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Quantum walks of two correlated photons in a 2D synthetic
lattice
Chiara Esposito1, Mariana R. Barros 1,2, Andrés Durán Hernández 1,3, Gonzalo Carvacho1, Francesco Di Colandrea 2,
Raouf Barboza2, Filippo Cardano 2✉, Nicolò Spagnolo1, Lorenzo Marrucci 2 and Fabio Sciarrino 1,4✉

Quantum walks represent paradigmatic quantum evolutions, enabling powerful applications in the context of topological physics and
quantum computation. They have been implemented in diverse photonic architectures, but the realization of two-particle dynamics on a
multidimensional lattice has hitherto been limited to continuous-time evolutions. To fully exploit the computational capabilities of
quantum interference it is crucial to develop platforms handling multiple photons that propagate across multidimensional lattices. Here,
we report a discrete-time quantum walk of two correlated photons in a two-dimensional lattice, synthetically engineered by
manipulating a set of optical modes carrying quantized amounts of transverse momentum. Mode-couplings are introduced via the
polarization-controlled diffractive action of thin geometric-phase optical elements. The entire platform is compact, efficient, scalable, and
represents a versatile tool to simulate quantum evolutions on complex lattices. We expect that it will have a strong impact on diverse
fields such as quantum state engineering, topological quantum photonics, and Boson Sampling.
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INTRODUCTION
A quantum walk1 (QW) is the quantum-mechanical analog of the
classical random walk, describing the evolution of a quantum
particle that moves on a discrete lattice, hopping between
adjacent sites. These quantum dynamics can be either continuous
or discrete in time, depending on whether the couplings between
neighboring lattice positions are continuously active or can be
described as sudden kicks, occurring at discrete time-steps. In the
latter case, at each step the walker moves in a direction that
reflects the state of a spin-like internal degree of freedom, playing
the role of “quantum coin”. The growing interest in QWs is due to
their potential use in diverse quantum applications, such as for
instance quantum search algorithms2, quantum gates for universal
quantum computation3–6, quantum state engineering7–10, and
quantum simulations of topological and physical phenomena11–23.
Quantum walk dynamics exhibit a richer variety of phenomena

when the evolution involves more than one particle. These walks
indeed are characterized by multiparticle interferences24–28,
having no classical analog and incorporating an inherent source
of complexity, as highlighted by their central role in computa-
tional models such as Boson Sampling29,30. The dimensionality of
the lattice where the QW takes place is also a crucial ingredient. As
an example, quantum search algorithms based on QWs overcome
their classical counterparts solely when the spatial dimension of
the lattice is equal or greater than two31. Furthermore, two-
dimensional (2D) QWs display a richer landscape of topological
features when compared to the 1D case11,32.
Photonic platforms developed to implement QWs differ in terms

of the methods to encode both walker and coin systems into optical
degrees of freedom. Starting from the first experiments in linear
optical interferometers composed of beamsplitters and phase
shifters33, integrated photonic technology has enabled significantly
larger instances both in their continuous-time21,26,34–38 and discrete-
time version8,25,39,40. Other schemes rely on light polarization and

orbital angular momentum degrees of freedom9,41, multimode
fibers36, or fiber network loops14,15,42–44, where the walker position is
simulated by the temporal separation between the laser pulses.
Other remarkable experiments have been conducted by controlling
confined waves in arrays of micro-resonators45,46. Multiparticle
regimes have been already implemented in continuous-time
QWs47–49, even in 2D lattices38. However, the demonstration of
multiphoton discrete-time QWs in more than one spatial dimension
has remained elusive thus far. Here we devise and experimentally
validate a compact, flexible and scalable photonic platform that
achieves this goal. Specifically, we realize a three-step quantum walk
dynamics with coherent light, one-photon, and two-photon inputs,
spanning 2, 6, and 12 modes for the first, second, and third step,
respectively.

RESULTS
Model and encoding
The essential elements of a discrete-time QW are captured by the
single-step evolution operator U, as after t time-steps the system is
described by a quantum state ψtj i ¼ Ut ψ0j i, where ψ0j i is the
input state. The operator U typically includes a spin rotation C,
acting only on the coin Hilbert space, and a spin-dependent shift.
When the walker moves on a 2D square lattice [see Fig. 1], the
conditional shift embeds translation operators Tx and Ty along x
and y directions, respectively (more details can be found in
Supplementary Note 1).
Our platform builds on a recent approach to the simulation of

single-particle 2D QWs using coherent laser light22. Here, the walker
positions are provided by optical modes m; nj i with the following
spatial profile:

fm;nðx; y; zÞ ¼ Aðx; y; zÞei½Δk?ðmxþnyÞþkzz�; (1)
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where A(x, y, z) is a Gaussian envelope with a large beam radius w0

in the transverse xy plane, Δk⊥ represents a quantum of transverse
momentum, and the z axis is regarded as the main propagation
direction. Δk⊥ fulfills the condition Δk⊥≪ 2π/λ, λ being the optical
wavelength. Modes in Eq. (1) are essentially Gaussian beams
propagating along a direction that is slightly tilted with respect to
the main propagation axis [see Fig. 1a]. Photons associated with
mode m; nj i carry an average transverse momentum 〈(kx, ky)〉=
(mΔk⊥, nΔk⊥). Basis states of the coin space ( #j i, "j i) are encoded
in right-handed ( Rj i) and left-handed ( Lj i) circularly polarized
states, respectively. The conditional shift is realized via a liquid-
crystal polarization grating, that is a g-plate22. These plates are
made of a thin layer of liquid crystal, whose molecular orientation
is arranged in a periodic pattern along one of the directions that
are transverse to the propagation direction. Considering for
instance a g-plate with modulation along the x direction, with a
period Λ= 2π/Δk⊥, its action on spatial modes defined in Eq. (1),
combined with circularly polarized states, has the following
expression:

m; n; L=Rj i ! cos
δ

2
m; n; L=Rj i þ i sin

δ

2
m± 1; n; R=Lj i: (2)

A similar expression holds in case the modulation is along the
y axis. The parameter δ is the birefringent optical retardation of

the plate, that can be adjusted by applying an external voltage
across the liquid-crystal cell50. Thus, in our encoding the
g-plates implement the generalized shift operators Tx(δ) and
Ty(δ), with the value of δ determining the fraction of the
wavefunction that is shifted to neighboring sites [see Fig. 1a].
We use optical waveplates with tunable retardation ω (based on
uniformly patterned liquid-crystals) to implement adjustable
coin rotations C(ω) [see Fig. 2b]. Therefore, the single-step
operator is an ordered sequence of g-plates and waveplates. A
large variety of QWs can be implemented with this platform, by
tuning the parameters δ and ω, as already shown in ref. 22. In
this work, we will focus on a fully-balanced 2D-QW protocol
described by the following one-step operator U= Ty(π)C(π/4)
Tx(π)C(π/4) [see Fig. 2c].

Experimental setup
The complete setup is shown in Fig. 3 (more details can be found
in Supplementary Notes 2–4 and Supplementary Figs. 1–3). A
photon-pair source is employed to generate and then inject
single- and two-photon inputs into the quantum walk platform. In
particular, in the two-photon case, an appropriate optical system is
implemented to inject the two particles in different sites of the
lattice, corresponding to different optical modes (see Methods).

Fig. 1 Scheme of a two-dimensional quantum walk. a The single-step operator is performed via subsequent applications of a coin-
dependent translation along the x axis and one along the y axis, interspersed with a coin rotation. b The full quantum walk evolution is then
obtained via the multiple sequential application of the single-step operator U.
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Fig. 2 Encoding of QW operators and walker degree of freedom. a Translation operator: g-plate. The action of a g-plate oriented along y for
different values of δ. For δ= 0 the g-plate acts as the identity operator and the light beam is unchanged, while for δ= π the g-plate performs a
full conversion. Finally, for all the other values of δ, the g-plates convert only partially the input beam. b Coin toss: tunable waveplate. A
waveplate with tunable retardation performs the coin rotation. In the balanced case (shown in the figure), the coin toss is performed by
setting ω= π/4 (quarter waveplate), implementing for instance the transformations Rj i ! Aj i ¼ ð Hj i � Vj iÞ= ffiffiffi

2
p

and
Lj i ! Dj i ¼ ð Hj i þ Vj iÞ= ffiffiffi

2
p

. c 2D lattice encoding. The walker position on the 2D lattice is encoded in the transverse momentum of the
beam. We consider a linearly polarized input beam, without a transverse momentum component. The corresponding position on the lattice is
(0,0). A g-plate, oriented along y (x) with δ= π, divides a horizontally-polarized input beam in two parts, which acquire two opposite transverse
momentum components along y (x), ky(x)= ±Δk⊥ or θy(x)= ± θ0. Then, after coin tossing, a second g-plate is oriented along the orthogonal
direction. Four different beams with different angular deviations (±θ0, ±θ0) are obtained at the output, mapping the lattice positions (m, n)=
(±1, ±1), respectively. The red lines on the images indicate the propagation direction of the Gaussian beams. The beam deviations have been
overemphasized for the sake of visualization. The deflected beams remain spatially overlapping while they travel along the setup, except in
the final imaging stage.
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The same apparatus can be used to inject classical laser light. The
quantum walk itself is implemented via a cascade of the single-
step building blocks described above. Note that, by turning on
and off individual g-plates in sequence, that is by setting δ to π or
0, respectively, it is possible to measure the spatial distribution of
the walker after each step of the protocol. Finally, the output of
the quantum walk is sent to the detection stage. In the focal plane
of a lens, our modes can be spatially resolved as they form a grid
of small spots. A suitable 2D fiber array and a micro-lens system
are placed at this position so that each spot matches the core of
the corresponding fiber in the array (see Methods). With a classical
light input, the output can be measured via a charge-coupled
device (CCD) camera.
We have employed our platform to implement a balanced

quantum walk U with single- and two-photon inputs, up to three
time-steps.

Single-photon quantum walk
We performed a single-particle experiment by injecting a single
photon in position (1, 0) with polarization Dj i ¼ ð Hj i þ Vj iÞ= ffiffiffi

2
p

,
and then measuring the output distributions after each step
(obtained by sequentially switching on the g-plates). The single-
photon experimental distributions are shown in Fig. 4 (related
analysis for coherent light input is reported in Supplementary
Note 5). The slight differences between theoretical and experi-
mental output distributions are due to experimental imperfections
such as inaccuracies of g-plates tuning values and of their relative
horizontal alignment. The agreement between experimental data
and the expected distributions is quantified by the similarity,
defined as:

SðtÞ
1p ¼

X
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðtÞðrÞ~PðtÞðrÞ

q !2

; (3)
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Fig. 3 Experimental apparatus for the 2D-QW implementation. Photon preparation. Two photons are generated by a spontaneous
parametric down-conversion source and independently injected into single-mode fibers. Polarization controllers are employed to change
their polarization state, while delay lines enable controlling their degree of indistinguishability. For two-photon inputs, both photons are
injected in the QW implementation and they propagate along two parallel paths. A lens system enlarges their waist radius and introduces a
relative angle between the optical modes. The relative inclinations of the optical modes represent different lattice positions. In this way, the
photons start the walk at positions (−1, 0) and (1, 0) of the lattice. In the single-particle case, one of the two photons is directly measured to
act as a trigger. QW implementations. The quantum walk is performed by using waveplates and g-plates arranged in a cascade configuration.
Each g-plate is controlled independently by tuning its phase retardation via a voltage controller. Measurement stage. A lens system at the
output stage converts the different momentum values into a spatial grid. Then, for single-photon acquisition, an array of micro-lenses is used
to efficiently inject the output modes in a 2D square-lattice fiber array. Finally, each output fiber is plugged into an avalanche photodiode
detector connected to a coincidence electronic system. For the coherent light data acquisition, we inserted a beamsplitter between the last
lens and the micro-lense array, and we positioned the CCD on the reflected path to perform image acquisition.
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Fig. 4 Single-photon 2D quantum walk. a Experimental distribution of one-particle quantum walk performed with single-photon input, in
comparison with theoretical predictions after each step. Data were collected using single-photon detectors. The initial position of the walker is
(1, 0) and the initial polarization is Dj i. Shaded regions on top of each bar correspond to the experimental error at 1 standard deviation. The
error bars were obtained through a bootstrapping approach. b Images reconstructed with a CCD camera with classical light inputs on the
same site and with the same polarization.
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where P(t)(r) and ~P
ðtÞðrÞ are the theoretical and experimental

distributions of the quantum walk at the t-th step, respectively,
while r is the particle position on the lattice. The similarity value
of the last step Sð3Þ

1p ¼ 0:9773 ± 0:0002 shows a high agreement
with the expected distribution. Similar results were observed
when injecting classical light to the quantum walk platform
(see Table 1).

Two-photon quantum walk
Next, we realized a two-photon, 2D quantum walk by injecting
two photons with polarizations Aj i ¼ ð Hj i � Vj iÞ= ffiffiffi

2
p

and Dj i in
(−1, 0) and (1, 0) lattice positions, respectively. It is worth noticing
that at the input of the quantum walk the two-photon state is
separable. Temporal synchronization between the particles is
ensured in advance by performing a direct Hong-Ou-Mandel
(HOM) measurement at the output of the quantum walk, which
provides a measured visibility v = 0.95 ± 0.02. Further details on
the HOM measurement are reported in Supplementary Note 6 and
Supplementary Fig. 4. For the multiphoton case, the obtained
theoretical and experimental distributions depicted in Fig. 5 show
a high quantitative agreement. This is confirmed by their
similarities defined as:

SðtÞ
2p ¼

X
r1;r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðtÞðr1; r2Þ~PðtÞðr1; r2Þ

q !2

; (4)

where P(t)(r1, r2) and ~P
ðtÞðr1; r2Þ are the theoretical and experi-

mental distributions of the quantum walk at the t-th step,
respectively, while r1 and r2 are the positions on the lattice of the
two particles. The theoretical distribution was computed by
considering an initial state described by the density matrix ρ0=
c0ρind+ (1− c0)ρdis, where ρind indicates the density matrix of two
completely indistinguishable photons and ρdis is the density

Table 1. Similarities of distributions related to classical, one particle,
and two-particle regime for all the steps.

Scl S1p S2p V V=σV
1 step ~0.999 0.9964(1) 0.9756(6) 0.204(2) 96

2 steps ~0.996 0.9929(2) 0.9743(7) 0.0077(5) 14

3 steps ~0.988 0.9773(2) 0.914(2) 0.0084(7) 11

Experimental results for the 2D quantum walk up to the third step when
using classical light (Scl), one photon (S1p), and two photons (S2p). In the
last columns, we report the maximum value of V (See Eq. 5) with the
associated errors σV , and the corresponding values of V=σV for each
measured configuration.
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Fig. 5 Experimental results for two-photon 2D-QW. a In order to obtain a three-dimensional representation of the distributions, the two-
dimensional lattice was linearized in the following way: (m, n)=m+ 7n, withm, n∈ [−3, 3]. The figure graphically shows the linearization map.
b Comparison between the theoretical predictions and the measured experimental distributions with two-photon inputs. Shaded regions on
top of each bar correspond to the experimental errors. The error bars were obtained through a bootstrapping approach. The bunching
probabilities are highlighted by the yellow line.
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matrix describing two distinguishable particles. c0, that corre-
sponds to the measured visibility of the HOM test, is equal to 0.95.
For the experimental distribution at the third step, we obtain a
similarity value Sð3Þ

2p ¼ 0:914 ± 0:002 (related results with a
distinguishable two-photon input are reported in Supplementary
Note 7 and Supplementary Fig. 5).

Nonclassical correlation witness
The presence of nonclassical correlations in the output distribu-
tions is witnessed by applying the non-classicality test of refs. 48,51,
given by:

Vðm1;m2Þ ¼ 2
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ
ðclÞ
m1;m1Γ

ðclÞ
m2;m2

q
� ΓðclÞm1 ;m2

< 0: (5)

where ΓðclÞm1;m2 is the classical probability that light exits from them1

and m2 output ports of an interferometer. How this formula
adapts to our specific case is shown in detail in Supplementary
Note 7. The obtained maximum violation of the inequality are of
96, 14, and 11 standard deviations, respectively for 1, 2, and 3 QW
steps, thus unambiguously proving the quantum behavior of the
reported two-photon 2D quantum walk. The indistinguishability
between injected photons gives rise to quantum interferences,
yielding in turn probability distributions that cannot be repro-
duced by classical states of light. In Fig. 6, we report the complete
plots of V over the standard deviation for the second and third
steps, respectively. All the results of one-particle and two-particle
QWs are summarized in Table 1. In the last column, we also
reported the maximum value of the violation V and its error, for
each step. These results highlight that the proposed platform has
the potential to be employed for significantly larger instances,
with a high degree of control on the implemented protocol.

DISCUSSION
We have presented and realized a platform for the implementa-
tion of two-dimensional, multiphoton discrete-time quantum
walks, demonstrating experimentally single- and two-photon
operations on a 2D squared lattice. The presented platform is
compact, flexible, and enables the implementation of a large
variety of different topological quantum walks22. Hence, it can
represent a powerful tool for the investigation of rich dynamics
that are experimentally unexplored. Recent works reported 2D
continuous-time quantum walks of correlated photons, relying on
arrays of coupled waveguides21,38,52, and important results have
been also achieved by means of superconductive quantum
processors6. We stress that our system is based on a very different
approach, exploiting a synthetic 2D lattice made of internal modes
of a single optical beam, as opposed to real-space neighboring
lattice sites and implementing discrete-time evolutions that can

be actively controlled and easily reconfigured. We believe that
these different approaches may have complementary advantages.
In our platform, several quantum walk protocols can be
dynamically realized. This can be achieved by tuning the
retardation of each plate in the range [0, π], by changing their
orientation and their position in the plane transverse to the
photon’s main propagation direction. By controlling these
parameters, diverse single-particle QWs mimicking periodically
driven Chern insulators have been reported22. Here we implement
a different split-step quantum walk, that is proved to realize the
Grover search algorithm in the high step-number limit53. The
number of steps that can be currently realized is essentially limited
by the optical losses, which are mainly due to photon reflections
at each plate. However, these can be significantly reduced (from
~15% to at least ~5%) by adding a standard anti-reflection coating
on the plate outer surfaces. Several applications can be foreseen,
including quantum state engineering7–9 or quantum algorithms
based on the quantum walk paradigm2,3. Furthermore, given the
possibility to exploit multiphoton inputs and to control the
performed transformation, this approach can also represent a
promising platform for the implementation of Boson Sampling
and Gaussian Boson Sampling experiments in large optical
lattices30.

METHODS
Photons preparation
The photon pairs used in our experiment are generated by a parametric
down-conversion source, composed of a nonlinear beta barium borate
crystal (BBO) pumped by a pulsed laser with λ= 392.5 nm. The generated
photons, λ= 785 nm, are then injected into two identical single-mode
fibers for spatial mode selection. On each fiber, an independent
polarization controller allows choosing the polarization of each input
photon. Then, delay lines are used to temporally synchronize the optical
paths through a Hong–Ou–Mandel interference measurement.
Once the photons are temporally indistinguishable, they are injected

into the QW platform. In order to precisely control the distance between
the injected photons and match the coupling conditions of the fiber array,
a half-mirror on one of the two paths is used. By translating this mirror, the
distance between the paths can be modified from 3 to 8mm, while its
tilting can change the relative orientation between the two photons.
Finally, an appropriate lens system superposes the two paths and
introduces a small prescribed angle between them (see Supplementary
Note 4). This relative angle corresponds to a difference in the photon
transverse momentum.

Measurement stage
At the output of the quantum walk structure, a three-lens system is used to
decrease the relative distance between adjacent beams and reduce the
corresponding beam waists. Then, a micro-lens array, composed of a
hundred micro-lenses with a short effective focal distance (~5mm),
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separated by 250 μm, is used to inject the photons into a square-lattice
multimode fiber array, reaching an individual waist of 15 μm without
changing the corresponding distances. The adoption of the micro-lens
array enables an improvement in the coupling efficiency from 0.1 to 0.75.
Overall, the fiber array sets an 8 × 8 spatial grid, where the output fibers are
separated by a 250 μm pitch. Each of these multimode fibers is connected
to a single-photon avalanche photodiode. The output signal of each
detector is directed to a coincidence apparatus, able to record single-
photon counts and twofold coincidences.
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