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A B S T R A C T

This paper proposes a novel framework for Home Energy Management System based on the
combination of integer programming and Reinforcement Learning (RL) for achieving efficient
home-based Demand Response (DR). In particular, RL is exploited to manage the charge and
discharge of Battery Energy Storage System (BESS), and Mixed Integer Linear Programming is
exploited for load scheduling. The idea is to focus the RL specifically on BESS management,
as its behavior is stochastic and is mainly affected by Photovoltaic (PV) production and user
behavior changes. The scheduling decisions of household appliances, Electric Vehicles (EVs),
and charging/discharging batteries can be subsequently obtained through the newly developed
framework, of which the objective is dual, i.e., to minimize the electricity bill as well as the
DR-induced dissatisfaction. Simulations are performed on a residential house level with multiple
home appliances, an EV, PV panels, and electric storage. The test results demonstrate the
effectiveness of the proposed home energy management framework under the application of
different demand-side flexibility strategies.

. Introduction

The digitalization of energy is radically transforming the energy sector, offering products and services to allow everyone to
ecome independent active customers, to be aware of the use of energy, and to surpass the concept of energy manager/distributor.
n this context, the concepts of Energy Hubs (EHs) and micro-Energy Hubs (mEHs) have been introduced to accelerate the energy
ransition towards decentralized and bidirectional management systems, by employing distributed architectures, hardware, and
oftware systems for monitoring and operating the various energy systems at different levels [1,2]. An energy hub is composed of
eterogeneous mEHs that refer to energy assets and facilities belonging to the industrial, commercial, and residential sectors. The
im of an EH is to coordinate the different mEHs and manage the multiple energy carriers.

A mEH represents an integrated energy system consisting of multi-energy generation, conversion, and storage technologies to
atisfy its own energy needs. So, mEHs are an evolution of the traditional distribution network and mainly have the following
dvantages. From the energy supply aspects, mEHs can promote local generation from Renewable Energy Sources (RESs) and
elf-consumption of renewable resources; moreover, it makes it possible to coordinate multi-energy demand through multi-energy
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Table 1
List of acronyms.

Acronym Definition Acronym Definition

BEMS Building Energy Management System LR Learning Rate
BESS Battery Energy Storage System mEH micro-Energy Hub
DR Demand Response MILP Mixed Integer Linear Programming
EH Energy Hub PV PhotoVoltaic
EMS Energy Management System RES Renewable Energy Source
EV Electric Vehicle RL Reinforcement Learning
HEMS Home Energy Management System SOC State Of Charge
HVAC Heating, Ventilation, and Air Conditioning

technologies. MEHs can cooperate by sharing all energy carriers, to satisfy the energy needs of the entire local community
represented by the EH [3]. A cluster of residential buildings constituting a local energy community and commercial buildings
provided by several energy assets (Energy Management Systems (EMSs), generation from RESs, EV charging stations, etc.) are
just some of the facilities belonging to mEHs. MEHs are provided with EMSs, which consist of heterogeneous information and
telecommunications technologies belonging to both industrial and consumer sectors that, locally, coordinate the operation of
multiple carriers, accelerating the development of multi-energy technology and improving the energy efficiency of mEHs [4].

As concerns commercial facilities, Building Energy Management Systems (BEMSs) allow to monitor and control of energy-related
uilding services such as Heating, Ventilation, and Air Conditioning (HVAC), RESs, and lighting, excluding not energy-related
ystems such as safety systems, closed circuit television, etc. [5,6]. The BEMS allows to improve energy efficiency, provide better
omfort for occupants, review the performance of the building, generate alarms for failures or anomaly conditions automatically,
dentify planned and unplanned maintenance requirements, log and archive data for energy management purposes. A Home Energy
anagement System (HEMS) is a specific case of BEMS deployed in the home that allows end users to manage and optimize locally

heir energy consumption and production, thus enabling participation in Demand Response (DR) programs and the electricity market.
o achieve these goals, HEMSs usually exploit mathematical methods, particularly linear or nonlinear mixed integer programming.
n recent years, however, RL has been considered in the literature for solving the problems in which uncertain environments and
uman interactions play major roles. One of the key characteristics of RL is its ability to interact with an uncertain environment
ince RL agents can learn a policy despite uncertainties and stochastic outcomes. Although the use of this approach through different
olution methods has been discussed in many studies [7], its application is still a challenge in solving real problems.

The drawback of employing a single RL for the whole HEMS design is related to the dimension, often huge, of the state space
eeded to model the environment. Consider that a real HEMS requires the need to model different loads in the house such as
ishwasher, washing machine, dryer, heat pump, air-conditioning, and EV charger. In addition to loads, RESs such as PV systems
r wind turbines, and electric storage should also be considered in the environment and some studies suggest considering micro
ombined heat and power generators and boilers to manage multiple energy vectors as well [8–15]. Lastly, the RL agent should
lso consider the user’s interaction with the HEMS and then the possibility of the user to own schedule the loads. So, in the end,
huge dimension of the state space (i.e., hundreds or thousands of state variables) is necessary to model a real environment with
ultiple energy systems, energy vectors, and interactions with the users. This issue implies the need for large datasets for training

hat as a result will be slow and complex. In addition, if the environment changes, multiple trainings of RL agents are necessary.
nother drawback of employing a single RL is related to the difficulties of including all hard constraints in the RL formulation.

ndeed, constraints are usually defined as penalties and then included in the reward: in this way, the agent learns to avoid such
enalties, but the satisfaction of constraints cannot be guaranteed [16–21].

Given the above-mentioned issues, this article proposes a combined MILP and RL for the design of a HEMS. In particular, in
his work, RL is exploited to manage the charge and discharge of a BESS, and MILP is exploited for load scheduling. The idea is
o focus RL specifically on BESS management since it is a load/generator whose behavior is stochastic and mainly affected by PV
roduction, a consumption different from estimated/forecasted due to the user’s behavior changes. Employing both allowed us to
chieve the reduction in state space and thus the ease of RL training at the expense of problem optimality as a consequence of
roblem decoupling. Finally, the proposed solution is easy to scale to the addition of more appliances and RES. To demonstrate the
olution effectiveness, the proposed HEMS framework is tested by making use of the historical data in [22] under the application
f different demand-side flexibility strategies such as peak shaving and self-consumption maximization.

The article is structured as follows. In Section 2, the HEMS and its features are introduced. In Section 3, the mathematical models
or both the system and the requirements are defined for load scheduling via MILP. In Section 4 the BESS management via RL is
escribed. The simulation results are shown in Section 5. Conclusions and future works are provided in Section 6. The complete
ist of acronyms is available in Table 1.

. Problem formulation

In this Section, the HEMS and its features are introduced. In Section 2.1, appliances are classified, according to the literature,
o define how they can be managed for self-consumption optimization. Section 2.2 is devoted to the BESS, where advantages and
imitations are discussed. In Section 2.3, the main requirements for the HEMS design are stated. Such requirements cover a variety
f goals: user satisfaction and DR capabilities are taken into account, as well as efficient load scheduling.
2
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2.1. Load characteristics

Loads are called interruptible if they can be stopped and resumed, and non-interruptible otherwise [23]. Shiftable loads, instead, can
be delayed with minor discomfort, thus they can be scheduled. They are also called deferrable loads. On the contrary, some appliances
such as an oven or a fridge are non-shiftable, because either they need to operate when needed or they must operate continuously.
Some examples of shiftable loads are a dishwasher, a washing machine, and a dryer. Such shiftable loads are non-interruptible
because they rely on a predefined cycle to perform their task. We define adjustable (also called flexible or power-shiftable) loads as
those whose power consumption can be selected between several power levels. For example, smart wallboxes can set their charge
power according to the local grid capacity. Most of the small appliances and consumer electronics devices are non-interruptible
and non-shiftable, because of the high impact on user satisfaction. In this work, shiftable loads are going to be scheduled by an
optimization algorithm that takes into account consumptions and renewable energy prediction, based on the historical data reported
in [22]. Non-shiftable loads are prioritized, while adjustable loads are managed to balance both user and constraint satisfaction.

2.2. Battery energy storage system

BESS are a key factor to increase self-consumption in HEMS. Among the advantages of BESS, they can be employed to perform
distributed load balancing, i.e., to flatten the load profile of electricity usage, thus decreasing the peak demand and increasing the
load factor in a smart grid framework. On the other hand, BESS are expensive and subject to irreversible aging processes involving
the batteries, which are usually Li-ion batteries. The aging process is usually of two types: calendar aging and cycle aging [24].
Calendar aging occurs over time, disregarding the actual use of the battery, and is mainly affected by storage temperature and
the State Of Charge (SOC). Very briefly, mild room temperatures (10 ◦C–25 ◦C) and medium-low SOC (30%–70%) ensure the best
longevity. Cycle aging, in contrast, depends on battery usage. Solid experimental results show that high C-rates, both in charge or
discharge, reduce the useful life, as well as extreme temperature and large depth of discharge. Taking into account battery aging,
both the sizing and the actual usage of the BESS should be improved for revenue maximization [25]. In this work, we deal with
aging by introducing constraints on the C-rate and SOC. In the proposed strategy, the role of the BESS is crucial, as it makes it
possible to follow the task scheduling despite the presence of several uncertainties, e.g., consumption and production forecast.

2.3. Requirements

In the following, the requirements are split into two categories. The requirements in Section 2.3.1 come from technical system
constraints, and they must be satisfied for safety and operability reasons. The remaining requirements in Section 2.3.2, instead,
define how the HEMS should behave while performing its main task, i.e., maximization of self-consumption. Such requirements
define several needs and thus they may conflict with each other, as well as with system limitations, so an order of priority is
defined.

2.3.1. System limitations (hard constraints)
The following constraints must be taken into account to comply with system limitations.

I. Non-shiftable loads cannot be influenced by the HEMS.
II. Non-interruptible loads cannot be paused or turned off once they are started.

III. Self-produced renewable energy is self-consumed whenever possible.
IV. Self-production surplus is stored if possible, otherwise, it is injected into the grid.
V. Power and SOC constraints must be respected.

The first and second constraints come from the load characterization. The third and fourth constraints are usually imposed by the
BESS; nonetheless, they do not represent a limitation for the purpose of self-consumption maximization. The fifth constraint takes
into account practical limitations, such as the charge and discharge C-rate of the battery (e.g., for safety and longevity), maximum
capacity of the battery, local grid capacity, etc.

2.3.2. Desired behavior (soft constraints)
The following constraints, which are listed in decreasing priority order, represent how the HEMS should act, according to the

stakeholders.

VI. Shiftable loads must satisfy termination constraints.
VII. Limit power draws up to 𝜂 kW.

VIII. Feed adjustable loads with the required power.
IX. Recharge the EV battery.
X. Terminate shiftable loads as soon as possible.
3
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Constraint VI. allows users to define their own needs on task termination. Tight termination constraints for shiftable loads (or
even imposing an immediate start) reduce the margin for optimization, eventually leading to infeasibility due to power limits if the
constraints are hard. In general, planning task termination in advance provides better results. Constraint VII. is introduced to perform
peak shaving, and 𝜂 is a tunable parameter. Constraints VIII. and IX. force the adjustable loads and the wallbox to work whenever
possible, i.e., when there is sufficient available power. Finally, constraint X. is a mild incentive to start shiftable loads sooner, i.e. to
prefer early termination instead of late termination. Starting shiftable loads immediately, if possible, is also a prudential choice:
additional user requests may arrive in the future, making constraint satisfaction more involved.

2.3.3. Objective
The problem can be formulated as a multi-objective optimization problem. First of all, the cost of power draw should be

minimized. Variable pricing is allowed, provided that a price prediction is available, thus allowing for economic DR. Also, peak
shaving capabilities are of interest to deal with DR. Finally, user satisfaction must be taken into account as well.

3. Load scheduling via mixed integer linear programming

In this Section, we propose a mathematical model for both the system and the requirements that have been introduced in
Section 2. First of all, a set of variables is introduced in Section 3.1. Such variables are then exploited to define both the constraints
(Section 3.2) and the cost function (Section 3.3).

In the remainder of the article, we denote by R the set of real numbers, with N the set of natural numbers including zero, and
with N𝑘 the set of the first 𝑘 elements of N, i.e., {𝑖 ∈ N ∶ 𝑖 < 𝑘}, or, analogously, N𝑘 = {0, 1,… , 𝑘 − 1}. Moreover, X𝑎×𝑏 represents a
matrix with 𝑎 rows and 𝑏 columns over a given field X.

3.1. Variables

3.1.1. Decision variables
We define the following decision variables that are going to be employed to model the system:

• 𝑥 = [𝑥𝑖,𝑗 ] ∈ N𝑛𝑠×ℎ𝑝
2 represents the shiftable load start, i.e., 𝑥𝑖,𝑗 = 1 if the 𝑖th shiftable load is started after 𝑗 time steps, and 0

otherwise. In detail, 𝑛𝑠 is the number of shiftable appliances, while ℎ𝑝 is the length of the prediction horizon.
• 𝑤 = [𝑤𝑖,𝑗 ] ∈ N𝑛𝑎×ℎ𝑝

𝑛𝑙𝑒𝑣 represents the power level provided to the 𝑖th adjustable load at each time step 𝑗 in the control horizon. The
power level is assumed to be discretized, as many adjustable loads can only assume a finite set of power levels (e.g., heaters),
and 𝑛𝑙𝑒𝑣 is the cardinality of such a set of power levels. Moreover, 𝑛𝑎 is the number of adjustable loads.

3.1.2. User inputs
The user inputs that are going to be taken into account in the system model are defined as:

• 𝑢 = [𝑢𝑖] ∈ N1×𝑛𝑠
2 models the user requirement to start a shiftable load, i.e., 𝑢𝑖 = 1 if the 𝑖th shiftable load task is pending

(required but not started yet), and 0 otherwise, and 𝑛𝑠 is the number of shiftable appliances.
• 𝑣 = [𝑣𝑖] ∈ N1×𝑛𝑎

𝑛𝑙𝑒𝑣 models the desired power level of the adjustable loads, as set by the user. No information about the future
values of 𝑣 is available, i.e., the user can modify it at his will and the scheduler should comply with the new requirement.

• 𝑢𝑤𝑏 ∈ N2 is a scalar that defines whether the EV is connected to the wallbox for recharging (𝑢𝑤𝑏 = 1) or not (𝑢𝑤𝑏 = 0).

3.1.3. Known constants
The following constants, which must be fed to the optimization algorithm to fulfill its task, are assumed to be known in advance:

• 𝑐0 = [𝑐0𝑗 ] ∈ R1×ℎ𝑝 defines the unitary cost of the power draw at each time step in a day. It allows for economic DR, encouraging
load shifting in the most economic time steps.

• 𝑐0𝑖𝑚𝑚 = [𝑐0𝑖𝑚𝑚,𝑗 ] ∈ R1×ℎ𝑝 is the income for injecting energy back to the grid at each time step in a day.
• 𝑐0𝑠𝑡𝑎𝑡𝑖𝑜𝑛 = [𝑐0𝑠𝑡𝑎𝑡𝑖𝑜𝑛,𝑗 ] ∈ R1×ℎ𝑝 represents the cost of power in a public EV charging station at each time step in a day.
• 𝑑 = [𝑑𝑖] ∈ N1×𝑛𝑠 is the overall duration (in time steps) of 𝑖th shiftable load cycle.
• 𝑝0 = [𝑝0𝑖,𝑗 ] ∈ R𝑛𝑡𝑜𝑡×𝑙𝑐𝑦𝑐𝑙𝑒 is the average power consumption of the 𝑖th load at each time step 𝑗, and 𝑛𝑡𝑜𝑡 = 𝑛𝑠 + 𝑛𝑎 + 𝑛𝑛𝑠 is the

total number of appliances. If the 𝑖th load is shiftable, it represents the predicted consumption for a single cycle, once it starts.
If the 𝑖th load is adjustable, it is the average consumption at the lowest power level, and it is constant ∀𝑗. If the 𝑖th load is
non-shiftable, it is the average quarter-hourly consumption in a day, obtained by the historical data.

• 𝑒0 = [𝑒0𝑗 ] ∈ R1×ℎ𝑝 is the average power produced from renewable sources at each time step in a day.
• 𝑡𝑠 ∈ R is the duration of each time step.

Please note every appliance may exhibit different behaviors depending on unpredictable factors. For example, the power draw of a
washing machine depends on the water temperature, the load, and the type of cycle set by the user. So, the actual production and
consumption, which are not available in real applications, are replaced by their predictions. The predictions are based on the average
4
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(⋅)0 remarks that the costs correspond to the time of the day starting from midnight so such variables are independent of the current
ime, assuming that the costs 𝑐0, 𝑐0𝑖𝑚𝑚, 𝑐0𝑠𝑡𝑎𝑡𝑖𝑜𝑛, and 𝑒0 show a daily cyclic nature. This last assumption is not a limitation: such
uantities are only employed for calculating the time-varying quantities in the remainder, which can be defined in any alternative
ay.

The following time-varying quantities, which are necessary to perform the optimization, can be calculated before each run of
he optimization algorithm starts:

• 𝑡 ∈ Nℎ𝑝 is the current time step, expressed in terms of time steps from the last midnight. It is employed to perform cyclic
permutations of the constants, in order to synchronize them with the current time (e.g., find the next four time-varying
constants).

• 𝑐 = [𝑐𝑗 ] ∈ R1×ℎ𝑝 is the unitary cost of the power draw in the next ℎ𝑝 time steps.
• 𝑐𝑖𝑚𝑚 = [𝑐𝑖𝑚𝑚,𝑗 ] ∈ R1×ℎ𝑝 is the income for injecting energy into the grid in the next ℎ𝑝 time steps.
• 𝑐𝑠𝑡𝑎𝑡𝑖𝑜𝑛 = [𝑐𝑠𝑡𝑎𝑡𝑖𝑜𝑛,𝑗 ] ∈ R1×ℎ𝑝 represents the cost of power in a public EV charging station in the next ℎ𝑝 time steps.
• 𝑒 = [𝑒𝑗 ] ∈ R1×ℎ𝑝 is the average power produced by renewable sources in the next ℎ𝑝 time steps.
• 𝑒𝑤𝑏𝑚𝑎𝑥 ∈ R is the maximum amount of energy that can be stored in the battery, given the current SOC.
• 𝛥𝑡 = [𝛥𝑡𝑖] ∈ N1×𝑛𝑠 is the maximum termination time (time step count) declared by the user for the 𝑖th shiftable load.
• 𝛥𝑡𝑤𝑏 ∈ N is the maximum termination time for EV battery recharging.
• 𝑓𝑟 = [𝑓𝑟𝑖] ∈ N1×𝑛𝑠 is the remaining time until the 𝑖th shiftable load finishes its task (zero if not in execution). It is exploited

to avoid load interruption for tasks that are already in progress.
• 𝑀𝑠 ∈ R, 𝑀𝜇 ∈ R, 𝑀𝜎 ∈ R, 𝑀𝑢 ∈ R, 𝑀𝑣 ∈ R, 𝑀𝑤𝑏 ∈ R are positive constants that penalize some unwanted events.

.1.4. Auxiliary variables
The following time-varying quantities are defined within the optimization algorithm and depend on the decision variables:

• 𝑝 = [𝑝𝑖,𝑗 ] ∈ R𝑛𝑡𝑜𝑡×ℎ𝑝 is the prediction of the power consumption of each 𝑖th load in the next ℎ𝑝 time steps. It depends on the
load scheduling 𝑥, the nominal consumption 𝑝0, and the current time 𝑡.

• 𝑎 = [𝑎𝑗 ] ∈ R1×ℎ𝑝 is the prediction of self-consumption in the next ℎ𝑝 time steps, according to the consumptions of 𝑝 and the
PV generation forecast 𝑒.

• 𝑠 = [𝑠𝑗 ] ∈ R1×ℎ𝑝 quantifies the violation of the peak shaving constraint.
• 𝜎 = [𝜎𝑗 ] ∈ N1×𝑛𝑠

2 quantifies the violation of the termination constraints for shiftable loads.
• 𝜇 ∈ N3 is strictly positive if the adjustable loads are severely underpowered.

.2. Constraints

.2.1. Hard constraints
In the following, the constraints that have been listed in Section 2.3.1 are modeled.
Constraint I. from Section 2.3.1 is modeled by

𝑝5,𝑗 = 𝑝05, (1)

hat is, the overall consumption of non-shiftable loads is supposed to be equal to the quarter-hourly estimation, thanks to historical
ata.

Constraint II. from Section 2.3.1 is formulated as
ℎ𝑝
∑

𝑗=1
𝑥𝑖,𝑗 ≤ 1, ∀𝑖 ∈

[

1,… , 𝑛𝑠
]

(2)

𝑥𝑖,𝑗 = 0 ∀𝑖 ∈ [1,… , 𝑛𝑠],∀𝑗 ∈
[

ℎ𝑝 − 𝑙𝑐𝑦𝑐𝑙𝑒 + 1,… , ℎ𝑝
]

(3)

if 𝑥𝑖,𝑗 = 1 then
[

𝑝𝑖,𝑗 ,… , 𝑝𝑖,𝑗+𝑙𝑐𝑦𝑐𝑙𝑒
]

=
[

𝑝0𝑖,1,… , 𝑝0𝑖,1+𝑙𝑐𝑦𝑐𝑙𝑒

]

, ∀𝑖 ∈
[

1,… , 𝑛𝑠
]

,∀𝑗 ∈
[

1,… , ℎ𝑝 − 𝑙𝑐𝑦𝑐𝑙𝑒
]

(4)

if 𝑓𝑟𝑖 > 0 then 𝑝𝑖,𝑗 = 𝑝𝑜𝑙𝑑𝑖,𝑗+1, ∀𝑖 ∈ [1,… , 𝑛𝑠],∀𝑗 ∈
[

1,… , 𝑓𝑟𝑖
]

(5)

Eq. (2) limits the number of starts to 1 for each appliance. Eq. (3) imposes that no load can start if its termination may occur
eyond the prediction horizon. Eq. (4) states that whenever a shiftable appliance 𝑖 starts in the time step 𝑗 (𝑥𝑖,𝑗 = 1), then the related

energy consumption, from the beginning to the end of the task, is equal to the average of the related historical data. The last Eq. (5)
makes it possible to keep the memory, in a receding horizon framework, of non-interruptible tasks that are already in progress.

Remark 1. Logical implications represent non-convex constraints, and they are implemented by making use of the well-known
big-M approach.

To enforce constraint III. from Section 2.3.1, the following equality constraint is employed
( 𝑇 )
5

𝑎 = min 𝑒, 𝟏 𝑝 , (6)
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s

where min is the element-wise minimum, and 𝟏 is a column vector of ones such that 𝟏𝑇 𝑝 is the overall consumption (sum of all
appliances) at each time step (i.e., in this case, 𝟏𝑇 ∈ R1×𝑛𝑡𝑜𝑡 ). So, the predicted self-consumption is maximized, because all of the
elf-produced renewable energy is employed to power the scheduled loads.

Finally, the following hard constraints are enforced for real-valued variables:

0 ≤ 𝑝𝑖,𝑗 ≤ 𝜂 ∀𝑖 = [1,… , 𝑛𝑡𝑜𝑡], ∀𝑗 = [1,… , ℎ𝑝] (7)

0 ≤ 𝑎𝑗 ≤ 2𝜂 ∀𝑗 = [1,… , ℎ𝑝] (8)

0 ≤ 𝑠𝑗 ≤ 2𝜂 ∀𝑗 = [1,… , ℎ𝑝] (9)

Constraints IV. and V. from Section 2.3.1 are introduced later (Section 4.2), as they directly involve the BESS.

Remark 2. The constraints I.–V. from Section 2.3.1 do not compromise the feasibility of the problem, as long as non-interruptible
loads can be powered, which is a reasonable assumption. A feasible (but undesirable, due to severe user dissatisfaction) solution to
the set of constraints I.–V. is simply deactivating every shiftable/adjustable load, as well as disconnecting the BESS, while maximizing
self-consumption. Thus, the problem is feasible, despite the presence of hard constraints.

3.2.2. Soft constraints
In this Subsection, we deal with the mathematical definition of the soft constraints in Section 2.3.2. Such constraints can

potentially generate infeasible problems, thus they are softened to avoid a failure of the optimization algorithm. Constraint VI.
from Section 2.3.2 is modeled as follows:

1 −
𝛥𝑡𝑖−𝑑𝑖
∑

𝑗=1
𝑥𝑖,𝑗 = 𝜎𝑖 ∀𝑖 ∈ [1,… , 𝑛𝑠] ∶ 𝑢𝑖 = 1 (10)

𝜎𝑖 = 0 ∀𝑖 ∈ [1,… , 𝑛𝑠] ∶ 𝑢𝑖 = 0 (11)

where 𝜎𝑖 is equal to 1 if the termination constraint for the 𝑖th appliance is not satisfied, 𝜎𝑖 = 0 otherwise. To encourage satisfaction
of the termination restriction, a penalty proportional to ∑𝑛𝑠

𝑖=1 𝜎𝑖 is added to the cost function. In other words, if the user asks for the
𝑖th appliance to run (𝑢𝑖 = 1), then it should end before its predetermined termination time 𝛥𝑡𝑖, taking into account the duration of
the task 𝑑𝑖. As soon as the 𝑖th load is started, the variable 𝑢𝑖 is reset to 0.

Constraint VII. from Section 2.3.2 is modeled by:
𝑛𝑡𝑜𝑡
∑

𝑖=1
𝑝𝑖,𝑗 ≤ 𝑒𝑗 + 𝜂 + 𝑠𝑗 ∀𝑗 ∈ [1,… , ℎ𝑝]. (12)

In other words, for every time step 𝑗 in the prediction horizon, the sum of the loads must be lower than the peak shaving limit 𝜂 (if
not applicable, 𝜂 is the maximum power draw), plus the expected renewable energy production 𝑒𝑗 . The variable 𝑠𝑗 is used to relax
the problem and ensure its feasibility.

Constraint VIII. from Section 2.3.2 is represented by:

𝑝4,𝑗 = 𝑝04𝑤4,𝑗 ∀𝑗 ∈ [1,… , ℎ𝑝] (13)

𝑤𝑗 ≤ 𝑣 ∀𝑗 ∈ [1,… , ℎ𝑝] (14)

𝑤𝑗 ≥ 𝑣 − 1 − 𝜇 ∀𝑗 ∈ [1,… , ℎ𝑝] (15)

Eq. (13) means that the 𝑖th adjustable load can assume a finite set of power draw values, that are multiples of 𝑝0𝑖,𝑗 . Please note
𝑝0𝑖,𝑗 = 𝑝0𝑖,𝑘 ∀𝑗, 𝑘 ∈ [1,… , ℎ𝑝] in case of adjustable loads, as explained in Section 3.1.3. Eq. (14) states that the load consumption
should not overcome the nominally required power draw. We do not impose exact user satisfaction (𝑤𝑗 = 𝑣), and we relax such
constraint by adding a penalty term (proportional to 𝑣 − 𝑤𝑗) in the cost function. Finally, Eq. (15) is an optional soft constraint,
stating that the power load may be lowered only in part.

Constraint IX. from Section 2.3.2, models EV battery recharging:

𝑒𝑤𝑏 ≤ 𝑒𝑤𝑏𝑚𝑎𝑥 (16)

if 𝑢𝑤𝑏 = 1 then
𝛥𝑡𝑤𝑏
∑

𝑗=1
𝑝6,𝑗 𝑡𝑠 = 𝑒𝑤𝑏 (17)

where 𝑡𝑠 is the sampling time for the MILP solver and 𝑒𝑤𝑏𝑚𝑎𝑥 is the remaining energy to be stored to fully charge the battery. To
soften the constraint, we do not impose the actual energy 𝑒𝑤𝑏 to be equal to the required one for a full charge 𝑒𝑤𝑏𝑚𝑎𝑥 (i.e., full
recharging), instead, we penalize the difference 𝑒𝑤𝑏𝑚𝑎𝑥 − 𝑒𝑤𝑏 in the cost function.

Finally, no additional equations are needed to model constraint X. and it can be directly included in the cost function by adding
a penalty, which is proportional to ∑𝑛𝑠

𝑖=1
∑ℎ𝑝

𝑗=1
(

𝑗 𝑥𝑖,𝑗
)

. In other words, the higher 𝑗 when the 𝑖th shiftable load starts, the higher the
penalty.
6
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Fig. 1. Load scheduling and BESS management diagrams.

.3. Cost function

The cost function takes into account the unitary cost of energy, as well as user satisfaction and constraint satisfaction. In order
o fulfill the objective in Section 2.3.3, we introduce the following scalars:

𝐽𝑒 = 𝑐
(

−𝑎 + 𝟏𝑇 𝑝
)𝑇 − 𝑐𝑖𝑚𝑚 (𝑒 − 𝑎)𝑇 (18)

𝐽𝑘𝑜 =
ℎ𝑝
∑

𝑗=1
𝑀𝑠𝑠𝑗 (19)

𝐽𝑑 =
𝑛𝑠
∑

𝑖=1

ℎ𝑝
∑

𝑗=1

(

𝑗 𝑀𝑢 𝑥𝑖,𝑗
)

+𝑀𝜎

ℎ𝑝
∑

𝑗=1
𝜎𝑗 +𝑀𝑣

ℎ𝑝
∑

𝑗=1
(𝑣 −𝑤𝑗 ) +𝑀𝜇𝜇 (20)

𝐽𝑤𝑏 = 𝑐𝑠𝑡𝑎𝑡𝑖𝑜𝑛(𝑒𝑤𝑏𝑚𝑎𝑥 − 𝑒𝑤𝑏)𝑇 +
ℎ𝑝
∑

𝑗=1

(

𝑗 𝑀𝑤𝑏 𝑝6,𝑗
)

, (21)

where 𝐽𝑒 is the cost of power drawn from the grid, 𝐽𝑘𝑜 is the cost of peak shaving violation, 𝐽𝑑 is the cost of user dissatisfaction
(violation of termination constraints, waiting for shiftable loads, reduction of adjustable loads), and 𝐽𝑤𝑏 is the cost of replenishing
the battery level after disconnection (i.e., the non-charged capacity) in a public charging station, plus a small penalty term for
delaying the EV charging. Such a multi-objective optimization problem is reduced to a conventional single-objective minimization
problem through linear scalarization. The scalar cost function to be minimized is

𝐽 = 𝐽𝑒 + 𝐽𝑘𝑜 + 𝐽𝑑 + 𝐽𝑤𝑏, (22)

where 𝐽𝑒 and 𝐽𝑤𝑏 are homogeneous (both represent a price), while the scaling factors for 𝐽𝑘𝑜 and 𝐽𝑑 are included in the definition
of 𝑀𝑠 and 𝑀𝑣.

3.4. Solver

The resulting optimization problem is a MILP, thus it can be solved online in a reasonable time (each run of the MILP scheduler
usually takes around 3 s in the simulated scenario, see Section 5 for further details). The whole optimization process is performed
in MATLAB [26]: the problem is modeled using YALMIP [27] and then solved using MOSEK [28]. The solver operates within a
receding horizon framework (refer to Fig. 1(a)). The optimization problem on the prediction horizon [1, ℎ𝑝] is solved. Subsequently,
only the initial commands 𝑥𝑖,1 for 𝑖 = 1,… , 𝑛𝑠 and 𝑤𝑖,1 for 𝑖 = 1,… , 𝑛𝑎 of the optimal sequence are transmitted to the appliances.
After a time step of 𝑡𝑠, the optimization process is repeated over the prediction horizon [2, ℎ𝑝 + 1], etc.

4. BESS management via RL

The task scheduling shown in Section 3 cannot be implemented in practice unless some kind of flexibility is introduced in the
system. The MILP solver relies on consumption and production forecasting, which are estimated thanks to historical data: hence, the
expected and the actual consumption may be substantially different. For example, the power load of each appliance may depend
on several unknown factors that cannot be taken into account. A meaningful example of such factors is given by user settings:
although they could be queried by the MILP solver in the theory, and then exploited to refine future load estimation, many practical
limitations arise: need for exhaustive data to perform estimations, need for additional APIs to communicate with the appliances,
increased complexity of the optimization problem, etc.

The required robustness to uncertainties is given by the BESS, which acts as an energy buffer to be employed whenever necessary.
There is no trivial method to exploit the BESS. A greedy policy, such as drawing energy from the BESS whenever possible, leads to
an optimal self-consumption; on the other hand, the battery is often depleted, thus it lacks robustness concerning any unpredictable
increase of the energy demand. In contrast, if a conservative policy is adopted and the BESS is discharged only when needed to
7
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counteract a demand peak, then the battery is often fully charged: in this case, there is no room for storing the surplus energy given
by PV, and hence self-consumption is poor.

The objective of the RL agent is twofold: to maximize self-consumption, as well as to make the MILP scheduling viable despite
he presence of uncertainties, ie to perform the tasks without violating the peak shaving constraint. Also, the BESS should manage
he power peaks between samples that the MILP scheduler (which necessarily runs at low speed due to computational reasons)
annot detect.

The RL agent must learn how to employ the energy stored in the BESS to supply the loads while maximizing self-consumption.
ractically speaking, the action of the RL agent consists of defining how much energy should be drawn from the battery to feed the
oads.

.1. Environment model

The environment for RL is represented by the directed graph in Fig. 1(b), where 𝑃𝑔𝑟𝑖𝑑 is the power draw from the grid to the
appliances, 𝑃𝑏𝑒𝑠𝑠 is the power flow from the BESS to the appliances, 𝑃𝑝𝑣,𝑔𝑟𝑖𝑑 is the power injection from the PV plant back into the
grid, 𝑃𝑝𝑣,𝑠𝑡𝑜𝑟 is the power generated by the PV to be stored in the BESS, 𝑃𝑝𝑣,𝑠𝑒𝑙𝑓 is the power generated by the PV and fed to the
appliances (i.e., self-consumption), and 𝑃𝑙𝑜𝑎𝑑𝑠 is the overall power required by the appliances. Please note that the graph in Fig. 1(b)
is not fully connected. Each variable is non-negative, which means that the power can flow only in the direction of the arrow. Also,
note that we have neglected reactive power in this diagram. In practice, the influence of reactive power on household appliances is
still limited to low-power devices. In the case of energy-intensive and/or major appliances with inherently low power factor, it is
addressed using dedicated power factor correction devices to ensure compliance with regulations on power quality. Also, recharging
the BESS directly from the grid is neglected, because the objective is to maximize self-consumption, so loading the battery from the
grid is unprofitable. Finally, recharging the BESS from the grid increases battery wear and tear and it should be avoided, and power
flow from the BESS to the grid is neglected for the same reason.

4.2. Environment constraints

In this Subsection, the constraints in Section 2.3.1 are introduced in the BESS optimization. First of all, the power balance
between the supply and the demand side in Fig. 2 is modeled by

𝑃𝑔𝑟𝑖𝑑 (𝜏) + 𝑃𝑝𝑣,𝑠𝑒𝑙𝑓 (𝜏) + 𝑃𝑏𝑒𝑠𝑠(𝜏) = 𝑃𝑙𝑜𝑎𝑑𝑠(𝜏) ∀𝜏. (23)

The reinforcement learning algorithm must strictly satisfy this condition. Please note that the actual 𝑃𝑙𝑜𝑎𝑑𝑠(𝜏) is influenced by the
ask scheduling coming from the MILP optimization, as well as by random variations of load consumption. Analogously, the actual
𝑝𝑣,𝑠𝑒𝑙𝑓 (𝜏) cannot be predicted precisely, and its estimation (i.e., the variable 𝑎 in the MILP optimization) is different from the actual

value. The modeling of such uncertainty is detailed in Section 5.
To enforce constraints III. and IV. from Section 2.3.1, the following equality constraints are employed

𝑃𝑝𝑣,𝑠𝑒𝑙𝑓 (𝜏) = min
(

𝑃𝑝𝑣(𝜏), 𝑃𝑙𝑜𝑎𝑑𝑠(𝜏)
)

(24)

𝑃𝑝𝑣,𝑠𝑡𝑜𝑟(𝜏) = min
(

𝑃𝑝𝑣(𝜏) − 𝑃𝑝𝑣,𝑠𝑒𝑙𝑓 (𝜏), (𝐸𝑏𝑎𝑡𝑡,𝑚𝑎𝑥(𝜏) − 𝐸𝑏𝑎𝑡𝑡(𝜏))∕𝛿𝜏
)

(25)

𝑃𝑝𝑣,𝑔𝑟𝑖𝑑 (𝜏) = 𝑃𝑝𝑣(𝜏) − 𝑃𝑝𝑣,𝑠𝑒𝑙𝑓 (𝜏) − 𝑃𝑝𝑣,𝑠𝑡𝑜𝑟(𝜏). (26)

Eq. (24) maximizes instantaneous self-consumption (constraint III.), given the current PV energy production 𝑃𝑝𝑣(𝜏) and the current
sum of loads 𝑃𝑙𝑜𝑎𝑑𝑠(𝜏). Eq. (25) forces the power surplus 𝑃𝑝𝑣(𝜏)−𝑃𝑝𝑣,𝑠𝑒𝑙𝑓 (𝜏) to be stored in the BESS, provided that sufficient capacity
is available, where 𝐸𝑏𝑎𝑡𝑡,𝑚𝑎𝑥(𝜏) is the full charge capacity (eventually taking into account battery wear level at time 𝜏), 𝐸𝑏𝑎𝑡𝑡(𝜏) is the
current remaining capacity, and 𝛿𝜏 is the algorithm sampling time (which can be different from MILP scheduling sampling time,
i.e., far way faster than the latter). In particular, 𝛿𝜏 is chosen such that all of the aforementioned variables are essentially constant
in that time interval. Eq. (26) defines the remaining power to be injected into the grid. It is also possible to limit power injection
into the grid, if necessary, adding the constraint 𝑃𝑝𝑣,𝑔𝑟𝑖𝑑 ≤ 𝑃𝑝𝑣,𝑔𝑟𝑖𝑑,𝑚𝑎𝑥, where 𝑃𝑝𝑣,𝑔𝑟𝑖𝑑,𝑚𝑎𝑥 is the upper power limit. Finally, constraint
V. from Section 2.3.1 is modeled by:

𝑃𝑝𝑣,𝑠𝑡𝑜𝑟(𝜏) ≤ 𝑃𝑝𝑣,𝑠𝑡𝑜𝑟,𝑚𝑎𝑥 (27)

𝑃𝑏𝑒𝑠𝑠(𝜏) ≤ 𝑃𝑏𝑒𝑠𝑠,𝑚𝑎𝑥 (28)

𝐸𝑏𝑎𝑡𝑡,𝑚𝑖𝑛(𝜏) ≤ 𝐸𝑏𝑎𝑡𝑡(𝜏) ≤ 𝐸𝑏𝑎𝑡𝑡,𝑚𝑎𝑥(𝜏) (29)

where custom power and SOC limitations can be enforced. According to the model and the constraints, in the remainder we detail
the two possible scenarios: renewables deficit (Fig. 2(b)) and renewables surplus (Fig. 2(a)).

4.2.1. Renewables deficit
When the PV power is not sufficient to feed the loads (𝑃𝑝𝑣(𝜏) < 𝑃𝑙𝑜𝑎𝑑𝑠(𝜏), see Fig. 2(a)), the PV production is fully employed to

feed the loads, and no surplus can be stored. The PV power is insufficient to feed the loads, so additional power is needed. The task
of the RL agent is to decide how much power should come from the BESS and, consequently, how much power is taken from the
grid. In this scenario, a flat battery in the BESS is undesired, because more energy must be drawn from the grid, which is the most
8

expensive source. Moreover, peak shaving constraints may be violated to feed the loads.
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Fig. 2. Energy flow networks. Darker lines highlight higher priority in the flow.

4.2.2. Renewables surplus
When the PV power is sufficient to feed the loads (𝑃𝑝𝑣(𝜏) ≥ 𝑃𝑙𝑜𝑎𝑑𝑠(𝜏), see Fig. 2(b)), the PV production is strictly split into

self-consumption, storage, and grid injection, according to (24)–(26). Moreover, as the PV power is sufficient to feed the loads,
there is no need to take power from the BESS nor from the grid. Hence, there is no degree of freedom, and the RL agent cannot
operate any choice. In this scenario, having a fully replenished battery is undesired because no more PV energy can be accumulated:
the surplus energy is injected into the grid, which is less convenient than storing it, and overall self-consumption is reduced because
delayed self-consumption decreases.

4.3. State dynamics

The most relevant state to be modeled is the battery charge 𝐸𝑏𝑎𝑡𝑡(𝜏). It depends on the action of the RL agent, the power demand,
and the PV energy production. The following discrete-time system is employed to describe the battery charge dynamics:

𝐸𝑏𝑎𝑡𝑡(𝜏 + 𝛿𝜏) = 𝐸𝑏𝑎𝑡𝑡(𝜏) + 𝜌𝑃𝑝𝑣,𝑠𝑡𝑜𝑟(𝜏)𝛿𝜏 − 𝑃𝑏𝑒𝑠𝑠(𝜏)𝛿𝜏∕𝜌, (30)

where 𝜌 is the BESS efficiency (which is assumed, without loss of generality, to be equal in the charge and discharge phase). Another
relevant information is time (time of the day, season, etc.). Its dynamics are trivial, so modeling is omitted.

Remark 3. Additional information could be made available to the RL agent, such as PV energy forecast, prediction of consumption
according to scheduled loads, etc. However, the larger the state and the observation space, the more involved is the training of
the RL agent. Because of a deployment, a small observation space entails faster learning; on the other hand, the performances are
expected to increase if additional information is provided to the agent.

4.4. Observations

The RL agent is trained using three observations: the battery charge status (𝑖1), the time of the day (𝑖2), and the month (𝑖3).
In particular, to ease the training of the RL agent, input quantization is performed. The first input 𝑖1 ∈ N5, which represents the
battery charge status, is chosen as

𝑖1(𝜏) =
⌊

4
𝐸𝑏𝑎𝑡𝑡(𝜏) − 𝐸𝑏𝑎𝑡𝑡,𝑚𝑖𝑛(𝜏)

𝐸𝑏𝑎𝑡𝑡,𝑚𝑎𝑥(𝜏) − 𝐸𝑏𝑎𝑡𝑡,𝑚𝑖𝑛(𝜏)

⌉

, (31)

where ⌊⋅⌉ denotes rounding to the nearest integer. The second input 𝑖2 ∈ N24 is the current hour of the day. The third input 𝑖3 is the
month. For the sake of brevity, we are going to perform training and testing in a single month, i.e., July, thus we neglect 𝑖3 in the
remainder. The input 𝑖3 can be included to generalize the algorithm to the entire year; alternatively, 12 separate RL agents can be
trained to cover the entire year and 𝑖3 can be omitted, as month switches very slow with respect to the battery charge and discharge
cycle. The size of the observation space, which is defined by the cartesian product of N5 and N24, is 120. This size increases by a
factor of 12 if every month is considered.

4.5. Action

The RL agent must decide how much power 𝑃𝑏𝑒𝑠𝑠(𝜏) should be drawn from the battery to feed the current loads and, consequently,
how much power should be drawn from the grid instead. In order to greatly simplify the training while guaranteeing the satisfaction
of BESS constraints, we set the actual power as a convex combination of a greedy policy 𝑃 𝑔𝑟𝑒𝑒𝑑𝑦

𝑏𝑒𝑠𝑠 (𝜏) and a conservative policy 𝑃 𝑐𝑜𝑛𝑠
𝑏𝑒𝑠𝑠 (𝜏),

i.e.,

𝑃𝑏𝑒𝑠𝑠(𝜏) = (1 − 𝛼(𝜏))𝑃 𝑐𝑜𝑛𝑠
𝑏𝑒𝑠𝑠 (𝜏) + 𝛼(𝜏)𝑃 𝑔𝑟𝑒𝑒𝑑𝑦

𝑏𝑒𝑠𝑠 (𝜏), (32)

where 𝛼(𝜏) is a value between 0 and 1.
9
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In the following, we suppose that the quantities in (24)–(26) can be exactly calculated by the agent (i.e., without uncertainty),
ccording to the current load power demand and the current PV production. This assumption is not restrictive as long as 𝛿𝜏 can be

arbitrarily reduced, so we can assume that the current power is constant throughout the time interval 𝛿𝜏.
The most conservative policy is to draw energy from the battery only to satisfy the peak shaving constraint:

𝑃 𝑐𝑜𝑛𝑠
𝑏𝑒𝑠𝑠 (𝜏) = min

(

max
(

0, 𝑃𝑙𝑜𝑎𝑑𝑠(𝜏) − 𝑃𝑝𝑣,𝑠𝑒𝑙𝑓 (𝜏) − 𝜂(𝜏)
)

, 𝑃𝑏𝑒𝑠𝑠𝑚𝑎𝑥(𝜏), 𝜌(𝐸𝑏𝑎𝑡𝑡(𝜏) − 𝐸𝑏𝑎𝑡𝑡,𝑚𝑖𝑛)∕𝛿𝜏
)

(33)

n other words, 𝑃 𝑐𝑜𝑛𝑠
𝑏𝑒𝑠𝑠 (𝜏) is set equal to 𝑃𝑙𝑜𝑎𝑑𝑠(𝜏) − 𝑃𝑝𝑣,𝑠𝑒𝑙𝑓 (𝜏) − 𝜂(𝜏), then lower and upper limits are enforced due to the constraints.

lease note that 𝑃 𝑐𝑜𝑛𝑠
𝑏𝑒𝑠𝑠 (𝜏) = 0 holds as long as the grid can supply the loads without overcoming the peak shaving constraint. If

𝑏𝑒𝑠𝑠(𝜏) = 𝑃 𝑐𝑜𝑛𝑠
𝑏𝑒𝑠𝑠 (𝜏) is chosen, then the battery is discharged only if the power from the grid is not sufficient to feed the scheduled

oads.
On the contrary, the greedy policy is given by

𝑃 𝑔𝑟𝑒𝑒𝑑𝑦
𝑏𝑒𝑠𝑠 (𝜏) = min

(

𝑃𝑙𝑜𝑎𝑑𝑠(𝜏) − 𝑃𝑝𝑣,𝑠𝑒𝑙𝑓 (𝜏), 𝑃𝑏𝑒𝑠𝑠𝑚𝑎𝑥, 𝜌(𝐸𝑏𝑎𝑡𝑡(𝜏) − 𝐸𝑏𝑎𝑡𝑡,𝑚𝑖𝑛)∕𝛿𝜏
)

. (34)

f 𝑃𝑏𝑒𝑠𝑠(𝜏) = 𝑃 𝑔𝑟𝑒𝑒𝑑𝑦
𝑏𝑒𝑠𝑠 (𝜏) is chosen, then self-consumption is maximized and the power drawn from the grid is minimized.

Consider (32). If 𝛼(𝜏) = 0, then 𝑃𝑏𝑒𝑠𝑠(𝜏) = 𝑃 𝑐𝑜𝑛𝑠
𝑏𝑒𝑠𝑠 (𝜏), so no power is taken from the battery whenever possible. In contrast, if

(𝜏) = 1, the battery is exploited as much as possible, i.e., by covering the entire load demand 𝑃𝑙𝑜𝑎𝑑𝑠(𝜏) − 𝑃𝑝𝑣,𝑠𝑒𝑙𝑓 (𝜏) while satisfying
he constraints of the battery power and the residual capacity of the battery. Please note that once 𝑃𝑏𝑒𝑠𝑠(𝜏) is set, the amount of
nergy from the grid 𝑃𝑔𝑟𝑖𝑑 (𝜏) is uniquely defined to satisfy the power balance constraint in (23).

In short, the RL agent must set 𝛼(𝜏) at each time step, based on available observations, to define whether a greedy discharge
r a conservative discharge should be performed. As done for the observations, action quantization is performed as well to ease
he RL agent training; hence, the action is restricted to 𝛼(𝜏) ∈

[

0 0.25 0.5 0.75 1
]

. To explore the state space, we employ
a conventional 𝜖-greedy strategy. The parameter 𝜖 is set to decrease exponentially during training, promoting more exploration in
the early stages.

4.6. Reward function

Two objectives must be taken into account by the RL agent. First of all, the self-consumption must be maximized, i.e.,

𝑅𝑠𝑒𝑙𝑓 (𝜏) = (𝜌 𝑐(𝜏) − 𝑐𝑖𝑚𝑚(𝜏))𝑃𝑏𝑒𝑠𝑠(𝜏) (35)

where (𝜌 𝑐(𝜏) − 𝑐𝑖𝑚𝑚(𝜏)) represents the cost saving when the energy is self-consumed (instead of grid injection). The term 𝑅𝑠𝑒𝑙𝑓 (𝜏) is
a positive reward to encourage self-consumption. Moreover, the peak shaving limit should be respected, so we define

𝑅𝑝𝑒𝑎𝑘(𝜏) =

{

−𝑀𝑟𝑙(𝑃𝑔𝑟𝑖𝑑 (𝜏) − 𝜂) if 𝑃𝑔𝑟𝑖𝑑 (𝜏) − 𝜂 > 0
0 otherwise

(36)

where −𝑀𝑟𝑙(𝑃𝑔𝑟𝑖𝑑 (𝜏) − 𝜂) is a penalty to discourage peak shaving violations (i.e., the penalty for drawing too more power from the
grid than allowed), and 𝑀𝑟𝑙 is a weighting factor to perform linear scalarization between the two objectives. Hence, the overall
reward function is:

𝑅(𝜏) = 𝑅𝑠𝑒𝑙𝑓 (𝜏) + 𝑅𝑝𝑒𝑎𝑘(𝜏) (37)

𝐺(𝜏) =
∞
∑

𝑘=0
𝛾𝑘𝑟𝑙𝑅(𝜏 + 𝑘 + 1), (38)

where 𝐺(𝜏) is the future reward, which is of interest for the RL training according to [29], and 𝛾𝑟𝑙 is the discount rate.

5. Simulation results

In this Section, we show the simulation results. First, the simulation scenario is described in Section 5.1. The appliances under
consideration are introduced, and the user termination constraints are detailed. Then, the simulation results for the cooperative
MILP solver and RL agent are shown. In detail, the results of the scheduler are reported in Section 5.2. Such results do not take into
account uncertainties and the scheduling algorithm is deterministic. In Section 5.3, instead, we show how the RL agent deals with
uncertainty to satisfy the scheduled tasks while maximizing self-consumption.

5.1. Simulation scenario

We consider a HEMS with three shiftable appliances, a lumped non-shiftable load, an adjustable load for air conditioning, and
a single wallbox for an EV. The energy consumption of shiftable appliances has been modeled making use of the historical data
in [22]. In particular, for each appliance, the mean quarter-hourly consumption is calculated, as well as the quarter-hourly standard
deviation of power consumption. Please note that the mean power consumption varies greatly in time, depending on the peculiar
work cycle of each appliance. The same analysis is performed for the non-shiftable loads, which are calculated as the difference
between the overall power draw and the appliances under consideration, and for the PV power generation. We suppose adjustable
loads can assume a finite set of possible consumption values. Finally, we suppose the EV wallbox can be precisely commanded to
draw any exact amount of power. Please note this last assumption can be removed by introducing additional discrete variables, at
the price of a marginal amount of computational complexity.
10
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Table 2
Mean and standard deviation of shiftable loads power consumption (in kW). Each column represents a quarter-hourly sampling of the working cycles.

1 2 3 4 5 6 7 8 9

Dishwasher avg 0.0719 0.8282 0.9471 0.2937 0.1712 0.4204 1.1023 0.3704 0.0036
Dishwasher std 0.0613 0.3530 0.3560 0.1227 0.1213 0.3346 0.2883 0.4184 0.0215

Washer avg 0.2500 2.5000 1.2500 0.2500 0.2500 0.6000 0.4000 0.2000 0.1000
Washer std 0.1250 1.2500 0.6250 0.1250 0.1250 0.3000 0.2000 0.1000 0.0500

Dryer avg 1.1679 1.6802 1.0900 0.5134 0.2284 0.1410 0.0783 0.0250 0
Dryer std 0.7250 0.6346 0.5725 0.5095 0.4002 0.4053 0.3213 0.1617 0

Fig. 3. Shiftable loads: consumption by sample (real data in blue/black, model in red).

5.1.1. Dishwasher
The first appliance (𝑖 = 1) is a dishwasher. To model possible users’ needs, each time the appliance is required to start, we

assume the user needs clean dishes before the next meal (before breakfast at 7 am, before lunch at 1 pm, before dinner at 8 pm).
The termination time 𝛥𝑡1 is calculated accordingly. To model possible user behaviors, the user requires the appliance to start once
per day, setting 𝑢1 = 1 at a random instant (i.e., uniformly distributed) between 6 am and 12 pm. The actual consumption from [22]
is shown in Fig. 3(a), by the black and blue box plot. Each blue rectangle shows the first quartile, the median, and the third quartile.
The black whiskers show the range of samples in the interquartile range. The blue circles represent possible outliers, i.e., values
that are not included between the black whiskers. The error bar in red, instead, represents the Gaussian approximation used in this
simulation. In particular, the error bar in Fig. 3(a) is centered on the average consumption, and the total bar length is twice the
standard deviation. The average and the standard deviation are also resumed in Table 2.

5.1.2. Washing machine
The second appliance (𝑖 = 2) is a washing machine. We suppose the user requires the washing machine to end before a fixed time

of the day (e.g., 1 pm), and its termination 𝛥𝑡2 is derived accordingly. User behavior is randomized as in the case of the dishwasher,
that is, once per day.

The actual consumption for the washing machine is not available in [22] (apparently, the appliance has never been switched
on). Thus, the average values shown in [30] have been employed. The standard deviation has been arbitrarily set to one-half of the
average consumption, as shown by the error bars in Fig. 3(b) and by Table 2.

5.1.3. Dryer
The third appliance (𝑖 = 3) is a dryer. We assume the user wants the dryer to end its task in a fixed amount of hours (e.g., 12 h),

hence 𝛥𝑡3 = 4 ⋅ 12, and the coefficient 4 converts the time from an hourly to a quarter-hourly basis. Again, the user behavior is
randomized as in the case of both the dishwasher and the washing machine. The actual consumptions, taken from the dataset
in [22], are shown in Fig. 3(c) (black and blue box-plot), and the standard deviations employed for the Gaussian model in the
simulations are given by the error bars in red. Again, average and standard deviation are reported in Table 2.

5.1.4. Air conditioner
The fourth appliance (𝑖 = 4) is an air conditioner. We recall that the user can modify its power level at will, and no prediction

of the user behavior is available, thus we suppose the current power level lasts indefinitely in time until another user input occurs.
To model user inputs, we assume that the air conditioner is switched on once every day, at a random instant between 6 am and
12 pm. The air conditioner is switched off by the user after a random duration (at least 2 h, up to 24 h). The power level is also
randomized, from level 1 (500 W) to level 3 (1500 W). Without loss of generality, the power levels are arbitrarily decided, as the
appliance is adjustable.
11
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Fig. 4. Non-shiftable loads and PV power: hourly consumption or production (real data in blue/black, model in red) in July.

Table 3
Mean and standard deviation of non-shiftable loads power consumption (in kW) and PV power generation (in kW). Each column represents a different hour of
the day.

1 2 3 4 5 6 7 8 9 10 11 12

Loads avg (am) 0.2937 0.2819 0.2718 0.2798 0.2625 0.2894 0.2872 0.2948 0.2996 0.3126 0.3173 0.3018
Loads avg (pm) 0.2857 0.2796 0.2727 0.2967 0.2952 0.3086 0.3063 0.2884 0.2874 0.3073 0.2957 0.2963
Loads std (am) 0.0979 0.0870 0.0781 0.0683 0.0829 0.0803 0.0704 0.1424 0.1171 0.0888 0.0995 0.0827
Loads std (pm) 0.1035 0.0991 0.0963 0.1717 0.1344 0.1969 0.1530 0.1386 0.1159 0.0788 0.0736 0.0879

PV avg (am) 0.0196 0.0198 0.0199 0.0199 0.0169 0.0288 0.1395 0.2552 0.9661 1.5542 1.7889 1.8071
PV avg (pm) 1.7476 1.5545 1.2542 1.0556 0.5602 0.2399 0.0584 0.0178 0.0196 0.0196 0.0192 0.0195
PV std (am) 0.0011 0.0011 0.0011 0.0010 0.0053 0.0301 0.1101 0.1286 0.5265 0.5861 0.6232 0.6349
PV std (pm) 0.6365 0.6288 0.5820 0.4572 0.3127 0.1492 0.0558 0.0041 0.0012 0.0011 0.0013 0.0011

5.1.5. Non-shiftable loads
The fifth appliance (𝑖 = 5) represents the lumped consumption of non-shiftable and non-interruptible loads. Consumption is

andomized according to the dataset in [22], and no user behavior is modeled indeed. The non-shiftable loads from in [22] have
een scaled down (by a factor of 3) to fit with the typical Italian domestic contract limitations (3 kW), which is by far lower than
he power availability in the original database. Original data (although scaled down) is shown in Fig. 4(a), where the mean and
tandard deviation of the Gaussian distribution for the simulations are shown in red. Mean and standard deviation are listed in
able 3.

.1.6. EV wallbox
The sixth appliance (𝑖 = 6) is the EV wallbox. We assume the charging process must terminate every day at 8 am according to the

ser’s needs, hence the termination time 𝛥𝑡𝑤𝑏 is calculated consequently. Even in this case, the scheduler does not have any prior
knowledge of the charge starting time. To simulate the user behavior, the EV is connected to the wallbox every day, at a random
instant ranging from 12 am to 12 pm. As for the air conditioning, the power levels are arbitrarily decided, because the appliance is
adjustable. In particular, we suppose that the wallbox power can assume any positive real value (i.e., without quantization).

5.1.7. PV plant
We consider a small residential PV plant for the simulation. The PV power is taken from the dataset in [22] as well. In particular,

a single 400 W PV array in [22] is scaled up by a factor of 6, to have approximately 2.5 kW of maximum power from renewables.
The original (and scaled-up) data is shown in Fig. 4(b). Mean and average values (red bars in Fig. 4(b), values in Table 3) are taken
into account to perform the simulations.
12
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Table 4
Main parameter values in the simulated scenario.
𝑡𝑠 ℎ𝑝 𝑛𝑠 𝑛𝑎 𝑛𝑛𝑠 𝑛𝑙𝑒𝑣 𝑛𝑡𝑜𝑡 𝑙𝑐𝑦𝑐𝑙𝑒 𝑑 𝑀 𝑀𝜎 𝑀𝜇 𝑀𝑢 𝑀𝑤𝑏 𝑀𝑣

0.25 h 96 3 1 1 4 6 10
[

9 9 8
]

20 20 5 10−3 5 ⋅ 10−5 2

𝑐0𝑗 , 𝑗 ∈ [33, 76] 𝑐0𝑗 , 𝑗 ∉ [33, 76] 𝑐0𝑖𝑚𝑚 𝑐0𝑠𝑡𝑎𝑡𝑖𝑜𝑛,𝑗 ,∀𝑗 𝑝0𝑖,𝑗 , 𝑖 ∈ [1, 3],∀𝑗 𝑝04,𝑗 ,∀𝑗 𝑝05,𝑗 ,∀𝑗 𝑒0

0.0461975 0.0409725 𝑐0∕2 0.1125 See avg in Table 2 0.5 See avg in Table 3 See avg in Table 3

5.2. MILP simulation

In the following, we present the simulation results for the load scheduling. The simulation scenario is generated under the
onditions shown in Section 5.1. The main simulation parameters are reported in Table 4. Please note that all the prices 𝑐0 and 𝑐0𝑖𝑚𝑚
efer to the price of 1 kW for a single sample time of length 𝑡𝑠, i.e., 15 min. In other words, the actual price per kWh is four times
igher. Similarly, 𝑝0 and 𝑒0 are expressed in kW. In contrast, 𝑐0𝑠𝑡𝑎𝑡𝑖𝑜𝑛 is a commercial price per kWh in public charging stations, and
cts as a penalty term in the case the battery is not fully recharged.

.2.1. Single step behavior
To show how the MILP solver behaves, we report an example where the scheduler is stressed by several inputs in the same

ime sample, while a small maximum power is imposed (the peak shaving limit 𝜂 is set to 2.5 kW). In particular, we suppose the
ser requests to activate all of the shiftable loads (dishwasher, washer, dryer) while switching on the air conditioner (minimum
ower) and also plugging in the EV for recharging. In this example, the EV battery SOC is set to 50% (i.e., 𝑒𝑤𝑏 = 28 kWh), and the
urrent time is 12:15 am. According to the termination constraints in Section 5.1, the shiftable loads (dishwasher, washer, dryer)
ust terminate at 8 pm of the current day, 12:15 am of the following day, and 00:15 am of the following day, respectively. The EV

s going to be unplugged at 08:15 am. Such termination constraints are shown in magenta in Fig. 5.
We note that the shiftable loads are scheduled in a feasible way, meaning that the termination constraints are satisfied: the

cheduled start of each appliance is shown in green, and the expected consumption (in blue) is greater than zero in the activation
nterval accordingly. Please note that the shiftable appliances are delayed by the scheduler to minimize the cost function (22). In
articular, the dryer is started immediately, because there is a large amount of PV power to be self-consumed. The washer and the
ishwasher are slightly delayed, in order to exploit available PV power while respecting the peak shaving constraint. The required
ir conditioning power is satisfied as well, and non-shiftable loads cannot be controlled in any way. The power of the wallbox is
odulated by the MILP scheduler to comply with the peak shaving constraint. This can be noticed by looking at the overall power

onsumption, as the power drawn from the grid is often equal to the peak shaving limit 𝜂: the power draw from the grid (orange
ars in the overall power consumption plot) is initially kept to the maximum value, thus there is no room for additional power
raw until 01:45 pm. Also, note that the whole PV energy is self-consumed until 08:00 am the next day. Self-consumption decreases
n the following due to the lack of required appliances. The grid power price is also reported. Please note that economic DR is
ncouraged by the slightly lower unitary prices during the night (calculated according to the Italian authority’s current practices):
he EV charging is stopped at 5 pm (when the whole PV energy is self-consumed by non-shiftable loads and air conditioning) and
t is resumed at 7 pm, to exploit the reduced fee in the late evening.

.2.2. One month simulation
In the following, we illustrate the results of the MILP scheduler for one month of simulation (i.e., July) where the peak shaving

imit 𝜂 is set to 3 kW. The simulation consists of 2977 executions of the scheduler in a receding horizon framework. The results are
ompared to the case where load scheduling is not performed. In detail, we define the scheduling-free baseline scenario by modifying
he original optimization problem as follows. The variables 𝜎 and 𝜇 are forced to zero (no tolerance for delays, no tolerance for the
djustable loads), and 𝑀𝜎 and 𝑀𝜇 are eliminated accordingly. 𝑀𝑠 is set to zero (no penalty for peak shaving violation). No delay
s allowed for shiftable loads, thus any appliance is started as soon as the user requires it (i.e., 𝑢𝑖 = 1 → 𝑥𝑖,1 = 1). The peak shaving
iolation 𝑠𝑗 is set to max(0,

∑𝑛𝑡𝑜𝑡
𝑖=1 𝑝𝑖,𝑗 − 𝑒𝑗 − 𝜂) ∀𝑗 ∈ [1,… , ℎ𝑝] and it is not minimized. The adjustable load power 𝑤𝑗 is set rigidly to

. A greedy recharging of the wallbox is performed (i.e., the EV is charged as soon as possible), and no economic DR is performed;
e suppose that the wallbox is aware of the available power, thus we have added the constraint

𝑝6,𝑗 ≤ max(0, 𝑒𝑗 + 𝜂 −
5
∑

𝑖=1
𝑝𝑖,𝑗 ) ∀𝑗 = 1,… , 𝛥𝑡6 (39)

n order to draw as much power as possible.
Performances throughout the month are summarized in Table 5. Thanks to the scheduler, the self-consumed energy is 11.4%

igher with respect to the absence of a scheduler. In fact, shiftable loads are delayed to take advantage of PV power and EV vehicle
s recharged maximizing self-consumption. Consequently, the energy drawn from the grid is 4.51% lower. Not only less energy is
aken from the grid, but also a larger share is taken when the energy price is lower: 88.57% in the presence of the MILP scheduler
nstead of 78.307%. The scheduler also avoids overloads: the total amount of energy taken overcoming the peak shaving threshold
13
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Fig. 5. Detail of a MILP solution.

𝜂 is approximately 100 times lower when the scheduler is used. The amount of energy to the EV battery is marginally smaller
(4.27%). In fact, the battery is not fully recharged in 5 times out of 30, because the charging time is too short. In this case, when the
scheduler is enabled, the delayed shiftable loads can limit the available power once EV is connected; instead, it does not occur when
the scheduler is disabled because the shiftable loads start immediately. As the price of energy shows a very small hourly variation,
the bill saving, thanks to the scheduler, mainly consists of increased self-consumption. The MILP scheduler entails a larger delay
for shiftable loads, i.e., 2.853 additional hours on average; on the other hand, no scheduling failures (i.e., violation of termination
constraints or violation of hard constraints) occur. Finally, to avoid overcharges, the adjustable loads are temporarily underpowered
for a total of 3 hours (12 samples), in particular, the air conditioning power level is lowered by 1 (i.e., −500 W) for 2.75 h and lowered
by 2 (i.e., −1000 W) for 0.25 h. Such behavior occurs when the air conditioning is set to the maximum power (1500 W) and other
loads must be powered while respecting the peak shaving constraint.
14
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Table 5
Performances: MILP scheduling compared to no scheduling.

MILP scheduler No scheduler

Self-consumed energy [kWh] 267.258 239.867
Energy drawn from the grid [kWh] 728.705 763.101
Energy drawn in the cheapest time slot [%] 88.571 78.307
Energy injected into the grid [kWh] 142.013 169.404
Energy drawn violating peak shaving [kWh] 0.0632 6.6084
Energy to the EV [kWh] 369.431 374.811
Overall bill [e] 108.047 112.872
Average shiftable loads start delay [hours] 3.103 0.250
Adjustable loads marginally diminished [hours] 3.000 0.000
Adjustable loads critically diminished [hours] 0.250 0.000
Scheduling failures [count] 0 0

5.3. RL training and testing

The simulation in Section 5.2 does not take into account any uncertainty in both energy consumption and prediction: the MILP
cheduler is deterministic, and each consumption in Fig. 5 corresponds to the mean values shown in Section 5.1. On the other hand,
e have already shown that the actual energy consumption is stochastic and its standard deviation is relevant, so the scheduling in
ection 5.2 practically becomes infeasible due to the violation of the peak shaving constraint.

We define scheduling failure as the undesired event in which scheduled tasks cannot be performed because the energy demand
is too high and the BESS cannot compensate for it. More practically, when a scheduling failure occurs, we have to choose between
violating the peak shaving constraint and performing load shedding to reduce the required energy.

Thus, we propose to employ a RL agent to manage a BESS to reduce the number of scheduling failures, as well as to enhance
self-consumption by adding a delayed self-consumption. We focus on Q-learning, a model-free off-policy RL algorithm based on
temporal differences [29], as it resulted to be more effective and easier to train than deep reinforcement learning in such a small-
sized problem. Several RL agents, based on Q-learning, have been trained successfully, each one with different hyperparameters. In
particular, we have performed a grid search, exploring four Learning Rates (LRs) (10−2, 10−3, 10−4, and 10−5), two penalties 𝑀𝑟𝑙
in (36) (107 and 1012), and three discount factors 𝛾𝑟𝑙 in (38) (1, 𝑒−1∕96, and 𝑒−1∕48, i.e., no discount, 24 h half-life, and 12 h half-life,
respectively). As for the other system parameters, the nominal BESS capacity is set to 6 kWh, the maximum charge (𝑃𝑏𝑒𝑠𝑠,𝑚𝑎𝑥) and
discharge rate (𝑃𝑝𝑣,𝑠𝑡𝑜𝑟,𝑚𝑎𝑥) are set to 3 kW (i.e., 0.5 C), and the battery efficiency 𝜌 is set to 95%. The selection of the battery’s
capacity is based on the optimal capacity outlined in [31]. Please note that 𝑃𝑝𝑣,𝑠𝑡𝑜𝑟,𝑚𝑎𝑥 is never reached because the PV peak power
is less than 𝑃𝑝𝑣,𝑠𝑡𝑜𝑟,𝑚𝑎𝑥. Without loss of generality, the minimum and maximum battery charges are set to 𝐸𝑏𝑎𝑡𝑡,𝑚𝑖𝑛 = 0 kWh and
𝐸𝑏𝑎𝑡𝑡,𝑚𝑎𝑥 = 6 kWh for the sake of clarity in the results. The environment, the states, the action, the observations, and the reward
function are implemented according to Section 4.

The training is performed using a 310 days dataset using a MILP scheduler, so the dataset is analogous to the one in Section 5.2.2.
The RL agent runs every 15 min in the simulation (i.e., at the same frequency of the MILP scheduler, because 𝑡𝑠 = 𝛿𝜏 = 15 min), but
in the real deployment it can run at high frequency: the evaluation consists in choosing the action according to a small look-up table
(i.e., according to the Q-table) and the online learning (i.e., Q-table update) is straightforward as well. The entire dataset, where
actual and predicted consumption and PV production have been calculated in advance, represents a single episode in the training of
the RL agent. The RL training is performed on 600 episodes, and it is executed on a 16 core i9-11900k CPU running at 5.3 GHz. The
training is performed in MATLAB, using the reinforcement learning toolbox. Each training takes approximately 3.5 h. Please note
that we set a fixed number of episodes to perform the training, and each episode consists of the same number of steps: as penalties
are unavoidable in such an uncertain scenario, we never stop the episode even in case of negative rewards. Stopping the episode,
as soon as a penalty occurs, has been investigated, but no agent has been successfully trained under such restrictive conditions.

The performances of the trained agents are resumed in Table 6, where the 24 hyperparameter combinations are considered to
rain the same amount of RL agents. Each agent has been then tested with a different dataset of 310 days, and the testing results are
esumed in Table 6 as well. In detail, in Table 6 we report the energy reward (i.e., the sum of 𝑅𝑠𝑒𝑙𝑓 , defined in (35)) and the peak
having penalty (i.e., the sum of 𝑅𝑝𝑒𝑎𝑘, defined in (36)) separately, for the sake of clarity. Moreover, we report the daily scheduling
ailure rate, i.e., the average number of peak shaving violations per day.

The results in Table 6 are graphically represented in Fig. 6, where the training performances are represented by an empty diamond
nd the testing performances are represented by a filled triangle. In the 𝑥 axis, the daily energy saving is shown (the higher, the
etter). In the 𝑦 axis, instead, the daily failure rate is reported (the lower, the better). We do not report the penalty (36) in the 𝑦 axis
ecause the hyperparameter 𝑀𝑟𝑙 varies, so the quantities are incomparable. Moreover, the objective is to avoid scheduling failures,
o the number of failures is more descriptive than the amount of the penalty. Training and testing results using the same agent are
onnected by a dotted line in Fig. 6: we note that training and testing results are consistent. This is crucial as it means that the RL
gents have learned a policy that can be used in real scenarios, which is different from the training dataset. We also note a slight
ncrease in the savings in the test data. Please, remember that both the training set and the test set have been randomly generated
ccording to Section 5.2.2, so this change is justified by slightly more favorable conditions in the testing scenario.

We highlight that the most important hyperparameter is the LR: in Fig. 6, we use different colors for each LR to highlight the
−2 −3
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resence of clusters. Higher LRs (10 and 10 ) lead to agents that are sparse in Fig. 6 as their performances are fairly different.
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Table 6
RL agents versus trivial and ideal algorithms: hyperparameters, rewards, penalties, and daily failure rate.

Agent Energy reward Penalty cost Daily failure rate

LR 𝛾𝑟𝑙 𝑀𝑟𝑙 Train Test Train Test Train Test

10−2 1.000 107 90.829 94.984 −1.73 ⋅ 109 −1.33 ⋅ 109 3.681 3.174
10−2 0.990 107 92.763 97.111 −2.25 ⋅ 109 −2.05 ⋅ 109 5.132 5.261
10−2 0.979 107 88.313 91.226 −1.30 ⋅ 109 −8.80 ⋅ 108 2.987 2.203
10−2 1.000 1012 91.816 96.937 −2.59 ⋅ 1014 −2.25 ⋅ 1014 5.916 5.816
10−2 0.990 1012 94.379 97.901 −2.46 ⋅ 1014 −2.13 ⋅ 1014 5.742 5.671
10−2 0.979 1012 91.567 95.406 −2.05 ⋅ 1014 −1.68 ⋅ 1014 4.526 4.174
10−3 1.000 107 84.581 88.240 −8.21 ⋅ 108 −4.01 ⋅ 108 1.568 0.945
10−3 0.990 107 87.268 91.328 −1.44 ⋅ 109 −1.21 ⋅ 109 3.445 3.123
10−3 0.979 107 95.291 98.736 −2.69 ⋅ 109 −2.33 ⋅ 109 6.536 6.432
10−3 1.000 1012 84.439 88.231 −4.73 ⋅ 1013 −3.71 ⋅ 1013 1.003 0.906
10−3 0.990 1012 86.765 90.840 −1.38 ⋅ 1014 −1.15 ⋅ 1014 3.423 2.826
10−3 0.979 1012 94.539 98.873 −2.50 ⋅ 1014 −2.45 ⋅ 1014 6.116 6.358
10−4 1.000 107 89.147 92.430 −1.15 ⋅ 109 −8.47 ⋅ 108 2.561 2.052
10−4 0.990 107 89.056 92.037 −9.48 ⋅ 108 −6.47 ⋅ 108 1.952 1.471
10−4 0.979 107 86.663 89.367 −7.96 ⋅ 108 −4.43 ⋅ 108 1.771 1.058
10−4 1.000 1012 88.016 91.367 −1.01 ⋅ 1014 −4.69 ⋅ 1013 1.955 0.987
10−4 0.990 1012 89.028 91.773 −8.82 ⋅ 1013 −5.24 ⋅ 1013 1.813 1.155
10−4 0.979 1012 88.271 91.009 −8.66 ⋅ 1013 −6.23 ⋅ 1013 1.790 1.371
10−5 1.000 107 91.332 94.573 −1.51 ⋅ 109 −1.03 ⋅ 109 2.978 2.281
10−5 0.990 107 93.870 97.745 −1.95 ⋅ 109 −1.55 ⋅ 109 3.907 3.374
10−5 0.979 107 91.972 94.634 −1.67 ⋅ 109 −1.19 ⋅ 109 3.484 2.755
10−5 1.000 1012 90.289 94.070 −1.66 ⋅ 1014 −1.41 ⋅ 1014 3.468 3.323
10−5 0.990 1012 92.831 96.696 −2.00 ⋅ 1014 −1.63 ⋅ 1014 4.268 3.894
10−5 0.979 1012 92.878 96.253 −1.98 ⋅ 1014 −1.55 ⋅ 1014 3.932 3.378

Conservative 107 11.476 11.442 +0.00 ⋅ 100 −1.62 ⋅ 107 0.000 0.003
Greedy 107 100.867 104.352 −5.00 ⋅ 109 −4.99 ⋅ 109 11.478 12.136

Ideal 107 103.735 106.811 +0.00 ⋅ 100 −1.62 ⋅ 107 0.000 0.003

Fig. 6. Reinforcement learning agent performances in terms of daily savings and satisfaction of energy demand.

onversely, agents with a smaller LR (10−4 and 10−5) form two clusters in Fig. 6 because their performances are more consistent.
n fact, high LR is not recommended in stochastic settings, as the convergence to a good policy may not happen at all. On the other
and, smaller LRs (10−4 and 10−5) may take more time to converge to a good policy: this happens with the smallest LR (10−5),

where the scalarized reward (37) is worse than the one given by the LR 10−4, which shows the best reward on average. Thus, the
LR 10−4 is the most favorable one, in terms of performance and consistency of the training results.

The remaining hyperparameters 𝑀𝑟𝑙 and 𝛾𝑟𝑙, instead, do not show a significant impact on the final RL agent performances, while
we expected a lower failure rate for larger 𝑀𝑟𝑙.

The results of the RL agents are compared with a fully conservative agent and a fully greedy agent, i.e., agents that always act
as in Eqs. (33) and (34), respectively. The greedy agent is shown in red in Fig. 6, while the conservative one is shown in green.
The greedy agent causes the highest daily failure rate, but its energy reward is higher than any other RL agent, as expected. On
the contrary, the conservative agent shows the lowest daily failure rate, but its energy reward is much lower than the RL agents
we have trained. The trained RL agents show a trade-off between income and scheduling failure rate, which is obtained by mixing
16

the two simple behaviors, i.e., the greedy and the conservative one, according to the learned policy. Such agents show a marginal
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reduction of energy reward with respect to the greedy agent, but they drastically reduce the daily failure rate, see for example the
dark green agents in Fig. 6 (LR 10−4).

The results of the RL agents are also compared with a non-causal optimizer (ideal for brevity), i.e., with an algorithm that knows
in advance the actual consumption and user behaviors in the future. Please note that such an ideal optimizer is clearly infeasible in
reality, and merely represents an upper bound for the performances of any other strategy.

When complete information about the future is available, the ideal algorithm estimates the maximum reward in the case of
optimal BESS management. We remark that such information is not available in real applications, as detailed in Section 5.1, because
user behavior is random, and consumption and PV power are not deterministic.

The ideal algorithm obtains the highest energy reward, outperforming the fully greedy agent (33) as well. This happens because
the ideal algorithm has full knowledge of the future, so it also takes advantage of the hourly price of electricity. The reward (35)
also depends on the current price of the energy 𝑐(𝜏). On the other hand, the amount of total power delivered by the ideal algorithm
and the greedy agent is the same.

The ideal algorithm shows very low failure rates, as it exploits the exact knowledge of future consumption. In the test set, a
single scheduling failure occurs anyway, due to a sequence of peaks in power demand. We note that the fully conservative agent
(33) shows the same failure rate of the ideal algorithm, but the energy reward is severely affected.

We note that many RL agents, especially the dark green ones in Fig. 6, represent a feasible approximation of the ideal behavior.
By the way, we remark that the performances of the ideal agent cannot be reached in any way because of the lack of information.
The RL agents only know the current SOC, the current time, and the current amount of power required by the user, while the ideal
algorithm makes use of future consumption predictions with an infinite prediction horizon, and those predictions are not corrupted
by uncertainty. Moreover, the information provided to the RL agents is quantized, thus it lacks resolution. On average, training the
agents with a LR 10−4 gives consistent and repeatable results, while all of the discount factors and penalty terms have led to minor
differences.

Fig. 6 also reports the results using different AI-based methods instead of RL agents. We train four classifiers (tree, support vector
machine, shallow artificial neural network, and k-nearest neighbors) and three regressors (tree, support vector machine, and shallow
artificial neural network). The training involves attempting to replicate the optimal decision made by the ideal optimizer using the
available inputs, namely current SOC and hour. In particular, the classifiers minimize the misclassification cost function and they
are trained to replicate a discrete 𝛼 = {0, 0.25, 0.5, 0.75, 1}, as done by the RL agents. Instead, the regressors minimize the mean
squared error and return a continuous 𝛼 ∈ [0, 1]. The classifiers and the regressors are reported in dark and light gray in Fig. 6,
respectively. Even employing different algorithms and utilizing various cost functions, they all yield a greedy strategy with a high
failure rate.

6. Conclusion

In this study, we have proposed a novel Home Energy Management System by combining Mixed Integer Linear Programming
and Reinforcement Learning. Specifically, Reinforcement Learning is used to manage the charge and discharge of a Battery Energy
Storage System, while Mixed Integer Linear Programming is employed for load scheduling. The focus of Reinforcement Learning is
specifically on Battery Energy Storage System management, as it is a load/generator with stochastic behavior primarily influenced by
factors such as photovoltaic production and variations in consumption due to changes in user behavior. The addition of Mixed Integer
Linear Programming to Reinforcement Learning has been motivated by the challenge of developing a Home Energy Management
System using Reinforcement Learning in scenarios where handling a large state space for system modeling is required. By employing
both techniques, we have achieved a dimension reduction of the state space, facilitating Reinforcement Learning training, albeit at
the expense of problem optimality due to problem decoupling. The results show that the Reinforcement Learning agent can achieve
optimal performance in terms of daily savings and meeting energy demand. The Reinforcement Learning agent can be configured as
either a greedy agent or a conservative agent through the setting of the reward function. Depending on the objective of the Home
Energy Management System, the agent can maximize self-consumption, minimize energy peaks, or find an optimal trade-off. Since
the proposed Home Energy Management System software has been deployed in the cloud, future work involves testing the software
in a real environment. Additionally, we plan to scale the software to manage energy aggregation across multiple dwellings in future
works.
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