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ABSTRACT
Porous materials are playing an increasingly relevant 
role in several fields and industrial sectors with struc-
tural and functional applications. Their properties 
critically depend on the relative density and pore 
morphology thus it is of great importance monitoring 
the variations of such structural features. Among the 
experimental techniques commonly used for investi-
gating the microstructure evolution of porous mate-
rials, Mechanical Spectroscopy (MS) provides damping 
and dynamic modulus of the material during heat 
treatments. In this work three cases of possible pore 
structure evolution in different metallic alloys have 
been examined by MS: (i) growth and coalescence 
of pores, (ii) closure of pores of nanometric size and 
(iii) no change of porosity.
The results show how dynamic modulus measure-
ments can be successfully employed for a direct 
monitoring of porosity variations during heating. The 
technique is quite sensitive and allows to identify the 
temperature range where pore evolution takes place 
providing information useful to orientate heat treat-
ments of porous materials.
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1.  Introduction

Thanks to their unique combination of properties, porous materials 
(metals, ceramics and polymers) are playing an increasingly relevant role 
in several fields and industrial sectors including aerospace, chemical, 
energy, electronics, transportation and biomedical (Michailidis, Tsouknidas, 
Lefebvre, Hipke, & Kanetake, 2014), with structural and functional 
(Vijayan, Anna Dilfi, & Venkatachalapathy, 2022) applications. Therefore, 
they have received a great deal of technological and scientific attention 
mainly focused on the development of novel fabrication methods to 
control the pore structure from nano- to macro-scale (Dukhan, Chen-
Wiegart, Paz y Puente, Erdeniz, & Dunand, 2020; Yang et  al., 2017) and 
consequently their physico-chemical properties (e.g. see Bennett, Coudert, 
James, & Cooper, 2021; Nakajima, 2007; Sousa et  al., 2023; Suzuki, 
Kosugi, Takata, & Kobashi, 2020). Recently, Additive Manufacturing (AM) 
has been also used to manufacture porous and lattice materials with 
various architectures (Jafari et  al., 2020).

Mechanical and other properties of these materials are strongly affected 
by relative density, shape, strut thickness, size, and size distribution of 
pores, and significant changes may be induced by heat treatments, pres-
sure, etc. thus it is of the utmost importance monitoring the variations 
of such structural features. The porosity can change in different ways: 
both closure of pores or growth of pores can be observed depending on 
the presence of gas, diffusive atomic motions, pressure and other factors.

There are a lot of experimental methods, both destructive and not 
destructive, commonly used for characterising porous and cellular materials: 
porosimetry, X-ray radiography and tomography, measurements of Eddy-
current, acoustic response, electrical and thermal conductivity, analysis of 
images collected from light and electron microscopy and others (Banhart, 
2001; Michailidis, Stergioudi, Omar, Papadopoulos, & Tsipas, 2011). Among 
them, Mechanical Spectroscopy (MS) provides damping and dynamic mod-
ulus under different conditions of temperature or strain.

Principles and applications of MS can be found in the book of Nowick 
and Berry (1972) while a literature data collection is reported in that of 
Blanter, Golovin, Neuhäuser, and Sinning (2007). MS is commonly 
employed for investigating physical phenomena occurring in materials 
but has been also used by present authors to study different problems 
of industrial interest, such as: (i) interstitial-substitutional atom interac-
tions in martensitic steels for structural applications in future nuclear 
fusion reactors (Alberici, Montanari, & Tata, 2000; Bolli et  al., 2020; 
Gondi & Montanari, 1992, 1994; Gupta, Gondi, Montanari, Principi, & 
Tata, 1997), (ii) irreversible transformations occurring in FeAl B2-ordered 
alloy obtained by melt spinning (Bonetti, Montanari, Testani, & Valdré, 
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2000), (iii) damping of Ti6Al4V + SiCf composite (Amadori et  al., 2009; 
Deodati, Donnini, Montanari, & Testani, 2009) and superalloys for aero-
nautic applications (Deodati, Donnini, et  al., 2009), (iv) precursor phe-
nomena of melting in alloys (Montanari & Varone, 2012) and pure metals 
(Montanari & Varone, 2015), (v) mechanical behaviour of Oxide 
Dispersion Strengthened (ODS) steels (Fava, Montanari, Richetta, Testani, 
& Varone, 2018), and (vi) anelastic behaviour of Al thin foils for MEMS 
applications (Bonetti, Cabibbo, Campari, & Montanari, 2021; Campari, 
Amadori, Bonetti, Berti, & Montanari, 2019).

Relationships between elastic modulus and density found in literature 
are quite various. In addition to some empirical equations, there are a 
lot of analytic treatments where pores are modelled by using different 
geometrical shapes such as cylinders (Eudier, 1962), rectangular paral-
lelepipeds (Bocchini, Montanari, & Varone, 2013), 3D arrangement of 
connected beams (Gibson & Ashby, 1989) and spheroids (e.g. see 
Boccaccini, Ondracek, Mazilu, & Windelberg, 1993; Chen, Wang, Giuliani, 
& Atkinson, 2015; Kovačik, 1999; Manoylov, Borodich, & Evans, 2013; 
Pabst & Gregorová, 2014; Torquato, 2002). Indeed, today a general theory 
of pore shape effects is out of sight, even if some structures can be 
treated analytically. The matter has been already extensively discussed in 
Richetta and Varone (2020).

This work discusses the possibility to use MS to get a direct moni-
toring of the porosity change following heat treatments. In particular, 
dynamic modulus, that is strictly connected to the density of the material, 
allows to detect with high sensitivity possible variations of the pore 
structure. To illustrate the application of the technique, three typical 
cases of different materials have been examined:

i.	 growth and coalescence of pores in the nanostructured Fe-1.5 wt.% 
Mo alloy prepared by Spark Plasma Sintering (SPS),

ii.	 closure of pores of nanometric size in AlSi10Mg alloy manufac-
tured by Laser Powder Bed Fusion (L-PBF),

iii.	 no change of porosity in the Ti6Al4V alloy manufactured by 
L-PBF.

The selected cases have been chosen because they are considered 
relevant and representative of different situations.

2.  Dynamic modulus measurements

The elastic modulus of a material depends on the strength of interatomic 
bonds that cannot be altered by the presence of pores, however dynamic 
modulus E measured in present experiments is the effective modulus.
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The tests were carried out by means of the automated vibrating reed 
analyzer (VRA 1604, CANTIL s.r.l, Bologna, Italy) described in detail in 
Amadori et  al. (2006). Bar-shaped probes (28 mm × 7 mm × 0.46 mm) 
were mounted in cantilever and excited by flexural vibrations. The mea-
surements were made in conditions of resonance with resonance fre-
quency f in the range of kHz, under a 10−6 mbar pressure and at a strain 
amplitude of ~10−6.

A single electrode was used to excite and reveal the probe vibrations. 
As shown in Figure 1, to excite the vibrations, the electrode is parallel 
to the probe and a periodic voltage is applied while for the detection a 
capacitive method is used. The experimental apparatus automatically 
identifies the response frequency and follows it while it changes, e.g. 
during heating. The tests were performed by increasing the temperature 
with a heating rate of 1°C/min.

Dynamic modulus E has been calculated from the resonance frequency 
f by means of the relationship:
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where ρ is the density of the material, m is a constant depending on 
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that becomes ≈ 1 if L/h > 20. In present tests the first vibration mode 
was used thus m = 1.875 while Ω = 1 because of the dimensions of probes 
(L/h ≅ 60).

In MS experiments porosity evolution involves a change of material 
density consisting in a volume change because the mass of the sample 
remains constant. In a sample without any porosity material density and 

Figure 1. S chematic view of the reed mounted in free-clamped mode and the 
electrod exciting the flexural vibrations.
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sample dimensions change due to thermal expansion during the heating 
part of a test run and modulus progressively decreases. The opposite 
occurs during the cooling part of the cycle. When a single test run has 
been completed the values of density, dimensions and modulus are the 
original ones. The behaviour of a porous material is the same if porosity 
does not change. If a change of porosity occurs at the end of the test 
run there are permanent variations of density, dimensions and modulus. 
In the case of a random distribution of pores the three dimensions of 
the sample vary uniformly.

3.  Results and discussion

3.1  Pore growth and coalescence in nanostructured Fe-1.5 wt.% Mo 
alloy prepared by SPS

The investigated material was the Fe-1.5 wt.% Mo alloy. It was prepared 
by SPS of powders treated by high energy ball milling to induce the 
nanostructure and then mixed with 1.5 wt.% of SiO2 powders (mean size 
~10 nm) to hinder grain growth. A DR.SINTER® SPS1050 (Sumitomo 
Coal & Mining, now SPS SyntexInc.) apparatus with graphite punches 
and die has been used for SPS process through the following steps: 
heating at 1.7°C/s up to 840°C by applying a pressure of 30 MPa, holding 
for 60 s and free cooling. More details are reported in Mitchell et al. (2008).

From the disks produced by SPS (diameter = 30 mm, height = 5 mm) 
were cut the reeds for MS tests. MS experiments consisted of successive 
test runs carried out on the same sample and each run was a heat-
ing-cooling cycle starting from room temperature (25°C) to 650°C. The 
measurements have been repeated on 15 different samples in the same 
experimental conditions.

Discs for Transmission Electron Microscopy (TEM) inspections were 
prepared by using a Precision Ion Polishishing System (PIPS) ion miller. 
Thin foils were mechanically ground to 100–120 μm, punched and dim-
pled down to a thickness ranging 30–35 μm. Ion milling was initially set 
to a voltage of 5 V and a tilt angle of 4°, followed by the final step at 
a tilt angle of 2° while the sample holder was chilled through liquid 
nitrogen. TEM inspections were carried out using a Philips™ CM200 
equipped with a double tilt specimen holder and images were recorded 
using a dedicated CCD camera.

Figure 2 shows the curves of dynamic modulus in the 1st and 2nd 
test runs on the same sample. Dynamic modulus values are normalized 
to E0, the modulus of the original material, determined from the initial 
resonance frequency (f0 = 1812 Hz) through Eq. (1).
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In the 1st test run dynamic modulus monotonically decreases but at 
~ 430°C exhibits a sudden slope change that is no more observed in 
successive test runs on the same sample. After the completion of the 1st 
test run dynamic modulus is ~ 3% lower than E0 and this change cor-
responds to an irreversible transformation.

TEM micrographs in Figure 3 show at the same magnification the 
microstructure of the Fe-1.5 wt.% Mo alloy before (a) and after the 1st 
MS test run (b). The as-prepared sample (Figure 3a) has nanometric 
grain size and homogeneously distributed nano-porosity. The size of the 
pores is few nanometers. After the test run the sample has undergone 
the heating-cooling cycle in the temperature range 25–650°C and its 
porosity has remarkably changed (Figure 3b). The average pore size has 
increased due to pore growth and coalescence, as clearly shown in 
Figure  3c, in particular by the detail displayed at higher magnification 
in Figure 3d. Here, a pore of large size is surrounded by smaller pores 
which are going to coalesce. Therefore, the decrease of ~ 3% of the 
dynamic modulus after the 1st test run can be explained by a decrease 
of density following pore growth and coalescence.

Moreover, the abrupt slope change of modulus observed at ~ 430°C 
suggests that growth and coalescence of the pores, which have a contin-
uous evolution, may give rise to crack formation. In fact, cracks are not 
visible by an external inspection of the samples also at high magnification. 
The as-prepared material is hard and brittle, and contains a lot of pores 
separated by metallic ligaments with thickness of the order of few nano-
meters thus small cracks can originate from the tearing of these thin 
ligaments during heating to accommodate internal stresses.

Figure 2.  Dynamic modulus curves vs. temperature in the 1st and 2nd test runs on 
the same sample. Dynamic modulus values are normalized to E0, the modulus of 
the original material, determined from the initial resonance frequency (f0 = 1812 Hz).
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Figure 3b shows pores very close and aligned along the same direc-
tion: the rupture of the struts between the pores can easily form nano-
metric cracks. Indeed, crack formation reduces the effective sample 
thickness h and, according to Eq. (1), leads to a sudden decrease of 
the resonance frequency f. In fact, such apparent change of the modulus 
reveals the formation and growth of cracks of very small size, not 
otherwise detectable with other experimental techniques. The phenom-
enon was always observed above 400°C even if there is a certain ran-
domness in terms of onset temperature and modulus variation in the 
different examined samples.

Figure 3. T EM micrographs of the sintered Fe-1.5 wt.% Mo alloy before (a) and 
after the 1st MS test run (b). The coalescence of some pores of small size is 
apparent in (c) and, in particular in the detail at higher magnification displayed 
in (d) showing a pore of large size is surrounded by smaller pores which are 
going to coalesce.
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3.2  Pore closure in AlSi10Mg alloy manufactured by L-PBF

Plates (30 mm × 70 mm × 2 mm) of AlSi10Mg alloy have been manu-
factured by L-PBF technology using an EOS M290 machine and EOS 
powders with particles size is in the range 25–70 µm. The powder bed 
had a layer thickness of 30 µm and was selectively melted in Ar atmo-
sphere with laser power of 370 W, scanning speed of 1300 mm/s and 
platform preheating at 80°C. The obtained density was 2.39 ± 0.03 g/cm3, 
namely ~ 90% of that of the bulk alloy. The microstructure of the mate-
rial is described in detail in Giovagnoli et  al. (2021) and Cabibbo, 
Montanari, Pola, Tocci, and Varone (2022). The rapid solidification, about 
107°C/s (Hooper, 2018), typical of this process leads to an extra-fine 
structure of Al cells surrounded by a network of Si particles. The Al 
phase exhibits networks of entangled dislocations which contribute to 
the high strength of the material in as-built condition. A drawback is 
represented by the porosity, consisting of micro-metric pores with irreg-
ular shape and spherical pores of nanometric size (Cabibbo et  al., 2022). 
Given that the AlSi10Mg alloy is often used in automotive and aerospace 
industry also for high temperature applications, it is important to char-
acterize its microstructure as a function of temperature for enhancing 
its use for high-temperature applications.

The reeds for MS experiments have been cut from the plates and 
tested without preliminary heat treatments. Successive test runs were 
carried out on the same sample. The measurements have been repeated 
on 15 different samples in the same experimental conditions and the 
results are highly reproducible with a substantial overlapping of the curves 
obtained in different experiments.

Figure 4 displays the anomalous trend of dynamic modulus in the 1st 
test run. Dynamic modulus is normalized to the value measured at room 
temperature in the 1st test run. Modulus vs. temperature curve is expected 
to have a monotonic decreasing trend owing to anharmonicity effect, 
however it starts to increase at ~ 170°C (point S), a maximum is observed 
at ~ 210°C (point F), then it decreases again. This behaviour is no more 
observed in the successive test runs and after the 1st run the modulus 
results to be increased of about 7% while the density of the material 
passes from 2.39 g/cm3 (as-printed material) to 2.52 g/cm3. In the suc-
cessive test runs the density substantially does not change.

A similar modulus behaviour was previously observed by us investigating 
a completely different material, namely sintered tungsten for applications 
as plasma facing material in future nuclear fusion reactors (Deodati, 
Donnini, Montanari, & Ucciardello, 2012). In that case the anomalous 
modulus trend was also accompanied by density increase due to the closure 
of sintering pores. To assess whether similar phenomena had the same 
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origin, the AlSi10Mg alloy has been examined by high-resolution Field 
Emission Scanning Electron Microscopy (FE-SEM) observations (ZeissTM 
Supra-40® field-emission gun scanning electron microscope) after conven-
tional metallographic preparation, namely mechanical polishing and etching 
with Keller reagent at room temperature for 20–30 s.

Figure 5 shows the structure of the alloy in as-printed condition (a) 
and after heating up to 210°C (point F in Figure 4). In these MS exper-
iments the 1st run was interrupted when the samples reached the tem-
perature corresponding to the anomaly finish and immediately cooled 
down to avoid that the heating at higher temperature can modify the 
microstructure and, in particular, the porosity.

Figure 4.  Dynamic modulus E vs. temperature of the AlSi10Mg alloy manufactured 
by L-PBF measured in two successive test runs. The values of E are normalized to 
the value E0 measured at room temperature in the 1st test run. Arrows indicate the 
temperature range where anomalous modulus behaviour starts (S) and finishes (F).

Figure 5. F E-SEM micrographs of as-printed AlSi10Mg alloy before (a) and after a 
MS test run with heating up to 210°C (b).
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The FE-SEM micrographs at high magnification show relevant differ-
ences of porosity before (a) and after (b) the heating up to 210°C, namely 
the nano-pores present in the as-printed alloy disappear after heating. 
This is a clear evidence that the modulus anomaly is due to a densifi-
cation process of the alloy that takes place in the temperature range 
170–210°C involving the closure of the smallest pores, of nanometric 
size. It is noteworthy that the pores of micro-metric size are still present 
in the heated samples, most likely owing to oxidation of internal pore 
surfaces or presence of gas inside the pores.

3.3  No change of porosity in the Ti6Al4V alloy manufactured  
by L-PBF

Ti6Al4V alloy was manufactured by L-PBF by using the same process 
parameters used for Al10SiMg and described in the previous section. 
Unmolten powder particles have been observed on the surface of the 
samples (see Figure 6) thus it has been mechanically polished before the 
MS tests. Porosity consists of some pores of large size, of the order of 
40–50 μm, such that displayed by Figure 6.

MS tests were performed by varying the temperature from room 
temperature (25°C) up to 820°C. As shown in Figure 7, in this tempera-
ture range dynamic modulus does not exhibit the anomalous behaviour 
observed in the case of AlSi10Mg: it monotonically decreases as tem-
perature increases (there are only large pores). On the other hand, 
FE-SEM observations do not show significant porosity variations after 
MS test runs.

Figure 6. T i6Al4V alloy manufactured by L-PBF exhibits few pores of large size 
(~40 μm).
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4.  Conclusions

In this work three cases of possible pore structure evolution in different 
metallic alloys have been examined: (i) growth and coalescence of pores, 
(ii) closure of pores of nanometric size and (iii) no change of porosity.

The results of these experiments highlight how dynamic modulus 
measurements can be successfully employed for a direct monitoring of 
porosity variations during heating. The technique is quite sensitive and 
allows to identify the temperature range where pore evolution takes place 
providing information useful to orientate heat treatments of porous 
materials.
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