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Abstract Modular colonial benthic organisms exhibit high 
phenotypic plasticity, which is considered an effective strat-
egy when faced with fluctuations in abiotic and biotic fac-
tors. However, when environmental changes occur abruptly, 
organisms’ adaptive capabilities can be limited, leading to 
the death of some colonies or to mass mortalities. Addition-
ally, a decrease in body size has been proposed as one of 
the most common responses in both terrestrial and aquatic 
organisms to face global warming. Here, temperate cor-
als’ response to thermal stress was documented using the 
precious red coral Corallium rubrum as a model species. 
The increased frequency of marine heat waves recorded 
in the north-western Mediterranean has led to a decrease 
in the total number of colonies of the analysed popula-
tions and reduced colony size in those that have survived, 
likely through fragmentation and branch loss. The labora-
tory analyses carried out on collected fragments showed an 
unexpected swelling, similar to resorption. Additionally, the 
occurrence of regular sclerite-like protuberances, typical of 
a normal skeleton surface, suggested a regeneration process. 
The documented phenomenon supports the hypothesis that 
C. rubrum exhibits an adaptive behaviour via the autotomy 

of branches, providing it with an unexpected resilience 
against climate anomalies thanks to phenotypic plasticity.

Keywords Octocorallia · Mesophotic · North-Western 
Mediterranean Sea · Animal forests · Norm of reaction · 
Fragmentation

Introduction

Modular colonial organisms are often characterised by 
high phenotypic plasticity, defined as the ability of a single 
genotype to produce, under different environmental stimuli, 
different phenotypes, including variation in the behaviour, 
shape, physiology, or sequence of modules produced at a 
particular stage of growth (West-Eberhard 1989; Padilla 
et al. 2013). Phenotypic plasticity is a major mechanism 
of response to environmental variability (e.g. light, depth, 
water movements, dissolved oxygen, temperature) and bio-
logical interactions (e.g. predator–prey interactions, invasion 
by non-native species), which leads to an increase in biologi-
cal fitness (Kim et al. 2004; Sánchez et al. 2007; Bonamour 
et al. 2019; Kielland et al. 2019; Verberk et al. 2021).

The climate crisis (CC) is rapidly altering environmental 
parameters, as well as the richness, abundance, and distri-
bution of marine organisms (Garrabou et al. 2019, 2022), 
affecting ecosystems across multiple levels of biological 
organisation, and inducing short-term changes in organisms’ 
fitness (Crozier et al. 2008; Saers et al. 2011; Di Camillo 
et  al. 2021). Biological mechanisms supporting these 
responses are likely due to the peculiarity of genotypes, each 
one presenting its own “reaction norm” (i.e. the direction 
and degree of response to environmental factors) (West-
Eberhard 1989, 2003). Thus, the strong selective pressure 
experienced by many species may lead to the development of 
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specific phenotypic responses (Crozier et al. 2008; Poloczan-
ska et al. 2016), at both individual (e.g. growth rate, longev-
ity, excretion rate, food intake, basic metabolism) and popu-
lation level (e.g. mortality, reproductive rate, recruitment, 
population structure, distribution) (Madeira et al. 2012).

Although phenotypic plasticity is often seen as an 
important adaptive strategy, when environmental changes 
occur abruptly or are not spatially homogeneous, the adap-
tive capabilities of an organism can be limited (Fusco and 
Minelli 2010; Padilla and Savedo 2013). This is particu-
larly true for aquatic sessile species, in which phenotypic 
plasticity might be insufficient for their survival, leading to 
repeated necrotic episodes, to an increase in mass mortality 
events (MMEs) and, consequently, to a risk of local extinc-
tion (Crozier et al. 2008; Di Camillo and Cerrano 2015; 
Garrabou et al. 2019, 2022).

Temperature and related oxygen concentration are two 
of the most important variables in the current CC (Madeira 
et al. 2012; Rubalcaba et al. 2020). It is well known that 
through developmental plasticity, the body size of many 
invertebrates is adapted to a given temperature range to 
optimise their aerobic activity, following the so-called tem-
perature-size rule. This is regulated by a negative correla-
tion between temperature and body size (Audzijonyte et al. 
2019; Verberk et al. 2021). In fact, a decrease in body size 
has been proposed as one of the most recurrent responses of 

organisms to climate warming, with a declining rate ranging 
from 5 to 20% in the last decades (Peter and Sommer 2013; 
Audzijonyte et al. 2019). As reported by Marfenin (1997) 
and Elahi et al. (2016), high temperatures and low oxygen 
availability can trigger a reduction in the final size of various 
modular organisms as cnidarians and bryozoans.

During thermal anomalies and related gorgonian mass 
mortalities in the Mediterranean Sea, large colonies of sea 
fans were found to be more affected by thermal stress with 
a shift towards smaller size classes (Cerrano et al. 2005; 
Previati et al. 2010). It has been demonstrated that natural or 
human-induced stresses, especially acute temperature stress, 
are responsible for fragmentation in various marine ben-
thic taxa (i.e. algae, sponges, corals, mollusks) (e.g. Wulff 
1991; Yamashiro and Nishihira 1994; Dahan and Benayahu 
1997; Zuschin et al. 2003; Hoeksema and Waheed 2011; 
Coppari et al. 2019; He et al. 2019). In tropical octocorals, 
such as Briareum asbestinum (Pallas, 1766), Eunicea flexu-
osa (Lamouroux, 1821), Junceella fragilis (Ridley, 1884), 
and Plexaura sp., and some Alcyonacea, fragmentation is 
typically observed and mainly seen as an asexual reproduc-
tive strategy (Tursch and Tursch 1982; Lasker 1983, 1984; 
Walker and Bull 1983; Dahan and Benayahu 1997; Prada 
et al. 2008). In the Mediterranean gorgonians Eunicella cav-
olini (Koch, 1887) and Paramuricea clavata (Risso, 1826), 
preliminary observations report similar findings, which 

Fig. 1  Map of sites surveyed, with spatial and temporal information for each site. t0 = initial photographic survey; tf = final photographic survey
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were seen as possible adaptive strategies to overcome stress 
factors that ensure population survival (Franci et al. 2003; 
Valisano et al. 2016).

The red coral Corallium rubrum (Linnaeus, 1758) is a 
slow-growing ecosystem engineer of Mediterranean meso-
photic benthic communities (Rossi et al. 2008; Benedetti 

Fig. 2  Schematic representa-
tion of the red coral apexes 
collected at Punta Sciusciaù 
(Gallinara Island) and Punta 
del Faro (Portofino MPA) in 
November 2021. A t0 Red coral 
colony. B t1 Collection of the 
apical fragment using a wire 
cutter; t2 Highlight of the clean-
cut caused by the wire cutters. 
C t1 Apical fragment naturally 
detaching from the colony, 
with the scleraxis starting to be 
resorbed; t2 Apical fragment 
connected to the main colony 
only by the coenenchyme; t3 
Uncommon swelling caused by 
the regeneration of the scleraxis, 
together with a detailed picture 
taken using a stereomicroscope
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et al. 2016). In the last decades, repeated MMEs mainly 
linked to thermal anomalies were identified as the major 
threat for shallow populations of C. rubrum, that, coupled 
with the low growth rates typical of the species (Bavestrello 
et al. 2009; Cerrano et al. 2013), caused dramatic declines 
at the basin level (e.g. Cerrano et al. 2000; Perez et al. 2000; 
Cerrano and Bavestrello 2008; Rossi et al. 2008; Garrabou 
et al. 2001, 2009). Under laboratory conditions, changes in 
temperature and salinity were found to induce fragmentation 
of the coral branch ends, followed by the complete resorp-
tion of tissues (Russo 1995). Conversely to the observations 
made for the other Mediterranean octocorals, this phenom-
enon was justified as a possible new mechanism of asexual 
reproduction (Russo 1995; Russo et al. 1997).

In this work, a reduction in the number of colonies, col-
ony size and number of apexes in wild and transplanted pop-
ulations of C. rubrum were documented and related to the 
marine heatwaves (MHWs) occurred over the last 35 + years 
in various sites. Long-term observations of these populations 
suggest that autotomy may not only be related to a possible 
asexual reproductive strategy, but as a potential response 
of the red coral to stressors, including climate change and 
temperature increase, thus showing an unexpected resilience 
thanks to phenotypic plasticity.

Materials and methods

Photographic surveys and data analysis

To evaluate phenotypic variations in different red coral 
populations, Corallium rubrum was monitored in four sites: 
Isolotto (− 18 m), near Porto Ercole in the Argentario Prom-
ontory (Tyrrhenian Sea), Altare and Colombara (− 30 m), 
inside the Marine Protected Area (MPA) of Portofino (Ligu-
rian Sea), and Punta Sciusciaù (− 32 m), at the Gallinara 
Island (Ligurian Sea) (Fig. 1). The first three sites were 
monitored only two times, Isolotto in 2015 (t0) and 2020 
(tf), while Altare and Colombara in 2011 (t0) and 2021 (tf) 
(Fig. 1A, 1B). Conversely, at Punta Sciusciaù, a yearly moni-
toring was conducted, from 2017 (t0) to 2022 (tf) (Fig. 1C).

At the Altare and Colombara photos were taken with a 
Nikon D90, while at Isolotto with a SONY Alpha 6300. 
At each location, the same rocky cliffs (sensu Musard et al. 

2014) were photographed, keeping the same perspective at 
each monitoring event. From each picture, the total num-
ber of colonies was counted, and changes in their number 
(expressed as percentages) were estimated. Additionally, 
only from the photos taken in Altare and Colombara, the 
difference between t0 and tf in colony size (i.e. from the 
base to the larger branch) and number of apexes of 25 
colonies were calculated using ImageJ software (Rasband 
2012). The height of each colony was evaluated in cm and 
changes between t0 and tf expressed as an average percentage 
(± standard deviation, s.d.). Since no metric reference was 
present in the provided pictures, the colony size was evalu-
ated considering the diver torches, included in each original 
picture, as a size reference (diameter = 5 cm). Conversely, 
at the Isolotto, the analysis was prevented due to the nadir 
perspective of the two photos, preventing the proper calcu-
lation of the estimated parameters; thus, only the change in 
the total number of colonies between monitoring events was 
evaluated. To test for possible differences in colony size and 
number of apexes between the two timelines, a one-tailed 
Student t test was performed using the R package ggpubr 
(Kassambara 2020).

In the framework of the MERCES project (Marine Eco-
system Restoration in Changing European Seas, http:// 
www. merces- proje ct. eu/), 59 fragments of C. rubrum were 
transplanted at 32 m depth at Punta Sciusciaù in Gallinara 
Island. Transplants were obtained by fragmenting the api-
cal branches of random adult colonies located at 25 m from 
Punta del Faro (a site included in the Portofino MPA, Lig-
urian Sea), collecting apical branches of 2–6 cm with an 
average number of apexes per colony of 5.6 ± 3.2 (Villecha-
noux et al. 2022). Fragments were then transplanted at 32 m 
depth, within cavities and overhangs, typical of the coral-
ligenous bioconcretions (Ballesteros 2006), in August 2017 
(n = 45) and June 2018 (n = 14). The photographic survey 
on the translocated colonies was conducted yearly from the 
transplantation date (August 2017 and July 2018) to August 
2022 (Fig. 1). The pattern of branch loss was considered 
only for colonies that survived until August 2022 (n = 25).

Collection and analysis of apical fragments

To assess possible alterations in the biocalcification pat-
tern of the C. rubrum skeleton, in November 2021, 10 api-
cal fragments from ten red coral colonies transplanted in 
2017–2018 at Punta Sciusciaù (Gallinara Island) and 10 api-
cal fragments from ten colonies from Punta del Faro (Porto-
fino MPA) (Figs. 1b, c and 2) were collected while SCUBA 
diving at 32 and 35 m depth, respectively. At Punta Scius-
ciaù, since fragments were collected from colonies that were 
also included in the photographic sampling (see paragraph 
above), the sampled colonies were tagged, and the fragments 
collected were not included in the lost apex counts.

Fig. 3  Photographic survey conducted in the Portofino MPA at: A 
Altare and B Colombara, with the change in the total number, size, 
and branches of red coral colonies. C Maximum intensity of the 
marine heat waves occurred at the Portofino MPA from 01-01-1986 
to 31-12-2021. t0 = initial photographic survey (2011); tf = final pho-
tographic survey (2021). av.: average value; s.d.: standard deviation. 
White circles evidence, as example, the same colony at  t0 and  tf. The 
black line inside the torch light indicates the reference size considered 
to measure the selected colonies

◂

http://www.merces-project.eu/
http://www.merces-project.eu/
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Fragments were carefully cut with wire cutters (Fig. 2B) 
and put into sealed plastic bags. At Punta del Faro, by 
gently touching coral apexes it was evident that some of 
them were loose, and five of them did not need to be cut 
with wire cutters (Fig. 2C). The collected material was 
preserved in 90% alcohol until further analysis.

In the collected samples, scleraxis was cleaned in tubes 
in a 120-volume solution of peroxide oxygen and heated 
above a flame for 10 min, to accelerate the dissolution 
of the organic matter. Each scleraxis was separated from 
their sclerites and rinsed 3 times with reagent grade water 
(MilliQ) followed by a gradual alcohol concentration rins-
ing (70%, 80%, 90%, 95%, and 100%) to dehydrate the 
samples. Samples were initially observed under a Nikon 
SMZ18 stereomicroscope; then selected fragments were 
mounted on aluminium stubs using carbon adhesive tabs, 
coated with gold using a Polaron Range sputter coater 
and observed under a Philips XL 20 Scanning Electron 

Microscope (SEM) to analyse the fine-scale morphology 
and calcification formation.

Detection and classification of MHWs

A MHW is defined as an event in which the sea surface 
temperature (SST) exceeds, at a certain location, an upper 
locally determined threshold (90th percentile relative to 
the long-term climatology) for at least 5 consecutive days. 
This local threshold is defined using all data within an 
11-day window centred on the day from which the cli-
matological mean and percentile are calculated (Hobday 
et al. 2016).

MHWs were identified from the National Oceanic and 
Atmospheric Administration (NOAA) Optimum Interpola-
tion Sea Surface Temperature (OISST), a product with a 
global 1/4 degree gridded dataset of Advanced Very High 

Fig. 4  Photographic survey conducted at the Isolotto in the Argen-
tario Promontory. A Change in the total number of red coral colo-
nies. B Maximum intensity of the marine heat waves occurred at the 
Argentario Promontory from 01-01-1986 to 31-12-2021. t0 = initial 

photographic survey (2015); tf = final photographic survey (2020). 
Dashed lines delimit the assessed area. av.: average value; s.d.: stand-
ard deviation
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Resolution Radiometer derived SSTs at a daily resolution, 
starting on 1 September 1981 (https:// www. ncei. noaa. 
gov/ produ cts/ optim um- inter polat ion- sst). For the current 
study, the time series from 01-01-1986 to 13-08-2022 was 
considered, using the standardised method developed in 
Hobday et al. (2016, 2018). Each MHW was detected and 

described, thanks to the R package heatwaveR (Schlegel 
and Smit 2018), in terms of event duration, frequency, 
intensity, and cumulative intensity in each surveyed loca-
tion (Isolotto, Portofino MPA and Punta Sciusciaù) and 
provided here in the Supplementary Material as Online 
Resource 1. The same software module allowed us to 

Fig. 5  A–E Sequence of the annual photographic survey conducted 
on three transplanted colonies at Punta Sciusciaù in Gallinara Island. 
F Maximum intensity of the marine heat waves occurred at Gallinara 

Island from 01-01-1986 to 31-12-2021. The white arrows indicate the 
loss of ramifications. Scale bars = 2 cm

https://www.ncei.noaa.gov/products/optimum-interpolation-sst
https://www.ncei.noaa.gov/products/optimum-interpolation-sst
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classify each event into four categories (I—moderate, II—
strong, III—severe, and IV—extreme), defined by Hobday 
et al. (2018) as a function of their maximum observed 
intensity.

The MHWs considered in this study were divided for fur-
ther analysis into two periods, from 1986 to 2010 (24 years) 
and from 2011 to 2022 (10 years and 8 months), as the first 
analysed photo of C. rubrum was taken in 2011. Differences 
in the maximum intensity, cumulative intensity, duration, 
and frequencies of MHWs were investigated using the non-
parametric Kruskal–Wallis analysis of variance between 
the two periods. Statistical tests were performed using R 
packages stats and rstatix (Kassambara 2021; R Core Team 
2021).

Results

Evaluation of red coral populations over time

The analysed pictures showed a 7% and 20% decrease in 
the number of colonies from 2011 to 2021 at Altare and 
Colombara, respectively (Fig. 3), and a 21% decrease from 
2015 to 2020 at Isolotto (Fig. 4). A significant reduction in 
colony size (− 40.0 ± 18.1%, at Altare, and − 48.4 ± 24.6%, 
at Colombara) and number of apexes (− 53.8 ± 22.9%, 
at Altare, and − 43.8 ± 23.9%, at Colombara) were also 
recorded in each site located in the Portofino MPA (Student 
t test, p < 0.05) (Fig. 3).

At the Punta Sciusciaù, a mortality rate of 43% of trans-
planted colonies was registered in the 5-year monitoring 
activity. Colonies survived until August 2022 (n = 25) were 
then considered to investigate the pattern of branch loss. All 
colonies were observed healthy during the five years of the 
experiments (Fig. 5). However, as in the other locations, a 
considerable number (76%) displayed a marked reduction in 
size and suffered from the loss of several branches (Fig. 5). 
Most of these colonies (73.7%) lost their branches in the first 

2 years of the experiment, while the remaining 26.3% lost 
their branches in the following years.

At all sites, no sign of necrosis or tissue damage was 
recorded, with colonies presenting open active polyps 
(Figs. 3, 4, 5).

Analysis of the apical fragments

From the underwater sampling conducted at Punta del 
Faro in the Portofino MPA in November 2021, two situa-
tions were observed: (1) loose coral apexes were hanging 
directly from the colony, beginning to self-detach on their 
own (Fig. 2C  t1 and  t2), while (2) ten fragments (4 of which 
still with open polyps) were also found on the substrate, sug-
gesting a recent detachment from the main colonies (Fig. 2C 
 t3). Conversely, at Punta Sciusciaù, no apexes were found to 
be self-detaching and were all collected using wire cutters 
(Fig. 2B).

In the five loose samples, subsequent stereomicroscope 
analyses exposed an uncommon swelling at one end of the 
fragments, like a resorption, suggesting a possible regenera-
tion process (Fig. 2C  t3 stereomicroscope photo). A similar 
pattern was also observed in the SEM analysis of fragments 
cut with wire cutters (Figs. 6, 7). In fact, in the latter, most 
of the examined apexes (12 out of 15) were presenting the 
same swelling (Figs. 6B I-α and 7B I-α), with a regular pat-
tern of sclerite-like protuberances (Fig. 6B II-β and II-γ, 
Fig. 7B I-β and I-γ). Additionally, in some of the fragments 
(6), the apical portions displayed a flat section similar to a 
cut (Fig. 6C II-α), possibly given by the recent detachment 
of part of the branches and with an irregular pattern of scle-
rite-like protuberances (Fig. 6C II-β and II-γ). On the other 
hand, the clean-cut caused by the wire cutters were clearly 
identifiable (Figs. 6D III-α and 7C II-α), with a regular pat-
tern of sclerite-like protuberances in the surrounding area 
(Fig. 6D III-β and III-γ) and a smooth surface at the bottom 
of the fragment, with no sign of recalcification (Fig. 7C II-β 
and II-γ).

MHWs analysis

The MHWs analysis conducted over the past 35 years and 
8 months highlighted that Punta Sciusciaù and Isolotto dis-
played the highest number of thermal anomalies, with 184 
and 181, respectively, while only 107 were recorded for the 
Portofino MPA (Online Resource 1). At all sites, most events 
fell into category I (moderate) (92 for the Portofino MPA, 
171 for the Isolotto, and 164 for Punta Sciusciaù), while all 
other events fell into category II (strong) (Figs. 3C, 4B and 
5F; Online Resource 1). The only severe (category III) event 
was recorded during the winter of 1993 in Punta Sciusciaù 

Fig. 6  SEM images of: A a fragment of Corallium rubrum col-
lected using wire cutters at Punta Sciusciaù in Gallinara Island; B 
I-α uncommon swelling, similar to a resorption, suggesting a regen-
eration process, I-β uncommon swelling showing a regular pattern of 
sclerite-like protuberances, I-γ detail of the regular pattern of scler-
ite-like protuberances; C II-α flat section similar to a cut, possibly 
caused by the recent detachment of part of the branches, II-β flat 
section with an irregular pattern of sclerite-like protuberances,, II-γ 
detail of the irregular pattern of sclerite-like protuberances; D III-α 
clean-cut caused by the wire cutters, III-β regular pattern of sclerite-
like protuberances in the surrounding area of the clean-cut, II-γ detail 
of the sclerite-like protuberances. The white quadrats represent the 
analysed areas. Scale bars: A 2 mm; B I-, C II-, D III-α 1 mm; B I-, 
C II-, D III-β 100 µm; B I-, C II-, D III-γ 20 µm. Zoom: A 17x; B 
I-, C II-, D III-α 60x; B I-, C II-, D III-β 400x; B I-, C II-, D III-γ 
2000x

◂
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(Figs. 3C, 4B and 5F; Online Resource 1), and no extreme 
(category IV) events were recorded.

A general increase in the number of thermal anomalies 
was observed over the last decade (2011–2022) (Figs. 3C, 
4B and 5F; Online Resource 1). In fact, even though no 
differences were found in the maximum intensity, cumu-
lative intensity, and duration of MHWs between 1986 and 

2010 and 2011–2022 (Kruskal–Wallis, p > 0.05), their fre-
quency was statistically different (Kruskal–Wallis, p < 0.05), 
with a total number of MHWs recorded during the 24-year 
period (47 for the Portofino MPA, 80 for the Isolotto, and 76 
for Punta Sciusciaù) lower than for the following 10 years 
and 8 months (60 for Portofino MPA, 101 for the Isolotto, 
and 108 for Punta Sciusciaù) in all considered locations 

Fig. 7  SEM images of: A a fragment of Corallium rubrum collected 
using wire cutters at Punta del Faro in the Portofino MPA; B I-α 
uncommon swelling, similar to a resorption, suggesting a regenera-
tion process, I-β canal of the uncommon swelling showing a regular 
pattern of sclerite-like protuberances, I-γ detail of the regular pattern 
of sclerite-like protuberances; C II-α clean-cut caused by the wire 

cutters, II-β smooth surface at the bottom of the clean-cut, II-γ detail 
of the smooth surface. The white quadrats represent the analysed 
areas. Scale bars: A 2 mm; B I-, C II-, D III-α 1 mm; B I-, C II-, D 
III-β 100 µm; B I-, C II-, D III-γ 50 µm. Zoom: A 15x; B I-, C II-, 
D III-α 60x; B I-, C II-, D III-β 400x; B I-, C II-, D III-γ 1000x
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(Figs. 3C, 4B and 5F; Online Resource 1). Furthermore, 
considering the seasonality of the events, autumn showed the 
lowest number of MHWs at each location, especially during 
the period of 1986–2010 (Table 1). In the years that fol-
lowed (2011–2022), MHWs increased in almost all seasons, 
especially in autumn, equalising or exceeding the number 
of MHWs recorded for the other seasons (Table 1). Interest-
ingly in Punta Sciusciaù, most of the MHWs occurred in 
winter in both periods (29 and 37 events in 1986–2010 and 
2011–2022, respectively) (Table 1).

Discussion

According to Stearns (1989), the norm of reaction can be 
considered adaptive when a phenotype changes function to 
face a specific environmental signal. Over the past years, 
MHWs and related MMEs of marine invertebrates have been 
increasing in frequency, duration, and severity worldwide 
(e.g. Frölicher et al., 2018; Smale et al. 2019; Mohamed 
et al. 2021), and the Mediterranean basin is no exception 
(Garrabou et al. 2019, 2022). In this scenario, it is funda-
mental to detect how the morphological and physiological 
plasticity of affected species can support their survival. The 
current investigation highlighted a significant loss, in terms 
of number of colonies, colony size and number of apexes, 
within different shallow Corallium rubrum populations of 
the north-western Mediterranean, possibly correlated to the 
increase in frequency of the MHWs.

Over the last three decades, the north-western Mediter-
ranean has experienced various significant MHWs, of which 
those of 1999 and 2003 showed the most severe effects, 
causing MMEs of octocorals with mortality rates of up 

to 100% (Cerrano et al. 2000; Perez et al. 2000; Garrabou 
et al. 2009). Following the previously described episodes 
and increased frequency of thermal anomalies, especially 
during the colder seasons, a reduction in the number of colo-
nies of the precious coral was recorded, and the surviving 
colonies displayed a significant reduction in size, possibly 
due to fragmentation and the loss of several apical ramifica-
tions. Both underwater and laboratory observations suggest 
that the red coral can undergo to a fragmentation process 
through an autotomy procedure of the branch ends. Firstly, 
the scleraxis starts to get resorbed (Fig. 2C  t1), until the 
apical fragment is connected to the main colony only by 
the coenenchymal tissue (Fig. 2C  t2); then, the complete 
detachment of the loose fragments is probably triggered by 
the surrounding water movement (Fig. 2C  t3). Therefore, 
the documented phenomenon suggests a reorganisation 
of the colony shape as an adaptive mechanism of shallow 
populations against rising temperatures, and could lead to 
following processes of transgenerational plasticity and a bet-
hedging reproductive strategy (e.g. Cumbo et al. 2012, 2013; 
Putnam and Gates 2015; Chamberland et al. 2017; Torda 
et al. 2017). For various Mediterranean gorgonians (i.e. 
Eunicella singularis, E. cavolini, C. rubrum, Paramuricea 
clavata), larger colonies have been documented to be more 
susceptible to thermal stress, causing a shift in the popula-
tion structure towards smaller size classes (Cerrano et al. 
2005; Previati et al. 2010). However, our study highlights 
how the same colonies clearly shorten their size over time, 
displaying a reduction in height due to the loss of several 
apexes, thus leading to a general decrease in the size of the 
entire population. Nonetheless, further studies are needed 
to better understand the physiological processes behind the 
observed phenomenon, also considering its consequences 
in the reproduction of the species, since larvae production 
depends not only on the colony age, but also on their size, 
with smaller colonies producing a lower number of larvae 
(Santangelo et al. 2003; Tsounis et al., 2006).

From the stereomicroscope and SEM analyses of the 
scleraxis structures, the fragmentation-like process in C. 
rubrum apical parts was evident. The loose fragments col-
lected at Punta del Faro (Portofino MPA) clearly showed 
differences in the calcification patterns with respect to the 
clean-cut ones. The latter have a smooth cut surface, while, 
in the loose fragments, the surfaces showed irregular pat-
terns with sclerite-like protuberances, typical of the skeleton 
surface. This structure demonstrated an active process of 
mineralization acting on the fragmented surfaces, as previ-
ously described under laboratory conditions by Russo et al. 
(1997). The ability of autotomy and resorption of mineral 
and organic skeletal components is typical in most marine 
phyla, including Cnidaria (Batson et al. 2020). In the red 
coral skeletome, various matrix metallopeptidases and col-
lagen-like proteins have been found (Le Roy et al. 2021), 

Table 1  Number of marine heat waves (MHWs) occurred in each of 
the considered locations, per season and analysed time periods

*Please note that the total number of MHWs summarising all seasons 
is higher than the actual number recorded in each site since the dura-
tion of a discrete event could interest more than one season

Site Season Total* 1986–2010 2011–2021

Isolotto Autumn 28 5 23
Winter 55 27 28
Spring 55 31 24
Summer 55 21 34

Portofino MPA Autumn 22 6 16
Winter 31 15 16
Spring 35 16 19
Summer 32 13 19

Punta Sciusciaù Autumn 36 10 26
Winter 66 29 37
Spring 52 25 27
Summer 44 15 29
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and, due to the role they play in remodelling and minerali-
zation processes, they may be also involved in the scleraxis 
resorption.

The reorganisation of colony shape through the variation 
of branch lengths was previously observed under laboratory 
conditions for C. rubrum, as well as for many other cnidarian 
species (e.g. Tursch and Tursch 1982; Lasker 1983, 1984; 
Walker and Bull 1983; Dahan and Benayahu 1997; Prada 
et al. 2008) but explained as a new potential asexual repro-
duction (Russo 1995; Russo et al. 1997). However, even 
though the fragments have been observed to produce a thin 
layer of coenenchyma before detachment, they were gener-
ally not able to re-settle (Russo et al. 1997). Additionally, no 
settlement of the dropped portions was observed during our 
investigation, suggesting that autotomy as an asexual repro-
ductive strategy needs to be better explored, and could be 
considered as a way of reorganising the colony as a response 
to a stress condition (Cerrano and Bavestrello 2008). A simi-
lar response has been also hypothesised for E. cavolini (Bav-
estrello and Boero 1986; Franci et al. 2003) and P. clavata 
(Valisano et al. 2016). These observations suggest that, in a 
warming Mediterranean, future studies on the relationship 
between size and age of the red coral should also consider 
the possible resizing of colonies as an additional factor.

Aquatic ecological responses to climatic warming are 
also linked to other environmental stressors, such as hypoxia 
(Verbek et al. 2016). Although they have always been con-
sidered critical threats, a certain degree of plasticity was 
documented in various aquatic ectotherms (Hoefnagel 
and Verberk 2015; Leung et al. 2022). In fact, it has been 
observed that high temperatures along with limited oxygen 
availability were responsible for a reduction in growth rates 
and final size of various organisms, including modular ones 
(e.g. cnidarians and bryozoans) (Marfenin 1997; Atkin-
son et al. 2006; Hoefnagel and Verberk 2015; Elahi et al. 
2016). It is thus plausible to assume that the reduction in 
size observed for C. rubrum could be caused by the syner-
gic action of temperature and dissolved oxygen availability 
(Verberk et al. 2021). On the other hand, other studies sug-
gested that limited resources can also play a role in decreas-
ing size of modular colonial organisms, including corals 
(Kim and Lasker 1998). Since the Mediterranean basin is 
known to be characterized by trophic depletion during the 
summer season, limiting food resources especially for filter 
and suspension feeders (sponges, corals, polychaetes, among 
others) (Coma et al. 1994), could represent an additional fac-
tor driving size in Mediterranean octocorals. Additionally, 
a high phenotypic plasticity and high levels of biodiversity 
can also mitigate the effects of other stressors (Leung et al. 
2022), as documented for seagrasses at low pH conditions 
(Gambi et al. 2022). The negative impacts of acidification 
are also reduced if C. rubrum is associated with the natu-
ral coralligenous assemblages, displaying higher integrity 

of their calcium carbonate sclerites and calcification rates 
(Rastelli et al. 2020).

We are just starting to scratch the surface in understand-
ing how single species are adapting to climate warming, yet 
a huge gap in our knowledge remains regarding how these 
adaptations will affect inter-specific interactions. Even if the 
single species persists in the environment, its loss in density 
and size can lead to the Allee effect and/or deeply change the 
environmental conditions at a small-scale, possibly affect-
ing the entire associated community. To ensure management 
strategies that will provide and enhance a species-based pro-
tection to safeguard ecosystems’ diversity, we will need not 
only to understand the adaptive strategies of a single spe-
cies, but also how these strategies can impact its associated 
assemblage.
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