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On the entropy and exponential convergence to equilibrium for the
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Abstract

For the recombination drift-diffusion equations that describe the evolution of charge carriers in scintillating crystals,
we obtain the estimates for the energy and solution asymptotic decay. The present results extend those obtained by
Fellner and Kniely (2018) for semiconductors with two charge carriers and Shockley-Hall recombination, to the case
of k > 2 charge carriers and general polynomial recombination term.
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1. Introduction

The generation, recombination, and evolution of charge carriers in scintillating crystals (crystals that convert
ionizing radiations into visible light) can be described by the recombination-drift-diffusion (RDD) equation [1], [2]:

divMN∇Φ − r(n) = ṅ , in Ω × [0 , τ) (1)
MN∇Φm = 0 , on ∂Ω × [0 , τ) ,

coupled with the Poisson equation

ε∆ϕ = zq · n , in Ω × [0 , τ) (2)
[[∇ϕ]] ·m = 0 , on ∂Ω × [0 , τ) .

In (1) and (2) n is the k−dimensional array of charge carriers, N = diag{n1 , . . . , nk}, q ∈ Zk is the charge vector, M
the k × k mobility matrix, ϕ the electric potential, z the elementary charge, ε the crystal permittivity, Ω ⊂ R3 and [[·]]
denotes the jump across the smooth boundary ∂Ω (outer trace minus the inner trace) whose outward unit normal is m;
moreover the quasi-Fermi potential, or scintillation potential, Φ is defined as:

Φ = zqϕ − θH′(n) , (3)

where θ is the absolute temperature and H(n) is the entropy, (·)′ being the Fréchet derivative. Existence and uniqueness
results for the global and weak-strong renormalized solutions of RDD equations, with or without coupling to the
Poisson equation, were given in [3]-[8], whereas the asymptotic behavior of solution was studied (for semiconductors
and electrochemical drift-diffusion) e.g. in [9]-[14].

One of the most important parameters which characterize scintillators is the decay time defined as the time for
which an experimental measure µ(n) of charge carriers reduces to 1/e of the initial data; from typical experimental
data we have that:

µ(n(t)) = A f exp(−
t
τ f

) + As exp(−
t
τs

) , (4)

Email address: davi@univpm.it (Fabrizio Davı́)

1



where τ f and τs are respectively the fast and slow decay times.
The decay time is strictly correlated with the asymptotic decay for the solutions of the evolutionary boundary

value problem (1), (2) and it is very important, from an applicative point of view, to obtain decay time estimates
which depend on the material constitutive parameters that characterize the model.

Such a problem was addressed and successfully solved in [15] (vid. also [16], [17]) for semiconductors: there,
by using entropic methods and Csiszár-Kullback-Leibler type inequalities, an estimate of the asymptotic decay of the
solution which depends explicitly on the material parameters was given. The most important differences between
the semiconductors RDD equations and those for scintillators are in the number k of the charge carrier n and in
the structure of the recombination term r(n): in general k > 2 with at least electron, holes and excitons (loosely
bounded electron-hole pairs which travel together) represented in n; moreover, the recombination term is a general
cubic polynomial in the components of n which reduces to a quadratic one if we disregard the Auger effect. In the
semiconductor model instead k = 2 (electrons n1 and holes n2), whereas the recombination term has the Shockley-Hall
structure r(n) ≈ (n1n2 − 1).

In two papers [18], [19] the model of [15] was adapted to scintillators for the case k = 2 with n1 representing both
electrons and holes and n2 representing excitons; in particular in [18] with the available material parameters for four
scintillators, we found that the asymptotic estimates for the decay time were very good with a difference of about 3%
between the estimates and the experimentally measured decay times.

The results obtained in [18] therefore induced the natural question: can the results of [15] be extended to k > 2
and to recombination terms more complex than the Shockley-Hall? In this paper, we take this issue to arrive at a
positive answer to the question. To get this result we follow stepwise the procedure given in [15], by adding those
technical lemmas, bounds ad additional hypotheses which are necessary to extend their results to the present case.
The extension is mostly straightforward, except for some points which requested a little more effort: it is important
to remark that no new ideas are present in our work, whose only point of originality is to go a step further toward
generalization.

This paper is organized as follows: in §.2 we describe the evolution problem and show that it has a gradient-flow
structure: then we define the equilibrium solutions and introduce the notion of relative free energy. We finish the
section by putting the equations in an adimensional form which depends on a unique material parameter. In §.3 we
extend the two main results of [15]: the energy-dissipation production inequality (Theorem 1) and the convergence
to equilibrium (Theorem 2). To achieve these results we needed some new bounds on the equilibrium solutions and,
more important, to assume some hypotheses on the recombination processes.

2. The evolution equations for scintillators

2.1. Evolution equations and gradient flows
We represent the charge carrier densities within the scintillation volume Ω with the k−dimensional array

Ω × [0 , τ) 3 (x , t) 7→ n(x , t) ≡ [n1(x , t) , n2(x , t) , . . . , nk(x , t)] , (5)

whose associated electric potential ϕ = ϕ(n) is the solution of the Neumann problem

−ε∆ϕ = zq · n , in Ω × [0 ,T ) , (6)
[[∇ϕ]] ·m = 0 , on ∂Ω × [0 ,T ) ,

here q ≡ [q1 , q2 , . . . , qk] with q j ∈ Z is the charge vector. We remark that for n ∈ L2(Ω) there exists an unique
solution ϕ ∈ H1(Ω) for the Poisson equation (6), provided ϕ = 0.

The evolution equation for the charge carriers is:

div(D[∇n] + MNq ⊗ ∇ϕ) − r(n) = ṅ , in Ω × [0 ,T ) , (7)
D[∇n]m + MNq(∇ϕ+ ·m) = 0 , on ∂Ω × [0 ,T ) ,

where M the k × k constant and positive-semidefinite mobility matrix, which is related to the k × k diffusivity matrix
D by the Einstein-Smoluchowsky relation:

D =
θkB

z
M , (8)
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with θ the absolute temperature, kB the Boltzmann constant and where the k × k matrix N is

N ≡ diag{n1 , n2 , . . . , nk} ; (9)

we remark that the present theory is isothermal and then θ is a constant (uniform and time-independent) temperature.
For the equation (7) a gradient flow formulation can be given; here we recall that a gradient flow is a triplet

{Z ,F ,D} whereZ is a state space, F is a driving functional andD is a dissipation mechanism. In our case the state
space is:

Z = L2
+(Ω) , (10)

whereas the driving functional is the Gibbs self free-energy:

F(n) = E(n) − θH(n) ; (11)

where E(n) is the electrostatic self-energy

E(n) =
1
2

∫
Ω

ε‖∇ϕ(n)‖2 , (12)

and where the entropic part is given by the Boltzmann-Gibbs entropy

H(n) = −kB

∫
Ω

k∑
i=1

ni(log
ni

ci
− 1) , (13)

with kB the Boltzmann constant and c ≡ [c1 , c2 , . . . , ck] an array of normalizing constants. The dissipation mechanism
is represented by an operator K(n) in such a way that the gradient flow is given by

ṅ = −K(n)F′ , (14)

such that:
K(n)F′ = divS [∇F′] − HF′ ; (15)

here S and H are two positive semi-definite k × k matrices. The dissipation is provided by the dual (or conjugate)
dissipation functional:

Ψ∗(n , ξ) =
1
2
K(n)ξ · ξ =

1
2

(S [∇ξ] · ∇ξ + Hξ · ξ) ≥ 0 . (16)

Since
F
′ = [zq1ϕ + θkB log

n1

c1
, zq2ϕ + θkB log

n2

c2
, . . . , zqkϕ + θkB log

nk

ck
] ≡ Φ ∈ Rk , (17)

with the quasi-Fermi potential Φ representing the scintillation potential and provided we set:

S = z−1MN , HΦ = r(n) , (18)

then from (14) and (15) we recover (7); clearly, we restrict our analysis to recombination terms which admit the
representation (18)2 and for which, as we shall see in the sequel, a mass-action type kinetic holds.

From the definition (17) we can obtain the components of n in terms of the electric potential ϕ and of the compo-
nents Φi of the quasi-Fermi scintillation potential (17):

ni = ci exp
(Φi − zqiϕ

θkB

)
, i = 1 , 2 , . . . , k . (19)
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2.2. Equilibrium solutions

We say that a solution (n∞ , ϕ∞) is an equilibrium (stationary) solution when it solves (14) with ṅ = 0: then by
(15) we have:

divS [∇Φ∞] − HΦ∞ = 0 , in Ω . (20)
S [∇Φ∞]m = 0 , on ∂Ω .

together with the Poisson equation (6) for (n∞ , ϕ∞) under the same uniqueness conditions.
Since the boundary value problem (20) admits the solution Φ∞ = 0, then from (19) we arrive at the relation

between the components of n∞ and the stationary electric potential ϕ∞:

n∞i = ci exp(−
zqiϕ∞
θkB

) , i = 1 , 2 , . . . , k , (21)

which in turn solves the semilinear Poisson-Boltzmann equation

−ε∆ϕ∞ = z
k∑

i=1

qici exp(−
zqiϕ∞
θkB

) , (22)

with the Neumann boundary conditions (6)2 for ϕ∞.

2.3. Relative free-energy and Power

Let the relative Gibbs self free-energy be defined as

F(u | v) = F(u) − F(v) − F′(v)(u − v) , (23)

a definition that extends the notion of relative entropy (or Kullback-Leibler divergence) as the measurement of the
distance of two probability distributions, where v is the true distribution and u is the approximating distribution we
have modeled, and whose properties are:

F(u | v) =

> 0 , u , v ,
= 0 , u = v ;

(24)

we notice that in the general case F(u | v) , F(v | u): however F(u | v) and F(v | u) may also coincide for specific
u , v.

From (11) then we get:

F(n | n∞) =
1
2

∫
R3
ε‖∇(ϕ − ϕ∞)‖2 + θkB

∫
Ω

k∑
i=1

ni log
ni

n∞i
− (ni − n∞i ) . (25)

We define the power associated with the relative Gibbs free-energy (25) (that we shall also call dissipation or, with
abuse of language, entropy production):

D(n) = −
d
dt
F(n | n∞) , (26)

which by (6) written for ϕ − ϕ∞, (14), (15), (16) and since Φ∞ = 0, leads to:

D(n) = −

∫
Ω

(Φ − Φ∞) · ṅ = −

∫
Ω

Φ · ṅ = 2Ψ∗(n ,Φ) ≥ 0 . (27)
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2.4. Adimensional equations
We choose a characteristic length and time pair (L ,T ) to put the whole problem in a dimensionless formulation

on Ω∗ × [0 , 1) with meas(Ω∗) = 1; then in terms of the adimensional variables

u = L3n , ψ =
εL
z
ϕ , (28)

equations (6)1 and (7)1 now read respectively1

−∆ψ = q · u , on Ω∗ × [0 , 1) , (29)

and
divM∗(d∇u + mUq ⊗ ∇ψ) − hr∗(u) = u̇ , on Ω∗ × [0 , 1) , (30)

where U(u) = diag{u1 , u2 , . . . uk}, M∗ = µ−1M with µ = sup{µ1 , µ2 , . . . , µk}, being µi the eigenvalues of M, and
where the dimensionless quantities d ,m and h are defined by

d =
θkBT
zL2 µ , m =

zT
εL3 µ , h = ρT L3 , (31)

with r∗ = r/h and ρ = 1 + ‖r(0)‖L∞(Ω).
We choose T = ρ−1 as characteristic time and L such that h = 1 and d = m, in such a way that the adimensional

evolution equation depends only on one parameter:

m divM∗(∇u + Uq ⊗ ∇ψ) − r∗(u) = u̇ , on Ω∗ × [0 , 1) . (32)

We shall also define the adimensional driving functional F (u , ψ):

F (u) = F
εL
z2 =

1
2

∫
Ω∗
‖∇ψ‖2 +

∫
Ω∗

k∑
i=1

ui(log
ui

wi
− 1) , wi = L3ci , (33)

and the relative free-energy

F (u | u∞) =
1
2

∫
Ω∗
‖∇(ψ − ψ∞)‖2 +

∫
Ω∗

k∑
i=1

ui log
ui

u∞i
− (ui − u∞i ) . (34)

Likewise, we define the dimensionless components Φ∗i of the quasi-Fermi scintillation potential Φ∗:

Φ∗i = Φi
εL
z2 = qiψ + log

ui

wi
, i = 1 , 2 , . . . , k , (35)

from which we recover the dimensionless version of (19):

ui = wi exp(Φ∗i − qiψ) , i = 1 , 2 , . . . , k ; (36)

then, from (36) and the equilibrium condition Φ∗ = 0 we have the dimensionless version of (21)

ui,∞ = wi exp(−qiψ∞) , i = 1 , 2 , . . . , k . (37)

The dimensionless representationD of the power (27) is given by

D =

∫
Ω∗

mM∗U∇Φ∗ · ∇Φ∗ + H∗Φ∗ · Φ∗ , (38)

1Since there will be no confusion in the sequel, we shall use the same symbols for the operators with respect to both the variables (x , t) and
(x̂ = x/L , t̂ = t/T ).
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where for the recombination term we choose the explicit representation in terms of the h = 1 , 2 , . . . s reversible
recombination mechanisms with velocities kh

αh kh
−−−⇀↽−−− β

h , h = 1 , 2 , . . . s , (39)

which leads to

H∗Φ∗ · Φ∗ =

s∑
h=1

k∗hλ(
uα

h

wαh ,
uβ

h

wβh )
(
Φ∗ · (αh − βh)

)2
=

s∑
h=1

k∗h(
uα

h

wαh −
uβ

h

wβh )
(

log
uα

h

wαh − log
uβ

h

wβh

)
, (40)

where k∗h = ρ−1kh, the interpolation function λ(x , y) is the logarithmic mean

λ(x , y) =


x − y

log x − log y
, x , y ,

x , x = y ,

(41)

and to the polynomial of order m representation for the recombination term:

r∗(u) = H∗Φ∗ =

s∑
h=1

k∗h(
uα

h

wαh −
uβ

h

wβh )(αh − βh) ; (42)

we remark that the physics of recombination in scintillators is adequately described by a set of recombination mecha-
nisms which from (42) lead to k polynomials of order m = 3:

r∗i (u) = ai + bi ju j + ci jhu juh + di jhlu juhul , i, j, h, l = 1 , 2 , . . . , k . (43)

2.5. Bounds

We establish here some bounds we shall make use of in the sequel.

• Let K∞ = ‖qψ∞‖L∞(Ω∗): then
ui,∞ = wi exp(−qiψ∞) ≤ wi exp K∞ . (44)

To obtain bounds on the components wi we consider first the case k = 2 and assume that r∗1(u) = 0 is a
polynomial of order m and r∗2(u) = 0 is a polynomial of order n. We assume m = n = 2 to obtain from (43):

r∗α(u) = aα + bαβuβ + cαβγuβuγ , α, β, γ = 1 , 2 . (45)

We eliminate u1 from (45) to obtain the resultant det S = 0, where the (m+n)× (m+n) = 4×4 matrix, Sylvester
matrix S is given by:

S ≡


c122 b11 + c112u2 a1 + b12u2 + c122u2

2 0
0 c122 b11 + c112u2 a1 + b12u2 + c122u2

2
c222 b21 + c212u2 a2 + b22u2 + c222u2

2 0
0 c222 b21 + c212u2 a2 + b22u2 + c222u2

2

 ; (46)

then the resultant of (45) is a polynomial of degree mn = m2 = 4 in u2:

pou4
2 + p1u3

2 + p2u2
2 + p3u2 + p4 = 0 , p j = p j(aα , bαβ , cαβγ) , j = 0, 1, 2, 3, 4 . (47)

The Cauchy bound for the roots of (47) is

u2 ≤ max
{∣∣∣∣∣ po

p4

∣∣∣∣∣ , ∣∣∣∣∣ p1

p4

∣∣∣∣∣ , ∣∣∣∣∣ p2

p4

∣∣∣∣∣ , ∣∣∣∣∣ p3

p4

∣∣∣∣∣} = W2(aα , bαβ , cαβγ) , (48)

6



which by (37) and the definition of K∞ leads to:

w2 ≤ W2 exp K∞ . (49)

When we eliminate u2 from (45) we obtain

w1 ≤ W1 exp K∞ , (50)

and hence we arrive at:
wα ≤ W exp K∞ , α = 1, 2 , W = sup{W1 ,W2} . (51)

The whole procedure can be repeated for successive steps when k > 2 and for generic, not necessarily equal, m
and n to arrive at

wi ≤ W exp K∞ , i = 1, 2 . . . , k , W = sup{W1 ,W2 , . . . ,Wk} , (52)

with W depending explicitly on the coefficients of the polynomial r∗(u) = 0; then, as a consequence of both
(44) and (52), we obtain the bound:

ui,∞ ≤ W exp(2K∞) . (53)

• Let us assume that M∗ = diag{µ∗1 , µ
∗
2 , . . . µ

∗
k}: if we denote

µ∗ = inf{µ∗1 , µ
∗
2 , . . . µ

∗
k} , (54)

then
M∗U∇Φ∗ · ∇Φ∗ ≥ µ∗U∇Φ∗ · ∇Φ∗ ; (55)

let U∞ = diag{u1,∞ , u2,∞ , . . . , uk.∞}, then we can write

U∞U−1
∞ U = U∞U∗ , U∗ = U−1

∞ U = diag{
u1

u1,∞
,

u2

u2,∞
, . . . ,

uk

uk,∞
} , (56)

to arrive at, by (56) and (55)
M∗U∇Φ∗ · ∇Φ∗ ≥ µ∗U∞U∗∇Φ∗ · ∇Φ∗ . (57)

• Let
kF = inf{k∗1 , k

∗
2 , . . . k

∗
s} , (58)

then

H∗Φ∗ · Φ∗ ≥ kF

s∑
h=1

(
uα

h

uαh

∞

−
uβ

h

uβ
h

∞

)
(

log
uα

h

uαh

∞

− log
uβ

h

uβ
h

∞

)
. (59)

• As a consequence of (57) and (59) then we can write the following bound for the power (38):

D ≥

∫
Ω∗

(
mµ∗U∞U∗∇Φ∗ · ∇Φ∗ + kF

s∑
h=1

(
uα

h

uαh

∞

−
uβ

h

uβ
h

∞

)
(

log
uα

h

uαh

∞

− log
uβ

h

uβ
h

∞

))
(60)

≥ c
∫

Ω∗

(
1
2

U∗∇Φ∗ · ∇Φ∗ +
1
2

s∑
h=1

(
uα

h

uαh

∞

−
uβ

h

uβ
h

∞

)
(

log
uα

h

uαh

∞

− log
uβ

h

uβ
h

∞

))
,

where
c = inf

{
2mµ∗W exp(2K∞) , 2kF

}
. (61)
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3. Convergence to equilibrium

3.1. Energy-Dissipation production inequality
We are going to obtain an inequality between the Gibbs self free-energy F and the dissipation D; the proof is

given by the means of two propositions which need a preliminary Lemma.

Lemma 1. Let a j ≥ 0, j = 1 , 2 , . . . , k, then

( k∑
i=1

ak
)2
≤ k

k∑
i=1

a2
k . (62)

The proof follows directly from the Jensen inequality for convex functions (for this and the other inequalities we shall
use in the sequel vid. [20]):

f
(Σk

i=1ai

k

)
≤

Σk
i=1 f (ai)

k
, (63)

with f (ξ) = ξ2.

Proposition 1. There exists an explicit computable constant K1 > 0 such that

F (n | n∞) ≤ K1

∫
Ω∗

k∑
i=1

(ui − u∞i )2

u∞i
, (64)

for all u ∈ L2(Ω∗) where ψ ∈ H1(Ω∗) is the unique solution of (29) and with

K1 = 1 + kq2L(Ω∗)
2

W exp(2K∞) . (65)

The proof is in two steps: the first step is that, since log x ≤ x − 1, for x > 0, then:∫
Ω∗

k∑
i=1

ui log
ui

u∞i
− (ui − u∞i ) ≤

∫
Ω∗

k∑
i=1

ui(
ui

u∞i
− 1) − (ui − u∞i ) =

∫
Ω∗

k∑
i=1

(ui − u∞i )2

u∞i
. (66)

For the second step, we consider∫
Ω∗
‖∇(ψ − ψ∞)‖2 = −

∫
Ω∗

∆(ψ − ψ∞) · (ψ − ψ∞) =

∫
Ω∗

(ψ − ψ∞)
k∑

i=1

qi(ui − u∞i ) ≤ ‖(ψ − ψ∞)
k∑

i=1

qi(ui − u∞i )‖L1 , (67)

as a consequence of (29) for ψ , ψ∞ and u , u∞, and the positivity of the first term. Then by the Hölder inequality and
Young gain-loss inequality for a constant γ > 0:

‖(ψ − ψ∞)
k∑

i=1

qi(ui − u∞i )‖L1 ≤ ‖ψ − ψ∞‖L2‖

k∑
i=1

qi(ui − u∞i )‖L2 , (H)

‖ψ − ψ∞‖L2‖

k∑
i=1

qi(ui − u∞i )‖L2 ≤
1
2
(1
γ
‖

k∑
i=1

qi(ui − u∞i )‖2L2 + γ‖ψ − ψ∞‖
2
L2

)
; (Y)

by the Poincaré inequality with L(Ω∗) = γ−1 the Poincaré constant, then we get from (67), (H) and (Y):∫
Ω∗
‖∇(ψ − ψ∞)‖2 ≤

1
2

∫
Ω∗
‖∇(ψ − ψ∞)‖2 +

L(Ω∗)
2
‖

k∑
i=1

qi(ui − u∞i )‖2L2 . (P)

Now, by the Lemma 1 and upon the definition of

q = max
i
|qi| , with min

i
|qi| ≥ 0 , (68)
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then we have

1
2

∫
Ω∗
‖∇(ψ − ψ∞)‖2 ≤

L(Ω∗)
2

kq2
∫

Ω∗

k∑
i=1

(ui − u∞i )2 =
L(Ω∗)

2
kq2

∫
Ω∗

k∑
i=1

u∞i
(ui − u∞i )2

u∞i
; (69)

then, by the estimate (53), we get

1
2

∫
Ω∗
‖∇(ψ − ψ∞)‖2 ≤

L(Ω∗)
2

kq2W exp(2K∞)
∫

Ω∗

k∑
i=1

(ui − u∞i )2

u∞i
, (70)

and by (66) and (70) we obtain (64) and (65).

Proposition 2. There exists an explicit computable constant K2 > 0 such that∫
Ω∗

k∑
i=1

(ui − u∞i )2

u∞i
≤ K2D , (71)

for all u ∈ L2(Ω∗) where ψ ∈ H1(Ω∗) is the unique solution of (29) and with

K2 =
k
‖q‖2

sup{
W exp(2K∞)

2mµ∗
,

1
2kF
} . (72)

To prove this, we consider the first term of (60) which, since ∇Φ∗∞ = 0, can be rewritten as∫
Ω∗

U∗∇(Φ∗ − Φ∗∞) · ∇(Φ∗ − Φ∗∞) =

∫
Ω∗

U∗∇(q(ψ − ψ∞) + log
u

u∞
) · ∇(q(ψ − ψ∞) + log

u
u∞

) , (73)

and which, when it is written in components, reads:∫
Ω∗

k∑
i=1

ui

ui,∞
‖∇(qi(ψ − ψ∞) + log

ui

ui,∞
)‖2

=

∫
Ω∗

k∑
i=1

ui

ui,∞

(
‖qi∇(ψ − ψ∞)‖2 + ‖∇(log

ui

ui,∞
)‖2 + 2qi∇(ψ − ψ∞) · ∇(log

ui

ui,∞
)
)

≥ 2
∫

Ω∗

k∑
i=1

ui

ui,∞
qi∇(ψ − ψ∞) · ∇(log

ui

ui,∞
) = 2

∫
Ω∗

k∑
i=1

qi∇(ψ − ψ∞) · ∇(
ui

ui,∞
− 1) ; (74)

by the divergence theorem and (29) with the Neumann boundary conditions, from the last term we get

2
∫

Ω∗

k∑
i=1

qi∇(ψ − ψ∞) · ∇(
ui

ui,∞
− 1) = 2

∫
Ω∗

k∑
i, j=1

qiq j
(ui − ui,∞)(u j − u j,∞)

ui,∞

= 2
∫

Ω∗

k∑
i=1

q2
i

(ui − ui,∞)2

ui,∞
+ 2

∫
Ω∗

k∑
i, j=1

qiq j
(ui − ui,∞)(u j − u j,∞)

ui,∞
, (75)

and we finally arrive at

1
2

∫
Ω∗

U∗∇Φ∗ · ∇Φ∗ −

∫
Ω∗

k∑
i, j=1

qiq j
(ui − ui,∞)(u j − u j,∞)

ui,∞
≥

q2

k

∫
Ω∗

k∑
i=1

(ui − ui,∞)2

ui,∞
. (76)

It remains now to show that the second term of the left-hand side is bounded above by the recombination term in (60),
that is: ∫

Ω∗

1
2

s∑
h=1

(
uα

h

uαh

∞

−
uβ

h

uβ
h

∞

)
(

log
uα

h

uαh

∞

− log
uβ

h

uβ
h

∞

)
≥ −

∫
Ω∗

k∑
i, j=1

qiq j
(ui − ui,∞)(u j − u j,∞)

ui,∞
. (77)
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Since (x − y)(log x − log y) ≥
(√

x −
√

y
)2 then

∫
Ω∗

s∑
h=1

(
uα

h

uαh

∞

−
uβ

h

uβ
h

∞

)
(

log
uα

h

uαh

∞

− log
uβ

h

uβ
h

∞

)
≥

∫
Ω∗

s∑
h=1

(√
uαh uβ

h

∞ −

√
uαh

∞ uβh
)2

uαh

∞ uβ
h

∞

, (78)

and by the Aczél-Varga’s inequality (a1b1 − a2b2)2 ≥ (a2
1 − a2

2)(b2
1 − b2

2), with a2
1 > a2

2 and provided we set a1 =
√

uαh ,

a2 =

√
uαh

∞ , b1 =

√
uβ

h

∞ and b2 =
√

uβh , then we have:

(√
uαh uβ

h

∞ −

√
uαh

∞ uβh
)2
≥ (uα

h
− uα

h

∞ )(uβ
h

∞ − uβ
h
) , (79)

and by (77) and (79) it remains to prove that:

1
2

s∑
h=1

(u − u∞)α
h
(u∞ − u)β

h

uαh

∞ uβ
h

∞

≥

k∑
i, j=1

Qi j
(ui − ui,∞)(u j − u j,∞)

ui,∞u j,∞
(ui,∞ + u j,∞) , (80)

where the k × k matrix Qi j is defined by:

Qi j =


|qiq j| , if qiq j < 0 , i , j ;
0 , if qiq j > 0 , i , j
0 , if i = j .

(81)

In order to prove (80) we first introduce some additional hypotheses:

• H1 (charge vector): qi ∈ {−1 , 0 , 1} , i = 1 , 2 , . . . , k ;

• H2 (equilibrium densities): 2(ui,∞ + u j,∞) ≤ 1 , i , j = 1 , 2 , . . . , k ;

• H3 (recombination processes): each side of the recombination process involves at most two densities, namely
ui , u j with αh

i = αh
j = 1 and um , un with βh

m = βh
n = 1 ;

• H4 (recombination vectors): the recombination processes are of two types

– with βh = 0 for h = 1 , . . . ,m ≤ s and qi = −q j = 1 , by H1 and H3;

– with βr
i = α

p
i for r, p = 1 , . . . , s − m , i = 1 , 2 , . . . k .

Then , by H3 ad H4 the left-hand side of inequality (80) becomes:

1
2

( m∑
h=1

(ui − ui∞)(αh
i =1)(u j − u j∞)(αh

j =1)

u(αh
i =1)

i∞ u
(αh

j =1)
j∞

+

s−m∑
r,p=1

( (ui − ui∞)(αr
i =1)(u j − u j∞)(αr

j=1)(um∞ − um)(βr
m=1)(un∞ − un)(βr

n=1)

u(αr
i =1)

i∞ u
(αr

j=1)
j∞ u(βr

m=1)
m∞ u(βr

n=1)
n∞

+
(ui − ui∞)(αp

i =1)(u j − u j∞)(αp
j =1)(um∞ − um)(βp

m=1)(un∞ − un)(βp
n =1)

u(αp
i =1)

i∞ u
(αp

j =1)
j∞ u(βp

m=1)
m∞ u(βp

n =1)
n∞

))

=
1
2

( m∑
h=1

(ui − ui∞)(αh
i =1)(u j − u j∞)(αh

j =1)

u(αh
i =1)

i∞ u
(αh

j =1)
j∞

+

s−m∑
r,p=1

( (ui − ui∞)(αr
i =1)(u j − u j∞)(αr

j=1)(um∞ − um)(αp
m=1)(un∞ − un)(αp

n =1)

u(αr
i =1)

i∞ u
(αr

j=1)
j∞ u(αp

m=1)
m∞ u(αp

n =1)
n∞

(82)

10



+
(ui − ui∞)(αp

i =1)(u j − u j∞)(αp
j =1)(um∞ − um)(αr

m=1)(un∞ − un)(αr
n=1)

u(αp
i =1)

i∞ u
(αp

j =1)
j∞ u(αr

m=1)
m∞ u(αr

n=1)
n∞

))

=
1
2

( m∑
h=1

(ui − ui∞)(αh
i =1)(u j − u j∞)(αh

j =1)

u(αh
i =1)

i∞ u
(αh

j =1)
j∞

+ 2
s−m∑
r=1

(ui − ui∞)(αr
i =1)(u j − u j∞)(αr

j=1)(um − um∞)(αp
m=1)(un − un∞)(αp

n =1)

u(αr
i =1)

i∞ u
(αr

j=1)
j∞ u(αp

m=1)
m∞ u(αp

n =1)
n∞

)

≥
1
2

m∑
h=1

(ui − ui∞)(αh
i =1)(u j − u j∞)(αh

j =1)

u(αh
i =1)

i∞ u
(αh

j =1)
j∞

.

The last term of (82) contains, by H3, only the recombination processes with qiq j = −1 and hence it can be rewritten
in the equivalent form:

1
2

m∑
h=1

(ui − ui∞)(αh
i =1)(u j − u j∞)(αh

j =1)

u(αh
i =1)

i∞ u
(αh

j =1)
j∞

=
1
2

k∑
i, j=1

Qi j
(ui − ui∞)(u j − u j∞)

ui∞u j∞
; (83)

accordingly, by (82) and (83) the inequality (80) yields:

1
2

s∑
h=1

(u − u∞)α
h
(u∞ − u)β

h

uαh

∞ uβ
h

∞

≥
1
2

k∑
i, j=1

Qi j
(ui − ui∞)(u j − u j∞)

ui∞u j∞
≥

k∑
i, j=1

Qi j
(ui − ui,∞)(u j − u j,∞)

ui,∞u j,∞
(ui,∞ + u j,∞) , (84)

which holds true by H2. From (75) ad (76) then we arrive at

1
2

∫
Ω∗

U∗∇Φ∗ · ∇Φ∗ +
1
2

∫
Ω∗

s∑
h=1

(
uα

h

uαh

∞

−
uβ

h

uβ
h

∞

)
(

log
uα

h

uαh

∞

− log
uβ

h

uβ
h

∞

)
≥
‖q‖2

k

∫
Ω∗

k∑
i=1

(ui − ui,∞)2

ui,∞
, (85)

from which we recover in turn (72).

Theorem 1. Energy-Dissipation production inequality.
There exists an explicit computable constant Cedp > 0 such that

D(n) ≥ CedpF (n | n∞) , (86)

with
C−1

edp =
k
‖q‖2

sup{
W exp(2K∞)

2mµ∗
,

1
2kF
}
(
1 +
L(Ω∗)

2
‖q‖2W exp(2K∞)

)
. (87)

The proof follows from Proposition 1 and Proposition 2:

F (n | n∞) ≤ K1

∫
Ω∗

k∑
i=1

(ui − u∞i )2

u∞i
≤ K1K2D(n) , (88)

with C−1
edp = K1K2.

3.2. Convergence to equilibrium
In this section, we shall assume that there exists a global renormalizable solution for the boundary value problem

(29), (30) with Neumann boundary conditions and with initial data

uo(z) = u(z , 0) , ψo(z) = ψ(z , 0) , (89)

provided
uo ∈ L2(Ω∗) , ψo ∈ H1(Ω∗) , ψo = 0 , q · uo = 0 ; (90)
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Remark 1. At the best of our knowledge, no proof of the existence of such a global renormalizable solution exists
yet. Indeed in the results provided in [4]-[7] there is no coupling with (29), whereas the only result available for the
coupled system (29), (30) deals with the uniqueness of the weak solution [8].

Remark 2. The results concerning the existence of a global weak solution obtained e.g. in [23] does not apply
because the different form of the recombination term: indeed the result of [7] seems, as far as we know, the most
general result available for a generic recombination term r(n). For a detailed review of the available existence results
for the scintillator equations vid. also the review [24].

Lemma 2. Generalized Csizár-Kullback-Pinsker inequality.
Let f , g : Ω∗ → R+ ∪ {0} measurable functions. Then the Kullback-Leibler divergenceH( f | g) is bounded by:

H( f | g) =

∫
Ω∗

f log
f
g
− ( f − g) ≥ C∗

(
‖ f − g‖L1(Ω∗)

)2
, C∗ =

3

2( f + 2g)
. (91)

The proof is given in [16]: this result generalizes the classical result with C∗ = 1/2 f (vid. e.g. [21], [22]).

Lemma 3. Any solution of the boundary value problem (29), (30) with Neumann boundary conditions and with initial
data (89), (90) satisfies the bound:

ui ≤ M , i = 1 , 2 , . . . , k , M =
5
2

W exp(2K∞) +
3
4
Fo , (92)

where Fo = F (uo) denotes the Gibbs free energy corresponding to the initial data.

To prove the bound we write, for any i = 1 , 2 , . . . , k and by the Lemma 2 and Young’s inequality we obtain:

ui ≤ ui,∞ + ‖ui − ui,∞‖L1(Ω∗) ≤ ui,∞ +
(2ui + 4ui,∞

3

) 1
2
(
H(ui | ui,∞)

) 1
2
≤ ui,∞ +

1
3

ui +
2
3

ui,∞ +
1
2
H(ui | ui,∞) , (93)

which can be solved for ui to arrive at:

ui ≤
5
2

ui,∞ +
3
4
H(ui | ui,∞) . (94)

By the bound (53), the identification between the KL-divergence and the Gibbs free-energy and the monotonicity of
F we finally obtain

ui ≤
5
2

ui,∞ +
3
4
F (u) ≤

5
2

W exp(2K∞) +
3
4
F (uo) = M . (95)

Proposition 3. For all u ∈ L2(Ω∗) which obeys (92) and ψ ∈ H1(Ω∗) the corresponding solution of (29) with ψ = 0
and q · u = 0, the following Csizár-Kullback-Pinsker inequality holds:

F (u | u∞) ≥ Cckp

k∑
i=1

‖ui − ui,∞‖
2
L1(Ω∗) , Cckp =

(
3W exp(2K∞) +

1
2
Fo

)−1
. (96)

To proof this proposition we notice that from (34) and the Lemma 3 we have

F (u | u∞) ≥

∫
Ω∗

k∑
i=1

ui log
ui

u∞i
− (ui − u∞i ) ≥

k∑
i=1

3
2ui + 4ui,∞

‖ui − ui,∞‖
2
L1(Ω∗) (97)

≥
3

2M + 4W exp(2K∞)

k∑
i=1

‖ui − ui,∞‖
2
L1(Ω∗) ,

which by (92) leads to the thesis.
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Theorem 2. Exponential convergence to equilibrium.
Let us assume that the weak global solution of the boundary value problem (29), (30) with Neumann boundary
conditions and initial data (89), (90) is smooth enough to satisfy the weak Gibbs free-energy production law:

F (u(· , t1)) +

∫ t1

t0
D(u(· , τ))dτ ≤ F (u(· , t0)) , ∀ 0 ≤ t0 ≤ t1 < ∞ ; (98)

Then these solutions decay exponentially to the equilibrium (u∞ , ψ∞) as a function of t ≥ 0:

F (u(· , t)) ≤ Fo exp(−Cedpt) , (99)

and
k∑

i=1

‖ui − ui,∞‖
2
L1(Ω∗) + ‖ψ − ψ∞‖

2
H1(Ω∗) ≤

(
C2 + 2(1 +L(Ω∗))

)
Fo exp(−Cedpt) (100)

where Cedp is given by (87) and C2 = (Cckp)−1.

The proof of (99) follows straightforward from Gronwall’s lemma: indeed sinceD = −F ′, then by Theorem 1

−F ′ ≥ CedpF , (101)

and accordingly:
F ≤ Fo exp(−Cedpt) ; (102)

the proof of (100) follows instead from the Poincaré inequality, proposition 3 applied to (34) and (99).
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[11] A. Glitzky, K. Gröger, R. Hünlich, Free energy and dissipation rate for reaction diffusion processes of electrically charged species, Appl.

Anal., 60, 201–217, 1996.
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