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1. Introduction

Let us consider mappings u : ⌦ ⇢ Rn ! RN and the variational integral

F(u) =

Z

⌦
f(x,Du)dx, (1.1)

where f : ⌦ ⇥ RN⇥n ! [0,+1) with n � 2 and N � 1. After fixing
a suitable boundary value u⇤, we deal with the problem of minimizing F
among mappings that agree with u⇤ on the boundary of ⌦:

min{F(u) : u = u⇤ on @⌦}. (1.2)

When we have p-coercivity

⌫|z|p � a(x)  f(x, z), (1.3)

for some exponent p > 1, then minimizing sequences for (1.2) are bounded in
the Sobolev space W

1,p and compact with respect to the weak convergence
in W

1,p. In order to use direct methods, we need lower semicontinuity
with respect to such a weak convergence. In the scalar case N = 1, F is
sequentially weakly lower semicontinuous in W

1,p if and only if z ! f(x, z)
is convex, see Theorem 1.3 in [15]. In the vectorial case N � 2, when we
also have p-growth from above

f(x, z)  M |z|p + b(x), (1.4)

then F is sequentially weakly lower semicontinuous in W
1,p if and only if

z ! f(x, z) is quasiconvex in the sense of Morrey, see Theorem 1.13 in
[15]. Quasiconvexity is weaker then convexity in the vectorial case. Quasi-
convexity is not a local condition, see [34]. A more friendly assumption is
polyconvexity; this means that f(x, z) can be written as a convex combina-
tion of minors taken from the N ⇥n matrix z. Polyconvexity is weaker than
convexity but stronger than quasiconvexity. When N = n = 3, polyconvex-
ity can be stated as follows

f(x, z) = g(x, z, adj2z, det z), (1.5)

with
(z, ⇠, t) ! g(x, z, ⇠, t) convex. (1.6)

In nonlinear elasticity, f(x, z) = g(x, z, adj2z, det z) is the stored-energy
function and z, adj2z, det z govern the deformations of line, surface, volume
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elements respectively, see [1]. Existence results for minimization problem
(1.2), when f is polyconvex, can be found in section 8.4.2 of [15].

This paper is concerned with regularity of minimizers of integral functional
(1.1) when f is polyconvex. In this framework we recall partial regularity
contained in [27], [25], [24], [45], [21], [32], [23], [9]. As far as everywhere
regularity is concerned, only few contributions are recorded and they all
consider the two dimensional case n = 2: [28], [17], [26], [5]. When L

1

estimates are concerned, we mention global bounds in [35], [3], [4], [19], [38],
[39], [37], [36], [6]. On the other hand, local L1 regularity is obtained in
[12], [7], [13]. When the polyconvex term is of lower order, see [18], [14] and
[30].

We focus our attention to the case where N = n = 3 and we are inter-
ested in studying the properties of solutions of the following minimization
problem:

min

⇢Z

⌦
f(x,Dv(x))dx, v 2 u⇤ +W

1,p
0 (⌦,R3)

�
. (1.7)

Our aim is to obtain bounds of the quantity |u � u⇤| for minimizers u of
problem (1.7). Here ⌦ is a bounded open set in R3 and u, u⇤ : ⌦ ⇢ R3 ! R3.
Our main result is stated in Theorem 2.2 and gives an explicit estimate of
the L1 norm of u�u⇤ under structural assumptions on f that are formalized
in the next section.

We underline the fact that in the present paper a “good” boundary
datum allows minimizers to be “regular” under quite general assumptions.
At the end of section 2 we will discuss in detail the fact that our assumptions
allow non standard growth of the type

⌫̃|z|p � 3a(x)  f(x, z)  M̃ [b(x) + 1 + |z|p̂], (1.8)

where ⌫̃, M̃ are positive constants, a, b : ⌦ ! R are measurable functions
with suitable summability and p < p̂. In the case of the example discussed
in Remark 2.3 we get p = 5/2 < 4 = p̂. In the framework of non standard
growth, regularity for minimizers is usually obtained when p and p̂ are not
too far apart, see [31], [40], [41], [29], [44], [33], [20], [22], [10], [11], [2], [16],
sections 5 and 6 in [42] and sections 3,4 in [43]. In our case too a similar
control on p and p̂ appears. See Remark 2.3 for a deeper discussion. In
section 5 we apply our main Theorem to the special case where the boundary
datum is Lipschitz.
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Let us end this introduction by mentioning that, in the scalar case u : ⌦ ⇢
Rn ! R, estimates of the di↵erence between minimizers u and boundary
values u⇤ are given in [8].

2. Notation and statement of the main result

2.1. Notation

In this paper we are concerned with N = n = 3, so u : ⌦ ⇢ R3 ! R3.
We will use the following notation for u and for its Jacobian Matrix:

u =

0

@
u
1

u
2

u
3

1

A , Du =

0

@
D1u

1
D2u

1
D3u

1

D1u
2

D2u
2

D3u
2

D1u
3

D2u
3

D3u
3

1

A .

For simplicity, we will also denote the Jacobian matrix using the gradients
of functions u↵:

Du =

0

@
Du

1

Du
2

Du
3

1

A .

Moreover, we consider the adjugate matrix of the Jacobian:

adj2(Du) =

0

@
adj2(Du)11 adj2(Du)12 adj2(Du)13
adj2(Du)21 adj2(Du)22 adj2(Du)23
adj2(Du)31 adj2(Du)32 adj2(Du)33

1

A ,

where

adj2(Du)↵i = (�1)↵+i
det

0

@
@u�

@xr
@u�

@xs

@u�

@xr
@u�

@xs

1

A ,

with

� < �, �, � 2 {1, 2, 3} \ {↵}, r < s, r, s 2 {1, 2, 3} \ {i}.

We write adj2(Du)↵ for the ↵�th row of the adjugate matrix.
Moreover we use also the following common notations: |⌦| is the Lebesgue

measure of ⌦; kgks is the L
s(⌦) norm of the function g and p

⇤ is the crit-
ical Sobolev exponent associated to p. We remark that in our special case
p
⇤ = 3p

3�p .
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2.2. Structure assumptions on f.

Let p, q, r three strictly positive real numbers satisfying

0 < r < q < p < 3, p � 1, p > max

⇢p
3q,

3r

q

�
. (2.1)

Remark 2.1. Note that
p
3q < 3 since q < 3 and 3r/q < 3 since r < q;

then, assumption (2.1) makes sense.

We consider a polyconvex potential of the following form

f(x,Du) =F1(x,Du
1) + F2(x,Du

2) + F3(x,Du
3)

+G1(x, adj2(Du)1) +G2(x, adj2(Du)2) +G3(x, adj2(Du)3)

+H(x, det(Du)),

where we suppose that F↵, G↵ : ⌦⇥R3 ! R, ↵ = 1, 2, 3, and H : ⌦⇥R ! R
are Caratheodory functions. Moreover we will assume that there exist two
constants

0 < ⌫,M < +1. (2.2)

and two functions

0  a(x), b(x) < +1, a, b 2 L
�(⌦), � >

3

p
, (2.3)

such that

⌫|⇠|p � a(x)  F↵(x, ⇠)  M |⇠|p + b(x), F↵(x, ⇠) � 0, (2.4)

⌫|⇠|q � a(x)  G↵(x, ⇠)  M |⇠|q + b(x), G↵(x, ⇠) � 0, (2.5)

0  H(x, t)  M |t|r + b(x). (2.6)

2.3. Statement of the main Theorem

We start defining some constants that will be used in Theorem 2.2:

- we denote by p̃ a fixed real number such that

p̃ > max

⇢
3,

3pq

p2 � 3q
,

3qr

qp� 3r

�
;
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- the real number � is defined by

� := min

8
>>><

>>>:
1� 1

�| {z }
�1

, 1� p

p̃| {z }
�2

, 1� q

p
� q

p̃| {z }
�3

, 1� r

q
� r

p̃| {z }
�4

9
>>>=

>>>;
,

and we underline that, thanks to previous choices, � >
p
p⇤ .

We consider a minimization problem with fixed boundary datum u⇤ and
we assume that u⇤ 2 W

1,p̃(⌦,R3) such that

x ! f(x,Du⇤(x)) 2 L
1(⌦). (2.7)

The last constant that we will need is

K :=
4

⌫

✓
2p

3� p

◆ 3p
3�p

2
3(p�1)
3�p

·
⇣
max

n
4kbk� + kak�, MkDu⇤kpp̃,

2M3qkDu⇤kqp̃
✓
1

⌫

Z

⌦
f(x,Du⇤)dx+

3

⌫
kak1

◆ q
p

,

M3
r
2 kDu⇤krp̃

✓
1

⌫

Z

⌦
f(x,Du⇤)dx+

3

⌫
kak1

◆ r
qo

·max
n
|⌦|�1��

, |⌦|�2��
, |⌦|�3��

, |⌦|�4��
o
+ kDu⇤kpp̃|⌦|

�2��
⌘ 3

3�p
.

(2.8)

We are ready now to state our main Theorem that will be proved in the
next section.

Theorem 2.2. Let u : ⌦ ⇢ R3 ! R3 be a minimizer of problem (1.7)
such that hypotheses (2.2)-(2.7) are fulfilled. In addition, we suppose that
boundary datum u⇤ has the following high degree of integrability

u⇤ 2 W
1,p̃(⌦), (2.9)

Then,
|u↵ � u

↵
⇤ |  L

⇤
, in ⌦, 8↵ 2 {1, 2, 3},

with

L
⇤ = 2

p⇤�
p⇤��pK

1
p⇤ |⌦|

�
p�

1
p⇤ . (2.10)
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Remark 2.3. We now give an application of the previous Theorem. We
consider

f(x,Du) =
3X

↵=1

(|Du
↵|p + |adj2(Du)↵|q) + | detDu|r. (2.11)

Assuming p, q, r > 1 we have that the functional is both polyconvex and
coercive and, so, the corresponding minimum problem (1.7) has a solution
see Remark 8.32 (iii) in [15] and Theorem 3.1 in [12]. We choose r = 4/3,
q = 2 and p = 5/2 and we observe that (2.1) is satisfied. For this choice we
obtain 3pq/(p2�3q) = 60 and 3qr/(qp�3r) = 8; then our Theorem requires
that the degree of integrability of the boundary datum u⇤ has to verify p̃ > 60.

Let note that (2.11) has been considered in [12]: there, the conditions
on p are more restrictive than the ones in the present paper, see section
4. We can guess it by recalling that [12] deals with local regularity and no
boundary value u⇤ is fixed; on the contrary, in the present paper a “good”
boundary value u⇤ allows minimizers to be “regular” under less restrictive
assumptions.

Let us come back to our general structure described in section 2.2; then,
our growth assumptions (2.4)-(2.6) imply

⌫̃|z|p � 3a(x)  f(x, z)  M̃ [b(x) + 1 + |z|p̂], (2.12)

where ⌫̃, M̃ are positive constants and

p̂ := max{p; 2q; 3r}. (2.13)

So, we are in the framework of non standard growth, that is, when the
exponent p of the growth from below is less than the exponent p̂ of the
growth from above: this happens in our previous example when r = 4/3,
q = 2 and p = 5/2; in such a case p = 5/2 < 4 = p̂. In the framework
of non standard growth, regularity for minimizers is usually obtained when
p and p̂ are not too far apart, see [31], [40], [41], [29], [44], [33], [20], [22],
[10], [11], [2], [16], sections 5 and 6 in [42] and sections 3,4 in [43]. So, it
is not surprising that also in our case a similar control on p and p̂ appears.
Indeed, let us read the last inequality of (2.1) in a di↵erent way. Condition
p >

p
3q is equivalent to 2q < 2p2/3 and restriction p > 3r/q can be seen as

3r < pq; taking into account the previous condition on q, we get 3r < p
3
/3.

This means that

p̂ = max{p; 2q; 3r}  max

⇢
p;

2

3
p
2;
p
3

3

�
. (2.14)
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3. Proof of Theorem 2.2

We will present some preliminary estimates that are resumed in the following
technical lemma and that will be useful later.

Lemma 3.1. Let u be a minimizer of (1.7) satisfying (2.2)-(2.7); then:

x ! f(x,Du(x)) 2 L
1(⌦), (3.1)

kDukqp  3
q
2

✓
1

⌫

Z

⌦
f(x,Du⇤)dx+

3

⌫
kak1

◆ q
p

, (3.2)

and

kadj2(Du)krq  3
r
2

✓
1

⌫

Z

⌦
f(x,Du⇤)dx+

3

⌫
kak1

◆ r
q

. (3.3)

Proof. For the first claim we observe that:

0 
Z

⌦
f(x,Du(x))dx 

Z

⌦
f(x,Du⇤(x))dx < +1.

Moreover,

|Du|p =
 

3X

↵=1

3X

i=1

|Diu
↵|2
! p

2


 

3X

↵=1

3X

i=1

|Diu
↵̃|2
! p

2

= 3
p
2

 
3X

i=1

|Diu
↵̃|2
! p

2

,

where the index ↵̃ corresponds to the maximum of the quantity
P3

i=1 |Diu
↵|2

with ↵ = 1, 2, 3. From the previous inequality we have

|Du|p  3
p
2

3X

↵=1

 
3X

i=1

|Diu
↵|2
! p

2

= 3
p
2

3X

↵=1

�
|Du

↵|2
� p

2 = 3
p
2

3X

↵=1

|Du
↵|p.

(3.4)

8



Then, using (3.4), (2.2)-(2.7) we can write:

kDukqp =
✓Z

⌦
|Du|p

◆ q
p


 Z

⌦
3

p
2

3X

↵=1

|Du
↵|p
! q

p

= 3
q
2

 
3X

↵=1

Z

⌦
|Du

↵|p
! q

p

 3
q
2

 
3X

↵=1

1

⌫

Z

⌦
[F↵(x,Du

↵) + a(x)] dx

! q
p

 3
q
2

✓
1

⌫

Z

⌦
f(x,Du)dx+

3

⌫
kak1

◆ q
p

 3
q
2

✓
1

⌫

Z

⌦
f(x,Du⇤)dx+

3

⌫
kak1

◆ q
p

,

where in the last inequality we have used the minimality of u.
Now we pass to the second estimate. From a similar argument used for
estimating |Du|p we obtain that

|adj2(Du)|q  3
q
2

3X

↵=1

|adj2(Du)↵|q, (3.5)

and then, using (3.5), (2.2)-(2.7) and the minimality of u:

kadj2(Du)krq =
✓Z

⌦
|adj2(Du)|qdx

◆ r
q


 Z

⌦
3

q
2

3X

↵=1

|adj2(Du)↵|q dx
! r

q

= 3
r
2

 
3X

↵=1

Z

⌦
|adj2(Du)↵|qdx

! r
q

 3
r
2

 
3X

↵=1

Z

⌦

1

⌫
[G↵(x, adj2(Du)↵) + a(x)] dx

! r
q

 3
r
2

✓
1

⌫

Z

⌦
f(x,Du)dx+

3

⌫
kak1

◆ r
q

 3
r
2

✓
1

⌫

Z

⌦
f(x,Du⇤)dx+

3

⌫
kak1

◆ r
q

.
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Remark 3.2. We observe that

3pq

p2 � 3q
>

pq

p� q
, (3.6)

and
3qr

qp� 3r
>

qr

q � r
. (3.7)

The previous inequalities will be useful for the proof of Theorem 2.2. More-
over, (2.9) implies � >

p
p⇤ , see (3.14).

Now we are ready to prove Theorem 2.2

Proof. (Theorem 2.2) For L > 0 we introduce the following test function

v =

0

@
v
1

u
2

u
3

1

A ,

where

v
1 =

⇢
u
1
, on ⌦ \A1

L,

u
1
⇤ + L, on A

1
L,

where
A

1
L = {x 2 ⌦ : u

1(x) > u
1
⇤(x) + L}.

We first show that v is an admissible function for the minimum problem.
Note that on @⌦ we have

u
1(x) = u

1
⇤(x) < u

1
⇤(x) + L,

then
v
1(x) = u

1(x) on @⌦.

We observe that

Dv
1 =

⇢
Du

1
, on ⌦ \A1

L,

Du
1
⇤, on A

1
L,

and
Dv

2 = Du
2
, Dv

3 = Du
3
.
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Regarding the functions F↵ we have:

F1(x,Dv
1) =

⇢
F1(x,Du

1), on ⌦ \A1
L,

F1(x,Du
1
⇤), on A

1
L,

,

F2(x,Dv
2) = F2(x,Du

2), F3(x,Dv
3) = F3(x,Du

3).

On ⌦ \ A
1
L we have Dv = Du and as a consequence f(x,Dv) = f(x,Du).

On the set A1
L we have

Dv =

0

@
Du

1
⇤

Du
2

Du
3

1

A ,

and for the first row of the adjugate matrix we have

adj2(Dv)1 = adj2(Du)1,

while for the other rows we have

adj2(Dv)2i = (�1)2+i
det

0

B@

@u1
⇤

@xr
@u1

⇤
@xs

@u3

@xr
@u3

@xs

1

CA ,

with
r < s, r, s 2 {1, 2, 3} \ {i}.

The previous quantity can be estimated in the following way:

|adj2(Dv)2i | =
����
@u

1
⇤

@xr

@u
3

@xs
� @u

1
⇤

@xs

@u
3

@xr

���� 
����
@u

1
⇤

@xr

����

����
@u

3

@xs

����+
����
@u

1
⇤

@xs

����

����
@u

3

@xr

����


 ����

@u
1
⇤

@xr

����
2

+

����
@u

1
⇤

@xs

����
2
! 1

2
 ����

@u
3

@xr

����
2

+

����
@u

3

@xs

����
2
! 1

2

 |Du
1
⇤||Du

3|,
(3.8)

where we have used Cauchy-Schwartz inequality. For the third row we have:

adj2(Dv)3i = (�1)3+i
det

0

B@

@u1
⇤

@xr
@u1

⇤
@xs

@u2

@xr
@u2

@xs

1

CA ,

with
r < s, r, s 2 {1, 2, 3} \ {i},
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for which we obtain in a similar way the following bound:

|adj2(Dv)3i |  |Du
1
⇤||Du

2|. (3.9)

Then we have
G1(adj2(Dv)1) = G1(adj2(Du)1),

G2(adj2(Dv)2)  M |adj2(Dv)2|q + b(x)  M |Du
1
⇤|q|Du

3|q + b(x).

Then in order to have G2(adj2(Dv)2) 2 L
1(⌦) it is su�cient to note that

Z

⌦
G2(adj2(Dv)2)dx  M

Z

⌦
|Du

1
⇤|q|Du

3|qdx+ kbk1

 MkDu
3kqLp(⌦)

✓Z

⌦
|Du

1
⇤|

pq
p�q dx

◆ p�q
p

+ kbk1

 ckDu
3kqp + kbk1,

where we have used (2.9) and (3.6) which ensure that

u
1
⇤ 2 W

1,p̃
, p̃ � pq

p� q
.

The same reasoning can be used for G3.
We now consider the last term of the functional; we observe that the deter-
minant of the Jacobian matrix can be computed using the first row:

det(Dv) = D1u
1
⇤ · adj2(Du)11 +D2u

1
⇤ · adj2(Du)12 +D3u

1
⇤ · adj2(Du)13,

then by Cauchy-Schwartz inequality we have

|det(Dv)|  |Du
1
⇤||adj2(Du)1|, (3.10)

and as a consequence

0  H(det(Dv))  M |det(Dv)|r + b(x)  M |Du
1
⇤|r|adj2(Du)1|r + b(x).

We observe that adj2(Du)1 2 L
q(⌦): indeed, from (2.5) we have

⌫|adj2(Du)1|q  a(x) +G1(x, adj2(Du)1)  a(x) + f(x,Du).

Then, using Hölder’s inequality we obtain:
Z

⌦
H(det(Dv))dx  M

Z

⌦
|Du

1
⇤|r|adj2(Du)1|rdx+ kbk1

 M

✓Z

⌦
|Du

1
⇤|

qr
q�r dx

◆ q�r
q
✓Z

⌦
|adj2(Du)1|qdx

◆ r
q

+ kbk1,

12



then we obtain H(det(Dv)) 2 L
1(⌦) by using hypothesis (2.9) and (3.7) for

which we have
u
1
⇤ 2 W

1,p̃
, p̃ � rq

q � r
.

Then we conclude that v is an admissible function. Now we pass to the
bound of u. By minimality of u we can write

Z

⌦
f(x,Du(x))dx 

Z

⌦
f(x,Dv(x))dx,

so that
Z

⌦\A1
L

f(x,Du)dx+

Z

A1
L

f(x,Du)dx 
Z

⌦\A1
L

f(x,Dv)dx+

Z

A1
L

f(x,Dv)dx.

Since u = v in ⌦ \A1
L, we drop

R
⌦\A1

L
f(x,Du)dx =

R
⌦\A1

L
f(x,Dv)dx from

both sides and we obtain
Z

A1
L

f(x,Du(x))dx 
Z

A1
L

f(x,Dv(x))dx.

We rewrite the previous inequality in details emphasising the terms that are
equal (keep in mind that v2 = u

2
, v

3 = u
3 and adj2(Dv)1 = adj2(Du)1):

Z

A1
L

F1(x,Du
1)dx+

Z

A1
L

F2(x,Du
2)dx

| {z }
(I)

+

Z

A1
L

F3(x,Du
3)dx

| {z }
(II)

+

Z

A1
L

G1(x, adj2(Du)1)dx

| {z }
(III)

+

Z

A1
L

G2(x, adj2(Du)2)dx

+

Z

A1
L

G3(x, adj2(Du)3)dx+

Z

A1
L

H(x, det(Du))dx


Z

A1
L

F1(x,Dv
1)dx+

Z

A1
L

F2(x,Dv
2)dx

| {z }
(I)

+

Z

A1
L

F3(x,Dv
3)dx

| {z }
(II)

+

Z

A1
L

G1(x, adj2(Dv)1)dx

| {z }
(III)

+

Z

A1
L

G2(x, adj2(Dv)2)dx

+

Z

A1
L

G3(x, adj2(Dv)3)dx+

Z

A1
L

H(x, det(Dv))dx;

13



then, dropping the equal terms and using Dv
1 = Du

1
⇤ in A

1
L, we have

Z

A1
L

F1(x,Du
1)dx+

Z

A1
L

G2(x, adj2(Du)2)dx+

Z

A1
L

G3(x, adj2(Du)3)dx

+

Z

A1
L

H(x, det(Du))dx


Z

A1
L

F1(x,Du
1
⇤)dx+

Z

A1
L

G2(x, adj2(Dv)2)dx+

Z

A1
L

G3(x, adj2(Dv)3)dx

+

Z

A1
L

H(x, det(Dv))dx,

and, using growth assumption (2.4), (2.5), (2.6) we obtain that the right
hand side of the estimate above is less or equal to

M

Z

A1
L

|Du
1
⇤|pdx+

Z

A1
L

b(x)dx+M

Z

A1
L

|adj2(Dv)2|qdx+

Z

A1
L

b(x)dx

+M

Z

A1
L

|adj2(Dv)3|qdx+

Z

A1
L

b(x)dx+M

Z

A1
L

|det(Dv)|rdx+

Z

A1
L

b(x)dx.

Finally, by Hölder’s inequality, (3.8), (3.9) and (3.10), the previous quantity
can be be majorized by

4

✓Z

⌦
b(x)�dx

◆ 1
�

|A1
L|1�

1
� +M

✓Z

⌦
|Du

1
⇤|p̃dx

◆ p
p̃

|A1
L|

1� p
p̃

+ 2M3
q
2

Z

A1
L

|Du⇤|q|Du|qdx+M

Z

A1
L

|Du⇤|r|adj2(Du)|rdx.

We estimate the last two terms of the previous expression separately. We
first observe that the coe�cient 3

q
2 appears since (3.8) implies

|adj2(Dv)2| 
p
3|Du

1
⇤||Du

3| 
p
3|Du⇤||Du|,

moreover (3.9) implies

|adj2(Dv)3| 
p
3|Du

1
⇤||Du

2| 
p
3|Du⇤||Du|.
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Note that (2.9) implies p̃ >
pq
p�q , see (3.6); then, for the first term we have

Z

A1
L

|Du⇤|q|Du|qdx 
 Z

A1
L

|Du⇤|
qp
p�q dx

! p�q
p ✓Z

⌦
|Du|pdx

◆ q
p



2

4
 Z

A1
L

|Du⇤|p̃dx
! qp

(p�q)p̃

|A1
L|

1� qp
(p�q)p̃

3

5

p�q
p ✓Z

⌦
|Du|pdx

◆ q
p


✓Z

⌦
|Du⇤|p̃dx

◆ q
p̃
✓Z

⌦
|Du|pdx

◆ q
p h

|A1
L|

1� qp
(p�q)p̃

i p�q
p

= kDu⇤kqp̃kDukqp|A1
L|

1� q
p�

q
p̃ .

Lemma 3.1 implies that the last term is less than

kDu⇤kqp̃ 3
q
2

✓
1

⌫

Z

⌦
f(x,Du⇤)dx+

3

⌫
kak1

◆ q
p

|A1
L|

1� q
p�

q
p̃ := c1|A1

L|
1� q

p�
q
p̃ .

Note that (2.9) implies p̃ >
qr
q�r , see (3.7), then, thanks again to Lemma 3.1

we can estimate the second term as follows

Z

A1
L

|Du⇤|r|adj2(Du)|rdx 
✓Z

⌦
|adj2(Du)|qdx

◆ r
q

 Z

A1
L

|Du⇤|
rq
q�r dx

! q�r
q


✓Z

⌦
|adj2(Du)|qdx

◆ r
q

"✓Z

⌦
|Du⇤|p̃

◆ rq
(q�r)p̃

|A1
L|

1� rq
(q�r)p̃

# q�r
q


✓Z

⌦
|adj2(Du)|qdx

◆ r
q
✓Z

⌦
|Du⇤|p̃

◆ r
p̃ h

|A1
L|

1� rq
(q�r)p̃

i q�r
q

= kadj2(Du)krq kDu⇤krp̃ |A1
L|

1� r
q�

r
p̃

 kDu⇤krp̃ 3
r
2

✓
1

⌫

Z

⌦
f(x,Du⇤)dx+

3

⌫
kak1

◆ r
q

|A1
L|

1� r
q�

r
p̃ := c2|A1

L|
1� r

q�
r
p̃ .

Then
Z

A1
L

F1(x,Du
1)dx+

Z

A1
L

G2(x, adj2(Du)2)dx+

Z

A1
L

G3(x, adj2(Du)3)dx

+

Z

A1
L

H(x, det(Du))dx

 4kbk�|A1
L|1�

1
� +MkDu

1
⇤k

p
p̃|A

1
L|

1� p
p̃ + 2M3

q
2 c1|A1

L|
1� q

p�
q
p̃ +Mc2|A1

L|
1� r

q�
r
p̃ .
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By using the positiveness of G↵, H and the left hand side of (2.4) we can
write:

⌫

Z

A1
L

|Du
1|pdx�

Z

A1
L

a(x)dx 
Z

A1
L

F1(x,Du
1)dx

 k1|A1
L|1�

1
� + k2|A1

L|
1� p

p̃ + k3|A1
L|

1� q
p�

q
p̃ + k4|A1

L|
1� r

q�
r
p̃ ,

where

k1 = 4kbk�, k2 = MkDu⇤kpp̃, k3 = 2M3
q
2 c1, k4 = Mc2.

We can estimate the term depending on the function a(·) in the following
way:

Z

A1
L

a(x)dx 
✓Z

⌦
a(x)�dx

◆ 1
�

|A1
L|1�

1
� .

Finally, we obtain Z

A1
L

|Du
1|p  k|A1

L|� ,

where

k =
4

⌫
max{k1 + kak�, k2, k3, k4}max{|⌦|�1��

, |⌦|�2��
, |⌦|�3��

, |⌦|�4��},

and

� := min

8
>>><

>>>:
1� 1

�| {z }
�1

, 1� p

p̃| {z }
�2

, 1� q

p
� q

p̃| {z }
�3

, 1� r

q
� r

p̃| {z }
�4

9
>>>=

>>>;
.

The previous estimate follows from the following reasoning,

|A1
L|� = |A1

L|� |A1
L|���  |A1

L|� |⌦|���
,

where � � �. From Hölder’s inequality we have

Z

A1
L

|Du
1
⇤|pdx 

✓Z

⌦
|Du

1
⇤|p̃
◆ p

p̃

|A1
L|

1� p
p̃ ,

and as a consequence
Z

A1
L

|Du
1
⇤|pdx  kDu⇤kpp̃ |A1

L|
1� p

p̃  k̃|A1
L|� ,

16



where � is as above and

k̃ := kDu⇤kpp̃ |⌦|�2��
.

Finally, we can write
Z

A1
L

|D[u1(x)� u
1
⇤(x)]|pdx  2p�1

Z

A1
L

|Du
1(x)|pdx+ 2p�1

Z

A1
L

|Du
1
⇤(x)|pdx

 2p�1(k + k̃)|A1
L|� := k̂|A1

L|� .

We use Sobolev inequality for 1  p < 3:
Z

A1
L

|(u1 � u
1
⇤)� L|p⇤dx =

Z

⌦
|[(u1 � u

1
⇤)� L] _ 0|p⇤dx

 CS,3

✓Z

⌦
|D{[(u1 � u

1
⇤)� L] _ 0}|pdx

◆ p⇤
p

= CS,3

 Z

A1
L

|D(u1 � u
1
⇤)|pdx

! p⇤
p

, (3.11)

where CS,3 =
⇣

2p
3�p

⌘ 3p
3�p

is the Sobolev constant in dimension 3, while p
⇤

is the Sobolev exponent in dimension 3: 1
p⇤ = 1

p � 1
3 . From the previous

computation we obtain
Z

A1
L

|[u1(x)� u
1
⇤(x)]� L|p⇤dx  K|A1

L|
p⇤
p �

,

where K = CS,3 (k̂)
p⇤
p . Now we take L1 > L; from A

1
L1

⇢ A
1
L we have

|A1
L1
|[L1�L]p

⇤ 
Z

A1
L1

|[u1(x)�u
1
⇤(x)]�L|p⇤dx 

Z

A1
L

|[u1(x)�u
1
⇤(x)]�L|p⇤dx.

Finally, we have obtained the following inequality:

|A1
L1
|  K

[L1 � L]p⇤
|A1

L|
p⇤
p �

.

The previous inequality falls within the hypotheses of Stampacchia’s Lemma
that we write for the convenience of the reader.
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Lemma 3.3. (see page 93 in[46]) Let '(t) a non negative and non increasing
function defined for t � k0 such that for h > k � k0 we have

'(h)  c

(h� k)↵
['(k)]� ,

with c, ↵, � positive constants. If � > 1 then we have

'(k0 + d) = 0,

where
d
↵ = c['(k0)]

��12
↵�
��1 .

We use such a Lemma with

↵ = p
⇤
> 0, � =

p
⇤

p
� > 1,

where the second inequality is proved below.

Then, we have |A1
L̃
| = 0 for

L̃ = L+ 2
�

��1

n
K|A1

L|��1
o 1

↵  L+ 2
�

��1

n
K|⌦|��1

o 1
↵
.

Since L was free in (0,+1), taking L = 1
N , with N 2 N, we have

|A1
L⇤ | = 0, with L

⇤ = 2
�

��1

n
K|⌦|��1

o 1
↵
.

Then we conclude that

u
1 � u

1
⇤  L

⇤ = 2
�

��1

n
K|⌦|��1

o 1
↵
= 2

p⇤�
p⇤��pK

1
p⇤ |⌦|

�
p�

1
p⇤ (3.12)

where

K :=
4

⌫

✓
2p

3� p

◆ 3p
3�p

2
3(p�1)
3�p

·
⇣
max

n
4kbk� + kak�, MkDu⇤kpp̃,

2M3qkDu⇤kqp̃
✓
1

⌫

Z

⌦
f(x,Du⇤)dx+

3

⌫
kak1

◆ q
p

,

M3
r
2 kDu⇤krp̃

✓
1

⌫

Z

⌦
f(x,Du⇤)dx+

3

⌫
kak1

◆ r
qo

·max
n
|⌦|�1��

, |⌦|�2��
, |⌦|�3��

, |⌦|�4��
o
+ kDu⇤kpp̃|⌦|

�2��
⌘ 3

3�p
.

(3.13)
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It remains to check the inequality

� =
p
⇤

p
� =

3

3� p
� > 1; (3.14)

we recall that � may take four di↵erent values then we check the inequality
for each value:

(1)
3

3� p

✓
1� 1

�

◆
> 1, for � >

3

p
,

(2)
3

3� p

✓
1� p

p̃

◆
> 1, for p̃ > 3,

(3)
3

3� p

✓
1� q

p
� q

p̃

◆
> 1, for p̃ >

3pq

p2 � 3q
, with p >

p
3q,

(4)
3

3� p

✓
1� r

q
� r

p̃

◆
> 1, for p̃ >

3qr

qp� 3r
, with p >

3r

q
.

They are all verified thanks to the hypotheses (2.3),(2.9) and (2.1).
In order to provide a bound from below for the quantity u

1(x) � u
1
⇤(x) we

observe that ũ = �u solves the following minimum problem:

min

⇢Z

⌦
f̃(x,Dh(x))dx, h 2 ũ⇤ +W

1,p
0 (⌦,R3)

�
,

where f̃(x, z) = f(x,�z) and ũ⇤(x) = �u⇤(x). We note thatDũ = D(�u) =
�Du, adj2(Dũ)↵i = adj2(�Du)↵i = adj2(Du)↵i and det(Dũ) = det(�Du) =
�det(Du). Then

f̃(x, z) =
X

↵

F↵(x,�z
↵) +

X

↵

G↵(x, adj2(z)
↵) +H(x,�det(z)).

Since F↵(x,�⇠), H(x,�t) satisfy again (2.4) and (2.6) we can repeat the
same computations made for u without any changes. Then we obtain the
following upper bound:

�u
1(x) + u

1
⇤(x) = ũ

1(x)� ũ
1
⇤(x)  L

⇤
,

that is
u
1(x)� u

1
⇤(x) � �L

⇤
. (3.15)

Note that L
⇤ is given by the right hand side of (3.12) and (3.13) with ũ⇤

instead of u⇤; since ũ⇤ = �u⇤ then kDũ⇤ks = kDu⇤ks; since f̃(x, z) =
f(x,�z), then Z

⌦
f(x,Dũ⇤)dx =

Z

⌦
f(x,Du⇤)dx.
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This means that L
⇤ in (3.15) and L

⇤ in (3.12) are the same. From the
previous inequality and from (3.12) we conclude:

|u1(x)� u
1
⇤(x)|  L

⇤
. (3.16)

Now we pass to analyse the second component of u. We introduce the
following function by changing the order of the components of u:

û =

0

@
u
2

u
1

u
3

1

A , for which Dû =

0

@
Du

2

Du
1

Du
3

1

A .

We denote by C1,2(z) the matrix obtained from z by inverting line 1 and
line 2. Then

Dû = C1,2(Du).

Since adj2(Dû)1 = �adj2(Du)2, adj2(Dû)2 = �adj2(Du)1 and adj2(Dû)3 =
�adj2(Du)3 we have

adj2(Dû) = �

0

@
adj2(Du)2

adj2(Du)1

adj2(Du)3

1

A = �C1,2(adj2(Du)),

moreover det(Dû) = �det(Du). Then we have that û solves

min

⇢Z

⌦
f̂(x,Dh(x))dx, h 2 û⇤ +W

1,p
0 (⌦,R3)

�
,

where û⇤(x) =

0

@
u
2
⇤

u
1
⇤

u
3
⇤

1

A and

f̂(x, z) =f(x,C1,2(z))

=F1(x, z
2) + F2(x, z

1) + F3(x, z
3) +G1(x,�adj2(z)

2)

+G2(x,�adj2(z)
1) +G3(x,�adj2(z)

3) +H(x,�det(z)).

Again, f̂(x, y) satisfies (2.4), (2.5), (2.6), and all the computations made for
u can be repeated without any changes and we obtain:

|u2(x)� u
2
⇤(x)| = |û1(x)� û

1
⇤(x)|  L

⇤
. (3.17)
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Note that L
⇤ is given by the right hand side of (3.12) and (3.13) with û⇤

instead of u⇤; since û⇤ = C1,2(u⇤), then kDû⇤ks = kDu⇤ks; since f̂(x, z) =
f(x,C1,2(z)), then

Z

⌦
f̂(x,Dû⇤)dx =

Z

⌦
f(x,Du⇤)dx.

This means that L⇤ in (3.17) and L
⇤ in (3.12) are the same.

For the third component we introduce the function

ů =

0

@
u
3

u
2

u
1

1

A .

In this case we denote by C1,3(z) the matrix obtained from z by inverting
line 1 and line 3. Then

Dů = C1,3(Du), adj2(Dů) = �C1,3(adj2(Du)), det(Dů) = �det(Du).

Then we have that ů solves

min

⇢Z

⌦
f̊(x,Dh(x))dx, h 2 ů⇤ +W

1,p
0 (⌦,R3)

�
,

where ů⇤(x) =

0

@
u
3
⇤

u
2
⇤

u
1
⇤

1

A and

f̊(x, z) =f(x,C1,3(z))

=F1(x, z
3) + F2(x, z

2) + F3(x, z
1) +G1(x,�adj2(z)

3)

+G2(x,�adj2(z)
2) +G3(x,�adj2(z)

1) +H(x,�det(z)).

Then we obtain as above that:

|u3(x)� u
3
⇤(x)| = |̊u1(x)� ů

1
⇤(x)|  L

⇤
. (3.18)

Note that L
⇤ is given by the right hand side of (3.12) and (3.13) with ů⇤

instead of u⇤; since ů⇤ = C1,3(u⇤), then kDů⇤ks = kDu⇤ks; since f̊(x, z) =
f(x,C1,3(z)), then

Z

⌦
f̊(x,Dů⇤)dx =

Z

⌦
f(x,Du⇤)dx.

This means that L⇤ in (3.18) and L
⇤ in (3.12) are the same.

This concludes the proof.
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4. Remarks on growth assumptions

We now consider model density (2.11) and we compare the restrictions on the
growth assumptions considered in the present paper with the ones contained
in [12]. Both requires r to be less than q which, in turn, must be less than
p. Moreover, we are in the polyconvex case, so 1  r. The present paper
requires p < 3, then p

⇤ = 3p/(3 � p); in [12] also the case p = 3 is dealt
with. Then, we confine ourselves to

1  r < q < p < 3.

We recall that [12] asks for two conditions:

p

p⇤
< 1� qp

⇤

p(p⇤ � q)
;

and
p

p⇤
< 1� rp

⇤

q(p⇤ � r)
;

they can be written as follows

p

3
>

qp
⇤

p(p⇤ � q)
; (4.1)

and
p

3
>

rp
⇤

q(p⇤ � r)
. (4.2)

Let us study condition (4.1): it can be written as

p

3
>

q3p

p(3p� q(3� p))
; (4.3)

this amounts to say
p(3p� q(3� p)) > 3q3; (4.4)

exploiting calculations we get

(3 + q)p2 � 3qp� 9q > 0; (4.5)

the corresponding second order equation has two roots: p1 :=
3q�3

p
5q2+12q

2(3+q) <

0 and p2 :=
3q+3

p
5q2+12q

2(3+q) ; then, inequality (4.5) is equivalent, in our case,
to p > p2. We claim that

p2 >
p
3q; (4.6)
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indeed, squaring both sides gives

9q2 + 6q
p
5q2 + 12q + 45q2 + 108q

4(3 + q)2
> 3q; (4.7)

q can be cut from both sides; eliminating the denominator and rearranging
elements result in

3
p

5q2 + 12q > 2q2 + 3q; (4.8)

squaring again both sides, rearranging elements and cutting q give

0 > q
3 + 3q2 � 9q � 27 := g(q). (4.9)

We study the function g: we have g(3) = 0 and g
0(q) = 3q2+6q�9; equation

3q2 + 6q� 9 = 0 has two roots q1 = �3 and q2 = 1; then g
0(q) > 0 for every

q > 1 and g strictly increases in [1,+1); in particular, g(q) < g(3) = 0 for
1  q < 3 and (4.9) holds true: this proves our claim (4.6). Now we turn
our attention to (4.2): it can be written as

p

3
>

r3p

q(3p� r(3� p))
; (4.10)

this amounts to say
q(3p� r(3� p)) > 3r3; (4.11)

dividing by q and exploiting calculations give

p > 3
r(q + 3)

q(r + 3)
. (4.12)

Note that

3
r(q + 3)

q(r + 3)
> 3

r

q
, (4.13)

since q > r. Let us summarize: in [12] conditions on p are
(

p > p2,

p > 3 r(q+3)
q(r+3) ;

(4.14)

if we keep in mind (4.6) and (4.13) we see that (4.14) implies

⇢
p >

p
3q,

p > 3 r
q ,

(4.15)

and these are our conditions on p. This shows that our conditions are weaker
than the ones in [12] when dealing with (2.11) and 1  r < q < p < 3.
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5. Lipschitz boundary datum

In the case where the boundary datum is a Lipschitz function it is possible
to obtain a sharper bound for the minimizers. In this section we discuss in
details this situation. We start fixing some notation.

Definition 5.1. Let K = (K1,K2,K3) and let u⇤ : ⌦ ⇢ R3 ! R3 be such that
u
i
⇤ is Lipschitz with Lipschitz constant less than or equal to Ki, i = 1, 2, 3.

We will say that such a u⇤ is a K-Lipschitz mapping. Let u⇤ be a K-Lipschitz
mapping, we will denote with LipKi,ui

⇤
the set of Lipschitz functions g : ⌦ ⇢

R3 ! R with Lipschitz constant less or equal to Ki that coincide with u
i
⇤ on

@⌦. We will denote by LipKu⇤
the set of functions u : ⌦ ⇢ R3 ! R3 such

that u(x) = (u1(x), u2(x), u3(x)) with u
i 2 LipKi,ui

⇤
for every i = 1, 2, 3.

It is straightforward that, since we assume u⇤ is K-Lipschitz, the set
LipKi,ui

⇤
is non empty. We also remark that it is compact with respect to

the uniform convergence.
We fix i 2 {1, 2, 3} and we consider the functional

LipKi,ui
⇤
3 g !

Z

⌦
g(x) dx. (5.1)

The functional (5.1) is continuous with respect to the uniform convergence
and then it admits both a minimum and a maximum on LipKi,ui

⇤
.

We denote the minimizer by u
i
� and the maximizer by u

i
+ and we consider

the functions u�, u+ : ⌦ ⇢ R3 ! R3 defined by u� = (u1�, u
2
�, u

3
�) and

u+ = (u1+, u
2
+, u

3
+).

Proposition 5.2. Let u 2 LipKu⇤
. Then

u
i
�(x)  u

i(x)  u
i
+(x) for all x 2 ⌦, for all i 2 {1, 2, 3}.

Proof. It is su�cient to prove that u
1
�(x)  u

1(x) for all x 2 ⌦ since the
other inequalities follow similarly. We argue by contradiction assuming that
there exist u 2 LipK1,u1

⇤
and x 2 ⌦ such that u1(x) < u

1
�(x). The continuity

of both u
1 and u

1
� implies that the set A = {x 2 ⌦ : u1(x) < u

1
�(x)} has

positive measure. Let us consider the function

w = min{u1;u1�} =

(
u
1
, if x 2 A,

u
1
�, otherwise.
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We obtain that w 2 LipK1,u1
⇤
and

Z

⌦
w(x) dx

=

Z

⌦\A
u
1
�(x) dx+

Z

A
u
1(x) dx

<

Z

⌦\A
u
1
�(x) dx+

Z

A
u
1
�(x) dx

=

Z

⌦
u
1
�(x) dx.

(5.2)

This is in contrast with the minimality of u1� for the functional (5.1).

Remark 5.3. The previous proposition shows also that the minimizer ui� is
unique and, of course, the same is true for the maximizer ui+, for i = 1, 2, 3.
There is only one case in which u

i
� and u

i
+ coincide in ⌦ and it happens

when there exists just one function with Lipschitz constant Ki assuming the
boundary datum u

i
⇤.

Corollary 5.4. Let u⇤ be a Lipschitz mapping with Lipschitz constant K.
Let u be a solution of the minimization problem 1.7. Then for almost every
x 2 ⌦ we have

u
i
+(x)� L

+  u
i(x)  u

i
�(x) + L

�
, (5.3)

for every i 2 {1, 2, 3}, where L
� is the constant L⇤ that appears in (2.10)

and (2.8) with u� instead of u⇤ and, analogously, L+ is the constant L⇤ with
u+ instead of u⇤ .

Proof. Since u� = u+ = u⇤ on @⌦, we have u⇤+W
1,p
0 (⌦) = u�+W

1,p
0 (⌦) =

u++W
1,p
0 (⌦) and we can apply Theorem 2.2 both with u� and u+ instead of

u⇤. Then using just one side of the inequality (2.2) we get the estimate.

Remark 5.5. Let us give an estimate for the constants L� and L
+. Looking

at (2.10) and (2.8), we have to control the following items

kDu�kp̃ and

Z

⌦
f(x,Du�)dx.

Let us set
K⇤ := max{K1,K2,K3}.
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We have

|Du�|p̃ =
 

3X

↵=1

3X

i=1

|Diu
↵
�|2
!p̃/2


 

3X

↵=1

3X

i=1

|K↵|2
!p̃/2


 

3X

↵=1

3X

i=1

|K⇤|2
!p̃/2

= (3K⇤)
p̃
,

then
kDu�kp̃  |⌦|

1
p̃ 3K⇤.

Moreover, using (2.4)-(2.2), we can write

Z

⌦
f(x,Du�)dx  7kbk1 +M

(
3X

↵=1

Z

⌦
|Du

↵
�|pdx+

3X

↵=1

Z

⌦
|adj2(Du�)

↵|qdx+

Z

⌦
|det(Du�)|rdx

�
 7kbk1 +M |⌦|

n
31+

p
2Kp

⇤ + 3 · 12
q
2K2q

⇤ + 6rK3r
⇤

o
,

where we have used the estimates

|adj2(Du�)
↵|q =

"
3X

k=1

|adj2(Du⇤)
↵
k |2
# q

2


"

3X

k=1

(2K2
⇤)

2

# q
2

= 12
q
2K2q

⇤ ,

and
|det(Du�)|r  (3!K3

⇤)
r = 6rK3r

⇤ .
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