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As the size of a layered structure scales down, the
adhesive layer thickness correspondingly decreases
from macro to micro scale. The influence of the
material microstructure of the adhesive becomes more
pronounced, and possible size effect phenomena can
appear. The paper describes the mechanical behavior
of a composites made of two solids, bonded together
by a thin layer, in the framework of strain gradient and
micropolar elasticity. The adhesive layer is assumed
to have the same stiffness properties of the adherents.
By means of the asymptotic methods, the contact laws
are derived at order 0 and order 1. These conditions
represent a formal generalization of the hard elastic
interface conditions. A simple benchmark equilibrium
problem (a three-layer composite micro-bar subjected
to an axial load) is developed to numerically assess
the asymptotic model. Size effects and non-local
phenomena, due to high strain concentrations at
the edges, are highlighted. The example proves the
efficiency of the proposed approach in designing
micro-scale layered devices.

1. Introduction
Adhesive bonding offers numerous benefits, such as the
ability to join various materials, enhance mechanical
properties of assemblies, improve individual material
characteristics, and meet specific strength and comfort
needs.
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As a result, adhesive bonding technology is widely used in layered devices. When composites
scale down in size, the influence of the material microstructure become more pronounced,
and significantly affects the overall performance of the assemblies, as highlighted in various
research papers (e.g., [1–3]). Thus, precise theoretical modeling of imperfect contact among the
composite constituents is indispensable in engineering design. The adhesive layer is classically
treated as an interphase with decreasing thickness. By letting the thickness tend to zero, the
interphase reduces to a two-dimensional surface, called the imperfect interface, on which ad-
hoc jump conditions of selected physical fields are considered, e.g. displacements and stresses.
During the last decades, numerous interface models have emerged based on classical continuum
mechanics. However, these theories are unable to accurately describe the mechanical behavior
of materials with microstructure, such as molecules, grains, fibers, or pores, and also size-
dependent phenomena. The effect of microstructure and size effects can be adequately taken into
account with generalized continuum theories such as strain gradient elasticity and micropolar
elasticity. The first one has been developed in the pioneering works by Mindlin [4,5] and, more
recently, in [6–12]. These theories have been extended and generalized in several works by
Polizzotto [13–17]. For a detailed review on gradient elasticity theories, the reader can refer to [18].
The second one establishes its roots in the milestone work of the Cosserat brothers [19], and
various extensions have been explored in several books and papers, including those authored
by Eringen [20,21] and Nowacki [22], as well as the overview analysis provided by Maugin
[23]. These models are commonly used to characterize complex media, especially composite
materials with internal microstructures. Examples include fibrous and granular materials, liquid
crystals, cellular solids and foams, high-performance and glassy polymers, lattices, and masonry,
among others [24–28]. In recent years, significant progress has been made in the theoretical
understanding of thin adhesive modeling, with the development of imperfect interface laws
using advanced mathematical techniques, such as the asymptotic analysis. These include linear
elasticity [29–37], coupled thermoelasticity [38], piezoelectricity [39,40], magneto-electro-thermo-
elasticity [41], poroelasticity [42] and general multiphysics theories [43,44]. Only a limited number
of studies focus on investigating the impact of microstructure and size effects of micro-scale
adhesives, particularly when considering higher order continua. For instance, [45,46] provide an
initial contribution to the understanding of the mechanical behavior of a Cosserat bonded joint
through the asymptotic analysis, by analysing a composite comprising two micropolar solids
joined by a thin soft and rigid micropolar intermediate layer. In [47,48] the authors developed
models for soft imperfect interfaces through the asymptotic methods for flexoelectricity and
strain gradient elasticity, highlighting the size effect properties. The work [49] introduced a size-
dependent model for adhesively bonded layered structures within the context of strain gradient
elasticity, utilizing standard tools. Consequently, there remains a lack of theoretical modeling that
adequately tackles the influence of microstructure and the size effects, particularly evident in
micro-adhesive layers.

The goal of the present work is to identify a novel form of the contact laws, in the framework
of strain gradient elasticity and micropolar elasticity, by means of an asymptotic analysis. The
composite is constituted of a thin plate-like layer (adhesive), whose thickness depends on a
small parameter ε, surrounded by two generic bodies (adherents). We analyze the case of a hard
interface, where the material coefficients of both adhesive and adherents are of the same order
of magnitude and are independent of ε. Following the asymptotic approach developed in [43], it
is possible to define a novel form of hard interface at order 0 and order 1, within the context of
strain gradient elasticity and micropolar elasticity.

The outline of the paper is the following. Section 2 presents the hard interface conditions in
strain gradient elasticity. More precisely, the theoretical framework of the strain gradient elastic
theory is presented, then the rescaling and the asymptotic expansions method are applied to
the variational formulation of the problem; finally, the interface conditions at order 0 and 1 are
identified in terms of the jumps of the displacements and microrotation, and their conjugated
counterparts, namely the stress and couple stress vectors. Section 3 presents the hard interface
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conditions in micropolar elasticity. The same structure of Section 2 is maintained. In Section 4, we
present a benchmark problem of a layered bar subjected to an axial load. Section 5 is devoted to
the concluding remarks.

2. Hard interface conditions in strain gradient elasticity

(a) Theoretical settings
In the sequel, Greek indices range in the set {1, 2}, Latin indices range in the set {1, 2, 3}, and the
Einstein’s summation convention with respect to the repeated indices is adopted. Let us consider
a three-dimensional Euclidean space identified by R3 and such that the three vectors ei form
an orthonormal basis. We introduce the following notations for the scalar and vector products:
a · b := aibi and a ∧ b = aiei ∧ bjej := aibjεijkek, for all vectors a = (ai) and b = (bi) in R3, with
εijk the alternator Ricci’s symbol.

Let us consider a material bodyΩ made of a strain gradient elastic material, whose constitutive
law is defined as follows, [6–8]: σij = cijhlehl, τijk = `2cijhlηhlk = `2σij,k, where (σij) and (τijk)

denote the Cauchy’s stress tensor and the double-stress tensor, respectively, (cijkl) represents the
elasticity tensor, ` is the internal length scale parameter, and eij = 1

2 (ui,j + uj,i), ηijk = eij,k =
1
2 (ui,jk + uj,ik), with ui the displacement field. We note with σ̃ij := σij − τijk,k = cijklekl −
`2cijhlehl,kk the so-called total stress tensor. The body is subjected to body forces fi, acting in
Ω, and to surface forces gi, surface double forces qi, applied to the boundary Γ1 ⊂ ∂Ω. No edge
forces are considered. The body is mechanically clamped on Γ0. The work of external sources is
given by

L(u) :=

∫
Ω
fiuidx+

∫
Γ1

{giui + qi∂nui}dΓ.

The variational formulation of the problem takes the following form:{
Find v ∈ V(Ω) := {v ∈H2(Ω,R3) : v = 0, ∂nv = 0 on Γ0}, such that
A(u,v) =L(v), for all v ∈ V(Ω),

(2.1)

with

A(u,v) :=

∫
Ω

{
σijeij(v) + τijkηijk(v)

}
dx=

∫
Ω

{
cijhlehl(u)eij(v) + `2cijhlehl,k(u)eij,k(v)

}
dx.

By virtue of Gauss-Green’s theorem, the differential form of the governing equations can be easily
derived:

−
∫
Ω
σ̃ij,jvidx+

∫
∂Ω

{
σ̃ijnj +Dtl (nl)nknjτijk −D

t
j(nkτijk)

}
vidΓ

+

∫
∂Ω

τijknjnk∂nvidΓ +
∑
m

∮
Cm

∆(nikjτijk)vkds=L(v),

where (ni) denotes the outer unit normal vector to the boundary ∂Ω, Dti(·) := (δij − ninj)(·),j
and ∂n(·) := ni(·),i are the tangential and normal derivative operators on the boundary,
respectively, (kj) is the surface unit vector normal to the m-th sharp edge Cm of the boundary,
and ∆ represents the difference between the bracketed terms on the two sides of the edge. Thus,
the equilibrium problem takes the following expression:

σ̃ij,j + fi = 0, in Ω,

Ti := σ̃ijnj +Dtl (nl)nknjτijk −D
t
j(nkτijk) = gi on Γ1,

Ri := τijknjnk = qi on Γ1,

Pi :=∆(nkkjτkji) = 0 on Cm,

ui = 0, ∂nui = 0, on Γ0.

Ti, Ri and Pi are, respectively, the traction vector, the higher-order traction vector on Γ1, and the
line traction vector on the sharp edge Cm.



4

royalsocietypublishing.org/journal/rsta
P

hil.
Trans.

R
.S

oc.
A

0000000
..........................................................................

(b) Statement of the problem
Let us define a small parameter 0< ε< 1. We consider a composite structure made of two disjoint
solids Ωε± ⊂R3, bonded together by an intermediate thin layer Bε := S × (−h

ε

2 ,
hε

2 ) of thickness
hε = εh, with cross-section S ⊂R2. Let Sε± be the planar interfaces between the interphase and
the adherents and let Ωε :=Ωε+ ∪Bε ∪Ωε− denote the reference configuration of the composite,
including the interphase and the adherents, (cf. Figure 1a). We note with γε± = ∂Sε± the sharp
edges, along the boundary of the surfaces Sε±. The equilibrium problem can be written in its

Figure 1. Initial (a), rescaled (b) and limit (c) configurations of the composite.

variational form as follows:{
Find uε ∈ V (Ωε), such that
Āε−(uε,vε) + Āε+(uε,vε) + Âε(uε,vε) =Lε(vε), for all vε ∈ V (Ωε),

(2.2)

where V (Ωε) := {v̄ε ∈H2(Ωε±,R3), v̂ε ∈H2(Bε,R3) : v̄ε|Sε± = v̂ε|Sε± , v̄ε,3|Sε± = v̂ε,3|Sε± , v̄ε =

∂εnv̄
ε = 0 on Γ ε0 }, and Āε±(·, ·) and Âε(·, ·) are the strain gradient elasticity bilinear forms on Ωε±

and Bε, respectively:

Āε±(uε,vε) :=

∫
Ωε±

{
c̄εijhle

ε
hl(u

ε)eεij(v
ε) + ¯̀ε2c̄εijhle

ε
hl,k(uε)eεij,k(vε)

}
dxε,

Âε(uε,vε) :=

∫
Bε

{
ĉεijhle

ε
hl(u

ε)eεij(v
ε) + ˆ̀ε2ĉεijhle

ε
hl,k(uε)eεij,k(vε)

}
dxε.

Only if necessary, ūε and ûε will note the restrictions of functions uε to Ωε± and Bε, respectively.

(c) Rescaling
In order to apply the asymptotic expansions method [50], problem (2.2), defined on an ε-
dependent domain, must be reformulated on a fixed domain, independent of ε. We consider the
coordinate transformation πε : x∈Ω 7→ xε ∈Ωε given by

πε :

{
π̄ε(x1, x2, x3) = (x1, x2, x3 ∓ h

2 (1− ε)), for all x∈Ω±,
π̂ε(x1, x2, x3) = (x1, x2, εx3), for all x∈B,

(2.3)

where, after the change of variables, the adherents occupy Ω± :=Ωε± ± h
2 (1− ε)e3 and the

interphase B = {x∈R3 : (x1, x2)∈ S, |x3|< h
2 }. The sets S± = {x∈R3 : (x1, x2)∈ S, x3 =±h2 }

denote the interfaces between B and Ω±, with γ± = ∂S± their sharp edges, and Ω =Ω+ ∪Ω− ∪
B is the rescaled configuration of the composite, see Fig. 1b. Lastly, Γ0 and Γ1 indicate the images
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through πε of Γ ε0 and Γ ε1 (cf. Figure 1.b). Consequently, ∂
∂xεα

= ∂
∂xα

and ∂
∂xε3

= ∂
∂x3

in Ω±, and
∂
∂xεα

= ∂
∂xα

and ∂
∂xε3

= 1
ε
∂
∂x3

in B.
In order to derive a hard interface law, the adherents Ωε± and the adhesive Bε present the

same stiffness properties. Thus, the elastic coefficients are assumed to be independent of ε,
namely c̄εijkl = c̄ijkl and ĉεijkl = ĉijkl. The internal length scale parameter measures the size of the
microstructure. In this case, the internal length of the adherents is considered to be independent
of ε, ¯̀ε = ¯̀. The characteristic length of the adhesive is supposed to be of the same order of
magnitude of its thickness (hε = εh) and, thus it linearly depends on ε, so that ˆ̀ε = ε`. The
external loads present the following dependence with respect to ε: fεi (xε) = fi(x), x∈Ω±, and
gεi (xε) = gi(x), qεi (xε) = qi(x), x∈ Γ1. Thus, Lε(vε) =L(v). The displacements and test functions
depend on ε as follows, see [48,51]:

ūε(xε) = ūε(x), v̄ε(xε) = v̄(x) x∈Ω±,
ûε(xε) = wε(x) + εφε(x), v̂ε(xε) = s(x) + εψ(x) x∈B,

with wε|S± = ūε|S± , wε
,3|S± = 0, s|S± = v̄|S± , s,3|S± = 0, φε,3|S± = ūε,3|S± , φε|S± = 0,ψ,3|S± =

v̄,3|S± , and ψ|S± = 0.
According to the previous rescalings, problem (2.2) can be rewritten on a fixed domain Ω,

independent of ε: 
Find uε = (ūε, ûε = wε + εφε)∈ V (Ω), such that
Ā−(uε,v) + Ā+(uε,v) + Â(uε,v) =L(v),

for all v = (v̄, v̂ε = s + εψ)∈ V (Ω),

(2.4)

where V (Ω) := {v̄ ∈H2(Ω±,R3), v̂ ∈H2(B,R3) : v̄|S± = s|S± , s,3|S± = 0, v̄,3|S± =ψ,3|S± , ψ|S± =

0, v̄ = ∂nv̄ = 0 on Γ0}, and

Ā±(uε,v) :=

∫
Ω±

{
c̄ijhlehl(u

ε)eij(v) + ¯̀2c̄ijhlehl,k(uε)eij,k(v)
}
dx,

Â(uε,v) := 1
εa−1(uε,v) + a0(uε,v) + εa1(uε,v) + ε2a2(uε,v) + ε3a3(uε,v),

with

a−1(uε,v) :=

∫
B

{
K̂33u

ε
,3 · v,3 + `2K̂33u

ε
,33 · v,33

}
dx,

a0(uε,v) :=

∫
B

{
K̂α3u

ε
,α · v,3 + K̂3αu

ε
,3 · v,α + `2(K̂α3u

ε
,α3 · v,33 + K̂3αu

ε
,33 · v,α3)

}
dx,

a1(uε,v) :=

∫
B

{
K̂αβu

ε
,β · v,α + `2(K̂33u

ε
,3β · v,3β + K̂αβu

ε
,β3 · v,α3

}
dx,

a2(uε,v) :=

∫
B
`2
{
K̂α3u

ε
,αβ · v,3β + K̂3αu

ε
,3β · v,αβ

}
dx,

a3(uε,v) :=

∫
B
`2K̂αβu

ε
,βσ · v,ασdx,

where K̂33 := (ĉi3j3), K̂α3 := (ĉi3jα), K̂3α := (ĉiαj3) = K̂T
α3 and K̂αβ := (ĉiαjβ). We can now

perform an asymptotic analysis of the rescaled problem (2.4). Since the rescaled problem (2.4)
has a polynomial structure with respect to ε, its solution can be expressed as a series of powers of
ε:

ūε = ū0 + εū1 + ε2ū2 + . . . , ûε = û0 + εû1 + ε2û2 + . . . ,

ŵε = w0 + εw1 + ε2w2 + . . . , φ̂
ε

=φ0 + εφ1 + ε2φ2 + . . . .
(2.5)

where ūε = uε ◦ π̄ε and ûε = uε ◦ π̂ε. Recalling that ûε = wε + εφε and using (2.5), one has: ûn =∑
n>0 = wn + φn−1, with û0 = w0. By substituting expressions (2.5) into equation (2.4) and by

identifying the terms with identical powers of ε, we can finally characterize the limit problems at
order 0 and the first order corrector term.
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(d) The asymptotic expansions method
The present section is devoted to the computations associated with the asymptotic analysis, which
will allow us to identify the limit model for a hard strain gradient interface. Let us inject (2.5) into
(2.4) and obtain the following set of variational problems Pn:

P−1 : a−1(w0, s) = 0,

P0 : Ā−(u0,v) + Ā+(u0,v) + a−1(û1, s) + a0(w0, s) =L(v),

P1 : Ā−(u1,v) + Ā+(u1,v) + a−1(û2, s) + a−1(û1,ψ) + a0(û1, s) + a0(w0,ψ) + a1(w0, s) = 0.

Let us consider variational problemP−1. After an integration by parts along the x3-coordinate,
one has:

K̂33

(
w0
,33 − `2w0

,3333

)
= 0 in B,

K̂33

(
w0
,3 − `2w0

,333

)
|x3=±h2

= 0 on S±.
(2.6)

Recalling that w0
,3|x3=±h2

= 0, one obtains that w0 = w0(x̃), x̃= xα, is independent of x3 and

thus, by the continuity on the upper and lower interfaces S±, [w0] = 0 and 〈w0〉= 〈ū0〉, where
[ϕ] :=ϕ+ − ϕ− and 〈ϕ〉 := 1

2 (ϕ+ + ϕ−), ϕ± =ϕ|S± , denote, respectively, the jump and mean
values of the restrictions of ϕ at the interface S±.

Let us consider the variational problem P0 and perform the integration by parts by means of
the Gauss-Green’s theorem, as follows:

−
∫
Ω±

¯̃σ0ij,jvidx+

∫
Γ1

{
T̄ 0
i vi + R̄0

i ∂nvi

}
dΓ +

∑
m

∮
Cm∪γ±

P̄ 0
i vids

−
∫
B
K̂33

(
û1
,33 − `2û1

,3333

)
· sdx∓

∫
S±

(
t̄0 − K̂33

(
û1
,3 − `2û1

,333

)
− K̂α3w

0
α

)
· sdΓ =L(v),

(2.7)
where n(x̃,±h2 ) =∓e3 on S±. From equation (2.7), using standard variational arguments, the
following set of equilibrium equations is derived:

¯̃σ0ij,j + fi = 0 in Ω±,

T̄ 0
i = gi, R̄

0
i = qi on Γ1,

P̄ 0
i = 0 on Cm ∪ γ±,
ū0i = 0, ∂nū

0
i = 0, on Γ0,

K̂33

(
û1
,33 − `2û1

,3333

)
= 0 in B,

∓
(
t̄0 − K̂33

(
û1
,3 − `2û1

,333

)
− K̂α3w

0
,α

)∣∣∣
x3=±h2

= 0 on S±,

r̄0
∣∣∣
x3=±h2

= 0 on S±,

(2.8)

where t̄0 := (¯̃σ0i3 + τ̄0iα3,α) and r̄0 := (τ̄0i33) represent, respectively, the traction and the double-
traction vectors evaluated at the interfaces S±.

Equations (2.8)1,2,3 represent the equilibrium equations at order 0 on the adherents with the
suitable boundary conditions. By integrating equation (2.8)5, the characterization of û1 within the
adhesive B as an exponential function of the thickness coordinate is obtained:

û1(x̃, x3) = c0 + x3c1 + c2e
x3
` + c3e

− x3` , (2.9)

where the integration constants cK can be found explicitly imposing the continuity

conditions û1
∣∣∣
x3=±h2

= ū1|x3=±h2
and û1

,3

∣∣∣
x3=±h2

= φ0
,3

∣∣∣
x3=±h2

= ū0
,3

∣∣∣
x3=±h2

. By summing

and subtracting equations (2.8)6,7, combined with the expressions (2.9), one can evaluate the
jumps and mean values of the traction and double-traction vectors at the interface:

[t̄0] = 0, 〈t̄0〉= 1
hf(l)K̂33[ū1] + (1− f(l))K̂33〈ū0

,3〉+ K̂α3〈ū0
,α〉, [r̄0] = 0, 〈r̄0〉= 0, (2.10)

with f(l) := 1
1− 2

l tanh
l
2

, l := h
` , the internal length scale function.
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Let us consider the variational problem P1. After an integration by parts, we get:

−
∫
Ω±

¯̃σ1ij,jvidx+

∫
Γ1

{
T̄ 1
i vi + R̄1

i ∂nvi

}
dΓ +

∑
m

∮
Cm

P̄ 1
i vids

−
∫
B

{
K̂33

(
û2
,33 − `2û2

,3333

)
+ (K̂α3 + K̂3α)

(
û1
,α3 − `2û1

,α333

)
+ K̂αβw

0
,αβ)

}
· sdx

∓
∫
S±

(
t̄1 − K̂33

(
û2
,3 − `2û2

,333

)
− K̂α3û

1
,α + `2(K̂α3 + K̂3α)û1

,α33

)
· sdΓ

∓
∫
S±

(
r̄1 − `2K̂33û

1
,33

)
·ψ,3dΓ ±

∮
γ±

(
p̄1 − `2K̂3αναû

1
,33

)
· sdγ

+

∫
Γlat

να
(
K̂3α(u1

,3 − `2u1
,333) + K̂αβw

0
,β

)
· sdΓ = 0,

(2.11)

where p̄1 := (∆(νβτ3βi)) denotes the edge traction vector on γ±, and Γlat represents the lateral
surface of B, with unit normal vector (να). This yields to the following differential system:



¯̃σ1ij,j = 0 in Ω±,

T̄ 1
i = 0, R̄1

i = 0 on Γ1,

P̄ 1
i = 0 on Cm,

ū1i = 0, ∂nū
1
i = 0 on Γ0,

K̂33

(
û2
,33 − `2û2

,3333

)
+ (K̂α3 + K̂3α)

(
û1
,α3 − `2û1

,α333

)
+ K̂αβw

0
,αβ = 0 in B,

∓
(
t̄1 − K̂33

(
û2
,3 − `2û2

,333

)
− K̂α3û

1
,α + `2(K̂α3 + K̂3α)û1

,α33

)∣∣∣
x3=±h2

= 0 on S±,

∓
(
r̄1 − `2K̂33û

1
,33

)∣∣∣
x3=±h2

= 0 on S±,

±
(
p̄1 − `2K̂3αû

1
,33να

)
|x3=±h2

= 0 on γ±.
(2.12)

The governing equations at order 1 are homogeneous since no external forces are applied.
The order 0 terms act as known source charges, obtained by solving the order 0 problem. By
integrating (2.12)5 along x3, we can characterize û2 as follows:

û2(x̃, x3) = d0 + x3d1 + d2e
x3
` + d3e

− x3` − Ĥα

(
x3c0,α +

x23
2
c1,α

)
− x23

2
Ĥαβw

0
,αβ , (2.13)

with Ĥα := (K̂33)−1(K̂α3 + K̂3α) and Ĥαβ := (K̂33)−1K̂αβ . Constants dK are independent

of x3 and can be found by virtue of the continuity conditions û2
,3

∣∣∣
x3=±h2

= φ1
,3

∣∣∣
x3=±h2

=

ū2
,3

∣∣∣
x3=±h2

and û2
∣∣∣
x3=±h2

= ū2|x3=±h2
on S±.

From (2.12)6,7,8, it is possible to obtain the expressions of the jump and mean values of the
stress vector, the double-forces and edge forces at the interface, respectively:

[t̄1] =−K̂3α[ū1
,α]− hK̂αβ〈ū0

,αβ〉,
〈t̄1〉= 1

hf(l)K̂33[ū2] + (1− f(l))K̂33〈ū1
,3〉+ K̂α3〈ū1

,α〉 − `
2g(l)(K̂α3 + K̂3α)[ū0

,3α],

[r̄1] = (1− f(l))K̂33([ū1]− h〈ū0
,3〉), 〈r̄1〉= `

2g(l)K̂33[ū0
,3],

[p̄1] = (1− f(l))K̂3ανα([ū1]− h〈ū0
,3〉), 〈p̄1〉= `g(l)K̂3ανα[ū0

,3].

(2.14)

where g(l) := 1
2 coth l

2 .
By using the approach developed in [43], it is possible to obtain a condensed form of the

transmission conditions summarizing both orders 0 and 1. To this end, we denote t̃ε = t0 + εt1,
r̃ε = r0 + εr1, p̃ε = p0 + εp1 and ũε = u0 + εu1 + ε2u2, four suitable approximations of tε, rε,
pε and uε. After rescaling back to the initial domainΩε, thus ∂

∂x3
= ε ∂

∂xε3
inBε and h= 1

εh
ε, and

by considering that the constitutive coefficients K̂ij = K̂ε
ij , `= 1

ε
ˆ̀ε, lε = hε

ˆ̀ε in Bε, one can obtain
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an explicit form of the transmission conditions, comprising order 0 and 1:

[t̃ε] =−K̂ε
3α[ũε,α]− hεK̂ε

αβ〈ũ
ε
,αβ〉+ o(ε),

〈t̃ε〉= 1
hε f(lε)K̂ε

33[ũε] + (1− f(lε))K̂ε
33〈ũε,3〉+ K̂ε

α3〈ũε,α〉 − `ε

2 g(lε)(K̂ε
α3 + K̂ε

3α)[ũε,3α] + o(ε),

[r̃ε] = (1− f(lε))K̂ε
33([ũε]− hε〈ũε,3〉) + o(ε), 〈r̃ε〉= `ε

2 g(lε)K̂ε
33[ũε,3] + o(ε),

[p̃ε] = (1− f(lε))K̂ε
3ανα([ũε]− hε〈ũε,3〉) + o(ε), 〈p̃ε〉= `εg(lε)K̂ε

3ανα[ũε,3] + o(ε).
(2.15)

(e) The interface conditions
Thanks to the results of the asymptotic methods, derived in Section 2(d), we can now recover the
expression of the hard contact laws for a strain gradient elastic interface. Using relations (2.10),
the transmission problem at order 0 can be summarized as follows:

Governing equations:
¯̃σ0ij,j + fi = 0 in Ω±,
T̄ 0
i = gi, R̄

0
i = qi on Γ1,

P̄ 0
i = 0 on Cm ∪ γ±,
ū0i = 0, ∂nū

0
i = 0, on Γ0.

Interface conditions on S±:{
[ū0] = 0, [t̄0] = 0,

r̄0 = 0.

Concerning the order 0 problem, the transmission conditions provide the continuity of the
displacements and the traction vector at the interface, which is typical for an adhesive having
the same stiffness as the upper and lower bodies. In this case, from a macroscopic point of view,
the adherents are perfectly bonded together and no interactions with the intermediate layer can
be highlighted. The double traction vector r̄0 vanishes at the interface and no conditions can be
imposed on the normal derivative of the displacement ū0

,3. Hence, it is necessary to look at the
order 1 transmission problem, in order to get a better approximation of the interface mechanical
behavior. Combining (2.10) and (2.14), the order 1 equations read as follows:

Governing equations:
¯̃σ1ij,j = 0 in Ω±,
T̄ 1
i = 0, R̄1

i = 0 on Γ1,
P̄ 1
i = 0 on Cm,
ū1i = 0, ∂nū

1
i = 0, on Γ0.

Interface conditions on S±:

[ū1] = h
f(l)

(
K̂−133 〈t̄

0〉 − (1− f(l))〈ū0
,3〉 − K̂−133 K̂α3〈ū0

,α〉
)
,

[t̄1] =− h
f(l)

(
K̂3αK̂

−1
33 〈t̄

0
,α〉 − (1− f(l))K̂3α〈ū0

,α3〉
)

−hL̂αβ〈ū0
,αβ〉,

[ū1
,3] = [ū0

,3],

[r̄1] = (1− f(l))K̂33([ū1]− h〈ū0
,3〉),

with L̂αβ := K̂αβ − 1
f(l)

K̂3αK̂
−1
33 K̂β3. Alternatively, one can also impose the conditions related

to the edge tractions defined on the boundary of the interface γ±: [p̄1] = (1− f(l))K̂3ανα([ū1]−
h〈ū0

,3〉). At order 1, we obtain a mixed interface model in which both the kinematical quantities,
namely displacements and their normal derivatives, and the conjugated counterparts are
discontinuous through the interface and their jumps depend on the order 0 solution. The hard
strain gradient elastic transmission problems above present the same structures of the analogous
linear elastic hard interface models [34,35,43]. Indeed, fixing h and letting l→∞, i.e. `→ 0,
liml→∞ f(l) = 1 and t1 coincides with the Cauchy’s traction vector, and the double forces r1 and
all the strain gradient contributions can be neglected. Thus, the classical hard interface conditions
at order 1 are recovered (see [43]):

[ū1] = hK̂−133

(
〈t̄0〉 − K̂α3〈ū0

,α〉
)
, [t̄1] =−hK̂3αK̂

−1
33 〈t̄

0
,α〉 − hL̂αβ〈ū0

,αβ〉.

It is worth-mentioning that the above contact laws establish a generalization to the case of strain
gradient elasticity of the so-called coherent or Gurtin-Murdoch’s interface model, according to
which the traction vector suffers a jump discontinuity, satisfying a two-dimensional Laplace-
Young equation. This particular model has been firstly developed for continuum theories with
surface effects by the early work of M.E. Gurtin and A.I. Murdoch [52], and applied to surface and
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interfacial waves propagation by [53–55]. Indeed, the term hL̂αβ〈ū0
,αβ〉 represents the divergence

of a surface stress tensor defined on the plane of the interface, equivalent to the one introduced
in [52]. Finally, the hard strain gradient elastic conditions show new features with respect to the
mechanical behavior of the interface. The formal asymptotic derivation allowed us to consider the
intrinsic second gradient nature of the adhesive layer and size-dependent phenomena, typical of
micro- and nano-structures, as also shown in [48].

3. Hard interface conditions in micropolar elasticity

(a) Theoretical settings
Let us consider a material body Ω constituted by a centrosymmetric micropolar linear elastic
material, whose constitutive law is defined as follows: σji = cijhlelh and µji = aijhlχlh, where
(σij) denotes the nonsymmetric stress tensor, associated with the nonsymmetric strain eji =

ui,j + εijkωk, (µij) is the couple stress tensor, conjugated with the curvature tensor χji = ωi,j ,
with ui and ωi the displacement and microrotations fields, respectively. (cijkl) and (aijkl)

represent the fourth-order micropolar elasticity tensors,satisfying the following major symmetry
property: cijkl = cklij and aijkl = aklij . The micropolar elastic state at the equilibrium is fully
determined by the pair s= (u,ω). The material body is clamped on a portion of the boundary Γ0,
so that ui = ωi = 0, and it is subjected to body forces fi and body couples mi, acting in Ω, surface
forces gi and surface couples li, applied to the boundary Γ1. The work of external sources is given
by

L(s) :=

∫
Ω
{fiui +miωi}dx+

∫
Γ1

{giui + liωi}dΓ.

The variational formulation of the problem takes the following form:{
Find s= (u,ω)∈W (Ω)×W (Ω), such that
A(s, r) =L(s), for all r= (v,w)∈W (Ω)×W (Ω),

(3.1)

with W (Ω) := {v ∈H1(Ω,R3) : v = 0 on Γ0} and

A(s, r) :=

∫
Ω

{
σjieji(r) + µjiχji(w)

}
dx=

∫
Ω

{
cijhlelh(s)eji(r) + aijhlχlh(ω)χji(w)

}
dx.

By virtue of Gauss-Green’s theorem, the differential form of the governing equations can be easily
derived:

−
∫
Ω
σji,jvidx−

∫
Ω

(µji,j − εkjiσkj)ωidx+

∫
∂Ω

(σjinjvi + µjinjωi)dΓ =L(r).

Thus, the equilibrium problem can be written, as customary:

σji,j + fi = 0, in Ω,

µji,j − εkjiσkj +mi = 0, in Ω,

σjinj = gi, on Γ1,

µjinj = li, on Γ1,

ui = 0, ωi = 0, on Γ0.

(b) Statement of the problem and rescaling
In the sequel, the composite assembly presents the same geometry and features shown in Section
2(b) and illustrated in Figure 1. Considering the micropolar case, the variation formulation of the
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problem can be written as follows:{
Find sε ∈W (Ωε)×W (Ωε), such that
Āε−(sε, rε) + Āε+(sε, rε) + Âε(sε, rε) =Lε(rε), for all rε ∈W (Ωε)×W (Ωε),

(3.2)

where

Āε±(sε, rε) :=

∫
Ωε±

{
c̄εijhle

ε
lh(sε)eεji(r

ε) + āεijhlχ
ε
lh(ωε)χεji(w

ε)
}
dxε,

Âε(sε, rε) :=

∫
Bε

{
ĉεijhle

ε
lh(sε)eεji(r

ε) + âεijhlχ
ε
lh(ωε)χεji(w

ε)
}
dxε.

In order to apply the asymptotic expansions method [50], problem (3.2), defined on an ε-
dependent domain, must be reformulated on a fixed domain, independent of ε, using the change
of variables defined in (2.3). The rescaled configuration of the composite domain has the same
geometry characteristics shown in Section 2(c).

We assume that the elastic and micropolar coefficients of the adherents and adhesive are
independent of ε, namely c̄εijkl = c̄ijkl, ĉ

ε
ijkl = ĉijkl, ā

ε
ijkl = āijkl and âεijkl = âijkl.

The data verify the following scaling assumptions: fεi (xε) = fi(x) and mε
i (x

ε) =mi(x), x∈
Ω±, and gεi (xε) = gi(x) and lεi (x

ε) = li(x), x∈ Γ1. Thus, Lε(rε) =L(r). The unknowns and test
functions depend on ε as follows:

ūε(xε) = ūε(x), ω̄ε(xε) = ω̄ε(x) v̄ε(xε) = v̄(x) w̄ε(xε) = w̄(x) x∈Ω±,
ûε(xε) = ûε(x), ω̂ε(xε) = ω̂ε(x) v̄ε(xε) = v̄(x) ŵε(xε) = ŵ(x) x∈B.

According to the previous rescaling hypothesis, problem (3.2) can be reformulated on a fixed
domain Ω: {

Find sε ∈W (Ω)×W (Ω), such that
Ā−(sε, r) + Ā+(sε, r) + Â(sε, r) =L(r), for all r ∈W (Ω)×W (Ω),

(3.3)

where

Ā±(sε, r) :=

∫
Ω±

{
c̄ijhlelh(sε)eji(r) + āijhlχlh(ωε)χji(w)

}
dx,

Â(sε, r) := 1
ε b−1(sε, r) + b0(sε, r) + εb1(sε, r),

with

b−1(sε, r) :=

∫
B

{
Ĉ33u

ε
,3 · v,3 + Â33ω

ε
,3 ·w,3

}
dx,

b0(sε, r) :=

∫
B

{
Ĉ33u

ε
,3 · (e3 ∧w) + Ĉ33(e3 ∧ ωε) · v,3 + +Ĉα3(uε,α + eα ∧ ωε) · v,3

+Ĉ3αu
ε
,3 · (v,α + eα ∧w) + Âα3ω

ε
,α ·w,3 + Â3αω

ε
,3 ·w,α

}
dx,

b1(sε, r) :=

∫
B

{
Ĉ33(e3 ∧ ωε) · (e3 ∧w) + Ĉα3(uε,α + eα ∧ ωε) · (e3 ∧w) + Âαβω

ε
,β ·w,α

+Ĉ3α(e3 ∧ ωε) · (v,α + eα ∧w) + Ĉαβ(uε,β + eβ ∧ ωε) · (v,α + eα ∧w)
}
dx,

where Ĉ33 := (ĉi3j3), Ĉα3 := (ĉi3jα), Ĉ3α := (ĉiαj3) = ĈTα3, Ĉαβ := (ĉiαjβ), Â33 := (âi3j3),
Âα3 := (âi3jα), Â3α := (âiαj3) = ÂT

α3 and Âαβ := (âiαjβ). In order to apply the asymptotic
expansions method to (3.3), the solution is expanded as a series of powers of ε:

sε = s0 + εs1 + ε2s2 + . . . ⇒

ūε = ū0 + εū1 + ε2ū2 + . . . ,

ûε = û0 + εû1 + ε2û2 + . . . ,

ω̄ε = ω̄0 + εω̄1 + ε2ω̄2 + . . . ,

ω̂ε = ω̂0 + εω̂1 + ε2ω̂2 + . . . .

(3.4)

Hence, by substituting expressions (3.4) into equation (3.3) and by identifying the terms with
identical powers, we can finally characterize the limit problems at order 0 and order 1.
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(c) The asymptotic expansions method
Following the steps of Section 3(b), the following set of variational problems Pn can be defined:

P−1 : b−1(s0, r) = 0,

P0 : Ā−(s0, r) + Ā+(s0, r) + b−1(s1, r) + b0(s0, r) =L(r),

P1 : Ā−(s1, r) + Ā+(s1, r) + b−1(s2, r) + b0(s1, r) + b1(s0, r) = 0.

Let us consider variational problem P−1. After an integration by parts along x3, we get
that both û0 and ω̂0 are constant with respect to the thickness coordinate. By applying the
continuity conditions at the interfaces, one has [ū0] = 0 and [ω̄0] = 0. Following the same
procedure of Section 2(d), let us apply the Gauss-Green’s formulae to problem P0. We obtain a
set of equilibrium equations at order 0 on Ω±, coupled with additional conditions on the traction
vectors:

σ̄0ji,j + fi = 0, in Ω±,

µ̄0ji,j − εkjiσ̄
0
kj +mi = 0, in Ω±,

σ̄0jinj = gi, µ̄
0
jinj = li on Γ1,

u0i = 0, ω0
i = 0, on Γ0,

û1
,33 = 0, ω̂1

,33 = 0 in B,

∓
(
σ̄0 − Ĉ33

(
û1
,3 + e3 ∧ ω̂0

)
− Ĉα3(û0

,α + eα ∧ ω̂0)
)∣∣∣
x3=±h2

= 0 on S±,

∓
(
µ̄0 − Â33ω̂

1
,3 − Âα3ω̂

0
,α

)∣∣∣
x3=±h2

= 0 on S±,

(3.5)

where σ̄0 = (σ̄0i3) and µ̄0 = (µ̄0i3) are the stress and couple-stress vectors evaluated at the
interface S±. From equations (3.5)5 and thanks to the continuity properties at the interface, the
displacements and microrotations are affine functions of x3, i.e. û1(x̃, x3) = 〈ū1〉(x̃) + x3

h [ū1](x̃)

and ω̂1(x̃, x3) = 〈ω̄1〉(x̃) + x3
h [ω̄1](x̃). Moreover, from (3.5)6,7, we obtain

[σ̄0] = 0, 〈σ̄0〉= 1
h Ĉ33

(
[ū1] + he3 ∧ 〈ω̄0〉

)
+ Ĉα3(〈ū0

,α〉+ eα ∧ 〈ω̄0〉),
[µ̄0] = 0, 〈µ̄0〉= 1

hÂ33[ω̄1] + Âα3〈ω̄0
,α〉.

Let us consider problem P1. Using the Gauss-Green’s theorem, we get an homogenous
equilibrium system at order 1 and we can also characterize the jumps and mean values of the
stress vector and couple stress vector at order 1, respectively:

[σ̄1] =−Ĉ3α

(
[ū1
,α] + he3 ∧ 〈ω̄0

,α〉
)
− hĈαβ

(
〈ū0
,αβ〉+ eβ ∧ 〈ω̄0

,α〉
)

=−T1
α,α,

〈σ̄1〉= 1
h Ĉ33

(
[ū2] + he3 ∧ 〈ω̄1〉

)
+ Ĉα3(〈ū1

,α〉+ eα ∧ 〈ω̄1〉),
[µ̄1] =−Â3α[ω̄1

,α]− hÂαβ〈ω̄0
,αβ〉+ h〈σ̄0〉 ∧ e3 −T1

α ∧ eα,

〈µ̄1〉= 1
hÂ33[ω̄2] + Âα3〈ω̄1

,α〉,

where T1
α := Ĉ3α

(
[ū1] + he3 ∧ 〈ω̄0〉

)
+ Ĉαβ

(
〈ū0
,β〉+ eβ ∧ 〈ω̄0〉

)
can be interpreted as a

generalized membrane stress vector, (see [43]). By using the same methodology of Section 2(d), it
is possibile to combine the order 0 and order 1 conditions in order to have a better approximation
of the interface transmission problem. Noting with σ̃ε =σ0 + εσ1, µ̃ε =µ0 + εµ1, ω̃ε =ω0 +

εω1 + ε2ω2 and ũε = u0 + εu1 + ε2u2, one has:

[σ̃ε] =−Ĉε3α
(
[ũε,α] + he3 ∧ 〈ω̃ε,α〉

)
− hεĈεαβ

(
〈ũε,αβ〉+ eβ ∧ 〈ω̃ε,α〉

)
+ o(ε) =−Tεα,α + o(ε),

〈σ̃ε〉= 1
hε Ĉ

ε
33 ([ũε] + hεe3 ∧ 〈ω̃ε〉) + Ĉεα3(〈ũε,α〉+ eα ∧ 〈ω̃ε〉) + o(ε),

[µ̃ε] =−Âε
3α[ω̃ε,α]− hεÂε

αβ〈ω̃
ε
,αβ〉+ hε〈σ̃ε〉 ∧ e3 −Tεα ∧ eα + o(ε),

〈µ̃ε〉= 1
hε Â

ε
33[ω̃ε] + Âε

α3〈ω̃ε,α〉+ o(ε).
(3.6)
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(d) The interface conditions
Using the results of Section 3(c), the contact conditions for hard micropolar interface can be
recovered. The transmission problem at order 0 can be summarized as follows:

Governing equations:
σ̄0ji,j + fi = 0, in Ω±,
µ̄0ji,j − εkjiσ̄

0
kj +mi = 0, in Ω±,

σ̄0jinj = gi, µ̄
0
jinj = li, on Γ1,

u0i = 0, ω0
i = 0, on Γ0.

Interface conditions on S±:{
[ū0] = 0, [t̄0] = 0,

[ω̄0] = 0, [µ̄0] = 0.

The zero-th order transmission conditions provide the continuity of the displacements and
microrotation, and of their conjugated counterparts, namely the stress vector and couple stress
vector. As shown in [43], this result is typical of adhesives having similar rigidities of the
adherents. In this case, the interface is perfect.

The order 1 transmission problem states:

Governing equations:
σ̄1ji,j = 0, in Ω±,
µ̄1ji,j − εkjiσ̄

1
kj = 0, in Ω±,

σ̄1jinj = 0, µ̄1jinj = 0, on Γ1,
u1i = 0, ω1

i = 0, on Γ0.

Interface conditions on S±:

[ū1] = h
(
Ĉ−133 〈σ̄

0〉 − e3 ∧ 〈ω̄0〉

−Ĉ−133 Ĉα3(〈ū0
,α〉+ eα ∧ 〈ω̄0〉)

)
,

[σ̄1] =−hĈ3αĈ
−1
33 〈σ̄

0
,α〉 − hD̂αβ〈(ū0

,αβ〉+ eβ ∧ 〈ω̄0
,α〉),

[ω̄1] = hÂ−133 〈µ̄
0〉 − hÂ−133 Âα3〈ω̄0

,α〉,
[µ̄1] =−hÂ3αÂ

−1
33 〈µ̄

0
,α〉 − hB̂αβ〈ω̄0

,αβ〉
+h〈σ̄0〉 ∧ e3 −T1

α ∧ eα,

with D̂αβ := Ĉαβ − Ĉ3αĈ
−1
33 Ĉβ3 and B̂αβ := Âαβ − Â3αÂ

−1
33 Âβ3. At order 1, we obtain a

mixed interface model in which the displacements, microrotations, traction vector, and couple
stress vector are discontinuous across the interface. The right-hand sides of the above relations
depend all on the micropolar state at order 0 and its in-plane derivatives. The contact model
provides a generalization of the conditions obtained for elastic hard interfaces to the case of
micropolar elasticity, see [43]. Following the same approach adopted in [43], it can be shown
that the above relations comprise also the soft micropolar interface model, derived in [48]. The
inspection of order 1 conditions highlights that the jumps of [σ̄1] and [µ̄1] present a discontinuity
at the interface, depending, respectively, on the divergence of a surface stress tensor, namely
D̂αβ〈(ū0

,αβ〉+ eβ ∧ 〈ω̄0
,α〉), and of a surface couple stress tensor, namely B̂αβ〈ω̄0

,αβ〉. This yields
to a micropolar membrane equilibrium problem defined on the the interface plane. We can
state that the above conditions represent a micropolar version of the Gurtin-Murdoch’s interface
model [52–55], which take into account not only the presence of surface stresses, but also the
effects of surface couple stresses. Moreover, [µ̄1] contains also bending and torsional moments
contributions coming from the stress vectors 〈σ̄0〉 and T1

α.

4. A benchmark problem
In the present section, the equilibrium problem of a composite bar subjected to an axial load
is studied in the framework of classical (C), micropolar (M) and strain gradient (SG) elasticity.
The composite beam comprises two adherents and an intermediate adhesive. The closed-form
solutions are known (see [56,57]) and will be employed to analytically and numerically assess
the imperfect contact problem in the framework of micropolar and strain gradient elasticity,
respectively. In the sequel, the exact solution of the equilibrium problem for a three-phase bar
is compared with the solution of the asymptotic model, i.e., a two-phase bar with an imperfect
interface. For the sake of simplicity, we omitted the dependences on ε of the unknown functions
and constitutive coefficients. The geometry of the composite beam is illustrated in Fig. 2. The
bar axis is identified with the abscissa x3, while xα denotes the cross-section coordinates. The
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Figure 2. The composite bar geometry under an axial load

adherents are Ω− :=A× (0, L), Ω+ :=A× (L+ h, 2L+ h), and the adhesive B :=A× (L,L+

h), with h<<L. We note with A the beam cross-sectional area. The boundary Γ0 = {0} is fully
clamped, while Γ1 =A× {2L+ h} is a free end. The materials are assumed to be isotropic with
Lamé’s constants λ and µ, and Cosserat’s couple modulus κ. The classical E and micropolar
Young’s moduli Ē are defined in terms of the Lamé’s constants as follows: E =

µ(3λ+2µ)
λ+µ and

Ē =
(2µ+κ)(3λ+2µ+κ)

(2λ+2µ+κ)
. The material properties of the adherents Ω± and adhesive B are shown in

Table 1. In the absence of distributed longitudinal loads, the solution of a bar under an axial load

Table 1. Constitutive material properties, [58].

Moduli Ω± B

λ (MPa) 78500 75900
µ (MPa) 13700 13500
κ (MPa) 139 149

takes the following form [56,57]:

SG solution : u(x3) = a0 + a1x3 + a2e
x3/` + a3e

−x3/`, C, M solution : u(x3) = b0 + b1x3,

where u represents the axial displacement, with integration constants aK and bK . The analytical
solution is valid for both the adherents Ω± and the adhesive B. The chosen boundary conditions
at the extremities of the composite beam are:

(BC)SG :

{
u(0) = 0 τ(0) = 0 on Γ0,
σ̃(2L+ h) =N u′(2L+ h) = ε0 on Γ1,

(BC)C,M :

{
u(0) = 0 on Γ0,
σ(2L+ h) =N on Γ1,

where τ =EA`2u′′ and σ̃=EA(u′ − `2u′′′) denote the boundary axial double force and the axial
force for the SG model, respectively, σ=EAu′ is the axial force for the C model (for the M case, E
must be switched with its micropolar version Ē), and ε0 a prescribed boundary strain. Note that
the boundary conditions are valid for both the exact three-phase model and two-phase model
with imperfect contact. For the three-layer composite bar, classical interface continuity conditions
(CC) are considered on x3 =L and x3 =L+ h so that

(CC)SG :

{
[u] = 0, [u′] = 0,

[σ̃] = 0, [τ ] = 0,
(CC)C,M :

{
[u] = 0,

[σ] = 0.

Concerning the two-layer bar with imperfect contact (IC), the hard strain gradient (2.15) and
micropolar interface conditions (3.6) are adapted for the one-dimensional case and reduce to:

(IC)SG:



[σ̃] = 0,

〈σ̃〉= (λ̂+ 2µ̂)
(
1
hf(l)[u] + (1− f(l))〈u′〉

)
,

[τ ] = (1− f(l))(λ̂+ 2µ̂)([u]− h〈u′〉),
〈τ〉= `

2g(l)(λ̂+ 2µ̂)[u′],

(IC)M :

{
[σ] = 0,

〈σ〉= 1
h (λ̂+ 2µ̂+ κ̂)[u].
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The adherents length is L=1 mm the thickness of the adhesive h and the internal length of the
adherents ¯̀are kept constant and both equal to 0.1 mm, while the internal length of the adhesive `
can take different values. Following [44], the results are given in terms of the dimensionless units.
For a prescribed normal force N , we set x̄= x3

2L+h , and ū= EA
NLu.

Figure 3. Dimensionless axial displacement ū and strain ε vs x̄, for h/L= 0.1

Figure 3 show the comparison between the exact three-phase SG and M solutions (continuous
blue and green lines) and the asymptotic solutions of the two-phase problem with SG and
M imperfect contact (dotted black and dashed grey lines), in terms of the dimensionless axial
displacement ū and longitudinal strain ε̄. The plots highlight the influence of the adhesive
characteristic length of the microstructure compared with the classical elastic solution of a three-
layer beam (red continuous line), for which h/`→∞, i.e., `= 0. The diagrams reveal the following
results:

(i) The imperfect interface solution perfectly matches the solution of the three-phase
problem, for both strain gradient and micropolar cases; as expected, by letting `→ 0 (or
κ→ 0), the strain gradient (or micropolar) solution converges towards the classical elastic
one.

(ii) The internal length parameter influences the trend of the general solution and its effect
becomes more prominent when h/`= 1. Indeed, when the characteristic length is of
the same order of magnitude as the adhesive thickness, a stiffening phenomenon is
highlighted. In this case, the strain gradient beam appears to be more rigid with respect
to the elastic one. A similar stiffening effect is also highlighted by the micropolar solution,
which is typical of micro-scale devices.

(iii) The longitudinal strain is strongly affected by the size ratio h/`, implying that the
model is able to describe size effects and, also, can capture high strain gradients at the
extremities.

5. Conclusions
An original form of the hard imperfect interface laws have been derived, through the asymptotic
expansions method, based on the strain gradient elastic theory and the micropolar elasticity
theory. The order 0 and order 1 transmission problem for hard interfaces have been presented
in Section 2(e), for the case of gradient elasticity, and in Section 3(d), for the case of micropolar
elasticity, respectively. The transmission conditions at order 0 and 1 presented a similar structure
compared to other hard adhesives in other different multiphysic frameworks [43].
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Concerning the strain gradient elastic model, the order 0 conditions provide the continuity
of the displacements and of the traction vector at the interface, typical of hard adhesives. The
interface model at order 1 represented a mixed model and highlighted a discontinuity of the
whole set of kinematical and conjugated fields, depending on the scale length function f(l). This
function has been proved to produce size effect phenomena in [48].

Concerning the micropolar model, the order 0 conditions provide the continuity of the
displacements, microrotations, stress vector and couple stress vector at the interface level,
generalizing the typical behavior of hard elastic interfaces. At order 1, a mixed interface model is
obtained. Morerover, both the jumps of the order 1 stress vector and couple stress vector depend
on an in-plane micropolar membrane equilibrium problem, containing bending and torsional
moments contributions coming from the stress vectors at order 0.

In order to have a better approximation of the interface transmission problem, a condensed
form of the contact laws (2.15) and (3.6) has been given for both cases, comprising the order 0 and
order 1 models.

The benchmark problem of a composite layered bar subjected to a tensile load, considering
both cases of strain gradient and micropolar elasticity, allowed us to assess the validity of
the previous asymptotic procedures. The diagrams show that the solution of the three-phase
model perfectly coincides and is well-approximated by the solution of the two-phase model with
imperfect contact. The internal length parameter has a significant influence on the mechanical
response, especially when h/`= 1. A stiffening phenomenon, typical of structural components
at the micro-scale, is captured by both the strain gradient and micropolar asymptotic models.
Moreover, the asymptotic models, comprising the order 0 and order 1, allow to predict the
behavior of the bonded joint even for moderately thick adhesives, having relative thickness
h/L= 0.1.

Although simple in its design, this analytical/numerical example proves to be efficient in
assessing the impact of the thin adhesive on the structural behavior of the overall system,
taking also into account materials presenting an internal microstructure. As proposed in [43], the
condensed form of the interface conditions can be employed to write the variational formulation
of the transmission problem in the case of strain gradient and micropolar elasticity. The weak
formulation can be easily implemented in a general FE code and represents a key step towards
simulating numerically imperfect interface effects inside composite materials and constructing
structured finite elements with non-classical contact conditions.

Finally, the suggested methodology has shown effectiveness and simplicity, suitable for
various applications involving thin films and interfaces at micro- and nano-scales and considering
the influence of their microstructure.
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