ≤ · · · ≤ nk−1 and k ≥ 4, we have |n′| ≥ 6. Under this condition,
all coefficients of the latter polynomial are positive, and hence (A.4) also holds for
d = 3k for any k ≥ 4. �
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