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Abstract: The present tutorial paper constitutes the second of a series of tutorials on manifold calculus
with applications in system theory and control. The aim of the present tutorial, in particular, is to
explain and illustrate some key concepts in manifold calculus such as covariant derivation and
manifold curvature. Such key concepts are then applied to the formulation, to the control, and to
the analysis of non-linear dynamical systems whose state-space are smooth (Riemannian) manifolds.
The main flow of exposition is enriched by a number of examples whose aim is to clarify the notation
used and the main theoretical findings through practical calculations.
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1. Introduction

The present paper appears as the second part of a long tutorial covering notions of
calculus on manifolds embedded in larger flat spaces, dynamical systems whose state
spaces are structured as smooth manifolds and non-linear control systems on manifolds.

Regulation of dynamical systems on state manifolds appears to be an appealing
research field in non-linear control theory which is gaining increasing interest in the
scientific community, especially in the field of mechanical systems control [1–6]. Depending
on the application at hand, one may be facing two cases [7]: positional control, arising in
the regulation of first-order as well as second-order systems, and velocity control, arising in
the regulation of second-order systems on manifolds. Embedded manifold setting proves
useful in modeling large-scale constrained systems, since a state manifold allows one to
take into account non-linear constraints on a non-linear system’s variables seamlessly.
A number of scientific papers, both of theoretic and applied nature, were published over
the years to investigate such extensions. Since the early days of control theory, it was clear
how geometric methods are of prime importance in the study of dynamical systems and
their regulation [8–11]. For a short review of contributions in the theory of Lie-group as
well as general manifold system regulation, interested readers might like to consult [7].

A challenging problem in feedback control on smooth manifolds is the synchronization
in time of non-linear dynamical systems, an appealing application of which is in the
synchronization of a follower oscillator, whose state-variables take the role of masking
carrier, to a leader oscillator, to be employed in data encryption for secure transmission
over digital networks [12]. In such application, it is assumed that the leader oscillator
state variable is completely observable, that its output coincides with its state and that its
dynamics is completely specified.

The present tutorial paper is devoted to describing and illustrating key concepts in
manifold calculus such as covariant derivation and manifold curvature with applications
to formulating, controlling and studying the properties of dynamical systems whose state-
space is a smooth manifold. Its content may be summarized as follows:
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• it provides a clear and well-motivated introduction to advanced concepts in manifold
calculus, the basis of system and control theory on manifolds, with special emphasis to
its computational and application aspects. The present contribution provides practical
formulas to cope with those real-valued manifolds which, in the author’s experience,
are most accessed in engineering and applied science problems. As a matter of fact,
complex-valued manifolds are not treated at all;

• it clearly states and illustrates the idea that, when dealing with a computer-based
implementation of dynamical systems, it is necessary to discretize the differential equa-
tions that describe the system in a suitable way. In order to perform such discretization,
standard discretization methods (such as the ones based on Euler forward-backward
discretization) are not advisable since these do not work as they stand on curved man-
ifolds. It is therefore advisable to resort to more sophisticated integration techniques
such as the one based on geodesics.

The present paper is organized as follows. Section 2 is dedicated to a recapitulation
of the notation used in the first part [13] as well as the present part, along with the main
concepts covered by the first part. The recapitulation offered in Section 2 is not very detailed
as readers that are approaching the present part of the tutorial are supposed to either get
themselves sufficiently acquainted with the introductory material presented in the first part
or to be already familiar with it. Section 3 introduces the key notion of covariant derivation
of a vector field, which generalizes to manifold the familiar notion of directional derivative
from real calculus. Section 3 discusses such concept in detail, starting from motivations
behind its definition. Section 4 takes off by some observations about iterated covariant
derivation and lands at the key concept of manifold curvature, which is a quintessential
notion in manifold calculus. Section 5 surveys the notion of calculus of variations on
manifolds by the help of a family of smooth curves and shows how to derive a general kind
of continuous-time dynamical systems described by second-order differential equations on
manifold. Control systems to regulate such second-order dynamical systems are discussed
in Section 6 with special emphasis to time-synchronization. Section 7 presents an overview
of second-order discrete-time systems on manifolds with special emphasis on ARMA-type
random path generators. Section 8 concludes this tutorial.

As a distinctive aspect of the present tutorial, the main flow of discussion is based on
coordinate-free (or component-free) expressions, which facilitates the implementation of the
main equations by a matrix-friendly computation language such as MATLAB©. Starred
subsections, namely subsections marked by an asterisk (*), treat some specific arguments,
some related to coordinate-prone manifold calculus and some of minor importance in the
present context, which may be skipped by the uninterested readers without detriment to
the comprehension of the main flow.

2. Notation and Recapitulation of Fundamentals

In the present section we recall some notation and the principal notions laid out in the
first part [13]. For details on derivations, we point the reader to such introductory part.

In the present paper, a column array is denoted by a lower-case symbol, while a matrix
is denoted by an upper-case symbol. An element of a manifold is however always denoted
by a lower-case symbol.

It is convenient to recall a few manifolds of interest in application, defined in embedded
(coordinate-free) terms:

• Hypercube: The simplest manifold of interest is the hypercube Rp, which is essentially
the set spanned by p real-valued variables (or p-tuples). A generalization of the
hypercube is the set Rp×q of real-valued p× q matrices.

• Hypersphere: A hypersphere is represented as Sp−1 := {x ∈ Rp | x>x = 1} and is
the subset of points of the hypercube with unit Euclidean distance from the point 0.
This is a smooth manifold of dimension p− 1.

• General linear group and special linear group: The general linear group is defined
as GL(p) := {X ∈ Rp×p | det(X) 6= 0}. The special linear group is defined as
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Sl(p) := {X ∈ Rp×p | det(X) = 1}. It represents the set of invertible linear operators
of given dimension.

• Special orthogonal group: The manifold of special orthogonal matrices is defined
as SO(p) :=

{
X ∈ Rp×p | X>X = Ip, det(X) = 1

}
. It represents the set of hyper-

rotations in a hypercube of given dimension. In the definition, the symbol In denotes
a n× n identity matrix.

• Stiefel manifold: The (compact) Stiefel manifold is defined as:

St(n, p) := {X ∈ Rn×p | X>X = Ip}, (1)

where p 6 n.
• Real symplectic group: The real symplectic group is defined as

Sp(2n) := {Q ∈ R2n×2n|Q> JQ = J}, J :=
[

0n In
−In 0n

]
, (2)

where the symbol 0n denotes a whole-zero n× n matrix.
• Manifold of symmetric, positive-definite (SPD) matrices: The space of symmetric,

positive-definite matrices is defined as

S+(p) := {P ∈ Rp×p|P = P>, P > 0}, (3)

where the notation P > 0 indicates a positive-definite matrix.
• Grassmann manifold: A Grassmann manifold Gr(n, p) is a set of subspaces of Rn

spanned by p independent vectors, namely

Gr(n, p) = {span(w1, w2, w3, . . . , wp)}, (4)

with w1, w2, w3, . . . , wp ∈ Rn being a p-tuple of arbitrary and linearly independent
n-dimensional arrays.

A fundamental assumption of the present tutorial is that any manifold M is embedded
into an ambient space A of suitable dimension. The ambient space is assumed to be metric,
namely to be associated with a scalar product 〈?, ?〉A.

A smooth curve is generally denoted as γ : [−ε, ε] → M, with ε > 0. A curve
may be thought of as a trajectory generated by a dynamical system whose state-space is
a smooth manifold.

The tangent space to the manifold M at a point x is denoted as TxM. The tangent
bundle is a collection of tangent spaces, namely TM := {(x, v) ∈ A2 | x ∈ M, v ∈ TxM}.
The concept of normal space complements that of tangent space, namely, the normal
space of an embedded manifold in a given point under a chosen metric is defined as
NxM := {z ∈ A | 〈z, v〉A = 0, ∀v ∈ TxM}.

A vector field on a manifold M is a function f : M→ TM that assigns a tangent vector
f (x) ∈ TxM to every point x ∈M. A vector field may even depend on the time parameter,
in which case it will be denoted as f (t, x) with f : R×M→ TM.

In order to take into account non-linear constraints on the state variables of a dynamical
system, it is convenient to introduce the notion of curved state space under the form of
smooth manifolds. This logical process leads to a type of first-order (or single-integrator)
dynamical systems described by

ẋ(t) = f (t, x(t)), x(0) = x0 ∈M, t ∈ [0, tf], (5)

where f : R×M → TM denotes the state-transition function of the system and x ∈ M
denotes the state of the system at any given time t.
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Given two Riemannian manifolds M and N, let x ∈ M: A pushforward map dx f :
TxM → Tf (x)N is defined such that for every smooth curve γx : [−ε, ε] → M, such that
γx(0) = x, it holds:

dx f (γ̇x(0)) :=
d
dt

f (γx(t))
∣∣∣∣
t=0

. (6)

In general, given a function f : M→ N that maps a point x from the manifold M to
the point f (x) on the manifold N, the map dx f associates to any tangent vector v belonging
to the tangent space TxM a tangent vector dx f (v) belonging to the tangent space Tf (x)N by
‘pushing’ the former to the latter space.

Manifolds that also enjoy the distinguishing properties of an algebraic group are
termed Lie groups. The tangent space of a Lie group G at the identity is termed Lie algebra
and is denoted as g. Any Lie group admits an exponential map, denoted as exp : g→ G.

A Riemannian manifold is defined as a smooth manifold M whose tangent bundle is
equipped with a smooth family of inner products M 3 x 7→ 〈?, ?〉x ∈ R termed ‘metric’.
There exists a canonical metric related to the ambient space A that a manifold M is embed-
ded in, given by 〈u, w〉x = 〈u, Gx(w)〉A, where 〈?, ?〉A denotes an inner product in A. Such
expression is based on a metric kernel G : TM → TM. A derivative of the metric kernel
with respect to a curve is defined by

G•γ(w, γ̇) :=
d
dt

Gγ(w), (7)

where γ denotes any smooth curve.
A geodesic arc is defined as the curve γ satisfying the following differential inclusion

∂F

∂γ
− d

dt
∂F

∂γ̇
∈ NγM. (8)

where F (x, v) := 〈v, v〉x denotes a fundamental form. A solution of such differential
inclusion that joins two points x, y ∈ M, taking x as the departure point, is denoted as
γ

y
x, while a solution with prescribed departure point x ∈ M and velocity at departure

v ∈ TxM is denoted as γx,v. The length of a geodesic γ
y
x defines a distance D(x, y) between

its endpoints.
To a geodesic arc γx,v : [0, 1] → M is associated a map expx : TxM → M defined as

expx(v) := γx,v(1). Such function is termed exponential map with pole x ∈M. The inverse
function associated to the exponential map is termed logarithmic map. On a manifold M
where it is defined an exponential map exp : TM→ M, a logarithmic map is denoted as
log : M2 → TM. A logarithmic map satisfies the identity expx(logx y) = y.

An orthogonal projector Πx : A → TxM is a function that maps an element of the
ambient space to a tangent vector in a specific tangent space, namely Πx(a) ∈ TxM ⇔
a − Πx(a) ∈ NxM. A derivative of the orthogonal projector with respect to a curve is
Π• : A× TM→ A, which is defined as

Π•γ(a, γ̇) :=
d
dt

Πγ(a), (9)

where γ denotes any smooth curve.
Let us recall a property of the derivative Π• that will turn useful in the following

development. Whenever Π• is applied to a pair of tangent vectors, it will return a normal
vector, namely the restriction Π• : TM× TM→ NM.
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Example 1. Let us show the behavior of the derivative Π• just described in the case of the manifold
SO(n) endowed with its canonical metric. In this case ΠR(A) = 1

2 (A− RA>R), therefore taken
W, V ∈ TRSO(n) and a curve t 7→ R(t) such that Ṙ = V, it is seen that

Π•R(W, V) = − 1
2 (VW>R + RW>V)

= − 1
2 (VW> + RW>VR>)R

= − 1
2 (VW> + WR>RV>)R

= − 1
2 (VW> + WV>)R.

(10)

The matrix sum in parentheses is symmetric, hence Π•R(W, V) is a normal vector at R.

The Riemannian gradient of a smooth function f : M→ R is denoted as gradx f and
may be written by the explicit formula gradx f = G−1

x (Πx(∂x f )), where ∂x f denotes the
Gateaux derivative of f in A. A golden calculation rule involving the notion of Riemannian
gradient and that of Riemannian distance is gradxD

2(x, y) = −2 logx y.
Parallel transport of a vector v ∈ TxM along a geodesic joining points x, y ∈ M is

indicated by Px→y(v). By this notation it is understood that x is the departure point. Its
calculation is based on a Christoffel form of the second kind. It is convenient to define two
Christoffel forms, namely the Christoffel form of the first kind Γ̄ : (TM)2 → A as

Γ̄x := 1
2 G•x + a normal component, (11)

and a Christoffel form of the second kind ¯̄Γ : (TM)2 → A as ¯̄Γx := G−1
x Γ̄x. A property that

involves parallel transport and manifold logarithm is Px→y(logx y) = − logy x.

3. Covariant Derivative of a Vector Field

Covariant derivation provides a kind of derivative to evaluate the rate of change of
a vector field along a given direction starting from a given point. Covariant derivation is
a generalization to manifolds of the familiar notion of directional derivative.

The present section is organized as follows. Section 3.1 presents a brief review of the
standard directional derivative and of its properties. Section 3.2 presents a coordinate-free
conceptualization of covariant derivation along a curve, which is the main topic of the
present section. Section 3.3 introduces the more general notion of covariant derivation
of a vector field along a given direction and that of connection. Section 3.4 discusses
again the notion of Riemannian Hessian operator and shows how it can be obtain by
the covariant derivative of the Riemannian gradient. Section 3.5 discusses a definition of
covariant derivation through axioms and shows that the introduced Levi-Civita connection
meets such axioms. Section 3.6 retraces the notion of covariant derivation in coordinates.
Section 3.7 introduces two new concepts, namely the commutator of two vector fields and
the torsion field, which are indeed closely related. Section 3.8 illustrates and explains the
consequence of a quite remarkable relationship between the Christoffel form of the second
kind and the linearization of the projection operator. Section 3.9 discusses the notion of Lie
derivative, a primeval attempt to define differentiation on tangent bundles.

3.1. Brief Review of Directional Derivative and of Its Properties

Let us briefly review the notion of direction derivative to better understand its man-
ifold counterpart. Let us consider a smooth scalar multivariable function f : R3 → R.
Given a point p ∈ R3, a directional derivative essentially measures the rate of change
of the function f when moving away from p along a given direction. Two points come
immediately to mind while endeavoring a definition for a directional derivative:

• Since f is a multivariable function, because its domain is R3, there are plenty of ways
to ‘move away’ from the foot-point p. The rate of change of the function f depends
on the direction towards which one moves away from point x, hence a direction
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v ∈ R3 needs to be specified. For example, if one takes f (x, y, z) := 0.1 x2 + 10 y2 + ez,
the function f changes little along the x axis, changes more along the y axis, increases
along the positive direction of the z axis and decreases along the negative direction of
the z axis, not to mention the behavior corresponding to every possible combinations
of the triple (x, y, z).

• Since f is arbitrary, its rate of change depends also on ‘how far’ one moves away from
the foot-point p. Taking a large leap is, however, not very useful, as one may always
replace the foot-point p with a new foot-point p′ to know how the function behaves
far from p. Therefore, it is understood that the rate of change is evaluated in close
proximity of the point p.

Consequently, a possible definition of directional derivative is

Dp f (v) := lim
h→0

f (p + h v)− f (p)
h

∈ R for p ∈ R3, v ∈ R3. (12)

From multivariable calculus it is known that

Dp f (v) =
d f (p + t v)

dt

∣∣∣∣
t=0

=
∂ f
∂x

vx +
∂ f
∂y

vy +
∂ f
∂z

vz = (∂p f )>v, (13)

where v = (vx, vy, vz) and ∂p f denotes the gradient (or Jacobian, or Gateaux derivative) of

the function f with respect to its three scalar arguments, namely ∂p f :=
(

∂ f
∂x , ∂ f

∂y , ∂ f
∂z

)
. The

rightmost quantity is, according to the general definition (6), the differential dp f (v) of the
function f , at point p, applied to the vector v. In this case, however, since we are working
in R3, the ‘vectorial’ nature of v is not immediately apparent.

Let us now generalize this notion by taking a smooth function f : Rm → Rn, which is
an array-type multivariable function, which we can call a multivariable vector field. The func-
tion f assigns an array to any point of its domain. Therefore f (p) may be though of as
a vector field (once again, its vectorial nature as understood in manifold calculus in not
apparent). Like before, a notion of ‘rate of change’ of a vector field along a given direction
may be expressed as

Dp f (v) := lim
h→0

f (p + h v)− f (p)
h

∈ Rn for p ∈ Rm, v ∈ Rm. (14)

Although the definition just given is formally identical to (12), the space where the
two directional derivatives live are different. From multivariable calculus we get:

(Dp f (v))i =

(
d f (p + t v)

dt

∣∣∣∣
t=0

)
i
=

n

∑
j=1

∂ fi
∂pj

vj, (15)

where pi denotes the ith component of the m-dimensional array p, vi denotes the ith
component of the m-dimensional array v and fi denotes the ith component of the array-
valued function f (with respect to the canonical basis of the domain Rm and of the codomain
space Rn). Hence, in this generalized scenario, Dp f (v) = (∂p f )v, where ∂p f denotes the
Jacobian matrix of the transformation p 7→ f (p). In this case, the rate of change itself is
multivariable, hence this directional derivative is related to the notion of differential in the
sense that (Dp f (v))i = dp fi(v).

To complete this brief survey of directional derivation, let us emphasize a few proper-
ties that the directional derivative Dp f enjoys:

• (P1) Assume that the direction v along which the rate of change is sought is given by
the superposition of two partial directions, namely v = αu + βw, with α, β being two
scalar fields, namely α = α(p) and β = β(p). How the rate of change Dp f (v) relates
to rates of change Dp f (u) and Dp f (w) along partial directions is easily understood:
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Dp f (αu + βw) = (∂p f )(αu + βw) = α(∂p f )u + β(∂p f )w = αDp f (u) + βDp f (w). (16)

• (P2) Assume the field f be given as the superposition of two concurrent fields, namely
f = b + g. The way the rate of change Dp f (v) relates to rates of change Dpb(v) and
Dpg(v) is also easily understood:

Dp f (v) = Dpb(v) + Dpg(v). (17)

• (P3) In addition, assume the field f is given as the dilation of another field, namely
f = αg, with α being a scalar field. How the rate of change Dp f (v) relates to the rate
of change Dpg(v) is readily understood:

Dp f (v) = g Dpα(v) + α Dpg(v) = g dpα(v) + α Dpg(v) (18)

by the rule of partial derivation of compound functions.

Having recalled the notion of directional derivative of a vector field in Rm, we are now
going to examine and discuss its extension to manifolds.

3.2. Coordinate-Free Conceptualization of Covariant Derivation along a Curve

The notion of covariant derivation may be conceptualized in different manners. We
recall here two relevant ways:

• Top-down from parallel transport: Assuming that a notion of parallel transport is
available, which enables us to compare the values of a vector field at different points
of a manifold, covariant derivation stems quite naturally by adapting the classical
definition of directional derivative (14). In this sense, covariant derivation represents
a ‘local’ version of parallel transport.

• Direct axiomatization: In this instance, covariant derivative is defined to be an op-
erator that meets certain requirements, which basically retrace properties P1, P2, P3
noted in Section 3.1. Such definition is quite general and leads to a family of covariant
derivatives. Moreover, such definition is given independently from that of parallel
transport, which may, in turn, be defined as the solution of a covariant-derivative-
based differential equation on the tangent bundle TM. In this sense, parallel transport
represents a ‘global’ version of covariant derivation.

In the present tutorial paper, we are going to follow the first way of defining covariant
derivation (based on parallel transport), not only because one such flow of discussion would
be coherent with the general setting of the present series of tutorials, but also because the
top-down conceptualization is deemed to appear more clear to control engineers and
applied scientist and well-suited to develop numerical methods to simulate the behavior of
second-order dynamical systems on manifold.

As a first notion to be defined, we are going to deploy covariant derivation along a
curve. Namely, we assume that a vector field w ∈ Γ(M) is well-defined and regular along
a smooth curve γ : [a, b] → M and we need to evaluate the rate of change of the vector
field γ 7→ wγ along the curve itself. Such rate of change will be denoted as ∇γ

t w, where
t ∈ [a, b] denotes the value of the parameter that individuates univocally a point over the
curve γ. Such rate of change is precisely the covariant derivative of the vector field w along
the curve γ at the point t, and is defined as

∇γ
t w := lim

h→0

Pγ(t+h)→γ(t)wγ(t+h) − wγ(t)

h
=

d
dτ

Pγ(τ)→γ(t)wγ(τ)

∣∣∣∣
τ=t

. (19)

Such definition appears as a natural extension of the directional derivative (14) of a
vector field, properly corrected by parallel transport to align vectors belonging to different
tangent spaces. It should be noticed that the curve γ does not necessarily need to be a
geodesic. In fact, in system and control theory, it likely represents a trajectory generated
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by a dynamical system over its state manifold, which only occasionally coincides with a
geodesic arc.

In order to derive an explicit expression of the covariant derivative, let us evaluate the
time-derivative of the function Q : [a, b]→ R defined as follows:

Q(t) := 〈wγ(t), γ̇(t)〉γ(t). (20)

By definition of derivative with respect to the scalar parameter t, we have

Q̇(t) = lim
h→0

〈wγ(t+h), γ̇(t + h)〉γ(t+h) − 〈wγ(t), γ̇(t)〉γ(t)
h

. (21)

By the property of conformal isometry of parallel transport (with respect to the inner
product), it follows that

〈wγ(t+h), γ̇(t + h)〉γ(t+h) = 〈Pγ(t+h)→γ(t)(wγ(t+h)),Pγ(t+h)→γ(t)(γ̇(t + h))〉γ(t), (22)

hence the derivative Q̇ may be rewritten as

Q̇(t) = lim
h→0

〈Pγ(t+h)→γ(t)(wγ(t+h)),Pγ(t+h)→γ(t)(γ̇(t + h))〉γ(t) − 〈wγ(t), γ̇(t)〉γ(t)
h

= lim
h→0

〈Pγ(t+h)→γ(t)(wγ(t+h))− wγ(t) + wγ(t) ,Pγ(t+h)→γ(t)(γ̇(t + h))− γ̇(t) + γ̇(t)〉γ(t) − 〈wγ(t) , γ̇(t)〉γ(t)
h

= lim
h→0

〈Pγ(t+h)→γ(t)(wγ(t+h))− wγ(t), γ̇(t)〉γ(t)
h

+ lim
h→0

〈wγ(t),Pγ(t+h)→γ(t)(γ̇(t + h))− γ̇(t)〉γ(t)
h

= 〈∇γ
t w, γ̇(t)〉γ(t) + 〈wγ(t),∇

γ
t γ̇〉γ(t).

(23)

On the basis of the above development, it is possible to write an explicit expression
for the covariant derivative of a vector field along a curve based on the (derivative of)
the metric kernel. Let us rewrite the function Q as Q(t) = 〈wγ(t), Gγ(t)(γ̇(t))〉A. Then, it
holds that

Q̇ = 〈ẇγ, Gγ(γ̇)〉A + 〈wγ, G•γ(γ̇, γ̇)〉A + 〈wγ, Gγ(γ̈)〉A, (24)

where ẇγ denotes, for brevity, the total naïve derivative d
dt (wγ(t)). Notice that

d
dt (wγ) = (Dγw)(γ̇) = (∂γw)(γ̇), (25)

where ∂xw denotes the usual Gateaux derivative and appears as a linear operator (appar-
ently, such operation is defined in the ambient space A rather than in M). Let us rewrite the
above expression by introducing a simple trick:

Q̇ = 〈Gγ(γ̇), ẇγ〉A︸ ︷︷ ︸
(A)

+ 1
2 〈wγ, G•γ(γ̇, γ̇)〉A︸ ︷︷ ︸

(B)

+ 〈wγ, Gγ(γ̈)〉A︸ ︷︷ ︸
(C)

+ 1
2 〈wγ, G•γ(γ̇, γ̇)〉A︸ ︷︷ ︸

(D)

.
(26)

Let us examine each term separately. The term (A) in (26) may be rewritten as

〈Gγ(γ̇), ẇγ〉A = 〈Gγ(γ̇), Πγ(ẇγ)〉A (27)

by definition of orthogonal projection.
The term (B) may be rewritten as 〈wγ, G•γ(γ̇, γ̇)〉A = 〈γ̇, G•γ(wγ, γ̇)〉A thanks to the

commutativity of the derivative G• with respect to the ambient inner product. Moreover,
by adding an identity Gγ ◦ G−1

γ gives 〈γ̇, G•γ(wγ, γ̇)〉A = 〈GγG−1
γ γ̇, G•γ(wγ, γ̇)〉A, where

cumbersome parentheses were (and will be) omitted for brevity. Invoking again the
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property of the metric kernel to be self-adjoint and the definition of orthogonal projection
leads to the identity

〈wγ, G•γ(γ̇, γ̇)〉A = 〈Gγ(γ̇), ΠγG−1
γ G•γ(wγ, γ̇)〉A, (28)

where we have used quite liberally the ‘extendability’ property of the metric kernel to the
ambient space.

The term (C) may be rewritten as 〈wγ, Gγ(γ̈)〉A = 〈Gγ(wγ), γ̈〉A and, introducing an
orthogonal projector, we get 〈Gγ(wγ), γ̈〉A = 〈Gγ(wγ), Πγ(γ̈)〉A, hence

〈wγ, Gγ(γ̈)〉A = 〈Gγ(wγ), Πγ(γ̈)〉A. (29)

It is now worth noticing that the term (D) may be rewritten equivalently
as 〈wγ, G•γ(γ̇, γ̇)〉A = 〈wγ, GγG−1

γ G•γ(γ̇, γ̇)〉A and, in addition, observing that
〈wγ, GγG−1

γ G•γ(γ̇, γ̇)〉A = 〈Gγ(wγ), G−1
γ G•γ(γ̇, γ̇)〉A, we may conclude that

〈wγ, G•γ(γ̇, γ̇)〉A = 〈Gγ(wγ), ΠγG−1
γ G•γ(γ̇, γ̇)〉A. (30)

Summing up the four terms in (26) written in the indicated ways, we obtain the expression
Q̇ = 〈Gγ(γ̇), Πγ(ẇγ) +

1
2 ΠγG−1

γ G•γ(wγ, γ̇)〉A+
〈Gγ(wγ), Πγ(γ̈) +

1
2 ΠγG−1

γ G•γ(γ̇, γ̇)〉A.
(31)

Comparing the above expression with the relationship (23) and recalling that the
vector field wγ is arbitrary, one gets the two identities

∇γ
t w = Πγ{ d

dt (wγ) +
1
2 G−1

γ (G•γ(wγ, γ̇))}, (32)

∇γ
t γ̇ = Πγ{γ̈ + 1

2 G−1
γ (G•γ(γ̇, γ̇))}. (33)

The two above expressions are coherent, in fact, setting wγ := γ̇ in the relationship (32)
yields the relationship (33).

The relationship (32) may be rewritten through the Christoffel form of the first
kind. In fact from the expression (11) it follows that the term (B) in (26) may
be rewritten as 〈γ̇, G•γ(wγ, γ̇)〉A = 2〈γ̇, Γ̄γ(wγ, γ̇)〉A = 2〈Gγ(γ̇), G−1

γ Γ̄γ(wγ, γ̇)〉A =

2〈Gγ(γ̇), ΠγG−1
γ Γ̄γ(wγ, γ̇)〉A = 2〈Gγ(γ̇), Πγ

¯̄Γγ(wγ, γ̇)〉A. As a consequence, the covariant
derivative (32) may be rewritten equivalently as

∇γ
t w = Πγ{ d

dt (wγ) + ¯̄Γγ(wγ, γ̇)}, (34)

a classical expression in manifold calculus. In terms of Gateaux derivative of the vector
field w, we may also write

∇γ
t w = Πγ{(∂γwγ)(γ̇) + ¯̄Γγ(wγ, γ̇)}, (35)

which evidences how ∇γ
t w is linear in γ̇.

Two special cases of the above relationship are particularly worth examining separately:

• Case of normal Christoffel form. Whenever the manifold M is endowed with a
normal Christoffel form ¯̄Γx, namely whenever Πx

¯̄Γx ≡ 0, the general expression of the
covariant derivative may be simplified as

∇γ
t w = Πγ{ d

dt (wγ)}, (36)

namely, the covariant derivative of a vector field coincides with an orthogonal projec-
tion of the naïve derivative of the vector field.

• Case of geodesics. When wγ = γ̇, namely the vector field under derivation coincides
with the velocity field of a curve, it holds that ∇γ

t γ̈ = Πγ{γ̈ + ¯̄Γγ(γ̇, γ̇)}. If γ is a
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geodesic curve, since γ̇ + ¯̄Γγ(γ̇, γ̇) = 0 in every point of a geodesic, then it turns out
that, on every geodesic line,

∇γ
t γ̇ = 0. (37)

In fact, in a ‘direct axiomatization’ setting, the above relationship is taken as one
defining a geodesic!

We shall revise the expression (34) in Section 3.8 where we shall show that projection
is not strictly necessary, although taking out the projection operator does not necessarily
simplify the related calculations!

From the above calculations one might infer that, for all practical purposes, the opera-
tors Gx and Πx commute, namely GxΠx = ΠxGx.

Example 2. In all instances in which Gx ≡ idx, as in the case of the unit hypersphere endowed
with its canonical metric, the property GxΠx = ΠxGx is trivially verified.

Let us consider the case of the manifold S+(n) endowed with its canonical metric, for which
GP(W) = P−1WP−1 and Π(A) = 1

2 (A> + A) (uniform). In this case

Π GP(A) = 1
2 ((P−1 AP−1)> + P−1 AP−1)

= 1
2 (P−>A>P−> + P−1 AP−1)

= 1
2 (P−1 A>P−1 + P−1 AP−1)

= P−1 A>+A
2 P−1

= GPΠ(A).

(38)

Let us further consider the case of the Stiefel manifold St(n, p) endowed with its canonical
metric, where GX(W) = (In − 1

2 XX>)W and ΠX(A) = A− 1
2 X(X>A + A>X). In this case,

it holds

ΠXGX(A) = (In − 1
2 XX>)A− 1

2 X(X>(In − 1
2 XX>)A + A>(In − 1

2 XX>)X)

= A− 3
4 XX>A− 1

4 XA>X,

GXΠX(A) = (In − 1
2 XX>)(A− 1

2 X(X>A + A>X))

= A− 3
4 XX>A− 1

4 XA>X,

(39)

hence the property of commutativity of the two operators is verified once again.

In fact, the commutation property just exemplified may be proved quite easily by
observing that, for every a ∈ A and v ∈ TxM, the following equality chain holds:

〈GxΠx{a}, v〉x = 〈GxΠx{a}, Gx(v)〉A = 〈Πx{a}, G2
x(v)〉A = 〈a, G2

x(v)〉A

= 〈Gx(a), Gx(v)〉A = 〈ΠxGx(a), Gx(v)〉A = 〈ΠxGx(a), v〉x,
(40)

where we used the shortened notation G2
x for Gx ◦ Gx. The above equality chain implies

that GΠ = ΠG.
Let us consider a few examples of calculation of covariant derivative.

Example 3. As an example of calculation of covariant derivative, let us consider the case of
the unit hypersphere Sn−1 endowed with its canonical metric. The orthogonal projector reads
Πx(a) = (In − xx>)a. According to the relationship (36), the covariant derivative would read

∇γ
t w = (In − γγ>) d

dt (wγ). (41)

Let us verify the same result by applying the definition (19). Let us recall the expression of

the parallel transport operator on the hyper-sphere Sn−1 that reads Px→y(u) =
(

In − (x+y)y>

1+x>y

)
u.

By direct calculation we get



Symmetry 2022, 14, 1144 11 of 96

d
dτ

Pγ(τ)→γ(t)wγ(τ) =
d

dτ

(
wγ(τ) −

(γ(τ) + γ(t))γ>(t)
1 + γ>(τ)γ(t)

wγ(τ)

)
= ẇγ(τ)

− γ̇(τ)γ>(t)(1 + γ>(τ)γ(t))− (γ(τ) + γ(t))γ>(t)γ̇>(τ)γ(t)
{1 + γ>(τ)γ(t)}2 wγ(τ)

− (γ(τ) + γ(t))γ>(t)
1 + γ>(τ)γ(t)

ẇγ(τ).

(42)

Setting τ = t leads to

d
dτ

Pγ(τ)→γ(t)wγ(τ)

∣∣∣∣
τ=t

= ẇγ(t)

− 2γ̇(t)γ>(t)− 2γ(t)γ>(t)[γ̇>(t)γ(t)]
4

wγ(t) −
2γ(t)γ>(t)

2
ẇγ(t)

= ẇγ(t) − 1
2 γ̇(t)(γ>(t)wγ(t))− γ(t)γ>(t)ẇγ(t)

= (In − γ(t)γ>(t))ẇγ(t).

(43)

Hence the two results coincide, as expected.
Let us now compute the covariant derivative of a vector field in Γ(S+(n)). Let us recall that,

for the manifold of symmetric, positive-definite matrices, we found (cfr. [13]) that ¯̄ΓP(V, W) =
− 1

2 (VP−1W + WP−1V). It is straightforward to verify that, for every P ∈ S+(n), V, W ∈
TPS+(n) it holds that ¯̄ΓP(V, W) ∈ TPS+(n), as well as that, for every vector field W ∈ Γ(S+(n))
and every smooth trajectory t 7→ P(t), it holds that the naïve derivative d

dt WP(t) ∈ TP(t)S+(n).
As a consequence, in the present case the general relationship (34) simplifies into

∇P
t W = d

dt WP + ¯̄ΓP(WP, Ṗ), (44)

which, by the expression of the Christoffel form, reads

∇P
t W = d

dt WP − 1
2 (WPP−1Ṗ + ṖP−1WP), (45)

To end with this series of examples, let us compute the covariant derivative of a vector field in
Γ(SO(n)). Let us recall that, whenever the manifold SO(n) is endowed with its canonical metric, it
holds ΠR(A) = 1

2 A− 1
2 RA>R, while the Christoffel form of the second kind takes the expression

¯̄ΓR(V, W) = 1
2 R(V>W + W>V). Indeed, the exact expression of the Christoffel form, in this

case, is irrelevant, since it maps TM× TM to the normal bundle NM. Therefore, over a trajectory
t 7→ R(t), the covariant derivative of a vector field R 7→WR reads

∇R
t W = d

dt WR − R
(

d
dt WR

)>
R. (46)

It is a useful exercise to verify by direct calculations from the definition that the above expression
is correct.

3.3. Covariant Derivation along a Direction, Connections

Let ∇γ
t w denote the covariant derivative of a vector field x 7→ wx at a point t of

a curve γ. In some cases, one might want to indicate explicitly the direction along which
the derivative is taken, which coincides with γ̇(t). Referring the foot-point and the tangent
direction at t = 0, in these cases one may set v := γ̇(0) and denote the covariant derivative
by the shortened notation

∇vw := ∇γ
t w
∣∣
t=0. (47)

In this case, the covariant derivative does not depend on the curve γ, except for γ(0)
and γ̇(0). (If it is necessary to specify the foot-point x ∈M where all these computations
take place, the elongated notation (∇vw)x may be used). For example, the covariant
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derivative of a velocity field with respect to itself, namely the covariant acceleration, would
read ∇γ̇γ̇.

An extension of the covariant derivative of a vector field along a given direction
leads to the notion of connection ∇ : Γ(M)× Γ(M)→ Γ(M). Let us consider a vector field
w ∈ Γ(M) that is to be derivated and a further vector field v ∈ Γ(M) that associates to each
point of the manifold (or a region of the manifold) a direction along which derivate. In other
terms, at a point x ∈ M, vx defines the direction along which the rate of change of the
vector field w is sought. The corresponding covariant derivative, denoted by x 7→ ∇vx wx
or (∇vw)x, extends the notion of covariant derivation of a vector field along a curve and is
based on the assumption that the vector field w is defined in every point of M (or within a
region of the manifold). The formal definition goes like

x 7→ (∇vw)x := lim
h→0

P expx(h vx)→xwexpx(h vx) − wx

h
. (48)

The connection described in the present tutorial is commonly referred to as Levi-
Civita connection.

A metric connection is a covariant derivative that ‘agrees’ or is ‘coordinated’ with an
inner product in the sense that the covariant derivative of an inner product of two vector
fields depends only on the rate of change of such vector fields and does not depend on the
rate of change of the inner product itself, namely, given two vector fields v, w ∈ Γ(M) and
a tangent direction u ∈ TxM, it holds that

∇u〈vx, wx〉x = 〈(∇uv)x, wx〉x + 〈vx, (∇uw)x〉x. (49)

The definition (19) ensures that the resulting connection is metric. Notice, in fact,
that x 7→ 〈ux, wx〉x is a scalar field, a special case of vector field, that may be subjected to
covariant derivation. In addition, notice that in a large number of references, the directional
derivative ∇v〈ux, wx〉x is denoted simply as v(〈u, w〉), leaving understood that a vector
field acts as a directional derivative.

Example 4. We can see this even in the case of a flat manifold R3 endowed with an inner product
〈ux, wx〉x. In this case, we have that the directional derivative of the inner product of two vector
fields along a direction v is

∇v〈ux, wx〉x := lim
h→0

〈ux+hv, wx+hv〉x+hv − 〈ux, wx〉x
h

. (50)

Adding zero-sum terms, and rearranging them, gives:

∇v〈ux, wx〉x := lim
h→0

〈ux+hv, wx+hv〉x+hv − 〈vx+hv, wx〉x+hv
h

+

lim
h→0

〈ux+hv, wx+hv〉x+hv − 〈vx, wx+hv〉x+hv
h

+

lim
h→0

〈ux, wx〉x+hv − 〈ux, wx〉x
h

+

lim
h→0

〈ux+hv, wx〉x+hv − 〈ux+hv, wx+hv〉x+hv
h

+

lim
h→0

〈ux, wx+hv〉x+hv − 〈ux, wx〉x+hv
h

.

(51)

By the linearity and continuity of the inner product one then gets

∇v〈ux, wx〉x = 〈ux, (∇vw)x〉x + 〈(∇vu)x, wx〉x − 〈ux, (∇vw)x〉x+

〈ux, (∇vw)x〉x + lim
h→0

〈ux, wx〉x+hv − 〈ux, wx〉x
h

.
(52)
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In conclusion, one gets

∇v〈ux, wx〉x = 〈ux, (∇vw)x〉x + 〈(∇vu)x, wx〉x + lim
h→0

〈ux, wx〉x+hv − 〈ux, wx〉x
h

. (53)

The first two addenda depend only on the directional derivatives of the vector fields, while
the third term depends on the rate of change of the inner product along the line x + hv. Only
when the last term is identically zero the directional derivative is said to be metric, in which case
∇v〈ux, wx〉x = 〈ux, (∇vw)x〉x + 〈(∇vu)x, wx〉x.

3.4. Relationship of Gradient to Hessian by Covariant Derivation

A noticeable result from manifold calculus is that Riemannian Hessian, covariant
derivation and Riemannian gradient are related to one another in a neat way, namely

Hγ f (γ̇) = ∇γ
t (gradγ f ). (54)

The gradient builds a vector field over a curve based on a scalar function and the
Hessian represents the rate of change of such vector field along the curve. In order to prove
such neat result, it is convenient to re-derive the expression of the Riemannian gradient in
a different way compared to the one derived in [13].

Let us recall that, given a scalar function f : M→ R and a smooth curve γ with image
in M, it holds that

d
dt

f (γ) = 〈gradγ f , γ̇〉γ = 〈gradγ f , Gγ(γ̇)〉A, (55)

where A denotes, as usual, the ambient space that the manifold M is embedded in and
〈?, ?〉A denotes an Euclidean scalar product that the ambient space is endowed with.
Deriving with respect to t the rightmost expression gives

d2

dt2 f (γ) = 〈 d
dt

gradγ f , Gγ(γ̇)〉A + 〈gradγ f , G•γ(γ̇, γ̇)〉A + 〈gradγ f , Gγ(γ̈)〉A. (56)

Let us examine separately the above three addenda. The first addendum may be
rewritten as

〈 d
dt gradγ f , Gγ(γ̇)〉A = 〈Πγ

d
dt gradγ f , Gγ(γ̇)〉A = 〈Πγ

d
dt gradγ f , γ̇〉γ. (57)

The second addendum may be rewritten as

〈gradγ f , G•γ(γ̇, γ̇)〉A = 〈G•γ(gradγ f , γ̇), γ̇〉A = 〈2 Γ̄γ(gradγ f , γ̇), γ̇〉A =

2〈G−1
γ Γ̄γ(gradγ f , γ̇), Gγ(γ̇)〉A = 2〈 ¯̄Γγ(gradγ f , γ̇), Gγ(γ̇)〉A =

2〈Πγ
¯̄Γγ(gradγ f , γ̇), Gγ(γ̇)〉A = 2〈Πγ

¯̄Γγ(gradγ f , γ̇), γ̇〉γ.

(58)

Since the expression (56) is path-dependent, we choose the curve γ to be a geodesic
line, hence the third addendum takes the equivalent expressions

〈gradγ f , Gγ(γ̈)〉A = 〈gradγ f ,−Γ̄γ(γ̇, γ̇)〉A = −〈Γ̄γ(gradγ f , γ̇), γ̇〉A =

−〈G−1
γ Γ̄γ(gradγ f , γ̇), Gγ(γ̇)〉A = −〈 ¯̄Γγ(gradγ f , γ̇), Gγ(γ̇)〉A =

−〈Πγ
¯̄Γγ(gradγ f , γ̇), Gγ(γ̇)〉A = −〈Πγ

¯̄Γγ(gradγ f , γ̇), γ̇〉γ.

(59)

Gluing pieces together, one obtains

d2

dt2 f (γ) = 〈Πγ
d
dt

gradγ f + Πγ
¯̄Γγ(gradγ f , γ̇), γ̇〉γ. (60)
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By definition, the Hessian of a scalar function at a point x ∈M, along a given tangent
direction v ∈ TxM, is such that

d2

dt2 f (γ)
∣∣∣∣
t=0

= 〈Hx f (v), v〉x, (61)

where γ(0) = x and γ̇(0) = v, hence we may conclude that

Hx f (v) = Πx

{
d
dt

gradγ f
∣∣∣∣
t=0

+ ¯̄Γx(gradx f , v)
}

. (62)

Let us examine two examples of calculation of Hessian.

Example 5. As a first example, let us consider the function f (x) := 1
2D2(x, r), where D :

M×M → R denotes a Riemannian distance and r ∈ M denotes a fixed reference point (This
function is sometimes referred to as Synge’s world function in relativistic physics [14]). As we
have proven, in this case gradx f = − logx r, where logx : M→ TxM denotes a logarithmic map.
In this example, therefore, it turns out that

1
2
(HxD

2(x, r))(v) = −Πx

{
d
dt

logγ(r)
∣∣∣∣
t=0

+ ¯̄Γx(logx r, v)
}

. (63)

The papers [15,16] further elaborate on the notion of Hessian of the Riemannian squared distance.
As a second example, let us consider the Hessian of Oja’s function (or Rayleigh quotient)

f (x) := 1
2 x>P0x in Sn−1, with P0 ∈ S+(n) constant. Since ¯̄Γx is normal, we can conclude that

Hx f (v) = Πx{ d
dt gradγ

∣∣∣
t=0
}, with γ : [−ε, ε]→M denoting a geodesic arc such that γ(0) = x

and γ̇(0) = v. Since
gradx f = (In − xx>)P0x, (64)

we have

d
dt gradγ = d

dt (P0γ− γγ>P0γ) = P0γ̇− γ̇γ>P0γ− γγ̇>P0γ− γγ>P0γ̇. (65)

Setting t = 0 gives

d
dt gradγ

∣∣∣
t=0

= P0v− vx>P0x− xv>P0x− xx>P0v. (66)

Notice that the third and the fourth addenda are normal to TxSn−1, hence we conclude that

Hx f (v) = (In − xx>)P0v− 2v f . (67)

In order to judge about the positive-definiteness of the Hessian, let us evaluate the inner product

〈Hx f (v), v〉x = v>(In − xx>)P0v− 2v f

= v>P0v− (v>v)(x>P0x)

= ‖v‖2(v̂>P0v̂− x>P0x),

(68)

with v̂ := v/‖v‖ (recall that, in the positive-definiteness test, v 6= 0). The Hessian is positive-
definite at a given point x if v̂>P0v̂− x>P0x > 0 for every v ∈ TxS2 − {0}.

Recalling the expression (34), where we may set wγ := gradγ f , and comparing the
result with the relationship (62), it is immediate to see that they coincide, hence showing the
mentioned relationship between the Hessian and the covariant derivative of a gradient field.
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3.5. Axiomatization of Covariant Derivative and Relationship to Parallellism

A notion of covariant derivative may be defined arbitrarily as long as it meets general-
ized versions of the properties (P1), (P2), (P3) recalled in Section 3.1, which qualify covariant
derivative as a generalized directional derivative. Denoting the covariant derivative of
a vector field u ∈ Γ(M) in the direction v ∈ TxM at a point x ∈M as ∇vu, we may require
it to satisfy the following properties:

(P1
′) ∇αv+βwu = α∇vu + β∇wu, (69)

(P2
′) ∇v(u + z) = ∇vu +∇vz, (70)

(P3
′) ∇v(α u) = α∇vu + u dxα(v), (71)

with u, z ∈ Γ(M), v, w ∈ TxM and α, β being scalar fields and where dα denotes a tangent
map (pushforward). The properties P1

′ and P2
′ establish the linearity of the covariant

derivative with respect to its vectorial arguments, while the property P3
′ represents a sort

of product rule.
We may verify that the connection defined in Section 3.2 satisfies the above axioms

through the expression (35):

• Proof of property (P1
′): The covariant derivative ∇αv+βwu may be written explicitly as

(∇αv+βwu)x = Πx{(∂xw)(α(x)vx + β(x)wx) + ¯̄Γx(wx, α(x)vx + β(x)wx)}. (72)

Since both the Gateaux derivative and the Christoffel form are linear in their vectorial
arguments, the property follows.

• Proof of property (P2
′): The vector field ∇v(u + z) may be expressed explicitly as

(∇v(u + z))x = Πx{(∂x(u + z))(vx) + ¯̄Γx(ux + zx, vx)}. (73)

By the linearity of the terms in parentheses with respect to their vectorial arguments,
the proof follows.

• Proof of property (P3
′): The covariant derivative ∇v(α u) may be re-expressed as

(∇v(α u))x = Πx{(∂x(α u))(vx) + ¯̄Γx(α(x)ux, vx)}
= Πx{dxα(vx)ux + α(x)(∂x(u))(vx) + α(x) ¯̄Γx(ux, vx)}.

(74)

Noticing that Πx(ux) ≡ ux leads to the sought result.

Considering as primary the notion of covariant derivation, it is possible to recover
the notion of parallelism from covariant derivation. Let us denote by γ : [−ε, ε] → M
a smooth curve on M and a smooth vector field w ∈ Γ(M) defined (at least) on the image
of γ. Such vector field is said to be parallel along γ if

∇γ̇w = 0. (75)

Conversely, setting up one such differential equation equipped with an initial condition
w(0) = w0 ∈ Tγ(0)M, its solution generates a parallel transport field of the vector w0 along the
curve γ from 0 to t denoted as P0→t

γ (w0).
A metric connection makes parallel transport be a conformal isometry. To show this

important property, let us consider again a curve γ : [−ε, ε]→M such that γ(0) = x0 and
two vectors w0, v0 ∈ Tx0M. Parallel transport defines two vector fields w, v ∈ Γ(M) along
such curve, namely

wγ(t) := P0→t
γ (w0), vγ(t) := P0→t

γ (v0). (76)

Define s(t) := 〈wγ(t), vγ(t)〉γ(t). Since the connection ∇ is metric, the function s stays
constant for any t ∈ [−ε, ε]. In fact, by definition of metric connection, it holds that

ṡ = 〈∇γ̇wγ, vγ〉γ + 〈wγ,∇γ̇vγ〉γ, (77)
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with no extra terms. Since the vector fields vx and wx are parallel along the curve γ, it holds
that ∇γ̇wγ = ∇γ̇vγ = 0, which proves the assertion. A consequence of the above-proven
property is that

〈wγ(t), vγ(t)〉γ(t) = 〈wγ(0), vγ(0)〉γ(0) = 〈w0, v0〉x0 (78)

for any t ∈ [−ε, ε]. This equality has two important consequences:

• Parallel transport preserves the length of transported vectors: In fact, if we take
w0 = v0, we get 〈P0→t

γ (v0),P0→t
γ (v0)〉γ(t) = ‖P0→t

γ (v0)‖2
γ(t) = ‖v0‖2

x0
. This means that

parallel transport realizes an isometry.
• Parallel transport preserves the angle between transported vectors: In fact, if we

define the cosine of the angle between two tangent vectors as their inner product
normalized by their length, we get

〈P0→t
γ (w0),P0→t

γ (v0)〉γ(t)
‖P0→t

γ (w0)‖γ(t) · ‖P0→t
γ (v0)‖γ(t)

=
〈w0, v0〉x0

‖w0‖x0 · ‖v0‖x0

, (79)

which means that parallel transport realizes a conformal map.

The following example shows explicitly a property of parallel fields along geodesics.

Example 6. Let us prove directly that a vector field w ∈ Γ(M) parallel along a geodesic curve γ
keeps the function Q(t) := 〈wγ(t), γ̇(t)〉γ(t) constant with respect to the parameter t. Recall that
Q = 〈wγ, Gγ(γ̇)〉A, hence

Q̇ = 〈ẇγ, Gγ(γ̇)〉A + 〈wγ, G•γ(γ̇, γ̇)〉A + 〈wγ, Gγ(γ̈)〉A

= 〈ẇγ, Gγ(γ̇)〉A + 〈γ̇, G•γ(wγ, γ̇)〉A + 〈wγ, Gγ(γ̈)〉A.
(80)

On a geodesic line it holds that Gγ(γ̈) = − 1
2 G•γ(γ̇, γ̇) + a normal component, hence

Q̇ = 〈ẇγ, Gγ(γ̇)〉A + 〈γ̇, G•γ(wγ, γ̇)〉A − 1
2 〈wγ, G•γ(γ̇, γ̇)〉A

= 〈ẇγ, Gγ(γ̇)〉A + 〈γ̇, G•γ(wγ, γ̇)〉A − 1
2 〈γ̇, G•γ(wγ, γ̇)〉A

= 〈ẇγ, Gγ(γ̇)〉A + 1
2 〈γ̇, G•γ(wγ, γ̇)〉A

= 〈ẇγ, Gγ(γ̇)〉A + 1
2 〈G

−1
γ G•γ(wγ, γ̇), Gγ(γ̇)〉A

= 〈ẇγ + 1
2 G−1

γ G•γ(wγ, γ̇), Gγ(γ̇)〉A

= 〈Πγ{ẇγ + 1
2 G−1

γ G•γ(wγ, γ̇)}, Gγ(γ̇)〉A.

(81)

Since ¯̄Γx(u, v) = 1
2 G−1

x G•x(u, v) + a normal component, we may write that

Q̇ = 〈Πγ{ẇγ + ¯̄Γγ(wγ, γ̇)}, γ̇〉γ = 〈∇γ
t w, γ̇〉γ. (82)

Since, by assumption, the vector field w is parallel along γ, its covariant derivative ∇γ
t w = 0,

therefore Q̇ = 0, hence Q(t) keeps constant at its initial value Q(0).

3.6. Coordinate-Prone Covariant Derivation*

The fundamental requirement at the very core of a connection is that a covariant
derivative of a basis vector field in a tangent direction given by another basis vector is
a tangent vector itself, namely ∇∂x

i
∂x

j ∈ TxM. Such a basic fact may be expressed by the
fundamental relationship:

∇∂x
i
∂x

j = Ck
ij(x)∂x

k , (83)

where Ck
ij : M→ R are coefficients that describe the structure of a connection. The elemen-

tary covariant derivative ∇∂x
i
∂x

j quantifies the rate of change of the basis vector field ∂x
j

along the direction specified by the further basis vector field ∂x
i .
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By applying the properties (69)–(71), it is readily obtained that:

∇(vi∂x
i )
(ui∂x

i ) = vi

(
Ck

iju
j +

∂uk

∂xi

)
∂x

k , (84)

where the functions vi = vi(x) and the functions ui = ui(x) are the components of vector
fields in Γ(M) expressed in the canonical basis {∂x

i }. If Ck
ij ≡ 0, the basis vectors stay

constant across the tangent bundle and the covariant derivative simply coincides with the
directional derivative, namely

Ck
ij ≡ 0 ⇒ ∇(vi∂x

i )
(ui∂x

i ) = vi

(
∂uk

∂xi

)
∂x

k = dxuk(v)∂x
k . (85)

In general, one needs p3 coefficient-functions to define a connection on a p-dimensional
manifold, which may be specified arbitrarily and give rise to an independent definition
of connection.

A special choice of connection coeffients leads to the Levi-Civita connection, where
Ck

ij := Γk
ij, namely the Christoffel symbols of the second kind associated to the metric tensor

of components gij which read

Γk
ij =

1
2

gkh
(

∂ghj

∂xi +
∂gih

∂xj −
∂gij

∂xh

)
. (86)

Let us survey the rationale behind Levi-Civita connection through an example.

Example 7. Let us revisit the notion of geodesic. On a manifold M, replacing uk = vk = γ̇k in the
Equation (84), leads to the expression ∇γ̇γ̇ = γ̇iγ̇jCk

ij∂
x
k + γ̈k∂x

k . Setting the covariant derivative

∇γ̇γ̇ to zero leads to the geodesic equations for the components γk:

γ̈k + Ck
ijγ̇

iγ̇j = 0. (87)

Choosing to endow the manifold M with a Levi-Civita connection, namely setting Ck
ij ≡ Γk

ij
makes the geodesic Equation (87) coincide to the equation given in [13]. A different choice of
connection would lead to a different geodesic equation and, ultimately, to a different calculus setting
for the manifold M.

3.7. Commutator of Vector Fields and Torsion Field

Let us take again two vector fields v, w ∈ Γ(M) and a connection∇ : Γ(M)× Γ(M)→
Γ(M). Apparently, in general there need not to subsist any relation between the covariant
derivatives ∇vw and ∇wv. In the case of a Levi-Civita connection, there exist however
a precise relationship between such derivatives, which is usually expressed through the
sentence a Levi-Civita connection is torsion-free.

In order to elucidate such concept, let us define two notions, namely, commutator of two
vector fields and torsion. The commutator (or Lie brackets) of two vector fields v, w ∈ Γ(M)
is a further vector field denoted as

[v, w]x := Πx{(∂xw)(vx)− (∂xv)(wx)}, (88)

namely, as a projected version of a comparison between the rate of change of the vector field
v along the direction wx and of the rate of change of the vector field w along the direction
vx. (As usual, the Gateaux derivatives ∂x are taken in A.)

The torsion field θ : Γ(M)× Γ(M)→ Γ(M) is defined as

θx(v, w) := (∇vw)x − (∇wv)x − [v, w]x. (89)
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Torsion measures the degree of non-commutativity of directional derivations as the
difference between directional derivatives of two vector fields with respect to each other
depurated from their own non-commutativity. In other words, torsion measures how
closely the commutator of vector fields can be recovered from the connection. Notice that,
in Euclidean spaces, it holds that (∇vw)x ≡ (∂xw)(v) and (∇wv)x ≡ (∂xv)(w), hence
torsion is certainly null. As we shall see later, null torsion induces a relationship between
two otherwise unrelated concepts, namely covariant derivation and Lie derivation.

Now, let us prove that the torsion field is identically null. Let us recall that

(∇vw)x = Πx{∂xw(vx) + ¯̄Γx(wx, vx)}, (90)

hence
(∇vw)x − (∇wv)x = Πx{∂xw(vx)}+ Πx{ ¯̄Γx(wx, vx)}

−Πx{∂xv(wx)} −Πx{ ¯̄Γx(vx, wx)}
= Πx{∂xw(vx)− ∂xv(wx)}
= [v, w]x,

(91)

since the Christoffel form is symmetric in its vectorial arguments. The assertion that
a Levi-Civita connection is torsion free hence follows. We underline how the result (91)
is noticeable per se, because it implies that, while the covariant derivative depends on the
Christoffel form, the difference between two covariant derivatives with swapped arguments
does not. Another way to see this property is to write ∇vw = ∇wv + [v, w].

3.8. A Remarkable Relationship Linking the Operator Π• to the Christoffel Form ¯̄Γ

Let us recall that the bilinear operator Π• : A× TM→ TM arises from the directional
derivation of the orthogonal projection operator Π which, in turn, does not depend at all
from the metric that a manifold M is endowed with, as it depends only on the structure of
the tangent spaces to the manifold and on the Euclidean ambient space A’s metric. In fact,
by definition of orthogonal projector, it should hold that 〈Πx(a), v〉A = 〈a, v〉A, for every
a ∈ A, x ∈M and v ∈ TxM.

Let us recall how orthogonal projectors are computed for a few manifolds of interest.

Example 8. Let us recall how to determine the expression of an orthogonal projector Πx : Rn →
TxSn−1. By definition it must hold that Πx(a) − a ∈ NxSn−1, hence Πx(a) = a + λx.
Since Πx(a) ∈ TxSn−1, it must also hold that x>(a + λx) = 0, therefore λ = −x>a and
hence Πx(a) = a− xx>a. The directional derivative of such projector along a tangent direction
v ∈ TxSn−1 reads

Π•x(a, v) = −v(x>a)− x(v>a). (92)

Let us further recall how to derive the expression of an orthogonal projection operator ΠR :
Rn×n → TRSO(n). By definition, it must hold that ΠR(A)− A ∈ NRSO(n), hence ΠR(A) =
A + RS, with S = S>. Since ΠR(A) ∈ TRSO(n), it must also hold that R>(A + RS) + (A +
RS)>R = 0. Straightforward calculations show that S = − 1

2 (R>A+ A>R) and hence ΠR(A) =
1
2 (A + RA>R), where we have used the cancellation implied by RR> = In. The directional
derivative of such projector along a tangent direction V ∈ TxSO(n) reads

Π•R(A, V) = − 1
2 (VA>R + RA>V). (93)

In addition, let us survey the case of the manifold of symmetric, positive definite matrices
by determining ΠP : Rn×n → TPS+(n). By definition of orthogonal projection, it must hold
that ΠP(A)− A ∈ NPS+(n), therefore ΠP(A) = A + H, with H + H> = 0. Since ΠP(A) ∈
TPS+(n), it is necessary that A+ H = A>−H, therefore H = 1

2 (A>− A), and hence ΠP(A) =
1
2 (A> + A). The directional derivative of this projector along the tangent direction V ∈ TPS+(n)
is identically zero, namely

Π•P(A, V) ≡ 0, (94)
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since ΠP(A) does not actually depend on the foot-point P.
To end this example with, let us consider the case of the Stiefel manifold St(n, p). In this

case, ΠX : Rn×p → TXSt(n, p). From the condition ΠX(A)− A ∈ NXSt(n, p) it follows that
ΠX(A) = A + XS, with S = S>. From the tangency condition ΠX(A) ∈ TXSt(n, p) it follows
that X>(A + XS) + (A + XS)>X = 0, hence that S = − 1

2 (X>A + A>X). Ultimately, we get
ΠX(A) = A− 1

2 X(X>A + A>X). The directional derivative of such projector along a tangent
direction V ∈ TXSt(n, p) reads

Π•X(A, V) = − 1
2 X(V>A + A>V)− 1

2 V(X>A + A>X), (95)

that the expression (93) is a special case of, when p = n.

We further recall that the Christoffel form of the second kind ¯̄Γ : (TM)2 → A does
depend on the metric, through the metric kernel G : TM→ TM, and from the structure of
the tangent bundle TM. Let us recall the expressions of some Christoffel forms of interest.

Example 9. For the hyper-sphere Sn−1 endowed with the canonical metric, it holds

¯̄Γx(u, v) = x(u>v). (96)

(We note, with apologies, that in the first part of this series of tutorial [13], the Christoffel form
associated to the unit hyper-sphere was reported with an incorrect sign).

For the special orthogonal group, it holds

¯̄ΓR(U, V) = 1
2 R(U>V + V>U). (97)

For the manifold of symmetric, positive definite matrices, the Christoffel form takes the expression

¯̄ΓP(U, V) = 1
2 UP−1V − 1

2 VP−1U. (98)

Instead, the expression

¯̄ΓX(U, V) = 1
2 X(U>V + V>U) (99)

pertains to the Stiefel manifold endowed with the Euclidean metric.

Now we lay out a quite simple observation, that leads to a number of important conse-
quences. Let us consider a smooth vector field w ∈ Γ(M), namely, a function that assigns a
tangent vector wx ∈ TxM to every point x ∈M, and a smooth curve ρ : [−ε, ε]→M. In the
previous sections we had familiarized ourselves with the naïve directional derivative ẇρ,
that actually stands for d

dt wρ(t). Now the fundamental observation that we are underlining
is that, although ẇρ is an array in the ambient space A, this does not mean that its entries are
unconstrained. In other terms, the naïve directional derivative of a tangent vector field is
not a tangent vector field, yet it must obey some constraints.

Let us express such constraints in an analytic way. For the sake of notation conciseness,
we are going to make use of the following notation: For any a ∈ A, we shall denote by a⊥x
the quantity a−Πx(a).

Let us observe that, by definition of tangent vector field, on a smooth curve ρ :
[−ε, ε] → M it must hold that Πρ(wρ) = wρ. Deriving with respect to the parameter
t gives:

Π•ρ(wρ, ρ̇) + Πρ(ẇρ) = ẇρ. (100)

Setting t = 0, x := ρ(0) and v := ρ̇(0), gives

[∂xw(v)]⊥ = Π•x(wx, v). (101)
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The above result means that the normal component of the naïve velocity of a vector
field is completely determined by the directional derivative Π• (hence only its tangential
component may be prescribed freely). (This finding further clarifies the meaning of the bilin-
ear operator Π•.) It is worth underlining that the relation (101) only involves the restriction
Π• in (TM)2 and is fully compliant with the previous finding that Π• : (TM)2 → NM.

An important consequence of the above finding is as follows. We know that a tangent
vector field w ∈ Γ(M) is parallel along a curve ρ : [−ε, ε]→M if it satisfies the differential
equation (in A)

ẇρ + ¯̄Γρ(wρ, ρ̇) = 0. (102)

Splitting the members of the above equation into their tangential and normal compo-
nents, and retaining the latter, we get, for a point x := ρ(0):

[∂xw(v)]⊥ = − ¯̄Γ⊥x (wx, v). (103)

where v := ρ̇(0). Comparing the relationship (101) with the relation (103), we immediately
get that

Π•x(u, v) + ¯̄Γ⊥x (u, v) = 0, for every u, v ∈ TxM, (104)

namely, the anti-normal component of the Christoffel form (of the second kind) equals a re-
striction of the directional derivative of the projection operator. Two seemingly unrelated
operators are quite tightly bound to one another!

Let us verify the above important finding on a number of cases.

Example 10. For the hyper-sphere Sn−1 endowed with the canonical metric, the restriction of the
directional derivative Π• to the tangent bundle reads

Π•x(u, v) = −v(x>u)− x(v>u) = −x(u>v), (105)

because x>u = 0. Notice that, in this example, ¯̄Γ⊥ ≡ ¯̄Γ, hence it coincides with the Christoffel
form (96) up to a sign switch.

For the special orthogonal group endowed with its canonical metric, the restriction of the
directional derivative Π• to the tangent bundle reads

Π•R(U, V) =− 1
2 VU>R− 1

2 RU>V

=+ 1
2 VR>U − 1

2 RU>V

=− 1
2 RV>U − 1

2 RU>V.

(106)

To conduct the above calculations, we have used twice the property that V>R = −R>V for
every V ∈ TRSO(n). Notice that, even in this case, ¯̄Γ⊥ ≡ ¯̄Γ, hence Π•R(U, V) coincides, up to
a sign, with the Christoffel form (97).

In the case of the manifold of symmetric, positive definite matrices endowed with its canonical
metric, the directional derivative of the orthogonal projector, although restricted to the tangent
bundle, is still identically null, namely Π•P(U, V) ≡ 0. On the other hand, from the expression (98),
it is immediately verified that ¯̄Γ⊥ ≡ 0, hence the two expressions coincide.

For the Stiefel manifold, the directional derivative of the orthogonal projector restricted to the
tangent bundle reads

Π•X(U, V) =− 1
2 X(V>U + U>V)− 1

2 V(X>U + U>X)

=− 1
2 X(V>U + U>V),

(107)

since the second term on the right-hand side cancels. Once again, this quantity, which is purely
normal, coincides (up to sign) with the Christoffel form of the second kind (99) which, in turn,
appears to be purely normal.
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Notice that in all these examples, the expression of Π• results to be symmetric in its vecto-
rial arguments.

The property (104) prescribes specifically the normal component of the Christoffel
form of the second kind to be independent of the metric. Such prescription implies several
important consequences, that we are going to explore in the following.

A consequence to underline is that Π•x(u, v) = Π•x(v, u) for every pair u, v ∈ TxM,
namely, the restriction of the directional derivative of the orthogonal projector to the tangent
bundle is symmetrical in its arguments.

A further consequence is that, although for a non-parallel vector field w ∈ Γ(M)
along a curve ρ it holds that ẇρ + ¯̄Γρ(wρ, ρ̇) 6= 0, from the relationships (101) and (104) it
follows that

ẇ⊥ρ + ¯̄Γ⊥ρ (wρ, ρ̇) ≡ 0 for every vector field w ∈ Γ(M) along ρ. (108)

This latter relationship also implies that the normal component of the naïve velocity
of variation of a (non-parallel) vector field may be written as a function of the vector
field itself.

As a further consequence, let us examine the expression of the commutator of two
vector fields as defined in Equation (88). Given two vector fields u, v ∈ Γ(M), their
commutator at a point x is given by

[u, v]x = Πx{∂xv(ux)} −Πx{∂xu(vx)}. (109)

Since for the two vector fields in must hold that{
Πx(∂xv(ux)) = ∂xv(ux)−Π•x(vx, ux),
Πx(∂xu(vx)) = ∂xu(vx)−Π•x(ux, vx),

(110)

by the symmetry of the operator Π• restricted to the tangent bundle it follows that

[u, v]x = ∂xv(ux)− ∂xu(vx). (111)

An even deeper consequence of the property (104) concerns the computation of the
covariant derivative of a vector field. Let us recall that, given a vector field w ∈ Γ(M) and
a tangent vector v ∈ TxM, the covariant derivative of w in the direction v at a point x is
given by

(∇vw)x = Πx{∂xw(v)}+ Πx{ ¯̄Γx(wx, v)}
= ∂xw(v)−Π•x(wx, v) + ¯̄Γx(wx, v)− ¯̄Γ⊥x (wx, v).

(112)

Since the second and the fourth terms in the above sum cancel out, we rest with

(∇vw)x = ∂xw(v) + ¯̄Γx(wx, v). (113)

In other terms, the sum ∂xw(v)+ ¯̄Γx(wx, v) is already an element of the tangent bundle,
without any need for projection. A similar relationship holds for the covariant derivative
along a smooth curve, namely

∇γ
t w = ∂γw(γ̇) + ¯̄Γγ(wγ, γ̇). (114)

The above two expressions of the covariant derivative may be used interchangeably
with those given in Section 3.2 whenever they are deemed to be easier to apply, as in the
case of iterated derivatives covered in Section 4.2.

Let us verify the above general relations by a number of examples.
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Example 11. Let us consider, as a first case of study, the computation of the covariant derivative
on the unit hyper-sphere Sn−1 endowed with the canonical metric. In Example 3 we have evaluated
the covariant derivative ∇γ

t w of a vector field w ∈ Γ(Sn−1) in two different ways to prove their
equivalency. Let us repeat such calculation by means of the relationship (114):

∇γ
t w = ẇγ + (w>γ γ̇)γ. (115)

Now, since γ>wγ = 0, deriving once gives γ̇>wγ + γ>ẇγ = 0, therefore

∇γ
t w = ẇγ − (γ>ẇγ)γ = (In − γγ>)ẇγ, (116)

as in Example 3.
The case regarding the manifold of symmetric, positive-definite matrices endowed with the

canonical metric is self-explanatory, since the Christoffel form of the second kind is purely tangential.
The case concerning the special orthogonal group is more interesting. In particular, in [17]

(Theorem 1), the present author gave the following expression for the covariant derivative of a vector
field W ∈ Γ(SO(n)) along a curve R(t):

∇R
t W = (ṘR> + 3

2 RṘ>)WR + ẆR + 1
2 WRṘ>R. (117)

Such expression was derived applying directly the definition in terms of parallel transport.
We would like to show here that such expression is exactly the same as that found in Example 3,
but applying the Equation (114). Let us first simplify the expression (117) for the sake of easier
comparison. From the orthogonality condition RR> = In it follows that ṘR> + RṘ> = 0, hence
ṘR> + 3

2 RṘ = 1
2 RṘ>, therefore the expression (117) simplifies in

∇R
t W = 1

2 RṘ>WR + ẆR + 1
2 WRṘ>R. (118)

Further we notice that from the condition RW>R + WRR> = 0 it follows that WRṘ> =
−ṘW>R − RẆ>R − ẆRR>, hence

∇R
t W = 1

2 RṘ>WR + ẆR − 1
2 (ṘW>R + RẆ>R + ẆRR>)R

= 1
2 RṘ>WR + ẆR − 1

2 ṘW>R R− 1
2 RẆ>R R− 1

2 ẆR

= 1
2 ẆR − 1

2 RẆ>R R,

(119)

in fact RṘ>WR = −ṘR>WR = ṘW>R R, hence the first and the third terms in the second line
cancel out. This is the expression found in Example 3. By applying the simplified Equation (114)
we get:

∇R
t W = ẆR + 1

2 RW>R Ṙ + 1
2 RṘ>WR. (120)

On the other hand, from the tangency condition W>R R + R>WR = 0 it follows that W>R Ṙ =
−Ẇ>R R− Ṙ>WR − R>ẆR, hence

∇R
t W = ẆR − 1

2 RẆ>R R− 1
2 RṘ>WR − 1

2 RR>ẆR + 1
2 RṘ>WR (121)

which, upon easy simplifications, come to coincide with expression (119).

The projectionless expression of the covariant derivative of a vector field along a curve
impacts on a number of differential operators, including the Hessian, which is defined
as the covariant derivative of a gradient of a function. In fact, let us recall that, given a
smooth function f : M→ R, its Hessian operator computed along a curve γ is defined as
Hγ f (γ̇) := ∇γ

t gradγ f , where now{
∇γ

t gradγ f = d
dt gradγ f + ¯̄Γγ(gradγ f , γ̇),

gradγ f = G−1
γ (Πγ{∂γ f }),

(122)
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hence an alternative expression for the Hessian is

Hγ f (γ̇) = d
dt G−1

γ (Πγ{∂γ f }) + ¯̄Γγ(G−1
γ (Πγ{∂γ f }), γ̇). (123)

The following examples studies in particular two interesting problems involving
covariant differentiation and the logarithmic map.

Example 12. As a first example of relationship involving covariant differentiation and logarithmic
map, let us consider the covariant derivative of a logarithmic map field. In particular, given a point
x ∈M and a smooth curve γ, the quantity logγ x represents a vector field along the curve γ. One
might wonder how the covariant derivative of such vector field along the curve γ looks like. Applying
the Equation (114) to the vector field wγ := logγ x (where x is fixed), we get

∇γ
t logγ x = (∂γ logγ x)(γ̇) + ¯̄Γγ(logγ x, γ̇). (124)

Technically speaking, one might notice that ∂y logy x ∈ End(TyM) and that it might be
termed as logarithmic pushforward endomorphism. Such endomorphism was mentioned also
in [18].

For the second example, let us consider a manifold M2 of dimension 2 endowed with a distance
function D : M2 ×M2 → R, take a point x ∈ M2 and define a curve γ implicitly such as
D2(γ, x) = r2 for some r > 0. Notice that γ is a curve only if the manifold is of dimension two
(otherwise it would be a ‘surface’ or, more generally, a submanifold) and that such curve is clearly
a ‘circle’, centered in x, of radius r. In addition, let us choose a special parametrization of the curve
γ known as parametrization by arclength, which essentially means that at any point of the curve
it presents unit speed, namely ‖γ̇‖γ = 1. Now one might wonder as to whether the acceleration of
the curve ∇γ

t γ̇ presents any special property (where ∇ denotes the Levi-Civita connection). This is
indeed the case: let us examine the problem. As a first consideration, notice that the condition of
unit speed implies that ∇γ

t γ̇ ⊥ γ̇, in fact

〈γ̇, γ̇〉γ = constant d/dt⇒ 2〈∇γ
t γ̇, γ̇〉γ = 0⇒ ∇γ

t γ̇ ⊥ γ̇ (125)

on each tangent space TγM. In addition, the condition D2(γ, x) = r2 implies that

0 = d
dtD

2(γ, x) = 〈−2 logγ x, γ̇〉γ ⇒ logγ x ⊥ γ̇. (126)

Now, since at every point of the curve dim(Tγ M) = 2, one must conclude that

∇γ
t γ̇ ‖ logγ x, (127)

namely the covariant acceleration is directed radially. As a by-product, with reference to the first
example, we may notice that the condition D2(γ, x) = r2 also implies that

0 = d
dt 〈logγ x, logγ x〉γ = 2〈∇γ

t logγ x, logγ x〉γ ⇒ ∇γ
t logγ x ⊥ logγ x, (128)

which therefore implies
∇γ

t logγ x ‖ γ̇. (129)

In fact we may notice that, for a Euclidean space, it holds that logγ x ≡ x− γ and hence it
follows that ∇γ

t logγ x = −γ̇.

To end this section, let us examine a further, perhaps counter-intuitive, example
of calculation.

Example 13. We have seen that an important property of the Levi-Civita connection is that is is
‘metric’, which may be expressed concisely as d

dt 〈?, ?〉γ(t) ≡ 0 for any smooth curve γ. In intrinsic
manifold calculus, such property is usually expressed through the sentence ‘the covariant derivative
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of the metric tensor is equal to zero’. One might thus wonder as to whether the same holds for the

metric kernel G, namely if ∇γ
t Gγ

?≡ 0. We are going to show now that this is not, indeed, the case.
Recalling that, for a smooth vector field w ∈ Γ(M) it holds that∇γ

t w = ẇγ + ¯̄Γγ(wγ, γ̇), we
may compute

∇γ
t Gγ(wγ) =

d
dt Gγ(wγ) + ¯̄Γγ(Gγ(wγ), γ̇)

= G•γ(wγ, γ̇) + Gγ(ẇγ) + ¯̄Γγ(Gγ(wγ), γ̇)

= Gγ(∇γ
t w) + G•γ(wγ, γ̇)− Gγ( ¯̄Γγ(wγ, γ̇)) + ¯̄Γγ(Gγ(wγ), γ̇).

(130)

Therefore, we can conclude that the covariant derivative of the metric kernel reads
∇γ

t Gγ = G•γ(?, γ̇)− Gγ( ¯̄Γγ(?, γ̇)) + ¯̄Γγ(Gγ(?), γ̇), where ? denotes an empty slot again. The ex-
pression on the right-hand side of the expression (130) is equal to zero trivially only when the metric
kernel coincides with the identity.

3.9. Lie Derivation*

Given two vector fields u, v ∈ Γ(M), besides of covariant derivation ∇uv, there exists
a further way to compute the rate of change of v in the direction u, which constitutes
the first attempt to define directional derivatives on manifolds: the Lie derivative. Lie
derivation does not require any notion of connection, parallel transport nor metrization. We
shall however see that Lie derivation and Levi-Civita covariant derivation are related to one
another. Although the notion of Lie derivative is presented in this section in extrinsic terms,
it is a non-essential topic in this tutorial paper. However, besides of its historical value, we
would like to point out that it has important applications in control theory, as summarized
in [19].

Let u, v ∈ Γ(M) denote two smooth tangent vector fields. The notation ux indicates
the value of u at x. The Lie derivative of a vector field is defined in an analogous way to
the covariant derivative, except that the role of parallel transport is played by a pullback
map of a flow. We define a flow σt(x) associated to the vector field u as the solution of the
following differential equation:

σ̇t(x) = uσt(x), with initial condition σ0(x) = x. (131)

The function σt : M→M takes a point in the manifold to another point in the manifold,
hence its first-order approximation at a point x, given by its tangent (pushforward) map,
may be defined as

dxσt(v) :=
d
ds

σt(τs(x))
∣∣∣∣
s=0

, (132)

where τ : [−ε, ε] → M denotes any smooth curve such that τ0(x) = x and
τ̇0(x) = vx ∈ TxM. Now, the pushforward map dxσt : TxM → Tσt(x)M, hence the as-
sociated pullback (dxσt)−1 : Tσt(x)M→ TxM. Namely, the pullback (dxσt)−1 takes a vector
from the tangent space Tσt(x)M to the tangent space TxM. Such operation resembles parallel
transport but is however referred to as Lie dragging. Lie derivation is based on Lie dragging
in place of parallel transport and is defined as

(Luv)x :=
d
dt

(dxσt)
−1vσt(x)

∣∣∣∣
t=0

. (133)

We notice that the Lie derivative is also related to the differential of a scalar-valued
function f : M→ R, since dx f (v) = (Lv f )x.

In order to find a rule to calculate the Lie derivative of a vector field, we can proceed
as follows. By definition we have
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(Luv)x = lim
h→0

(dxσh)
−1vσh(x) − vx

h

= lim
h→0

(dxσh)
−1 vσh(x) − (dxσh)vx

h

= lim
h→0

vσh(x) − (dxσh)vx

h

= lim
h→0

vσh(x) − d
ds σh(τs)

∣∣∣
s=0

h
,

(134)

where we used the fact that (dxσ0)
−1 = idx and the last equality is due to the defini-

tion (132). By Taylor-expanding the function σt(x) in t we get

σt(x) = x + t d
dt σt(x)

∣∣∣
t=0

+O(t2) = x + t ux +O(t2). (135)

Hence, it follows that

σt(τs(x)) = τs(x) + t uτs(x) +O(t2) (136)

and, consequently, that

d
ds σt(τs(x)) = τ̇s(x) + t d

ds uτs(x) +O(t2)

= τ̇s(x) + t (∂xu)(τ̇s(x)) +O(t2).
(137)

Setting s = 0 results in

d
ds σt(τs(x))

∣∣∣
s=0

= τ̇0(x) + t (∂xu)(τ̇0(x)) +O(t2) = vx + t (∂xu)(vx) +O(t2). (138)

Likewise, Taylor-expanding the function vσt(x) with respect to the parameter t gives

vσt(x) = vx + t (∂xv)(σ̇0(x)) +O(t2) = vx + t (∂xv)(ux) +O(t2). (139)

Gluing pieces together gives

(Luv)x = ∂xv(ux)− ∂xu(vx) = [u, v]x. (140)

Namely, the Lie derivative of a vector field along a given direction coincides with
a commutator.

Next we discuss, as an example, the meaning of vanishing Lie derivative.

Example 14. Given two vector fields u, v ∈ Γ(M), it may happen that Luv = 0. Intuitively, such
condition means that the two vector fields are related to one another. In particular, recalling the
meaning of the flow σ at the basis of the definition (133), mathematicians say that σ is a ‘symmetry
transformation’ of the vector field v. In order to make such notion explicit, let us rewrite the
expression (133) for a generic point of the flow, namely

(Luv)σt(x) :=
d
dt

(dxσt)
−1vσt(x). (141)

If the Lie derivative of the vector field v vanishes along the whole flow of the vector field
u, the above expression implies that the function t 7→ (dxσt)−1vσt(x) is constant, hence that
(dxσt)−1vσt(x) = (dxσ0)

−1vσ0(x). Ultimately, a vanishing Lie derivatives implies that

vσt(x) = (dxσt)vx, (142)
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namely that the vector field v along the flow takes a value obtainable by Lie-dragging backward its
source value and is completely ‘generated’ by it. This is reminiscent of the construction of a parallel
vector field, from an initial seed, by parallel transport.

A consequence of the above result is that a torsion-free connection is nicely related to
the Lie derivative, in fact, the condition θ(u, v) = 0 implies that

∇uv−∇vu = Luv (143)

while, in general, connections need not be related to Lie derivatives. Notice that, from the
above expression, it directly follows that Luv + Lvu = 0. But there is more to this. In fact,
upon introducing a metric and a notion of Lie derivation, a covariant derivative may be
computed on the basis of Lie derivatives through the following formula due to Koszul:

2〈∇vu, w〉 = Lv〈u, w〉+ Lu〈v, w〉 − Lw〈v, u〉 − 〈u,Lvw〉 − 〈v,Luw〉 − 〈w,Luv〉, (144)

where u, v, w ∈ Γ(M) are smooth vector fields and we have omitted for the ease of notation
the point x ∈ M where all derivatives are taken. Proving the above identity is a matter
of patience. First, let us recall that given a smooth curve γ : [−ε, ε] → M such that
γ(0) = x ∈ M and γ̇(0) = vx ∈ TxM, and given two smooth vector fields u, w ∈ Γ(M),
for a metric connection it holds that

d
dt
〈uγ(t), wγ(t)〉γ(t) = 〈∇

γ
t u, wγ(t)〉γ(t) + 〈uγ(t),∇

γ
t w〉γ(t). (145)

Setting t = 0 leads to

(dx〈ux, wx〉x)(vx) = (Lv〈u, w〉)x = 〈(∇vu)x, wx〉x + 〈ux, (∇vw)x〉x. (146)

Likewise, we may write that

(Lu〈v, w〉)x = 〈(∇uv)x, wx〉x + 〈vx, (∇uw)x〉x,

−(Lw〈v, u〉)x = − 〈(∇wv)x, ux〉x − 〈vx, (∇wu)x〉x.
(147)

Summing up side by side yields:

(Lv〈u, w〉)x + (Lu〈v, w〉)x − (Lw〈v, u〉)x

= 〈(∇vu)x + (∇uv)x, wx〉x + 〈(∇vw)x − (∇wv)x, ux〉x
+ 〈(∇uw)x − (∇wu)x, vx〉x

= 〈(∇vu)x + (∇vu)x + (Luv)x, wx〉x + 〈(Lvw)x, ux〉x + 〈(Luw)x, vx〉x
= 2〈(∇vu)x, wx〉x + 〈(Luv)x, wx〉x + 〈(Lvw)x, ux〉x + 〈(Luw)x, vx〉x,

(148)

which proves the assertion.
To conclude this stub, we may examine an example that discusses the notion of Killing

vector field.

Example 15. A Killing vector field is one along with the Lie derivative of the metric vanishes.
Let us make this notion more substantial. Let u, v, w ∈ Γ(M) denote three vector fields and let us
recall that Lv〈u, w〉 = 〈∇vu, w〉+ 〈u,∇vw〉, where ∇ denotes a Levi-Civita connection. Now,
from the relationship (143) it follows that

∇vu = ∇uv + Lvu, ∇vw = ∇wv + Lvw, (149)
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therefore, it holds that

Lv〈u, w〉 − 〈Lvu, w〉 − 〈u,Lvw〉︸ ︷︷ ︸
:=Lv〈?,?〉

= 〈∇uv, w〉+ 〈u,∇wv〉. (150)

The left-hand side of such equation represents the Lie derivative of the metric, namely Lv〈?, ?〉.
Vanishing of the Lie derivative of the metric implies that

〈∇?v, ?〉+ 〈?,∇?v〉 = 0, (151)

that is a condition on the vector field v referred to as Killing equation. Here, the empty slots remind
us that the equation 〈∇uv, w〉+ 〈u,∇wv〉 = 0 must hold for every choice of u, w ∈ Γ(M), hence
the Killing equation involves only the differential structure of the manifold.

4. Iterated Derivatives and Riemannian Curvature

The notion of covariant derivative arises as a generalization of the directional deriva-
tive of a vector field. However, while directional derivation commutes, covariant derivation
does not. Such observation leads to the notion of Riemannian curvature endomorphism.

The present section is organized as follows. Section 4.1 remarks some well-known
properties of the iterated directional derivatives in the flat space Rn. The Section 4.2 lays
out the notion of iterated covariant derivatives and defines the notion of second covariant
derivative, which is shown to be well-defined in contrast to a double iterated derivative.
Section 4.3 describes the parallel transport of a tangent vector along a tiny loop and shows
that the final result differs from the starting vector, and attributes such discrepancy to
the curvedness of a manifold. In Section 4.4, we describe the key notion of Riemannian
curvature endomorphism, which quantifies the non-commutativity of second covariant
derivative and is taken as a fundamental operator in describing the effects of curvature of a
manifold. To end this section, the Section 4.5 describes some curvature-related concepts,
such as tidal effects, geodesic deviation and sectional curvature.

4.1. Commutativity of Directional Derivatives in Rn

Commutativity of directional derivatives is a consequence of Schwarz’s theorem.
Recall that, given a vector field f : Rn → Rm, and a vector v ∈ Rn, its directional derivative
at a point p is defined as

Dp f (v) := lim
h→0

f (p + h v)− f (p)
h

. (152)

Given another direction u ∈ Rn, one may compute the directional derivative of the
vector field p 7→ Dp f (v) along u, namely

Dp(Dp(v))(u) := lim
k→0

Dp+k u f (v)− Dp f (v)
k

. (153)

In other terms, we have that

Dp(Dp(v))(u)

= lim
k→0

1
k

{
lim
h→0

(
f (p + h v + k u)− f (p + k u)

h
− f (p + h v)− f (p)

h

)}
= lim

h→0

1
h

{
lim
k→0

(
f (p + k u + h v)− f (p + h v)

k
− f (p + k u)− f (p)

k

)}
= lim

h→0

Dp+h v f (u)− Dp f (u)
h

= Dp(Dp(u))(v),

(154)
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hence directional derivatives commute.
The above-discussed commutativity test for directional derivatives is based on the

notion of iterated directional derivation. To extend such test to manifolds, it is necessary to
discuss what it is meant by iterated covariant derivation and through which formulas such
iterated derivatives may be computed.

4.2. Iterated Covariant Derivatives and Second Covariant Derivative

Covariant derivation inputs a vector field and outputs a further vector field. Hence, it
is possible to compute the covariant derivative of a covariant derivative (and so fort) of
a given vector field.

In particular, given a smooth curve γ with image in M, which represents the trajectory
generated by a dynamical system, it is conceivable to define the following vector fields
along such trajectory:

γ̇ = v (velocity field),

∇γ
t γ̇ = a (covariant acceleration),

∇γ
t ∇

γ
t γ̇ = r (covariant jolt/jerk),

∇γ
t ∇

γ
t ∇

γ
t γ̇ = n (covariant snap/jounce),

(∇γ
t )

4γ̇ = c (covariant crackle/flounce),

(∇γ
t )

5γ̇ = p (covariant pop/pounce).

(155)

(It is an interesting research exercise to look for a translation of these terms in one’s
local language. For the Italian readers, derivatives of a positional variable from the third
order on are translated as strappo, sbalzo, crepitìo, schiocco).

In general, iterated covariant derivatives are better computed through the expres-
sion (114) which, applied to speed, reads

∇γ
t γ̇ = γ̈ + ¯̄Γγ(γ̇, γ̇). (156)

Let us consider an example of evaluation of covariant acceleration on the special
orthogonal group.

Example 16. On the special orthogonal group SO(n) endowed with its canonical metric, the co-
variant acceleration associated to a trajectory t→ R(t) reads, according to Equation (156):

aR
t = R̈ + ¯̄ΓR(Ṙ, Ṙ) = R̈ + RṘ>Ṙ. (157)

Recalling that SO(n) is a Lie group and writing the velocity Ṙ as RH, with H ∈ so(n), one
may write R̈ = ṘH + RḢ = R(H2 + Ḣ), hence substituting:

aR
t = R̈ + RṘ>Ṙ = R(H2 + Ḣ)− RH2 = RḢ. (158)

Whenever the group SO(3) is used to model the rotational dynamics of a rigid body, the above
relation is interpreted as follows: The covariant acceleration equals the angular acceleration in the
body-fixed reference frame brought back to an inertial reference frame.

Applying again the Equation (114) to the vector field γ̈ + ¯̄Γγ(γ̇, γ̇) yields

∇γ
t ∇

γ
t γ̇ =

...
γ + d

dt
¯̄Γγ(γ̇, γ̇) + ¯̄Γγ(γ̈ + ¯̄Γγ(γ̇, γ̇), γ̇). (159)

The same procedure may be repeated to get the expressions of the higher-order iterated
covariant derivatives. It is worth observing that, for the first time, we encounter a derivative
of the Christoffel form, d

dt
¯̄Γ, as well as nested Christoffel forms ¯̄Γ( ¯̄Γ, ?). Such observation
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turns out to hold in the more general setting of nested connections applied to vector fields
and plays a fundamental role in the computation of Riemannian curvature.

It is worth underlying two special cases.

• A special case arises in the presence of a connection whose Christoffel form is normal,
namely Πγ

¯̄Γ ≡ 0, in which case we may access the simplified relation (36) to compute
covariant derivative, namely ∇γ

t γ̇ = Πγ{γ̈}. In such a case, the covariant jolt may be
computed as

rγ
t = Πγ{

...
γ + Π•γ(γ̈, γ̇)}. (160)

• A even more particular case is given by a geodesic curve, for which γ̈ = − ¯̄Γγ(γ̇, γ̇).
In this case, the acceleration aγ

t = Πγ{γ̈ + ¯̄Γγ(γ̇, γ̇)} = 0, hence all covariant deriva-
tives (from acceleration to pounce) are identically zero (no matter what is the structure
of the Cristoffel form of the second kind).

Let us examine a few examples of computation of covariant jolt rγ
t associated to

a manifold-valued system trajectory.

Example 17. The first case treated in the present example concerns the hypersphere Sn−1 en-
dowed with its canonical metric. In this case, the Christoffel form of the second kind reads
¯̄Γx(u, v) = (u>v)x hence the covariant acceleration reads

ax
t = ẍ + xẋ> ẋ. (161)

In addition, according to Equation (159), the covariant jolt of a trajectory t 7→ x(t) in
Sn−1 reads

rx
t =

...
x + d

dt (ẋ> ẋx) + ẋ(ẍ + ẋ> ẋx)x

=
...
x + 3 xẍ> ẋ + ẋẋ> ẋ.

(162)

Let us recall that from the condition x>x = 1, deriving thrice, one gets 3 ẍ> ẋ + x>
...
x = 0,

hence the last expression is equivalent to

rx
t = (In − xx>)

...
x + ẋẋ> ẋ. (163)

We might have obtained the same expression more easily recalling that, in this case, the Christof-
fel form is purely normal, hence the jolt is given by the Equation (160). Let us recall that
Πx(a) = a− xx>a, hence Π•x(a, ẋ) = −ẋx>a− xẋ>a. Therefore, the jolt is computed as

rx
t = (I − xx>)

...
x − ẋx> ẍ. (164)

Notice however that, deriving both sides of the condition x>x = 1 twice yields x> ẍ+ ẋ> ẋ = 0,
hence the expression (164) is equivalent to the expression (163).

A second case-of-study arises from the special orthogonal group SO(n) endowed with its
canonical metric. In this case, the jolt of a trajectory t 7→ R(t) in SO(n) computed through the
general Equation (159), taking into account that ¯̄ΓR(U, V) = 1

2 R(U>V + V>U), reads

rR
t =

...
R + d

dt (RṘ>Ṙ) + 1
2 R((R̈ + RṘ>Ṙ)>Ṙ + Ṙ>(R̈ + RṘ>Ṙ)). (165)

Even in this case, the Christoffel form is purely normal, hence we may apply the relation-
ship (160), upon recalling that ΠR(A) = 1

2 A− 1
2 RA>R and hence Π•R(A, Ṙ) = − 1

2 ṘA>R−
1
2 RA>Ṙ, obtaining

rR
t = ΠR{

...
R + ṘṘ>Ṙ}. (166)
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In this case, since the manifold SO(n) is a Lie group, the velocity over the trajectory may be
factored as Ṙ = RH with H ∈ so(n). Hence

R̈ = ṘH + RḢ = R(H2 + Ḣ),
...
R = Ṙ(H2 + Ḣ) + R(ḢH + HḢ + Ḧ) = R(Ḧ + 2HḢ + ḢH + H3).

(167)

Therefore one may verify that the above expressions are equivalent to one another and to

rR
t = RḦ + 1

2 R(HḢ − ḢH). (168)

Notice that the result of the calculation is a tangent vector in TRSO(n). The so-called
rotational jolt rR

t (and, in particular, a function of its norm ‖rR
t ‖R(t)) was used in several contexts

to measure the fluidity of rotational movements. An example may be found in [20,21], which dealt
with hips sway fluency assessment in the context of movement analysis.

The last example considered concerns the space of symmetric, positive-definite matrices S+(n)
endowed with its canonical metric. In this case, ¯̄ΓP(U, V) = − 1

2 UP−1V − 1
2 VP−1U, hence

aP
t = P̈− ṖP−1Ṗ, (169)

and, consequently,

rP
t =

...
P + d

dt (−ṖP−1Ṗ)− 1
2 (P̈− ṖP−1Ṗ)P−1Ṗ− 1

2 ṖP−1(P̈− ṖP−1Ṗ)

=
...
P − 3

2 (P̈P−1Ṗ + ṖP−1P̈) + 2 ṖP−1ṖP−1Ṗ,
(170)

a (perhaps unexpectedly) convoluted expression. Notice that, in this case, the Christoffel form is not
purely normal, hence the special relationship (160) does not hold.

We mention that, if a curve γ has unitary speed, namely ‖γ̇‖γ = 1, then the norm of
its covariant acceleration is taken as a measure of its curvature. Namely, the scalar field

κ
γ
g := ‖∇γ

t γ̇‖γ, (171)

is defined geodesic curvature and quantifies how much a curve differs from a geodesic.
Hence a geodesic curve has zero geodesic curvature.

In a similar manner as we have done for the covariant derivatives along a curve,
we may compute iterated derivatives of a given vector fields along different directions.
Notationwise, given a vector field w ∈ Γ(M) whose covariant derivative is sought and two
directions u, v ∈ TxM, a nested derivative will be denoted as∇u∇vw. Let us make such ab-
stract notation become substantial. The vector field w needs to be defined in a neighborhood
of the point x. Likewise, it is necessary to set up a vector field v̄ ∈ Γ(M), well-defined in a
neighborhood of x, such that v̄x = v. In this way, the connection ∇v̄w ∈ Γ(M) yields a vec-
tor field, well-defined in a neighborhood of x, which may be further covariantly-derivated
along the direction u.

In a even more natural manner, given three vector fields u, v, w ∈ Γ(M), one may
define an iterated connection ∇u∇vw, whose result may be expressed as

(∇u∇vw)x = (∂x(∇vw)x)(ux) + ¯̄Γx((∇vw)x, ux). (172)

Notice that the term ∂x(∇vw)(u) involves the directional derivative ∂x
¯̄Γx of the

Christoffel form, as well as the directional derivative of the vector fields w and v, in fact

(∂x(∇vw)x)(ux) = ∂x(∂xw(vx) + ¯̄Γx(wx, vx))(ux)

= ∂2
xw(vx; ux) + (∂xw)((∂xv)(ux)) + (∂x

¯̄Γx)(wx, vx; ux) +

¯̄Γx(∂xw(ux), vx) + ¯̄Γx(wx, ∂xv(ux)),

(173)
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where ∂2
xw(vx; ux) denotes the second directional derivative of the vector field w and ∂x( ¯̄Γx)

denotes the derivative of the Christoffel form with respect to the argument x only. Therefore,
the nested connection may effectively be computed through the (a little convoluted) expression

(∇u∇vw)x

= ∂2
xw(vx; ux) + (∂xw)((∂xv)(ux)) + (∂x

¯̄Γx)(wx, vx; ux) +

¯̄Γx(∂xw(ux), vx) + ¯̄Γx(wx, ∂xv(ux)) + ¯̄Γx(∂xw(vx), ux) + ¯̄Γx( ¯̄Γx(wx, vx), ux),

(174)

where we have made use repeatedly of the linearity of the Christoffel form of the second
kind with respect to its vectorial arguments to extend it to the whole ambient space.

An unavoidable characteristic of the iterated derivative (174) is that it includes not
only the rate of change of the vector field w and of the Christoffel form (which describes
the underlying manifold) but also the rate of change of the vector field v, which may be an
unwanted effect. Therefore, on the basis of the nested covariant derivative (174), one may
define a second covariant derivative of the vector field w in the directions u, v as follows:

∇2
u,vw := ∇u∇vw−∇∇uvw. (175)

To verify the effects of such definition, it pays to compute first

(∇∇uvw)x = (∂xw)((∇uv)x) + ¯̄Γx(wx, (∇uv)x)

= (∂xw)(∂xv(ux) + ¯̄Γx(vx, ux)) + ¯̄Γx(wx, ∂xv(ux)) + ¯̄Γx(wx, ¯̄Γx(vx, ux)),
(176)

so that the second covariant derivative may be expressed as
(∇2

u,vw)x

= ∂2
xw(vx; ux) + (∂xw)((∂xv)(ux)) + (∂x

¯̄Γx)(wx, vx; ux)

+ ¯̄Γx(∂xw(ux), vx) + ¯̄Γx(wx, ∂xv(ux)) + ¯̄Γx(∂xw(vx), ux)

+ ¯̄Γx( ¯̄Γx(wx, vx), ux)− (∂xw)(∂xv(ux))− (∂xw)( ¯̄Γx(vx, ux))

− ¯̄Γx(wx, ∂xv(ux))− ¯̄Γx(wx, ¯̄Γx(vx, ux))

= ∂2
xw(vx; ux) + (∂x

¯̄Γx)(wx, vx; ux) + ¯̄Γx( ¯̄Γx(wx, vx), ux)

+ ¯̄Γx(∂xw(ux), vx) + ¯̄Γx(∂xw(vx), ux)− (∂xw)( ¯̄Γx(vx, ux))

− ¯̄Γx(wx, ¯̄Γx(vx, ux)).

(177)

The second derivative looks ‘purified’ from the rate of change of the vector field v.

Observation 1. For the mathematically-minded, we underline that there exists a technical reason
why the iterated covariant derivative ∇u∇vw is, in some sense, not well-defined while the double
covariant derivative ∇u,vw is well defined. Let us recall that the iterated covariant derivative
(∇u∇vw) is meant to capture the rate of change, along the direction u, of the rate of change of the
vector field w along the direction v, at a given point x: in principle, hence v ∈ TxM is a single
tangent vector to which there need not to be associated any vector field. Nevertheless, in order to
evaluate the covariant derivative along the direction u, it is necessary to ‘extend’ the direction v
locally to a smooth vector field, say v̄ ∈ Γ(M): such vector field needs only to obey the constraint
v̄x ≡ v, being elsewhere unconstrained. Now, since the nested covariant derivative (174) depends
explicitly on ∂x v̄, its value depends on the way we have extended the vector v by the field v̄, which
makes its expression ‘user-dependent’. As opposed to this, the second covariant derivative (177) does
not exhibit such kind of dependence, namely the way one chooses the extension v̄ is irrelevant to the
value of the second covariant derivative, which results henceforth well-defined (‘user-independent’).

Now, we may wonder whether the second covariant derivative, which depends on the
second directional derivative, is independent of the order of derivation, namely if the result
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changes if one swaps the vectors u and v. From the last expression, we may immediately
find that

(∇2
v,uw)x = ∂2

xw(ux; vx) + (∂x
¯̄Γx)(wx, ux; vx) + ¯̄Γx( ¯̄Γx(wx, ux), vx)

+ ¯̄Γx(∂xw(vx), ux) + ¯̄Γx(∂xw(ux), vx)− (∂xw)( ¯̄Γx(ux, vx))

− ¯̄Γx(wx, ¯̄Γx(ux, vx)).

(178)

By exploiting the known symmetry of the Christoffel form along with evident cancel-
lations, one immediately finds that

(∇2
u,vw)x − (∇2

v,uw)x = (∂x
¯̄Γx)(wx, vx; ux)− (∂x

¯̄Γx)(wx, ux; vx) +

¯̄Γx( ¯̄Γx(wx, vx), ux)− ¯̄Γx( ¯̄Γx(wx, ux), vx).
(179)

The net result is that the second covariant derivative does not commute and the degree of non-
commutativity depends solely on the behavior of the Christoffel form of the second kind while it does
not depend at all by the rate of change of the vector field being derivated (w). A remarkable
consequence of the latter observation is that the quantity (∇2

u,vw)x − (∇2
v,uw)x is an intrinsic

property of manifolds.
Let us underline that, for a torsion-free connection as the Levi-Civita one, the non-

commutativity measure ∇2
u,v − ∇2

v,u may be written in terms of commutators. In fact,
from the definition of second covariant derivative (175) we get that

∇2
u,vw−∇2

v,uw = ∇u∇vw−∇v∇uw−∇∇uvw +∇∇vuw

= (∇u∇v −∇v∇u −∇∇uv−∇vu)w.
(180)

Now, recalling that ∇uv−∇vu = [u, v] and defining the following covariant differ-
ential commutator [∇u,∇v] := ∇u∇v −∇v∇u, the above relationship may be rewritten
compactly and meaningfully as

∇2
u,v −∇2

v,u = [∇u,∇v]−∇[u,v], (181)

which suggests that the lack of commutativity of the iterated covariant connection is due to
the lack of commutativity of covariant connection depurated from the lack of commutativity
of the involved vector fields.

To conclude this section, let us examine, as an example, how to generalize the relation-
ship (159) to a generic tangent vector field.

Example 18. Given a smooth vector field w ∈ Γ(M), its covariant derivative along a smooth curve
γ may be expressed through the relation (114) as ∇γ

t w = ẇγ + ¯̄Γγ(wγ, γ̇). Applying again the
Equation (114) to the vector field ẇγ + ¯̄Γγ(wγ, γ̇) yields

∇γ
t ∇

γ
t w = ẅγ + d

dt
¯̄Γγ(wγ, γ̇) + ¯̄Γγ(ẇγ + ¯̄Γγ(wγ, γ̇), γ̇)

= ẅγ + ¯̄Γ•γ(wγ, γ̇; γ̇) + ¯̄Γγ(ẇγ, γ̇)

+ ¯̄Γγ(wγ, γ̈) + ¯̄Γγ(ẇγ, γ̇) + ¯̄Γγ( ¯̄Γγ(wγ, γ̇), γ̇)

= ẅγ + ¯̄Γ•γ(wγ, γ̇; γ̇) + 2 ¯̄Γγ(ẇγ, γ̇) + ¯̄Γγ(wγ, γ̈) + ¯̄Γγ( ¯̄Γγ(wγ, γ̇), γ̇),

(182)

where the following abbreviation has been made use of

¯̄Γ•γ(a, b; γ̇) := d
dt

¯̄Γγ(a, b), (183)

with a, b ∈ A being arbitrary constants. As we shall see in the next section of this paper, such linear
operator is not just a convenient placeholder but plays indeed a fundamental role in quantifying the
Riemannian notion of curvature.
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4.3. Manifestation of Manifold Curvature in Parallel Transport along a Loop

Let ` denote a simple loop, namely a simple curve on a manifold that starts and ends at
the same point x and let wx ∈ TxM denote a test tangent vector. Let us parallely-transport
the tangent vector wx along the closed loop ` and let us denote the final result of transport
as w` ∈ TxM.

If a manifold is flat, the result of parallel transport along a loop is just the initial vector,
namely w` ≡ wx. On a curved manifold, this is not necessarily the case, as a manifestation of
curvedness. Let us examine such phenomenon, referred to as anholonomy, in detail, in the
hypothesis that the closed loop ` be very small.

To effect parallel transport along the loop ` parameterized by γ : [0, 1] → M,
with γ(0) = x, we should set-up the differential equation

d
dt wγ + ¯̄Γγ(wγ, γ̇) = 0 (184)

in the transport field w ∈ Γ(M), with initial condition wγ(0) = wx given. Let us observe
that, according to the property of the Christoffel form underlined in Section 3.8, the solution
of the above differential equation in A is indeed a tangent vector field along γ, hence we
may write

wγ(t) = wx −
∫ t

0
¯̄Γγ(τ)(wγ(τ), γ̇(τ))dτ. (185)

Setting t = 1 leads to

w` = wx −
∮
`

¯̄Γγ(τ)(wγ(τ), γ̇(τ))dτ, (186)

since the loop is closed.
Under the hypothesis that the loop is very small, it makes sense to approximate the

loop integral above by means of first-order approximations of the Christoffel form as well
as the transport field around the foot-point x, namely

¯̄Γγ(τ)(a, b) = ¯̄Γx(a, b) + ¯̄Γ•x(a, b; γ(τ)− x) +O(τ2), (187)

wγ(τ) = wx + τẇx +O(τ2) = wx − ¯̄Γx(wx, γ(τ)− x) +O(τ2), (188)

with τ ∈ [0, 1], where we have made use of the definition (183) and the last equation
derives from the relationship (184). Also, we have made use of the approximation γ̇(τ) =
γ(τ)−x

τ +O(τ). On the basis of the above approximations, we see that

¯̄Γγ(τ)(wγ(τ), γ̇(τ)) = ¯̄Γx(wx − ¯̄Γx(wx, γ(τ)− x) +O(τ2), γ̇(τ)) +

¯̄Γ•x(wx − ¯̄Γx(wx, γ(τ)− x) +O(τ2), γ̇(τ); γ(τ)− x) +O(τ2)

= ¯̄Γx(wx, γ̇(τ))− ¯̄Γx( ¯̄Γx(wx, γ(τ)− x), γ̇(τ)) +

¯̄Γ•x(wx, γ̇(τ); γ(τ)− x)− ¯̄Γ•x( ¯̄Γx(wx, γ(τ)− x), γ̇(τ); γ(τ)− x)

+O(τ2),

(189)

therefore, making use of the approximation ¯̄Γ•x( ¯̄Γx(wx, γ(τ)− x), γ̇(τ); γ(τ)− x) = O(τ2),
we get

¯̄Γγ(τ)(wγ(τ), γ̇(τ)) = ¯̄Γx(wx, γ̇(τ))− ¯̄Γx( ¯̄Γx(wx, γ(τ)− x), γ̇(τ))+

¯̄Γ•x(wx, γ̇(τ); γ(τ)− x) +O(τ2).
(190)

Plugging the above relation into the loop integral (186), we get

w` ≈ wx −
∮
`

¯̄Γx(wx, γ̇(τ))dτ +
∮
`

¯̄Γx( ¯̄Γx(wx, γ(τ)− x), γ̇(τ))dτ

−
∮
`

¯̄Γ•x(wx, γ̇(τ); γ(τ)− x)dτ.
(191)
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Recalling that the Christoffel form is (bi)linear in its vectorial arguments, it is immedi-
ate to see that the first addendum is null, namely∮

`

¯̄Γx(wx, γ̇(τ))dτ = ¯̄Γx(wx,
∮
`

γ̇(τ)dτ) = ¯̄Γx(wx, 0) = 0, (192)

therefore ultimately we get that the discrepancy between the transported vector after and
before transport is quantified by

w` − wx ≈
∮
`

{
¯̄Γx( ¯̄Γx(wx, γ(τ)− x), γ̇(τ))− ¯̄Γ•x(wx, γ̇(τ); γ(τ)− x)

}
dτ (193)

up to order O(τ3). The above relationship may be written in a more ‘symmetric’ way by
the following arguments. Let us first notice that∮

`

d
dτ

{
¯̄Γx( ¯̄Γx(wx, γ(τ)), γ(τ))− ¯̄Γ•x(wx, γ(τ); γ(τ))

}
dτ = 0, (194)

therefore it holds that∮
`

{
¯̄Γx( ¯̄Γx(wx, γ), γ̇)− ¯̄Γ•x(wx, γ̇; γ)

}
dτ +

∮
`

{
¯̄Γx( ¯̄Γx(wx, γ̇), γ)− ¯̄Γ•x(wx, γ; γ̇)

}
dτ = 0. (195)

In addition, notice that, by linearity and closedness of the integration path, it holds that∮
`

¯̄Γx( ¯̄Γx(wx, x), γ̇)dτ =
∮
`

¯̄Γx( ¯̄Γx(wx, γ̇), x)dτ = 0, (196)∮
`

¯̄Γ•x(wx, γ̇; x)dτ =
∮
`

¯̄Γ•x(wx, x; γ̇)dτ = 0, (197)

therefore, the relationship (195) may be rewritten as∮
`

{
¯̄Γx( ¯̄Γx(wx, γ− x), γ̇)− ¯̄Γ•x(wx, γ̇; γ− x)

}
dτ =

−
∮
`

{
¯̄Γx( ¯̄Γx(wx, γ̇), γ− x)− ¯̄Γ•x(wx, γ− x; γ̇)

}
dτ.

(198)

Through this equation, the discrepancy (193) may be rewritten as

w` − wx ≈
1
2

∮
`

{
¯̄Γx( ¯̄Γx(wx, γ− x), γ̇) + ¯̄Γ•x(wx, γ− x; γ̇)

}
dτ

− 1
2

∮
`

{
¯̄Γx( ¯̄Γx(wx, γ̇), γ− x) + ¯̄Γ•x(wx, γ̇; γ− x)

}
dτ.

(199)

One may hence infer that the integrand is hence responsible for the discrepancy
between w` and wx. In addition, we notice informally that the integrand appears to have
exactly the same structure of the right-hand side of the relation (179). (In addition, from the
above relation it is easily guessed that the amount of discrepancy increases with the size of
the loop.)

4.4. Riemannian Curvature Endomorphism

As we have seen, given a closed loop ` with foot-point x ∈ M and a tangent vector
wx ∈ TxM, the parallel transport of the latter along the closed loop results in a tangent
vector w` ∈ TxM that differs from wx. Since, however, both vectors wx and w` belong to
the same tangent space (irrespective of how ample is the loop), one may postulate the
existence of a function, call it Rx : TM→ TM, that transforms wx to w`. Such function is
called curvature endomorphism and we write w` = Rxwx.

As it is customary, we are going to determine the structure of the curvature endomor-
phism for a special loop, namely a parallelogram. In order to define a parallelogram on a
smooth manifolds’ tangent bundle, let us define the following elements
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• four points x, a, b, c ∈ M that denote the vertexes of the parallelogram in M around
the point x,

• two tangent vectors u, v ∈ TxM that define the ‘sides’ of the parallelogram,
• a smooth curve α : [0, 1]→M that joins the point x to the point a, such that α(0) = x

and α̇(0) = u; the curve α is parametrized through the parameter s, namely a point on
such curve is denoted by α(s),

• a smooth curve β : [0, 1]→M that joins the point a to the point c, such that β(0) = α(s)
and β̇(0) = P0→s

α (v); the curve β is parametrized through the parameter t, namely
a point on such curve is denoted by β(t),

• a smooth curve λ : [0, 1]→M that joins the point x to the point b, such that λ(0) = x
and λ̇(0) = v; the curve λ is parametrized through the parameter t, namely a point on
such curve is denoted by λ(t),

• a smooth curve γ : [0, 1] → M that joins the point b to the point b, such that
γ(0) = λ(t) and γ̇(0) = P0→t

λ (u); the curve γ is parametrized through the parameter
s, namely a point on such curve is denoted by γ(s).

Notice that, by consistency, the point β(t) on the parallelogram coincides to the point
γ(s) which, in turn, coincides to the point c, which lays at the ‘opposite’ side to the point x
in such parallelogram. Also, notice that the extension of the parallelogram depends on the
values of the parameters s and t, hence such parallelogram may be made as small as one
wishes by reducing the values of such parameters.

It will be necessary to make use of local extensions of the vectors u, v and of the
test tangent vector w ∈ TxM being parallely-transported. In order not to burden the
notation with extra symbols, we shall denote such (arbitrary) extensions by U, V, W ∈ Γ(M),
respectively. These vector fields may be chosen arbitrarily as long as they are sufficiently
regular to afford derivation and Ux = u, Vx = v, Wx = w.

As a further introductory element, let us recall a couple of very useful first-order
approximations. Let ρ : [−ε, ε] → M denote a smooth curve in M and F ∈ Γ(M) denote
a smooth vector field. From the definition of covariant derivative of a vector field along
a given direction we get the following first-order approximation of the vector field F at ρ(0):

(A1) : P τ→0
ρ Fρ(τ) = Fρ(0) + τ∇ρ̇(0)F +O(τ2). (200)

This relationship may be rewritten equivalently as Fρ(τ) = P 0→τ
ρ Fρ(0) + τ P 0→τ

ρ (∇ρ̇(0)F)
+O(τ2), which appears as a sort of Taylor expansion of a vector field along a curve departing
from a given point. Such expression leads to the further approximation

(A2) : P 0→τ
ρ Fρ(0) = Fρ(τ) − τ P 0→τ

ρ (∇ρ̇(0)F) +O(τ2). (201)

The approximations (A1) and (A2) will prove instrumental in writing down the
following necessary relations seamlessly.

The main idea to define the curvature tensor is that transporting a tangent vector along
a parallelogram and comparing the starting vector with the resulting vector is equivalent
to transporting the same vectors along two paths, namely along x → a → c and along
x → b → c and then comparing the two results at c. Formally, we hence define the
Riemannian curvature endomorphism as

Ru,v
x (w) := lim

s,t→0

P s→0
α P t→0

β Wβ(t) − P t→0
λ P s→0

γ Wγ(t)

s t
. (202)
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For the first branch, we have

P s→0
α P t→0

β Wβ(t)= P s→0
α (Wβ(0) + t∇β̇(0)W +O(t2))

= P s→0
α Wα(s) + tP s→0

α (∇P 0→s
α (v)W) +O(t2)

= Wα(0) + s∇α̇(0)W +O(s2) + tP s→0
α (∇Vα(s)−sP 0→s

α (∇α̇(0)V)+O(s2)W)

+O(t2)

= w + s∇uW +O(s2) + tP s→0
α (∇Vα(s)

W − s∇P 0→s
α (∇uV)W) +O(t2),

where the first equality follows from the relation A1 and the third equality follows from
the relations A1 and A2. As a consequence, it holds that

P s→0
α P t→0

β Wβ(t) = w + s∇uW + tP s→0
α (∇Vα(s)

W)− s tP s→0
α (∇P 0→s

α (∇uV)W)

+O(s2) +O(t2).
(203)

Analogously, for the second branch we get

P t→0
λ P s→0

γ Wγ(t) = w + t∇vW + sP t→0
λ (∇Uλ(t)

W)− s tP t→0
λ (∇P 0→t

λ (∇vU)W)

+O(s2) +O(t2).
(204)

Hence, after canceling out equal terms and grouping, we get

P s→0
α P t→0

β Wβ(t) − P t→0
λ P s→0

γ Wγ(t) =

t {P s→0
α (∇Vα(s)

W)−∇vW} − s {P t→0
λ (∇Uλ(t)

W)−∇uW}

− s t {P s→0
α (∇P 0→s

α (∇uV)W)− P t→0
λ (∇P 0→t

λ (∇vU)W)}+O(s2) +O(t2).

(205)

Dividing both sides by the product s t and taking the limit for s, t that vanish to zero,
we get

lim
s,t→0

P s→0
α P t→0

β Wβ(t) − P t→0
λ P s→0

γ Wγ(t)

s t
=

lim
s→0

P s→0
α (∇Vα(s)

W)−∇vW

s
− lim

t→0

P t→0
λ (∇Uλ(t)

W)−∇uW

t
− (∇∇uVW −∇∇vUW).

(206)

In conclusion, upon computing the above limits, we get the expression of the curvature
endomorphism applied to a tangent vector as follows

Ru,v
x (w) = (∇u∇VW)x − (∇v∇UW)x − (∇∇uV−∇vUW)x,

= (∇u∇VW)x − (∇v∇UW)x − (∇[U,V]x W)x.
(207)

At a first glance, it is not apparent that the combination of differential operators on the
right-hand side of Equation (207) should equal a linear endomorphism as in the left-hand
side. However, from Section 4.2 we know that not only this is indeed the case, but also
that the right-hand side is completely independent from the way we choose the extensions
U, V, W. In addition, from Section 4.3, we know that the expression on the right-hand side
is exactly the combination of operators ¯̄Γ• and ¯̄Γ( ¯̄Γ, ?) that quantifies the curvedness of
a manifold in the parallel transport around a tiny loop. As a matter of fact, the Riemannian
curvature endomorphism, applied to a test tangent vector w ∈ TxM, may be written
explicitly (and solely) in terms of the Christoffel form of the second kind, as

Ru,v
x (w) = ¯̄Γ•x(w, v; u)− ¯̄Γ•x(w, u; v) + ¯̄Γx( ¯̄Γx(w, v), u)− ¯̄Γx( ¯̄Γx(w, u), v). (208)
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Let us apply the above formula to compute the curvature of a few manifolds of interest.

Example 19. The first case examined is that of a unit hyper-sphere endowed with its canonical
metric. Let us recall that ¯̄Γx(u, v) = x(u>v), hence

¯̄Γ•x(u, v; w) = w(u>v). (209)

Applying the Equation (208) yields

Ru,v
x (w) = u(w>v)− v(w>u) + x((x(w>v))>u)− x((x(w>u))>v). (210)

Since the last two addenda are null because x>u = x>v = 0, we rest with

Ru,v
x (w) = (w>v)u− (w>u)v. (211)

Notice that the result does not depend explicitly on the point x, hence such Riemannian
curvature endomorphism is uniform (in the sense that it takes the same expression in all tangent
spaces). It is interesting to observe that the vector Ru,v

x (w) belongs to the subspace span{u, v} ⊂
TxM.

Next we tackle the case of the special orthogonal group SO(n) endowed with its canonical
metric. Let us recall again that the Christoffel form of the second kind reads ¯̄ΓR(U, V) = 1

2 R(U>V +

V>U), therefore
¯̄Γ•R(U, V; W) = 1

2 W(U>V + V>U). (212)

Applying the Equation (208) gives

RU,V
R (W) = 1

2 U(W>V + V>W)− 1
2 V(W>U + U>W)

+ 1
2 R{ 1

2 (W
>V + V>W)>R>U + 1

2 U>R(W>V + V>W)}
− 1

2 R{ 1
2 (W

>U + U>W)>R>V + 1
2 V>R(W>U + U>W)}

= 1
2 UW>V + 1

2 UV>W − 1
2 VW>U − 1

2 VU>W

+ 1
4 RW>VR>U + 1

4 RV>WR>U + 1
4 RU>RW>V + 1

4 RU>RV>W

− 1
4 RW>UR>V − 1

4 RU>WR>V − 1
4 RV>RW>U − 1

4 RV>RU>W.

(213)

The addenda in the last expression do not look like they are going to add up and cancel nicely.
Easy but lengthy calculations show that, indeed, they do. We are going to show only a few of the
many transformations that are necessary:

RW>(VR>)U = −R(W>R)V>U = (RR>)WV>U = WV>U,

RV>(WR>)U = −R(V>R)W>U = (RR>)VW>U = VW> U

(RU>)RW>V = −U(R>R)W>V = −UW>V.

The net result is

RU,V
R (W) =

1
4

{
(UV> −VU>)W + W(V>U −U>V)

}
(214)

By some matrix manipulations similar to the above and by introducing the TSO(n)-
commutator [U, V]R := R[R>U, R>V] based on the matrix commutator [A, B] := AB− BA,
the above relationship may be rewritten as

RU,V
R (W) = −1

4
[[U, V]R, W]R. (215)

Such expression is precisely the one reported in [22].
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As a last example, let us consider the space of symmetric, positive-definite matrices S+(n)
endowed with its canonical metric, for which we had found that ¯̄ΓP(U, V) = − 1

2 UP−1V −
1
2 VP−1U. The directional derivative of the Christoffel form reads

¯̄Γ•P(U, V; W) = 1
2 UP−1WP−1V + 1

2 VP−1WP−1U. (216)

By applying the Equation (208) we obtain an expression that consists of 16 terms, which
however either cancel or add up nicely to one another, resulting in the final expression

RU,V
P (W) = 1

4 (VP−1U −UP−1V)P−1W + 1
4 WP−1(UP−1V −VP−1U), (217)

that coincides to the one reported in [22].

The Riemannian curvature endomorphism enjoys, together with linearity in its vecto-
rial argument, a number of symmetries. We are going to recall here only those that we are
going to actually utilize in Section 4.5, namely

〈Ru,v(w), z〉 = −〈Rv,u(w), z〉,
〈Ru,v(w), z〉 = −〈Ru,v(z), w〉.

(218)

In particular, one might notice that 〈Rv,v(?), ?〉 = 0 and 〈R?,?(v), v〉 = 0.

4.5. Tidal Effects, Geodesic Deviation, Jacobi Fields, Sectional Curvature

A massive body subjected to a spatially-varying gravitation field is subjected to tidal
effects. In fact, since different parts of the body are subjected to a gravitation pull that
varies from point to point, the whole body is subjected to internal mechanical stress.

Formally, such physical effect has an analogous in manifold calculus in the separation
of nearby geodesics that may accelerate or decelerate according to the local curvature of
a manifold. To quantify such effect, let us define a smooth family of geodesics γs(t) where

• for a fixed value of the index s ∈ [−ε, ε], the curve γs(t) represents a geodesic
parametrized by the parameter t ∈ [0, 1]; the geodesic curve γ0(t) represents the
fiducial geodesic; each tangent vector vs(t) := ∂γs(t)

∂t denotes the speed of the geodesic
(we shall omit the values of the parameters for the sake of notation conciseness); all
geodesics depart from the same point x ∈M, namely γs(0) = x for any s;

• for a fixed value of the parameter t ∈ [0, 1], the function γs(t) represents a smooth

curve (but not a geodesic); each tangent vector ξs(t) := ∂γs(t)
∂s represents the separation

between two nearby geodesics (even in this case, we shall omit the values of the
parameters for the sake of notation conciseness); more intuitively, the infinitesimal
separation between nearby geodesics whose index s differ by an infinitesimal ds is
ξ ds. Since all geodesics depart from the same point, it holds that ξs(0) = 0 for every
value of the index s.

Let us observe that the vector fields v and ξ commute, in fact

[v, ξ] =
∂2

∂t∂s
γs(t)−

∂2

∂s∂t
γs(t) = 0 (219)

by the Schwarz-Clairaut’s theorem.
The vector ξ may be referred to as geodesic deviation. It turns out that such deviations

obeys a very neat equation involving the curvature endomorphism. The velocity with
which the separation ξ between two nearby geodesic changes is quantified by the covariant
derivation ∇vξ, while the acceleration of the geodesic deviation is quantified by ∇v∇vξ.
Let us recall that, for a torsion-free connection is holds that ∇vξ −∇ξv = [v, ξ]. Since
[v, ξ] = 0, it follows that ∇vξ = ∇ξv, hence

∇v∇vξ = ∇v∇ξv. (220)
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From the Equation (207) it follows that

∇v(∇ξ v)−∇ξ(∇vv)−∇[v,ξ]v = Rv,ξ(v), (221)

where we omitted the base-point x. Since [v, ξ] = 0 and ∇vv = 0 because v is the velocity
vector of a geodesic, it ultimately follows that

∇v∇vξ = Rv,ξ(v), (222)

that confirms that the acceleration with which two nearby geodesic originating from the same
point deviate from one another depends on the local curvature of the underlying manifold.

The Equation (222) is called a Jacobi equation and its solution ξ is termed Jacobi field.
In some circumstances, the Jacobi equation may assume a particularly simple form. To sur-
vey one of such cases, let us introduce the notion of sectional curvature.

The curvature endomorphism describes completely the curvature of a manifold in
a given point, however the local curvature of a manifold is more easily described by a scalar
index, the sectional curvature K : (TM)2 → R, defined as

Ku,v
x :=

〈Ru,v
x (v), u〉x

〈u, u〉x〈v, v〉x − 〈u, v〉2x
. (223)

Although the sectional curvature returns a scalar value, it by no means carries any
diminished information about the curvature of a manifold, in fact it is possible to recover
the curvature endomorphism by the sectional curvature. A special case that serves the
purpose of illustrating such property is that of spaces of constant sectional curvature.
A manifold M possesses a constant section curvature κ ∈ R if, for every x ∈M and every
u, v ∈ TxM, it holds that Ku,v

x = κ. In this case, the curvature endomorphism is given by

Ru,v
x (w) = κ(u〈v, w〉x − v〈u, w〉x). (224)

Let us illustrate the notion of constant curvature by a brief example.

Example 20. Let us consider the hyper-sphere Sn−1 endowed with its canonical metric. We already
know that its curvature may be expressed as Ru,v

x (w) = u〈v, w〉x − v〈u, w〉x hence, from the
property (224), we conclude immediately that the hyper-sphere is indeed a manifold of constant
sectional curvature κ = 1.

For a manifold of constant sectional curvature κ, the Jacobi equation reads

∇v∇vξ = κ(〈ξ, v〉v− ‖v‖2ξ), (225)

which is clearly a linear equation in the unknown Jacobi field ξ.
In any case, if one chooses u and v orthogonal to each other and with unit norm,

it is immediately seen that Ku,v
x = 〈Ru,v

x (v), u〉x, hence the sectional curvature and the
Riemannian curvature essentially coincide.

The sectional curvature plays an important role in evaluating as to whether the
acceleration of the geodesic deviation will increase or decrease (locally). To formalize
such observation, let us define the quantity `2 := 〈ξ, ξ〉 and let us evaluate its Taylor
series expansion up to the fourth order. Here ξ denotes the solution of the Jacobi equation



Symmetry 2022, 14, 1144 40 of 96

with initial conditions ∇vξ = w for t = 0, with ‖w‖ = 1 together with ξ = 0 for t = 0.
Notice that

d
dt

`2 = 2〈∇vξ, ξ〉, (226)

d2

dt2 `
2 = 2〈∇v∇vξ, ξ〉+ 2〈∇vξ,∇vξ〉, (227)

d3

dt3 `
2 = 2〈∇(3)

v ξ, ξ〉+ 6〈∇v∇vξ,∇vξ〉, (228)

d4

dt4 `
2 = 2〈∇(4)

v ξ, ξ〉+ 8〈∇(3)
v ξ,∇vξ〉+ 6〈∇v∇vξ,∇v∇vξ〉. (229)

Setting t = 0 gives

d
dt

`2
∣∣∣∣
t=0

= 2〈∇vξ, 0〉 = 0, (230)

d2

dt2 `
2
∣∣∣∣
t=0

= 2〈∇v∇vξ, 0〉+ 2〈w, w〉 = 2, (231)

d3

dt3 `
2
∣∣∣∣
t=0

= 2〈∇(3)
v ξ, 0〉+ 6〈Rv,0(v), w〉 = 0, (232)

d4

dt4 `
2
∣∣∣∣
t=0

= 2〈∇(4)
v ξ, 0〉+ 8〈∇(3)

v ξ, w〉+ 6〈Rv,0(v), Rv,0(v)〉 = 8〈∇(3)
v ξ, w〉. (233)

To what concerns the last term, we observe that, due to the linearity of the curvature
endomorphism in its vectorial arguments, we have

(∇v∇v∇vξ)x = (∇vRx)
v,ξ(v) + R∇vv,ξ

x (v) + Rv,∇vξ
x (v) + Rv,ξ

x (∇vv). (234)

Setting t = 0 and recalling that initially ξ = 0, we see that all terms on the right-hand
side are null except for the third one, that reads Rv,w

x (v), hence

d4

dt4 `
2
∣∣∣∣
t=0

= 〈Rv,w
x (v), w〉x, (235)

therefore the Taylor expansion of the function `2 around t = 0 reads

`2(t) = t2 + 1
3 t4〈Rv,w

x (v), w〉x + · · · , (236)

where the dots stand for higher-order terms that we are not going to pay attention to.
Under the additional hypotheses that ‖v‖ = 1 and 〈v, w〉x = 0, the above relationship

may be rewritten in terms of the sectional curvature. In fact, by the symmetry (218) we
know that 〈Rv,w

x (v), w〉x = −〈Rv,w
x (w), v〉x which, in turn, equals −Kv,w

x , therefore we may
write that

`2(t) = t2 − 1
3 t4Kv,w

x + · · · , (237)

therefore, locally, if Kv,w
x > 0 the acceleration of geodesic deviation decreases along the

fiducial geodesic, while if Kv,w
x < 0 the acceleration increases. Hence the sectional curvature

determines the speed of spreading of nearby geodesics. (Therefore, in some sense, curvature
acts as a force, which is the fundamental observation that motivated Einstein to formulate
his General Theory of Relativity).

A further interpretation of the sectional curvature in terms of separation of nearby
geodesics is worth examining. Let us define again a family of geodesics γs(t) and let
us assume, in particular, that these geodesic lines were shot in a peculiar way such that,
if we denote again by v the tangent velocity along the fiducial geodesic and by ξ the
separation vector along the same geodesic line, then it holds that 〈v, ξ〉 = 0, namely the
separation vector is orthogonal to the velocity vector along the fiducial geodesic (that
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is to say, the geodesic curves in this family are parallel to one another). By appropriate
parametrization, one can make sure that 〈v, v〉 = 〈ξ, ξ〉 = 1. Since ∇v∇vξ denotes the tidal
acceleration, we may interpret the effect of the curvature on the spreading of the geodesics
as follows:

• whenever 〈∇v∇vξ, ξ〉 > 0, the tidal force is directed in the same direction of the
current separation, hence nearby geodesics tend to spread even further from the
fiducial one;

• whenever 〈∇v∇vξ, ξ〉 < 0, the tidal force is directed in the opposite direction of the
current separation vector, hence nearby geodesics tend to get closer to the fiducial one;

• as opposed to the previous cases, whenever 〈∇v∇vξ, ξ〉 = 0, the tide does not produce
any effects and the geodesics get neither closer nor farther apart (in fact, this case
corresponds to zero curvature).

Since, by the hypotheses done, 〈∇v∇vξ, ξ〉 = 〈Rv,ξ(v), ξ〉 = −Kv,ξ , it follows that

• in a region of positive sectional curvature, two nearby parallel geodesics tend to
converge towards each other,

• in a region of negative curvature, two nearby parallel geodesics tend to deviate from
one another,

• in a region of zero curvature, two nearby parallel geodesic curves neither converge
nor diverge.

Once again, the spreading of nearby geodesics is evaluated in terms of relative acceler-
ation, because velocity spreading is not peculiar of curvature, since even in a flat space two
curves may deviate with non-zero velocity.

A neat result about sectional curvature is that the number Ku,v
x does not actually

depend on two vectors u, v ∈ TxM but rather on the subspace spanned by such vectors,
namely if we define a plane ℘ := span{u, v}, the sectional curvature is better written as K℘

x .
This property is easily proven by defining any linear combination

ū = au + bv, v̄ = cu + dv, (238)

where a, b, c, d ∈ R such that ad 6= bc, and calculating sectional curvature at ū, v̄, that takes
the value

Kū,v̄
x =

〈Rū,v̄
x (v̄), ū〉x

〈ū, ū〉x〈v̄, v̄〉x − 〈ū, v̄〉2x

=
〈Rau+bv,cu+dv

x (cu + dv), au + bv〉x
〈au + bv, au + bv〉x〈cu + dv, cu + dv〉x − 〈au + bv, cu + dv〉2x

.

(239)

Given the linearity of the curvature endomorphism and of the inner product in their
vectorial arguments and the symmetry properties (218), it is a little tedious but not hard to
find that

〈Rau+bv,cu+dv
x (cu + dv), au + bv〉x = (ad− bc)2〈Ru,v

x (v), u〉x, (240)

and that

〈au + bv, au + bv〉x〈cu + dv, cu + dv〉x − 〈au + bv, cu + dv〉2x
= (ad− bc)2(〈u, u〉x〈v, v〉x − 〈u, v〉2x),

(241)

hence the assertion.
We conclude this section by an example that justifies the property that, in a space

with constant sectional curvature, the curvature endomorphism is parallel (which is often
expressed through the dry statement ∇R = 0).

Example 21. Let us indicate by u, v, w, z ∈ Γ(M) four smooth vector fields and let us form
the function Ru,v

x (w). The application x 7→ Ru,v
x (w) defines a further vector field, that may be
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covariantly-derivated along z to give ∇zRu,v
x (w). Since Ru,v

x (w) is non-linear in x but trilinear in
its vectorial arguments, it holds that

∇z(Ru,v
x (w)) = (∇zRx)

u,v(w) + R∇zu,v(w) + Ru,∇zv(w) + Ru,v(∇zw), (242)

therefore, in particular

(∇zRx)
u,v(w) = ∇z(Ru,v

x (w))− R∇zu,v(w)− Ru,∇zv(w)− Ru,v(∇zw), (243)

On a space with constant sectional curvature κ, it holds that (∇zRx)u,v(w) = 0 for every
choice of u, v, w, z ∈ Γ(M). In fact, recalling that, in this case, Ru,v

x (w) = κ(u〈v, w〉x− v〈u, w〉x),
we have:

(∇zRx)
u,v(w) = κ(∇zu〈v, w〉x + u〈∇zv, w〉x + u〈v,∇zw〉x)

− κ(∇zv〈u, w〉x − v〈∇zu, w〉x − v〈u,∇zw〉x)
− κ(∇zu〈v, w〉x − v〈∇zu, w〉x)
− κ(u〈∇zv, w〉x −∇zv〈u, w〉x)
− κ(u〈v,∇zw〉x − v〈u,∇zw〉x).

(244)

The terms on the right-hand side cancel two by two, hence the stated property holds.

5. Continuous-Time Dynamical Systems

This section presents a survey on continuous-time dynamical systems on manifolds
with particular emphasis on Lagrangian systems and non-linear damped oscillators. This
survey of second-order (or double-integrator) dynamical system is presented in extrinsic
terms, as per the main flow of this paper as well as, for the interested readers, in coordinates
and through a special formulation based on cotangent bundles.

The present section is organized in the following way. Section 5.1 retraces calculus of
variation on manifold and Section 5.2 applies such technique to derive the general equation
of motion on a smooth manifold by a Lagrangian approach. The aim of Section 5.3 is to
illustrate the same derivation by using the coordinate formalism, while the purpose of
Section 5.4 is to retrace the same derivation by using a cotangent-bundle formalism, which
is shown to be as valid as the usually-invoked tangent-bundle one. In particular, Section 5.4
digs into non-linear oscillatory phenomena by first revising classical non-linear oscillators
and then showing how to extend such dynamical systems to state manifolds.

5.1. Calculus of Variations on Manifold

In the first part [13] of this multi-part tutorial, we studied a problem related to the
evaluation of the first-order variation of the fundamental form F : TM→ R, defined as
F (x, v) := 〈v, v〉x, on a manifold and we invoked its ‘extendability’ to a neighborhood of
the tangent bundle TM in the ambient bundle A2, namely, it is not necessary to assume
the well-definedness of expressions like F (x + y, v) nor F (x, v + w). In that occasion,
we mentioned that extendability provides a convenient shortcut but that it is not actually
necessary to arrive at the desired result. In the present section, we aim at clarifying
this point.

Variational methods constitute a core tool in applied mathematics, and with a specific
weight in system theory and control, as it affords the formulation of complex dynamics
through and elegant formalism and first principles. It is extremely interesting to examine
variational methods on smooth manifolds from an extrinsic perspective. We shall briefly
survey this topic as a preparation to the next sections were we shall use it extensively.
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Let F : TM → R denote an integrable function on a smooth manifold M and let
γ : [0, 1]→M denote a smooth curve on a Riemannian manifold M. We are going to prove
that the first variation of the integral (action) functional

A (γ) :=
∫ 1

0
F (γ, γ̇)dt, (245)

takes the expression:

δA (γ) =
∫ 1

0

〈
∂F

∂γ
− d

dt
∂F

∂γ̇
, δγ

〉A
dt, (246)

where 〈?, ?〉A denotes the Euclidean inner product that the ambient space A ⊃ M is
endowed with.

To understand the present development and the properties of the symbol δγ in
a coordinate-free setting, let us define a smoothly-parametrized family of smooth curves
c : [−ε, ε]× [0, 1]→M. The notation c(s, t) may be interpreted as follows:

• the index s determines which curve in the family is referred to; keeping the index s
fixed and varying the affine parameter t, namely considering γ(?, t), corresponds to
tracing the sth curve in the family;

• the affine parameter t determines which point on a curve is referred to; keeping t fixed
and letting s vary, namely considering γ(s, ?), corresponds to traversing the family of
curves transversally in correspondence of homologous points; notice that γ(s, ?) still
traces out a curve, although not necessarily endowed with the properties of γ(?, t)
(for example, while curves γ(?, t) may be geodesics, transversal curves γ(s, ?) might
not be geodesics).

Such family of smooth curves will be chosen such that{
c(0, t) = γ(t), ∀t ∈ [0, 1] (termed ‘fiducial curve’),
c(s, 0) = γ(0), c(s, 1) = γ(1), ∀s ∈ [−ε, ε],

(247)

namely, the family member corresponding to the index value s = 0 coincides to the curve
γ, while the other members are free except that they share the same endpoints as γ. As
mentioned, for a fixed s, the map t 7→ c(t, s) traces a smooth curve on the manifold M.
Likewise, for a fixed t, the map s 7→ c(t, s) traces a smooth ‘transversal’ curve on M.
Smoothness implies ∂2c

∂t∂s = ∂2c
∂s∂t by the Schwarz-Clairaut theorem. Now, it pays to define

the following partial derivatives:

δγ(t) :=
∂

∂s
c(s, t)

∣∣∣∣
s=0

and ċ(s, t) :=
∂

∂t
c(s, t). (248)

The function δγ is the tangent vector to the transversal curve at the point t, hence
δγ ∈ TγM. In addition, from the properties (247), it follows that δγ(0) = δγ(1) = 0.

On the basis of the above settings, the variation δA (γ) may be written as:

δ
∫ 1

0
F (γ, γ̇)dt := lim

h→0

1
h

{∫ 1

0
F (c(h, t), ċ(h, t))dt−

∫ 1

0
F (c(0, t), ċ(0, t))dt

}
=
∫ 1

0
lim
h→0

F (c(h, t), ċ(h, t))−F (c(0, t), ċ(0, t))
h

dt

=
∫ 1

0

∂

∂s
F (c(s, t), ċ(s, t))

∣∣∣∣
s=0

dt.

(249)

The partial derivative within the integral in Equation (249) may be written as:

∂F (c, ċ)
∂s

∣∣∣∣
s=0

=

〈
∂F (c, ċ)

∂c
,

∂c
∂s

〉A
∣∣∣∣∣
s=0

+

〈
∂F (c, ċ)

∂ċ
,

∂ċ
∂s

〉A
∣∣∣∣∣
s=0

. (250)
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Notice that the above expression does not require extendability to a neighbor of TM
but merely the existence of the partial derivatives ∂cF and ∂ċF . The variation of the action
functional in a neighbor of the fiducial curve γ reads, therefore:

δ
∫ 1

0
F (γ, γ̇)dt =

∫ 1

0

〈
∂F (γ, γ̇)

∂γ
, δγ

〉A
dt +

∫ 1

0

〈
∂F (γ, γ̇)

∂γ̇
,

dδγ

dt

〉A
dt, (251)

where, in the second integral, we have used the interchangeability of partial derivations
permitted by the Schwartz-Clairaut theorem. In addition, integration by parts yields:

∫ 1

0

〈
∂F

∂γ̇
,

d
dt

δγ

〉A
dt =

〈
∂F

∂γ̇
, δγ

〉A
∣∣∣∣∣
1

0

−
∫ 1

0

〈
d
dt

∂F

∂γ̇
, δγ

〉A
dt. (252)

The first addendum on the right-hand side equals zero since the transversal variation
δγ vanishes at the endpoints of the fiducial curve γ, hence the variation of the integral
functional assumes the final expression (246).

A noticeable consequence of this development is that the variation δA (γ) depends
only on the tangential components δγ ∈ TγM of the perturbation.

5.2. Second-Order Dynamical Systems on Manifold

In order to formulate second-order dynamical systems on manifolds we shall recall the
Euler-Lagrange-d’Alembert modified minimal action principle. According to such principle,
a dynamical system with which it is associated a kinetic energy function K , a potential
energy function V and a non-conservative force field f , generates a trajectory γ : [0, 1]→M
on a state manifold M such that:

δ
∫ 1

0
(K − V )dt +

∫ 1

0
〈 f , δγ〉γdt = 0. (253)

Let us survey in details how the above constituent functions are defined, what is
their meaning, and how to evaluate the variation of the integral. We shall assume M to be
a smooth Riemannian manifold.

The kinetic energy K : TM→ R associated to a dynamical system is defined as

K := 1
2 m〈γ̇, γ̇〉γ, (254)

with m > 0. Except for the factor m
2 , the kinetic energy coincides with the fundamental

form F . As such, the kinetic energy depends on the state of the system as well as on
its velocity. (Notice that the ‘mass’ term m has been introduced to retain familiarity with
well-known physics concepts. In general, in the present context it is not necessary at all
because the ‘mass’ may be more naturally thought of as part of the metric 〈·, ·〉, hence of
the metric tensor G.)

The potential energy function associated to the dynamical system under construction
is indicated by V : M→ R. The potential energy is generally a function of the system’s state
only and, most frequently, of the Riemannian distance between the state and a reference
point on the state-manifold.

The function L := K − V is referred to as Lagrangian function of the system. The in-
tegral of the lagrangian function along the trajectory generated by the system, namely
A :=

∫ 1
0 L dt, is referred to as total action of the system. (In the international unit system,

the Lagrangian is measured in Joule, while the action is measured in Joule · second.)
According to the Euler-Lagrange principle that a dynamical system is supposed to

bey, in the absence of non-conservative forces acting on the system, the system generates
a trajectory on the state-manifold that makes the total action stationary, namely

δ
∫ 1

0
L dt = 0. (255)
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There exists a further function, referred to as Hamiltonian function of the system,
defined as

H := K + V , (256)

that represents the total energy content of the system (at any given time instant). In a system
that obeys the Euler-Lagrange principle, the Hamiltonian is an invariant, namely it holds
that d

dtH = 0.
In the presence of non-conservative forces, the formed principle needs to be modified

to accommodate the work of such forces, hence it gets extended as in (253), that we shall
refer to as Euler-Lagrange-d’Alembert principle.

In order to calculate the variation of the total action, according to the method surveyed
in Section 5.1, let us define a smooth family of smooth curves γ : [−ε, ε]× [0, 1] → M
denotes as

γ(s, t), 0 6 t 6 1, −ε 6 s 6 ε, (257)

where the index s individuates a member of the family, while the affine parameter t
individuates a point on that curve. Let us underline that, for a fixed value of the affine
parameter, the map s 7→ γ(s, ?) traces a smooth curve.

Let us observe that the partial derivative ∂γ(s,t)
∂s ∈ Tγ(s,t)M represents a transversal

tangent vector, computed as

∂γ(s, t)
∂s

= lim
h→0

γ(s + h, t)− γ(s, t)
h

. (258)

The above-defined family of curves possesses, in particular, two fixed endpoints,
namely the endpoint t = 0 and the endpoint t = 1. In formal terms, this is expressed by

∂γ

∂s
(s, 0) =

∂γ

∂s
(s, 1) = 0, ∀s ∈ [−ε, ε]. (259)

In other terms, the maps s 7→ γ(s, 0) and s 7→ γ(s, 1) are constants with respect to the
index s. As a last definition, we set

δγ(t) :=
∂γ

∂s
(0, t). (260)

A consequence of the assumption (259) is that δ(0) = δ(1) = 0. The function δγ(t)
represents the ensemble of the variations, namely all transversal tangent vectors to all point
of the fiducial curve γ(t) ≡ γ(t, 0). (The fiducial curve represents, in fact, the trajectory
actually followed by the system.)

The variation of the total action may be defined as:

δ
∫ 1

0

(
1
2

m〈γ̇, γ̇〉γ − V

)
dt :=

{
∂

∂τ

∫ 1

0

(
1
2

m〈γ̇, Gγ(γ̇)〉A − V

)
dt
}∣∣∣∣

τ=0
, (261)

where we have used the shorthand γ to denote γ(t, τ). In particular, the variation of the
kinetic energy may be made explicit as follows:

∂

∂τ

∫ 1

0

1
2

m〈γ̇, Gγ(γ̇)〉Adt =
1
2

m
∫ 1

0

〈
∂γ̇

∂τ
, Gγ(γ̇)

〉A
dt+

1
2

m
∫ 1

0

〈
γ̇, G•γ

(
∂γ

∂τ
, γ̇

)〉A
dt+

1
2

m
∫ 1

0

〈
γ̇, Gγ

(
∂γ̇

∂τ

)〉A
dt.

(262)
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The first and the third integrals on the right-hand side take the same value. In the
second integral, it is possible to swap two tangential arguments, therefore

∂

∂τ

∫ 1

0

1
2

m〈γ̇, Gγ(γ̇)〉Adt = m
∫ 1

0

〈
∂γ̇

∂τ
, Gγ(γ̇)

〉A
dt +

1
2

m
∫ 1

0

〈
∂γ

∂τ
, G•γ(γ̇, γ̇)

〉A
dt. (263)

The first integral may be re-expressed by swapping the order of partial derivation and
by applying integration by parts, which give:

∫ 1

0

〈
d
dt

∂γ

∂τ
, Gγ(γ̇)

〉A
dt =

〈
∂γ

∂τ
, Gγ(γ̇)

〉A
∣∣∣∣∣
t=1

t=0

−
∫ 1

0

〈
∂γ

∂τ
,

d
dt

Gγ(γ̇)

〉A
dt, (264)

where, in particular, we may recall from the definition of the ‘bullet’ derivative G•, that

d
dt

Gγ(γ̇) = G•γ(γ̇, γ̇) + Gγ(γ̈). (265)

Continuing with the evaluation of the variation of the integral of the kinetic energy,
we get:

∂

∂τ

∫ 1

0

1
2

m〈γ̇, Gγ(γ̇)〉Adt = −m
∫ 1

0

〈
∂γ

∂τ
, G•γ(γ̇, γ̇) + Gγ(γ̈)

〉A
dt

+
1
2

m
∫ 1

0

〈
∂γ

∂τ
, G•γ(γ̇, γ̇)

〉A
dt

=m
∫ 1

0

〈
∂γ

∂τ
,−1

2
G•γ(γ̇, γ̇)− Gγ(γ̈)

〉A
dt.

(266)

Let us now evaluate the variation of the potential energy function, that reads

∂

∂τ

∫ 1

0
V dt =

∫ 1

0

∂V

∂τ
dt =

∫ 1

0

〈
gradγV ,

∂γ

∂τ

〉
γ

dt =
∫ 1

0

〈
Gγ(gradγV ),

∂γ

∂τ

〉A
dt. (267)

To what concerns the work of the external forcing term, ultimately it turns out that∫ 1

0
〈 f , δγ〉γ dt =

∫ 1

0
〈Gγ( f ), δγ〉A dt. (268)

Upon summing up all the above terms and setting τ = 0 (wherever the variable τ is
present) we obtain:

δ
∫ 1

0
L dt +

∫ 1

0
〈 f , δγ〉γ dt = m

∫ 1

0

〈
−1

2
G•γ(γ̇, γ̇)− Gγ(γ̈), δγ

〉A
dt

−
∫ 1

0

〈
Gγ(gradγV ), δγ

〉A
dt +

∫ 1

0
〈Gγ( f ), δγ〉A dt.

(269)

Let us observe that, in the first integral on the right-hand side, the scalar product
does not change if one adds any arbitrary normal term in NγM, therefore such integral is
equivalent to:

m
∫ 1

0

〈
−Gγ(∇γ

t γ̇), δγ
〉Adt. (270)

In conclusion, the variational principle of Euler, Lagrange and d’Alembert leads to the
integral equation∫ 1

0

〈
−m Gγ(∇γ

t γ̇)− Gγ(gradγV ) + Gγ( f ), δγ
〉A

dt = 0. (271)
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Since δγ is an arbitrary (tangential) perturbation, the above equation implies that
the integrand must be zero. Ultimately, the calculus of the variation leads to a class of
second-order dynamical systems on manifold of the type

m∇γ
t γ̇ = −gradγV + f . (272)

At a glance, it appears to generalize the II equation of dynamics of Newton to any
smooth Riemannian manifold. In fact, let us observe that if M ≡ Rp, then ∇γ

t γ̇ ≡ γ̈, hence
the above equation collapses to the familiar physics law “mass × acceleration = resultant
of forces”.

As an example, let us compute the energy balance of a non-conservative system (and,
as a by-product, let us verify the energy conservation of a conservative system).

Example 22. By definition, the total energy of the system is H = K + V , hence the power law
for the system (272) is

dH
dt = dK

dt + dV
dt

= 1
2

d
dt 〈γ̇, γ̇〉γ + dV

dt

= m〈∇γ
t γ̇, γ̇〉γ + 〈gradγV , γ̇〉γ

= 〈m∇γ
t γ̇ + gradγV , γ̇〉γ.

(273)

From the expression (272) it follows that m∇γ
t γ̇ + gradγV = f , and hence

˙H = 〈 f , γ̇〉γ. (274)

The dissipative components of the external force fields are those that cause a decrease of the
energy content of the system, namely those focing terms such that 〈 f , γ̇〉γ < 0 (such as, for example,
the viscous damping f := −µ γ̇, with µ > 0). The active components are, on the other hand,
those which inject energy into the system, such as those generated by actuators and due to active
damping effects.

5.3. Coordinate-Prone Lagrangian Formulation of Dynamical Systems*

As recalled, on a Riemannian manifold M whose tangent spaces TxM are endowed
with an inner product 〈?, ?〉x, the non-conservative Euler-Lagrange-d’Alembert principle
may be stated as: ∫ 1

0
δ(Kx(ẋ)− Vx)dt +

∫ 1

0
〈 fx, δx〉x dt = 0, (275)

where f ∈ Γ(M) denotes a vector field of external forces which, in the context of mathe-
matical system modeling and control, may include energy-dissipation terms and energy-
injection terms that include control fields. On each point of the fiducial trajectory x(t),
the quantity δx denotes a variation with respect to the fiducial trajectory itself. A pos-
sible generalization of this principle would arise by replacing the potential function by
a generalized potential [23], which would give rise to gyroscopic force fields.

On a smooth manifold M of dimension p, where a point x ∈ M is described by
coordinates (x1, . . . , xp) via a coordinate chart, working with intrinsic coordinates eases
the expression of the solution of the variational problem (275) in explicit form. In order to
express the derivation of the general law of dynamics arising from the extended Lagrangian
formulation (275), the following facts are worth summarizing:

• the standard notation for covariant and contravariant tensors indexes as well as
Einstein’s convention on summation indexes are in force;

• for any pair of tangent vectors u, v ∈ TxM, it holds that 〈u, v〉x = gijuivj, where gij
denote the components of the metric tensor associated to the inner product 〈?, ?〉x,
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namely, based on the canonical basis {∂x
1 , . . . , ∂x

p}, gij(x) := 〈∂x
i , ∂x

j 〉x; the functions gij

depend on the coordinates xk and the symmetry property gij = gji holds;
• in coordinates, the Riemannian gradient of a regular function f : M → R at a point

x ∈M is given by:

(gradx f )h = ghk ∂ f
∂xk ; (276)

the quantities ∂ f
∂xk denote the components of the Euclidean gradient, while the spatial

functions ghk denote the contravariant components of the metric tensor;
• the Christoffel symbols of the first kind associated to the Levi-Civita connection

corresponding to the metric tensor of components gij are computed as:

Γkji =
1
2

(
∂gji

∂xk +
∂gik

∂xj −
∂gkj

∂xi

)
;

the Christoffel symbols of the second kind are computed as Γh
ik = ghjΓikj; the Christof-

fel symbols of the second kind are symmetric in the covariant indices, namely, Γh
ij = Γh

ji;
the Christoffel form Γx : TxM× TxM→ Rr (a way to express the Christoffel symbol
applied to two tangent directions as an array) has components [Γx(v, w)]k = Γk

ijv
iwj;

• the kinetic energy functional is expressed by the symmetric bilinear form 1
2 m〈ẋ, ẋ〉x,

namely Kx(ẋ) = 1
2 m gij ẋi ẋj, where the constant m > 0 plays the role of a mass term;

on a Riemannian manifold, the metric tensor is positive-definite, hence Kx(ẋ) > 0 on
every trajectory x(t) ∈M; in the context of abstract manifold calculus, the mass term is
quite immaterial since it does not represent any actual physical quantity, nevertheless,
we shall leave it in the equation to help readers although, as already mentioned, it
might well be incorporated into the metric tensor g;

• the potential energy function V depends on the coordinates xk only;
• the variations δxk may be chosen arbitrarily except at the boundaries of the trajectory

where they vanish, namely, δxk(0) = δxk(1) = 0.

In coordinates, the principle (275) may be rewritten as:∫ 1

0
δ

(
1
2

m gij ẋi ẋj − Vx + fkδxk
)

dt = 0, (277)

where functions fk denote the covariant components of a cotangent dissipation force field
f [x ∈ T∗xM. By calculating the variation in the leftmost integral, the extended Lagrangian
formulation may be expressed in the form:

∫ 1

0
ϕkδxkdt = 0, ϕk :=

1
2

m
∂gij

∂xk ẋi ẋj −m
d
dt

(gik ẋi) + fk −
∂Vx

∂xk , (278)

through integration by parts. As the variations δxk may be chosen arbitrarily for the
parameter t ranging in the open interval (0, 1), the equations of dynamics on the manifold
M are such that ϕk = 0, namely:

1
2

m
∂gij

∂xk ẋi ẋj −m
∂gik

∂xj ẋi ẋj −mgik ẍi + fk −
∂Vx

∂xk = 0. (279)

Thanks to the Christoffel symbols of the first kind Γijk, the above equation may be
recast as:

m gik ẍi + m Γijk ẋi ẋj +
∂Vx

∂xk − fk = 0. (280)



Symmetry 2022, 14, 1144 49 of 96

Upon multiplying both sides of the above equation by the contravariant tensor ghk

and upon summation with respect to the index k, the above equation takes the form:

m ẍh + m ghkΓijk ẋi ẋj + ghk
(

∂Vx

∂xk − fk

)
= 0. (281)

The above expression may be further condensed by noticing that:

• the terms ghkΓijk equal the Christoffel symbols of the second kind Γh
ij;

• the terms ghk ∂Vx
∂xk denote the components of the Riemannian gradient gradxVx;

• the terms ghk fk denote the components of the contravariant (tangent) dissipation force
field fx ∈ TxM.

In conclusion, by introducing the coordinate array x := (x1, x2, . . . , xp) and the velocity
array v := (v1, v2, . . . , vp), the Equation (281) may be recast compactly as a system of first-
order equations {

ẋ = 1
m v,

v̇−m Γx(v, v) = −gradxVx + fx.
(282)

The following example treats in details the case of viscous damping as external force
field and determines the rate of energy dissipation.

Example 23. The dissipation term is often drawn from viscosity theory, namely, fx := −µẋ,
with µ > 0 denoting a viscous damping term. The system dynamics assumes then the expression:{

ẋ = 1
m v,

v̇−m Γx(v, v) = −gradxVx − µ v.
(283)

The dynamics (283) is governed by a driving force from a potential energy plus a viscosity term.
The law of energy balance for the dissipative system (283) may be found by the equation:∫ 1

0
ϕk ẋkdt = 0. (284)

Plugging in the expression (278) gives:

1
2

m
∫ 1

0

∂gij

∂xk ẋk ẋi ẋjdt−m
∫ 1

0

d
dt

(gik ẋi)ẋkdt− µ
∫ 1

0
ghk ẋh ẋkdt−

∫ 1

0

∂Vx

∂xk ẋkdt = 0. (285)

The first integral may be rewritten, again upon integration by parts, as:

m
2

∫ 1

0

∂gij

∂xk ẋk ẋi ẋjdt =
m
2

∫ 1

0

dgij

dt
ẋi ẋjdt = K |10 −m

∫ 1

0
gij ẋi ẍjdt.

The second term may be written, upon integration by parts, as:

m
∫ 1

0

d
dt

(gik ẋi)ẋkdt = 2K |10 −m
∫ 1

0
gij ẋi ẍjdt,

while the remaining terms may be written as

µ
∫ 1

0
gik ẋi ẋkdt +

∫ 1

0

∂V

∂xk ẋkdt = 2
µ

m

∫ 1

0
K (t)dt + V (t)|10.

The energy balance equation may thus be written as:

K (t) + V (t) = K (0) + V (0)− 2
µ

m

∫ 1

0
K (t)dt, (286)
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where K (t) stands for Kx(ẋ(t)) and V (t) for Vx(t). The above equation shows that the designed
second-order dynamical system looses energy at a rate proportional to its kinetic energy.

A non-dissipative system (µ = 0) devoid of a potential function, hence completely
governed by the kinetic energy/metric, produces a trajectory that keeps the quantity that
undergoes variation, namely the only kinetic energy, constant over the whole trajectory.
As we already knew, therefore, the Christoffel form Γx(?, ?) may thus be computed on the
basis of the variational principle: ∫ 1

0
δKx dt = 0, (287)

invoking which is often the preferred path for computing the Christoffel form.

5.4. Cotangent Bundle Derivation of Non-Linear Oscillators on Manifolds*

Nonlinear oscillators arise from the modeling of complex physical structures [24] and
make up the basis for a number of modern applications [25]. The state of nonlinear oscilla-
tors may form complex, non-repeating (although deterministic) patterns. Contributions
from the scientific literature suggest how the simplest harmonic-oscillator models may be
generalized to complex single or coupled oscillators [26–29].

The cotangent bundle, namely the dual T?M of the tangent bundle associated to
a manifold, is as valid as the tangent bundle to formulate and study dynamical systems.
We mention that some authors in manifold calculus explain the whole manifold calculus
itself by starting from cotangent bundles and only later introducing tangent spaces. In the
present section, we shall rather be showing how non-linear oscillators may be defined
by means of tangent-bundle calculus. We shall start off by revising a number of classical
oscillator models very well known in the scientific literature and shall then continue by
showing how such mathematical models may be seamlessly be extended to manifolds by
means of cotangent-bundle calculus.

The present section makes frequent reference to the work [30] that it is based on.

5.4.1. Classical Oscillators on Euclidean Spaces

A number of nonlinear oscillator models appear in the scientific literature as dynamical
systems in a single real descriptive variable. The simplest model known in the scientific
literature is perhaps the harmonic oscillator described by the second-order dynamical system:

ẍ + Ω2
0x = 0, (288)

where x ∈ R denotes a descriptive variable and Ω0 > 0 denotes the natural oscillation
frequency of the harmonic oscillator. The state x = x(t) is a function of time, with t ∈ R.
As no damping is considered, the harmonic oscillator conserves its initial energy indefinitely.
The same consideration applies to the simple pendulum model ẍ + Ω2

0 sin x = 0, which
appears as a second-order differential equation that may be easily recast as a system of two
first-order differential equations: {

ẋ = v,
v̇ = −dVx

dx ,
(289)

where the forcing term on the right-hand side has been written as the gradient of a potential
energy function V : R → R which, in this case, may be defined as Vx := Ω2

0(1− cos x).
(Notice that we have therewith abandoned the notion of ‘mass’ which, besides of be-
ing immaterial in the present context, may always be factored out through appropriate
normalization.)
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A further well-studied nonlinear damped oscillator that arises from the analysis of
vacuum tubes is the van der Pol oscillator [24], described by the second-order differen-
tial equation:

ẍ− µ(1− x2)ẋ + Ω2
0x = 0, (290)

where again x ∈ R denotes a descriptive variable and µ > 0 denotes a damping parameter.
When µ = 0, the Equation (290) collapses into the equation of an harmonic oscillator (288).
When µ > 0, the system will eventually enter a limit cycle. Near the origin (x, ẋ) = (0, 0)
of the phase space the system is unstable, while far from the origin the system is heavily
damped and hence stable. The single Equation (290) may be recast as the paired equations:{

ẋ = v,
v̇ = −dVx

dx − µ(x2 − 1)v,
(291)

where now two variables, x, v ∈ R, are used to describe its dynamics and a potential
energy function V : R → R has been introduced to quantify the forcing term, which is
defined as Vx := 1

2 Ω2
0x2, where Ω0 > 0 denotes a constant parameter. The van der Pol

oscillator model may be regarded as a special case of the FitzHugh-Nagumo model [31]
which, in turn, represents a simplified version of the Hodgkin-Huxley mathematical model
that explains in a detailed manner the phenomena of activation and deactivation of spiking
neurons. A related example arises from the examination of the driven van der Pol oscillator,
described by the differential system:{

ẋ = v,
v̇ = −dVx

dx − µ(x2 − 1)v + A sin(Ωt),
(292)

where A > 0 and Ω > 0 denote two constant parameters. In the present case, the non-
linear damping term comprises a quantity (the driving term) that depends sinusoidally
from the temporal variable t. The particular form of the damping causes a dehancement
of the magnitude of strong oscillations and an amplification of the magnitude of weak
oscillations. The original van der Pol oscillator has been generalized in different ways, as in
the paper [32] that considers the introduction of fractional derivatives.

Another well-studied nonlinear dynamical system that exhibits a complex behavior is
the Duffing oscillator [33]. Duffing’s dynamical system reads:{

ẋ = v,
v̇ = −dVx

dx − µ v + A sin(Ωt),
(293)

where A > 0 and Ω > 0 denote constant parameters and the potential energy function
V : R→ R is defined according to one of the three known models summarized below:

• Case of a hard Duffing oscillator: In this case, the potential function is defined as
Vx := 1

2 Ω2
0x2 + 1

4 αΩ2
0x4,

• Case of a double-well Duffing oscillator: In this instance, the potential is defined as
Vx := − 1

2 Ω2
0x2 + 1

4 αΩ2
0x4,

• Case of a soft Duffing oscillator: In this case, the potential is defined as Vx := 1
2 Ω2

0x2 −
1
4 αΩ2

0x4,

where Ω0 > 0 and α > 0 denote constants of the models. The dynamical system (293)
describes the motion of a damped oscillator with a more complicated potential than in the
simple harmonic oscillator. It is able to model, for example, a spring pendulum whose
spring’s stiffness does not exactly obey Hooke’s law. A direct comparison between the
Duffing oscillator (293) and the driven van der Pol oscillator (292) reveals that the linear
damping term −µ v in the Duffing system is replaced by the non-linear damping term
−µ(x2− 1)v in the van der Pol system. A number of generalized Duffing models have been
proposed in the scientific literature. As an example, we mention the contribution [34] that
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describes a generalized double-well Duffing oscillator endowed with non-linear damping
described by: {

ẋ = v,
v̇ = −Ω2

0x + αΩ2
0x3 − µ v|v|η−1 + A sin(Ωt),

(294)

where the constant η > 1 is termed damping exponent and determines the degree of non-
linearity of the damping term. The case η = 1 corresponds to linear damping in the
system (293). A similar analysis was performed in [35] about the universal escape oscillator
endowed with the same nonlinear damping term.

Several two-variable oscillator models are known from the literature besides the one
examined in details, such as the Lotka-Volterra model of prey-predator interaction and
the Wilberforce torsional pendulum. A common factor of all two-dimensional models
is that their dynamics is entirely described by two variables, a positional variable x and
a velocity variable v, in such a way that the phase space of these systems is formed by all
pairs (x, v) ∈ R2, hence is the Euclidean space R2. The state space, in particular, coincides
with the real line R, and the velocity space coincides with the real line R. This appears to be
a coincidence that does not copy to the manifold case, in which the state manifold M and
the velocity space TM are entirely different spaces. Clearly the tangent bundle TM plays
a fundamental role in the description of a dynamical system on manifold, and so does its
dual, namely the cotangent bundle T?M.

Dynamical systems involving more than one variable are known in the scientific
literature. The best known example is perhaps the Lorenz oscillator [36], which appears as
a nonlinear, three-dimensional dynamical system that generates a complex flow. A Lorenz
oscillator is described by the mathematical model:

ẋ1 = σ(x2 − x1),
ẋ2 = x1(ρ− x3)− x2,
ẋ3 = x1x2 − βx3,

(295)

which includes three constant parameters σ, ρ, β > 0 and three variables (x1, x2, x3) ∈ R3.
For certain values of the three parameters, the Lorenz system exhibits complex behavior.
The Lorenz equations were derived from the simplified relationships that govern convection
rolls arising in the study of the atmosphere and were applied to achieve climate and weather
predictions. A further noteworthy example is brought to our attention by the authors of [37],
which studied the emergence of oscillations in a SIR epidemic model.

The Lorenz model (295) is of the first order, but it may be recast as a second-order
model by deriving both sides of each equation with respect to the temporal parameter t:

ẍ1 = −σẋ1 + σẋ2,
ẍ2 = (ρ− x3)ẋ1 − ẋ2 − x1 ẋ3,
ẍ3 = x2 ẋ1 + x1 ẋ2 − βẋ3.

(296)

By associating to the Lorenz system the state array x := [x1 x2 x3]
>, the dynamical

system (296) may be cast in the compact form:
ẋ = v,

v̇ = −Cxv, Cx :=

 σ −σ 0
x3 − ρ 1 x1

−x2 −x1 β

.
(297)

The recast Lorenz system takes the form of a set of purely non-linearly damped
oscillator on a flat space which may be thought of being endowed with a constant potential
energy function.
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A general expression for coupled scalar oscillators in Rn that include, as a special
instance, the Lorenz model (297), may be drawn from the study [38]:{

ẋ = v,
v̇ = −∂xV − ϕx(v) + u f (t),

(298)

where x ∈ Rn denotes the state array, V : Rn → R denotes a potential energy function,
∂xV ∈ Rn denotes the Euclidean gradient of the potential energy function, ϕ : Rn ×Rn →
Rn indicates a linear operator in the variable v (possibly nonlinear in the variable x) that
represents damping and other internal sinks/sources of energy, while the term f : R→ R
represents a forcing term in the fixed direction u ∈ Rn.

5.4.2. Cotangent Bundle Notation

In the present section we shall denote the inner product of two tangent vectors through
a special symbol, namely Gx : TxM× TxM → R. The metric ‘flat’ operator, denoted as
G[, turns a tangent vector into a cotangent vector, namely, G[

x : TxM → T?
xM. Its dual is

termed ‘sharp’ operator and is denoted by G]. The differential of a differentiable function
ψ : M → R at a point x ∈ M is denoted by dxψ ∈ T?

xM. The Riemannian gradient of the
function ψ with respect to a metric G, evaluated at a point x ∈M is expressed though the
metric operator as (G]

x ◦ dx)ψ. The Christoffel form associated to the metric G is denoted

as
G
Γ. The Levi-Civita connection associated to this metric is denoted as

G
∇ and the parallel

transport operator associated to the same metric is denoted as
G
P.

Let us recall that a vector field ϕ ∈ Γ(M) that depends on a parameter, namely
ϕx : TxM → TxM, is positive-definite if Gx(ϕx(v), v) > 0 for every v ∈ TxM− {0} and
every x ∈M.

Let us further recall that, given two points x, y ∈ M connectable by a geodesic line
γ : [0, 1]→M, their Riemannian distance is defined by

D(x, y) :=
∫ 1

0
G

1
2
γ(t)(γ̇(t), γ̇(t))dt. (299)

A fundamental result of the calculus on manifolds states that the Riemannian gradient
of a squared distance function reads:

G]
x(dxD

2(x, y)) = −2 logx(y), (300)

as long as the logarithm is defined. The gradient of the squared distance is known in closed
form only if the expression of the inverse exponential map is known explicitly.

5.4.3. Second-Order Dynamical Systems Formulation by Cotangent Bundles

A classical dynamical system model on the ordinary space R3 is represented by
Newton’s second law of motion of a particle of mass m subjected to an external force
f : R3 ×R3 × I→ R3, where I denotes a time interval. The trajectory γ : I→ R3 followed
by such particle results as the solution of Newton’s equation:

m
d2γ

dt2 = f
(

γ,
dγ

dt
, t
)

. (301)

The second-order time-derivative γ̈(t) quantifies the instantaneous translational ac-
celeration of the test particle as a function of the absolute time t and the mass constant
m quantifies the translational inertia of the particle. The resultant of ‘external’ forces f
depends on the instantaneous position of the particle γ(t), on its instantaneous translational
velocity γ̇(t) and may even depend explicitly on the time.

The current section recalls a formulation of second-order dynamical systems on man-
ifold that retraces the above-recalled dynamics of an virtual point-wise particle whose
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instantaneous position is bound to belong to a Riemannian manifold M—endowed with
metric G—rather than the ordinary space R3. As in the previous sections, the Hamilton’s
stationary-action principle, extended through the d’Alembert virtual work notion, shall
be invoked to formulate the dynamics of such virtual particle. For this reason, it pays
to revisit the notion notions of kinetic energy, potential energy and external excitation,
mainly with the aim of clarifying the customized notation introduced at the beginning of
the present section.

The kinetic energy function for a point-wise particle associated with the metric G is
denoted by K : TM → R and is defined by Kx(v) := 1

2Gx(v, v) for (x, v) ∈ TM. On
a Riemannian manifold, the metric tensor is positive-definite, hence, on every trajectory
γ : I → M, it holds that Kγ(γ̇) > 0. The potential energy function V : M → R is assumed
to depend solely on the positional variable x ∈ M; whenever any exogenous forcing is
lacking, the trajectory γ : I→M follows the landscape of the potential energy function. As
opposed to what stated in the previous sections, in the present context an exogenous force at
a point x ∈M appears as a cotangent vector, namely fx : TxM× I→ T?

xM.
On the basis of the above-recalled quantities and notation, the extended stationary-

action principle that determines the evolution of the state on a Riemannian manifold M
endowed with a metric G takes the form:

δ
∫
I
(Kγ(γ̇)− Vγ)dt +

∫
I
Gγ(G]

γ( fγ), δγ)dt = 0, (302)

where symbol δ again denotes variation. The integrand in the leftmost integral represents
the classical Lagrangian function of the particle and its integral represents the total action of
the particle. The rightmost integral represents the virtual work effected by the resultant of
the external driving force and represents an extension of the classical Hamilton’s stationary-
action principle that may be traced back to d’Alembert [39]. In the interior of the interval I,
the variation δγ ∈ TγM is arbitrary, while at the boundaries of the trajectory it vanishes to
zero. Computing the variation leads to the dynamical system formulation:

(G[
γ ◦

G
∇γ̇)γ̇ = −dγVγ + fγ. (303)

By comparing the Equation (303) to Newton’s law (301), it is readily seen that the

term
G
∇γ̇γ̇ represents the covariant acceleration of the particle sliding on the manifold M,

the operator G[ plays the role of inertia tensor and the term fx − dxVx is the total force that
generates the motion of the particle. Of particular interest the role played by the inertia
tensor G[ that replaces (and extends) the notion of inertial mass.

The covariant acceleration may be written in terms of the Christoffel form as
G
∇γ̇γ̇ = γ̈ +

G
Γγ(γ̇, γ̇), therefore, the Equation (303) may be rewritten as the system of first-

order differential equations:ẋ = v,

v̇ = −
G
Γx(v, v)− (G]

x ◦ dx)Vx +G]
x( fx).

(304)

in the tangent-bundle arrays (x(t), v(t)) ∈ TM.
The total energy (or Hamiltonian function) H : TM× I→ R of the particle sliding on

the manifold, and hence of the dynamical system (304), is defined by:

Hx := Kx + Vx. (305)

Over a trajectory γ : I→M of the system (304), it holds that:

dHγ

dt
= Gγ(G]

γ( fγ), γ̇), (306)
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which represents a power law for the dynamical system at hand. In the case that the
external forcing is absent, the system (304) is conservative as the total energy Hγ keeps
constant over the trajectory, otherwise the system is non-conservative and its energy varies
along its trajectory.

In the present context, the force fx = fx(v, t) ∈ T?
x M essentially represents damping

effects and external forcing terms. In particular:

• Friction-type damping: This kind of damping generalizes the Rayleigh damping and

is expressed by the forcing term − 1
2 µ

∂(Gx(v,v)ε)
∂vσ dxσ, with ε > 1 being a damping

coefficient and µ > 0 being a viscosity coefficient. By computing the derivatives, it is
found that the friction-type damping force equals −µ‖v‖2(ε−1)

x G[
x(v).

• Non-linear damping: It generalizes the nonlinear damping term that appears in the
van der Pol system and assumes the expression −(G[

x ◦ ϕx)(v), with ϕ ∈ Γ(M) being
a vector field that depends on a parameter, such that, for each x ∈M, ϕx : TxM→ TxM
is a linear endomorphism.

• Sinusoidal driving force: It generalizes the notion of external sinusoidal forcing term
from mono-dimensional dynamical systems. It takes the expression A sin(Ωt)dx1,
with A, Ω ∈ R and t ∈ I.
With the above assumptions, the dynamical system (304) takes the expression:ẋ = v,

v̇ = −
G
Γx(v, v)−G]

x(dxVx)− µ‖v‖2(ε−1)
x v− ϕx(v)− A sin(Ωt)G]

x(dx1).
(307)

The rate of change of the total energy due to the above forcing terms reads:

dHx

dt
= −µ‖v‖2ε

x −Gx(ϕx(v), v)− A sin(Ωt)v1. (308)

If µ 6= 0, the first term on the right-hand side is purely dissipative and is proportional
to the kinetic energy of the system (to K ε

x , in fact), while the second term on the right-hand
side is not necessarily dissipative and may bring energy into the system. (If the vector field
ϕ is positive-definite, then the term −ϕx(v) in the system (307) is purely dissipative.)

Let us consider two examples that aim at clarifying the notation used and to show that
the considered non-linear oscillators on manifold are indeed general enough to encompass
the original classical oscillators.

Example 24. In the special case that M = Rn, hence TxM ≡ Rn, and Gx(v, w) = v>w, it holds

that
G
Γx = 0, G]

x(dxVx) = ∂xV , G]
x(dx1) = 1n, where symbol 1n denotes the column array

[1, 0, · · · , 0]> ∈ Rn. Hence, the dynamical system (307) becomes:{
ẋ = v,
v̇ = −∂xV − µ(v>v)ε−1v− ϕx(v)− A sin(Ωt)1n,

(309)

where ϕ : Rn ×Rn → Rn and µ > 0. The dynamical system (309) accounts for the exemplary
systems (289), (291)–(294) and (298).

To further exemplify the above theoretical development, the present subsection discusses the
special case of Riemannian manifolds M of dimension 1. The main interest on such kinds of manifolds
is analytic tractability. Examples of 1-dimensional manifolds are the unit sphere S1 (namely, the unit
circle) and the special orthogonal group SO(2).

In order to particularize the general Equation (304) to the case of a 1-dimensional Riemannian
manifold, the following preliminary observations are in order. On a Riemannian manifold M of
dimension 1, the tangent space TxM is a linear space of dimension 1 whose basis vector is denoted
by ∂x, and the metric tensor Gx collapses into a scalar function gx > 0, x ∈M. Given two tangent
vectors v∂x, w∂x ∈ TxM, their inner product Gx(v∂x, w∂x) = gxvw. Consequently, the squared
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norm ‖v∂x‖2
x equals gxv2. Likewise, the cotangent space T?

xM has dimension 1 and its basis vector
is denoted by dx. Given a cotangent vector u dx, it holds that G]

x(u dx) = u
gx

∂x. Hence, in the

present example, the only Christoffel symbol
G
Γ11

1 reads
G
γx := 1

2
1
gx

dgx
dx = 1

2
d log gx

dx and the only

non-zero value of the Christoffel form
G
Γx(v∂x, w∂x) is

G
γxvw. Given a potential energy function

V : M → R, the only non-zero component of its gradient G]
x(dxVx) equals 1

gx
dVx
dx . The general

Equation (304), particularized to a 1-dimensional Riemannian manifold, read:ẋ = v,

v̇ = −G
γxv2 − 1

gx
dVx
dx − µ(gxv2)ε−1v− ϕx(v).

(310)

An interesting special case is the one where the metric is independent of the position, namely

gx = 1, that implies
G
γx = 0. In this case, the dynamical system (310) particularizes to:{

ẋ = v,
v̇ = −dVx

dx − µv2(ε−1)v− ϕx(v).
(311)

The above dynamical system is a prototype for the classical nonlinear damped oscillators, such
as the van der Pol oscillator and the simple pendulum.

The sphere S1 embedded in R2 may be described as the set of arrays of the form
x = [cos θ sin θ]>, with θ ∈ R. Then, it holds that:

d
dt

[
cos θ
sin θ

]
= ẋ

[
− sin θ
cos θ

]
= v∂x,

where v := ẋ and ∂x := [− sin x cos x]>. Choosing the Euclidean inner product on the tangent
spaces TxS1, it holds that gx = Gx(∂x, ∂x) = [− sin θ cos θ]>[− sin θ cos θ] = 1. Hence,
the dynamical equations on S1 endowed with the Euclidean metric are as in (311).

The exponential map corresponding to the above geometric setting may be expressed as:

expx(v∂x) = cos(v)x + sin(v)∂x. (312)

Given two points y, z ∈ S1, solving the equation z = expy(v∂y) in the unknown v gives
v = arccos(z>y), hence:

logy(z) = arccos(z>y)∂y, (313)

and the geodesic distance between the points x and z is given by:

D(z, y) = arccos(z>y). (314)

In the above expressions the symbol ‘arccos’ denotes the inverse cosine function. Parametrizing
the point y by [cos θ sin θ]> and the point z by [cos r sin r]>, the squared geodesic distance may
be written as D2(z, y) = (θ − r)2.

5.4.4. Potential Energy Functions

The present subsection retraces classical potential energy functions summarized in
Section 5.4.1 and extends such potentials to a general Riemannian manifold.

A well-documented potential energy function is the one arising in the study of the
simple pendulum oscillating around the reference angle r = 0. In the classical case that
M = R, it reads Vx ∝ 1− cos x. Such potential energy function may be extended to a general
Riemannian manifold M, endowed with a Riemannian distance function D(?, ?), as:

V
(pen)

x := κ(1− cos D(x, r)), (315)
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with κ > 0 being a constant parameter and r ∈M denoting a reference point. The potential

V
(pen)

x presents one of its minima in x = r. Rewriting the pendulum-type potential as

V(pen)
x = κ − κ cos[(D2(x, r))

1
2 ] it is immediate to see that, according to the calculation

rule (300), its Riemannian gradient reads:

G]
x(dxV

(pen)
x ) = −κ

sin D(x, r)
D(x, r)

logx(r). (316)

The potential energy function introduced to state the van der Pol dynamical system
in the mono-dimensional state space R is a quadratic function centered in the reference
point r = 0, namely Vx ∝ x2. Such potential energy function may be extended to a general
Riemannian manifold M by first generalizing the squared distance-to-zero x2 by a squared
distance-to-reference (x− r)2 and successively by replacing the Euclidean distance by the
geodesic distance, namely as

V
(pol)

x := κ
2D2(x, r), (317)

with κ > 0 being a constant parameter and r ∈M denoting a reference point. The potential

V
(pol)

x presents a single minimum in x = r. Moreover, according to the calculation rule (300),
its Riemannian gradient reads:

G]
x(dxV

(pol)
x ) = −κ logx(r). (318)

The contribution [40] studied an extension of the (hard) Duffing oscillator to two
dimensions, namely, to the state space R2. The key point is to extend the original potential
function Vx : R→ R through vector norm as:

Vx = 1
2 Ω2

0‖x‖2 + 1
4 κΩ2

0‖x‖4, (319)

where ‖ ? ‖ denotes the Euclidean norm, while Ω0 > 0 and κ > 0 are free parameters.
The quantity ‖x‖ coincides with the Euclidean distance of the state x to the reference point
r = 0. Such observation paves the way to an extension to a general Riemannian manifold
M, that is achieved by replacing the Euclidean distance with the Riemannian distance:

V
(duf)

x := ± 1
2D2(x, r)± 1

4 κD4(x, r), (320)

where again the quantity D(?, ?) denotes the Riemannian distance between two points on
the manifold M, the constant κ > 0 denotes a free parameter that influences the strength
of the conservative forcing term corresponding to the potential, and r ∈ M represents
a reference point on the state manifold around which the trajectory of the dynamical system
develops. The signs ±may be chosen arbitrarily and their choice give rise to the soft and
the double-well Duffing oscillator, as well as to the hard Duffing oscillator discussed in the
paper [40]. According to the calculation rule (300), the Riemannian gradient of the extended
Duffing potential V

(duf)
x , in the case of a hard Duffing oscillator, reads:

G]
x(dxV

(duf)
x ) = −

(
1 + κD2(x, r)

)
logx(r). (321)

Likewise, the Keplerian system mentioned in [40] may be extended to a general Rie-
mannian manifold M through the introduction of the Riemannian distance D(?, ?), by re-
defining the Keplerian potential as:

V
(kep)

x := − ρ

D(x, r)
+ εD(x, r), (322)
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with ρ, ε > 0 denoting parameters of the potential energy function. By rewriting such
Keplerian-like potential as −ρ[D2(x, r)]−

1
2 + ε[D2(x, r)]

1
2 and invoking again the calcula-

tion rule (300), it is immediate to see that its Riemannian gradient takes the expression:

G]
x(dxV

(kep)
x ) = −

(
ρ

D3(x, r)
+

ε

D(x, r)

)
logx(r). (323)

For exemplification purpose, let us consider two instances of non-linear damped
oscillators on matrix manifolds.

Example 25. As a first example, let us take as state space for non-linear manifold-type oscillators
the manifold S+(n) of symmetric positive-definite matrices, endowed with its canonical metric.
If the potential energy function is written in terms of geodesic distance, its Riemannian gradient may
be written by invoking the property (300). If the potential energy function is written as an explicit
function of the matrix-variable P ∈ S+(n), then the Riemannian gradient, in terms of its Gateaux
derivative ∂PV , may be written as:

G]
x(dPVP) =

1
2 P
(

∂PV + ∂>P V
)

P. (324)

By gathering the expressions of the Christoffel operator and of the Riemannian gradient of the
potential energy function, the following dynamical system equations are obtained:

Ṗ = U,

U̇ = UP−1U −G]
P(dPVP)− µ‖U‖2(ε−1)

P U − A sin(Ωt)P
(

1>n×n + 1n×n

)
P

− ϕP(U).

(325)

In the present case, the function ϕP : S(n)→ S(n).
As a second example, let us assume a Stiefel manifold is endowed with its canonical metric.

In some applications, the potential energy function is written explicitly in terms of the matrix-state
X ∈ St(n, p) (rather than on Riemannian distance). In the principal/minor component analysis
case, for instance, the potential energy function reads VX = ± 1

2 tr(X>ΣX), with Σ ∈ S+(n),
and its Gateaux derivative reads ∂XV = ±ΣX. By the expressions of the Riemannian gradient of
the potential energy function and of the Christoffel form, it is obtained the dynamical system:

Ẋ = U,

U̇ = −UU>X− XU>(In − XX>)U − (∂XV − X∂>XV X)− µ‖U‖2(ε−1)
X U

− ϕX(U)− A sin(Ωt)(1n×p − X1>n×pX),

(326)

where it must hold that ϕX : TXSt(n, p)→ TXSt(n, p).

6. Control Systems on Manifolds and Numerical Implementation

This section presents a survey on error feedback control systems on manifold and their
numerical implementation, with special emphasis to system synchronization.

Synchronization in a group of dynamical systems may happen forcibly or sponta-
neously. Spontaneous synchronization may be observed in synchronous flashing of fireflies,
in flocking of fish swarms, in neuronal synchronization in central nervous system as well as
in arrays of semiconductor devices. As an example of spontaneous synchronization model,
we cite the Cucker-Smale system [41] that insists on the state space Rp and that may be
expressed as

ẍi =
κ

N

N

∑
j=1

ψ(‖xi − xj‖)(ẋj − ẋi), (327)

where N denotes the number of individuals in the swarm, i = 1, 2, · · · , N denotes the
ith individual whose state is denoted by xi ∈ Rp, κ > 0 denotes an interaction strength
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constant and ψ denotes communication weight function which quantifies the degree of
communications between each individual.

The classical Cucker-Smale model has been extended to manifolds, and its emergent
properties have been studied, in the research paper [42]. The studied extension of the
classical model (327) to a Riemannian manifold M reads

∇xi
t ẋi =

κ

N

N

∑
j=1

ψ(D(xi, xj))(Pxj→xi ẋj − ẋi), (328)

where the Euclidean distance in Rp was replaced by a Riemannian distance in M, the state
acceleration was replaced by covariant acceleration and the difference between velocities
was replaced by a difference between parallel-transported velocities, which ensures that
the trajectories t 7→ xi(t) develop entirely on the state manifold M.

An application surveyed in this section is the synchronization of the motion of two
quadrotor drones (although the achieved results can be extended even to a fleet of drones).
In particular, we shall survey a Lie-group control theory to allow the synchronization of the
motion of two twin quadrotor drones, whose model is of second-order and insists on a Lie
group. A leader drone is flying independently, while a follower should conform its dynam-
ics in such a way that its state syncs with the state of the master. In the present context, we
only focus on the rotational component of motion, which engages Lie-group control.

In order to state the quadcopter’s equations of motion, since its state space is a Lie
group (G, m, i, e), let us recall some relevant notation:

• A left translation on a Lie group G is denoted by L : G×G → G and is defined as
Lg(h) := m(i(g), h). Since for the quadcopter model we deal with a matrix Lie group,
we may take m(g, h) := gh, obtaining Lg(h) = g−1h.

• The Lie algebra g associated to a Lie group (G, m, i, e) is a vector space endowed
with Lie brackets [?, ?] : g × g → g and an adjoint endomorphism adξ η := [ξ, η].
The pushforward map d(Lg)g : TgG→ g will be denoted as dLg for brevity.

• Given a smooth function ` : g → R, for a matrix Lie group we can define the fiber
derivative of `, δ`

δξ ∈ g, with ξ ∈ g, as the unique element on the algebra such that〈
δ`
δξ , η

〉
e
= tr((∂ξ`)

>η) for each η ∈ g, where the symbol 〈?, ?〉e denotes an inner
product on the vector space g and the symbol ∂ξ` denotes the Gateaux derivative (or
Jacobian matrix) of the function ` with respect to the matrix-variable ξ.

• On a matrix Lie algebra, it holds that adξη := ξη − ηξ. In order to ease the notation in
the following sections, let us define a matrix anti-commutator {ξ, η} := ξη + ηξ, which
is a symmetric form, namely {ξ, η}> = {η, ξ}, no matter what is the structure of the
arguments. Conversely, the matrix commutator in the algebra is an anti-symmetric
bilinear form, namely [ξ, η] + [η, ξ] = 0.

The present section is organized as follows. Section 6.1 presents a design and an anal-
ysis of a Lie-group synchronization theory, which is subsequently applied to synchronizing
the motion of quadcopters in Section 6.2. The Section 6.3 treats an important topic, namely
synchronization with vanishing control effort. To end with, Section 6.4 describes, in gen-
eral terms, the notion of feedback error velocity and sheds some light between principal
pushforward map and curvature endomorphism by means of homotopic nets.

6.1. Design and Analysis of a Lie-Group Synchronization Theory

The material reported in the present section is largely based on the previous contribu-
tion [43].
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The Lie group considered for the quadcopter mathematical model is the special
orthogonal group SO(3) whose Lie algebra is so(3). The rotational dynamics of the leader
system is governed by the equations{

Ṙm = RmHm,
Ḣm = σ(Hm),

(329)

with (Rm, Hm) ∈ SO(3)× so(3) denoting the leader system’s state-pair, while the rotational
dynamics of the controlled follower is governed by the equations{

Ṙs = RsHs,
Ḣs = σ(Hs) + U,

(330)

where (Rs, Hs) ∈ SO(3)× so(3) denotes the follower system’s state-pair and U ∈ so(3)
denotes a control field to be designed to make the two twin systems synchronize in time.
The function σ : so(3) → so(3) denotes the state-transition operator that ultimately de-
scribes the internal nature of the leader-follower systems twins. The mathematical model
of the controlled follower system (330) will be further analyzed in Section 6.2.2 to verify the
physical feasibility of the designed control strategy in relation to the effort demanded by to
the actuators by the control algorithm.

The control algorithm may be designed either to synchronize the two drones’ angular
velocities or to synchronize their attitude. Such control goals are examined separately in
what follows.

6.1.1. Velocity Synchronization

The aim of angular velocities synchronization is to ensure that

lim
t→+∞

||Hm(t)− Hs(t)||F = 0. (331)

For this purpose, a proportional-type Lie-algebra controller of the following form may
be designed:

U := σ(Hm)− σ(Hs) + KP E (332)

where E := Hm − Hs denotes the synchronization angular-velocity mismatch and KP
denotes a proportional action gain coefficient. By defining κ(Hm, Hs) := σ(Hm)− σ(Hs) ∈
so(3) the control field can be rewritten as

U := κ(Hm, Hs) + KP E. (333)

The function κ(Hm, Hs) has the purpose of deleting the dynamics of the follower and
to replace it with the dynamics of the leader, hence it realizes a control design principle
that we refer to as dynamics replacement. The leader-follower pair systems will result to be
velocity-synchronized as E ≈ 0.

The convergence of the synchronization error to zero is confirmed by the following
result, proven in [44]: The control law (332), with KP > 0, synchronizes in angular velocity the
follower to the leader exponentially fast. This kind of controller does not ensure the full state
synchronization for the leader-follower pair.

6.1.2. Attitude Synchronization

The problem of attitude synchronization is more involved than the problem of velocity
synchronization discussed above, since a purely proportional control field would not be
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effective. Attitude synchronization may be achieved by a proportional-derivative-type
control. Attitude synchronization is achieved when

lim
t→+∞

D(Rm(t), Rs(t)) = 0, (334)

where D : SO(3)× SO(3)→ R denotes a Riemannian distance in SO(3).
The first step in the development of a synchronizing control algorithm is to define

an error field that associates to each pair of leader/follower states a mismatch measure. We
define an attitude synchronization error measure by the following expression

E := Log (R>s Rm). (335)

This error expression is equivalent to a ‘difference’ between the states Rm and Rs,
written for the SO(3) group and belongs to the Lie algebra so(3). In order to compute the
time-derivative Ė, it is convenient to make use of the following workaround:

Exp (E) = R>s Rm
d/dt−−→ Exp (E)Ė = Ṙ>s Rm + R>s Ṙm, (336)

where the symbol ‘ Exp ’ denotes the matrix exponential. Replacing the expressions of the
time-derivatives of the states Rm and Rs by the expressions given in (329) and (330) leads
to the following relationship relating the error velocity to the attitudes and the angular
velocities of the two constituent subsystems

Ė = Hm − (R>s Rm)>Hs(R>s Rm). (337)

Deriving once more with respect to the time parameter t, and noticing that
d
dt (R>s Rm) = (R>s Rm)Ė, gives

Ë = Ḣm − ((R>s Rm)Ė)>Hs(R>s Rm)− (R>s Rm)>Ḣs(R>s Rm)− (R>s Rm)>Hs(R>s Rm)Ė. (338)

Plugging in the expressions of Ḣm and Ḣs from (329) and (330) yields

Ë = σ(Hm) + Ė(R>s Rm)>Hs(R>s Rm)− (R>s Rm)>(σ(Hs) + U)(R>s Rm)

− (R>s Rm)>Hs(R>s Rm)Ė.
(339)

The Lie-algebra control field U is designed so that the error dynamics obeys the law

Ë = −KP E− KD Ė. (340)

In order to express the Lie-algebra control field U in an explicit form, it is necessary to
equate the expression for Ë found in (339) to the desired expression of the error acceleration
prescribed by the relation (340), which leads to

U := (R>s Rm)σ(Hm)(R>s Rm)> − σ(Hs)

+ (R>s Rm)Ė(R>s Rm)>Hs − Hs(R>s Rm)Ė(R>s Rm)>

+ KP(R>s Rm)E(R>s Rm)> + KD(R>s Rm)Ė(R>s Rm)>.

(341)

The error system (340) is asymptotically convergent to a zero synchronization error.
In fact, under the assumption that KP > 0 and KD > 0, the function

W := −KP
2 tr(E2)− 1

2 tr(Ė2) (342)
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is Lyapunov for the error system (340). Notice that, since W = KP
2 ||E||2F +

1
2 ||Ė||2F, from the

condition KP > 0, it follows that W > 0, with equality only when E = 0. Upon derivation
with respect to the time parameter, one gets

Ẇ = −KP tr(EĖ)− tr(ĖË)

= −KP tr(EĖ)− tr(Ė(−KP E− KD Ė))

= −KP tr(EĖ) + KP tr(ĖE) + KD tr(Ė2)

= KD tr(Ė2).

(343)

Since it holds that Ẇ = −KD ||Ė||2F, from the condition KD > 0, it follows that Ẇ 6 0
with equality only when Ė = 0.

The above result shows that the Lie-algebra control-field (341) makes the attitude of
the follower subsystem (330) synchronize to that of the leader subsystem (329).

6.2. Application to Quadcopters Synchronization

The material reported in the present section is largely based on the previous contribu-
tion [45]. In the present section, we shall apply the above-recalled synchronization theory to
mathematical models of quadcopters. For an introductory review, interested readers might
want to consult, e.g., [46]. In particular, we are going to retrace mathematical modeling of
a quadcopter drone based on the standard approach of Lagrange-Euler-d’Alembert where
the exogenous generalized forces are computed on the basis of the specific structure of
a quadrotor drone. The main difference between the general case considered earlier in this
tutorial paper is that the Lagrange-Euler-d’Alembert principle is applied to a system whose
state-space is a Lie group, which leads to the so-called Euler-Poicaré equations.

6.2.1. Lie-Group Model Formulation of a Quadrotor Drone

A quadrotor drone (also called quadcopter) is made of a body B and of four rotorsRa,
with a = 1, 2, 3, 4, termed propellers, directed upwards and placed in a square formation
with equal distance from the center. Among the four propellers, rotors 2 and 4 spin
clockwise, while rotors 1 and 3 spin counterclockwise [45]. Translation along a horizontal
plane may be achieved by tilting the quadrotor body by modulating the rotation speed
of every rotor, while a vertical displacement is achieved by modulating the total thrust
exerted by the rotors on the drone’s body. It is customary to attach a reference frame to the
quadrotor’s body, whose three orthogonal axes are denoted by x, y and z. A rotation of the
body around the x axis is termed roll, a rotation around the y axis is termed pitch, while
a rotation around the z axis is termed yaw.

The mathematical model of a quadcopter recalled here holds under a number of
assumptions, namely: (1) the structure of the quadrotor is rigid and axis-symmetrical,
(2) the center of the body-fixed reference-frame axes coincides with the center of mass of
the quadrotor’s structure, (3) the propellers are rigid, (4) the thrust and drag forces are
proportional to the square of rotors’ angular speed.

A mathematical model of a composite roto-translating body may be written through
the well-known formalism of the Lagrange-Euler-d’Alembert principle. For a dynamical
system whose state space is a Lie group, it affirms that a dynamical system generates
a trajectory [a, b] 3 t 7→ g(t) ∈ G such that

δ
∫ b

a
L (g, ġ)dt +

∫ b

a
〈F(g, ġ), δg〉g dt = 0, (344)

where the quantity L : TG→ R denotes a Lagrangian function for the dynamical system,
the symbol 〈?, ?〉? denotes a metric for the state space, the vector field F : TG → TG
denotes a generalized force field, the quantity ġ denotes the state (or configuration) velocity
and the symbol δ represents a variation across two infinitely-close trajectories.
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It pays now to recall the notion of left-invariance with special emphasis on the terms
that appear in the expression (344):

• Left-invariance of the kinetic energy: The kinetic energy associated to a trajectory g
is defined as Kg(ġ) = 1

2 〈ġ, ġ〉g. We shall assume the inner product representing the
metric to be left-invariant, which may be expressed analytically by the condition that

〈dLg(ġ), dLg(ġ)〉e = 〈ġ, ġ〉g, (345)

namely, the inner product is invariant under left-translation. In practice, this means
that the inner product 〈ġ, ġ〉g does not depends explicitly on the configuration g and
on the velocity ġ, but only on their composition dLg(ġ). Hence, the kinetic energy
may be written as Kg(ġ) = k(dLg(ġ)), where k : g → R denotes a ‘reduced’ kinetic
energy function.

• Left-invariance of the potential energy: There is no notion of left-invariance for the
potential function, since it does not depend on the velocity ġ. We shall henceforth
assume (and we shall see that it is, in fact, the case) that the potential energy function
for the system is simply constant with respect to the configuration g.

• Left-invariance of the generalized force field: In general, the product 〈F(g, ġ), δg〉g
depends explicitly on the quantities g and ġ. Under the assumption that the inner
product is left-invariant, we may however write that

〈F(g, ġ), δg〉g =
〈
dgL(F(g, ġ)), dgL(δg)

〉
e. (346)

To this, we add the assumption that the force field F be left-invariant, namely that
dgL(F(g, ġ)) = f (dgL(ġ)), where f : g→ g denotes a ‘reduced force field’.

In a left-invariant setting, the principle (344) can be simplified as shown in [45] to

δ
∫ b

a
`(dLg(ġ))dt +

∫ b

a

〈
f (dLg(ġ)), dLg(δg)

〉
edt = 0, (347)

where ` : g→ R represents a reduced Lagrangian function.
Now, the following result is instrumental in order to cast the integral principle (347)

in a differential form [47]: Let g(s, t) denote a continuous family of trajectories indexed by the
variable s and define ξ := dLg(ġ) and η := dLg(δg), where the variation δ refers to the variable s.
The solution of the integral Euler-Lagrange-d’Alembert Equation (344) under perturbations of the
form δξ

δs = η̇ + adξ η satisfies the Euler-Poincaré equation

d
dt

δ`

δξ
= ad∗ξ

(
δ`

δξ

)
+ f , (348)

where the superscript ∗ denotes a dual operator.
Thanks to such fundamental result, the equations that describe the motion of a dy-

namical system on a state Lie group G cast as{
ġ = (dLg)−1(ξ),
d
dt

δ`
δξ = ad∗ξ

(
δ`
δξ

)
+ f .

(349)

The exogenous forcing f term accounts for several contributions to the dynamics, such
as energy dissipation due to friction and energy-injecting active control fields.

The Euler-Poincaré Equation (348) describes a dynamical system subjected to holo-
nomic constraints only, subsumed by the underlying Lie group. A system subjected to
non-holonomic constrains (such as a sphere rolling on a plane without slipping), may be
described by a modified Euler-Poincaré equation that takes a substantially more convoluted
expression [48]. The point is that the set of velocities attainable by the system is restricted
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to an area of the tangent bundle termed distribution, which makes the equations of motion
more convoluted.

The rotational component of motion of a rigid body, such as a drone, takes as descriptor
an element in the Lie group SO(3) and in its associated Lie algebra so(3). Let us now define
a basis of the vector space so(3) = span(ξx, ξy, ξz) as follows:

ξx :=

0 0 0
0 0 −1
0 1 0

, ξy :=

 0 0 1
0 0 0
−1 0 0

, ξz :=

0 −1 0
1 0 0
0 0 0

. (350)

Furthermore, by taking the canonical metric 〈ξ, η〉e := tr(ξ>η), it is readily shown
that the fiber derivative of the reduced Lagrangian reads

δ`

δξ
=

1
2
(∂ξ`− (∂ξ`)

>), (351)

where e = I3 denotes the identity element in the Lie group SO(3) and symbol ∂x denotes,
once more, a Gateaux derivative.

A quadcopter model includes two specific constants, namely its total mass and its
non-standard tensor of inertia, defined as

Mq := Mb +
4

∑
a=1

Ma, Ĵq := Ĵb +
4

∑
a=1

Ĵa, (352)

where Mb and Ĵb denote respectively the body mass of the quadcopter and its non-standard
tensor of inertia, while Ma and Ĵa, with a = 1, 2, 3, 4, denote respectively the mass of the
rotors and their non-standard tensors of inertia. Let us recall that the non-standard tensor
of inertia Ĵ of a rigid body relates to its standard tensor of inertia J by the relationship
Ĵ = tr(J)I3− 2J (we mention, with apologies, that the relation reported in [45] was incorrect
of a factor 1

2 ). It follows that the quadcopter’s non-standard tensor of inertia Ĵq can be
deduced from the standard tensor of inertia, which is assumed to take the form of a 3× 3
diagonal matrix Jq := diag(Jx, Jy, Jz) > 0, as follows:

Ĵq = tr(Jq)I3 − 2Jq = diag(−Jx + Jy + Jz, Jx − Jy + Jz, Jx + Jy − Jz). (353)

Let us proceed on recalling the equations that describe the rotational component of
motion. The angular velocities of the propellers will hereafter be denoted as ω1, ω2, ω3, ω4.
In order to define the equations for the rotational component of motion for a quadcopter,
we shall assume that all rotors are characterized by the same coefficient of rotational inertia
JR and that such rotors develop an angular velocity around the z axis ξa := (−1)aωaξz,
where the sign-factors (−1)a are meant to take into account that the rotorsR1 andR3 spin
counterclockwise, while rotorsR2 andR4 spin clockwise.

Each rotor exerts a thrust, denoted as fa ∈ R3, on the body of the quadcopter, whose
magnitude is taken to be proportional to the square of the corresponding angular velocity
ωa via a lift constant b > 0, namely

fa := 1
2 bω2

aez, where ez :=

0
0
1

. (354)



Symmetry 2022, 14, 1144 65 of 96

(The factor 1
2 has been introduced for convenience). The thrust produced by each rotor

also exerts a mechanical torque on the quadcopter’s body via a moment arm, denoted as
pa ∈ R3, given by

p1 :=

r
0
0

, p2 :=

0
r
0

, p3 :=

−r
0
0

, p4 :=

 0
−r
0

, (355)

where r > 0 denotes the distance between each propellers’ centers and the center of mass
of the quadcopter body, supposed to be the same for each propeller by symmetry.

The body of the quadcopter is subjected to further mechanical torques due to the
rotation of each propeller. In fact, by virtue of the principle of angular momentum conser-
vation, the spinning of each propeller produces a counter-torque that acts on the whole
body of the quadcopter and tends to make it rotate along its z axis in the opposite direction
of the resultant of the torques produced by the propellers. These torques are termed drag
torques and their magnitude is proportional to the square of their angular velocity via a drag
constant γ > 0. The resulting drag torques take the expression

τa := 1
2 γ(−1)aω2

aξz. (356)

(Again the factor 1
2 has been introduced solely for convenience).

The resultant mechanical torque τ ∈ so(3) acting on the body of the quadcopter hence
takes the expression

τ :=

Active torque︷ ︸︸ ︷
1
2

4

∑
a=1

(−1)a( fa p>a − pa f>a ) +

Drag torque︷ ︸︸ ︷
γ

2

4

∑
a=1

(−1)aω2
aξz . (357)

By splitting such total mechanical torque with respect to the basis (350), namely as
τ = τxξx + τyξy + τzξz, one finds the components of the torques along the axes of the
body-fixed reference system

τx = 1
2 br(ω2

4 −ω2
2),

τy = 1
2 br(ω2

3 −ω2
1),

τz =
1
2 γ(−ω2

1 + ω2
2 −ω2

3 + ω2
4).

(358)

The components τx and τy of the resultant torque, which quantify the degree of rolling
and pitching, are controlled by the unbalance of the spinning velocity of two rotors (in
particular, notice that the torque along the x axis is produced by the propellers located
along the y axis and vice-versa). The component τz of the total torque, responsible of the
yawing of the quadrotor body, is produced by the unbalance between the clockwise and
counterclockwise spins. Yawing is generally an unwanted effect, unless the torque τz is so
tiny to produce a slow yawing, therefore such component is carefully kept near zero by the
onboard control system.

Let us now denote by R(t) ∈ SO(3) the attitude of a quadcopter and by ξ(t) ∈ so(3)
the angular speed of this quadcopter, both thought as functions of time t. The time-
evolution of the state pair (R, ξ) ∈ TSO(3) is described by the following systems of
tangent-bundle differential equations:

Ṙ = Rξ,
{ Ĵq, ξ̇} = [ Ĵq, ξ2] + [β, ξ]− β̇ + 2τ,
β := (−ω1 + ω2 −ω3 + ω4)JRξz,
τ := 1

2 br(ω2
4 −ω2

2)ξx +
1
2 br(ω2

3 −ω2
1)ξy +

1
2 γ(−ω2

1 + ω2
2 −ω2

3 + ω2
4)ξz,

(359)
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where {A, B} := AB + BA denotes the Poisson bracket and [A, B] := AB− BA denotes the
Lie bracket (or simply commutator, in this case) of two matrices A, B. To confirm the above
result notice that, since on the Lie algebra so(3) it holds that ad∗ξ = −adξ and on the SO(3)
group it is verified that dL−1

R (ξ) = Rξ, the system of Euler-Poincaré Equation (349) may be
rewritten as {

Ṙ = Rξ,
d
dt

δ`
δξ = −adξ(

δ`
δξ ) + τ,

(360)

where τ denotes the resultant of all external mechanical torques. In the present case,
the reduced Lagrangian `(ξ) of the quadrotor coincides with its kinetic energy, since there
is no potential associated with the rotational component of motion. The fiber derivative of
the reduced Lagrangian reads

δ`

δξ
=

1
2
{ Ĵb, ξ}+ 1

2

4

∑
a=1
{ Ĵa, ξ + ξa} =

1
2
{ Ĵq, ξ}+ 1

2
β (361)

where we have defined, for convenience,

β := (−ω1 + ω2 −ω3 + ω4)JRξz. (362)

The resultant of the external torques acting on the body of a dquadcopter drone is
expressed by the relationship (358).

Whenever a drone is neither taking off nor landing, it is customary to assume the
residual rotoric angular velocity Ωr := ω1−ω2 + ω3−ω4 to be constant. Therefore, the math-
ematical model (359) of the rotational motion of a quadcopter may be written in the
following simplified form:{

Ṙ = Rξ,
{ Ĵq, ξ̇} = [ Ĵq, ξ2] + [Ωr JRξz, ξ] + 2τ.

(363)

In order to describe the translational motion of a quadrotor, let us denote by q ∈ R3

the coordinate of the center of mass of the drone expressed in the inertial reference frame.
The translational component of motion in a quadcopter obeys Newton’s second law of
dynamics written in an inertial reference frame. The linear acceleration q̈ is proportional to
the total thrust fT := ∑4

a=1 fa, to the gravity acceleration g and to an aerodynamic drag term.
Since all the rotor thrusts are directed along the Rez direction, the Newton law governing
the translational motion can be written as:

Mqq̈ = 1
2 b(ω2

1 + ω2
2 + ω2

3 + ω2
4)Rez − gMqez − Γq̇, (364)

where Γ ∈ R3×3 denotes a positive-definite (and often diagonal) aerodynamic drag tensor.
The first term on the right-hand side of the above equation tells that whenever a quadcopter
is horizontal to the ground (namely R = I3), its center of mass can only move vertically,
while whenever its body is tilted away (namely R 6= I3) its center of mass can even
move horizontally.

In order to write the set of equations that drive the drone’s flight, it is necessary to
express explicitly the Euler-Poincaré equation to cast it into the form ξ̇ = σ(ξ, τ), where
σ : so(3)× so(3)→ so(3) denotes the state-transition function associated to this particular
dynamical system. To this aim, it is useful to define a new inertia matrix

D := diag

(√
2Jy Jz

Jx
,

√
2Jx Jz

Jy
,

√
2Jx Jy

Jz

)
. (365)



Symmetry 2022, 14, 1144 67 of 96

Straightforward calculations show that { Ĵq, ξ̇} = Dξ̇D and that det(D) = 2
√

2Jx Jy Jz > 0,
from which it follows that the inertia matrix D is invertible. Therefore, the Euler-Poincaré
equation may be rewritten explicitly as

ξ̇ = σ(ξ, τ) := D−1([ Ĵq, ξ2] + [β, ξ]− β̇ + 2τ)D−1. (366)

Ultimately, the mathematical laws that describe a quadcopter flight may be written
explicitly by collecting the equations obtained in (359), (364) and (366) as

Ṙ = Rξ,
ξ̇ = D−1([ Ĵq, ξ2] + [β, ξ]− β̇ + 2τ)D−1,
β := (−ω1 + ω2 −ω3 + ω4)JRξz,
τ := 1

2 br(ω2
4 −ω2

2)ξx +
1
2 br(ω2

3 −ω2
1)ξy +

1
2 γ(−ω2

1 + ω2
2 −ω2

3 + ω2
4)ξz,

q̇ = v,
v̇ = 1

2
b

Mq
(ω2

1 + ω2
2 + ω2

3 + ω2
4)Rez − gez − 1

Mq
Γv,

(367)

where the variable v ∈ R3 denotes the translational velocity of the center of mass of
the quadrotor.

6.2.2. Physical Realizability of the Synchronizing Controller

The follower drone described by Equation (330) differs from the free leader drone by
the application of a control field, which must be physically realizable, namely the control field
U prescribed by the control algorithm should be effectively realizable by the propellers.
A quadcopter is solely operated by changing its rotors’ angular velocities, therefore it is
natural to require that the values assumed by the Lie-algebra control field U must be such
that it can effectively be translated into achievable angular velocities.

As a first step in a realizability analysis, it is necessary to discern, from the
Equation (363) that governs the evolution of the angular velocities of the follower, those
terms that represent externally-controllable torques from the terms that represent unoper-
able torques. Such classification follows from the physical meaning of the mathematical
terms and may be written as

ξ̇ =

Unoperable component︷ ︸︸ ︷
D−1([ Ĵq, ξ2] + [Ωr JRξz, ξ])D−1 +2 D−1τD−1, (368)

where it is assumed that the residual rotor speed Ωr is constant, hence the terms in β may
be neglected. By defining σuc(ξ) := D−1([ Ĵq, ξ2] + [Ωr JRξz, ξ])D−1 and by equating the
control field U to the operable component 2 D−1τD−1, the mathematical system (330) can
be recast as {

Ṙs = Rsξs,
ξ̇s = σuc(ξs) + U.

(369)

In order to compute the angular velocities of the four propelling rotors corresponding to
the control field U, it is possible to derive three conditions from the Equation (357), namely:

br(ω2
4 −ω2

2) = ψ̂x,
br(ω2

3 −ω2
1) = ψ̂y,

γ(−ω2
1 + ω2

2 −ω2
3 + ω2

4) = ψ̂z,

(370)

where ψ̂x, ψ̂y e ψ̂z are scalar control fields defined by 1
2 DUD =: ψ̂xξx + ψ̂yξy + ψ̂zξz. The

system (370) is under-determined, since it totals three equations in four unknowns, therefore
a fourth constraint needs to be added by considering the follower in a hovering condition.
The added constraint is:

b
2 (ω

2
1 + ω2

2 + ω2
3 + ω2

4) = Mqg. (371)
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The above system of equations is linear in the unknowns ω2
1, ω2

2, ω2
3 and ω2

4 and
admits as solutions the angular velocities

ω1 = 1
2
√

brγ

√
−2γψ̂y − brψ̂z + 2rgγMq,

ω2 = 1
2
√

brγ

√
brψ̂z − 2γψ̂x + 2rgγMq,

ω3 = 1
2
√

brγ

√
2γψ̂y − brψ̂z + 2rgγMq,

ω4 = 1
2
√

brγ

√
2γψ̂x + brψ̂z + 2rgγMq.

(372)

The solutions (372) are real-valued, hence physically realizable, in principle, whenever
the following two conditions are met:

• the values taken by the scalar control component ψ̂x, ψ̂y and ψ̂z do not differ too much
from one another and are absolutely bounded,

• the control field components are small compared to the mass-related term 2rgγMq.

In practice, the spinning velocity of the propellers differs little from the spinning
velocity corresponding to a hovering condition, termed steady-state velocity. This is defined
as the spinning velocity that keeps a quadrotor still in mid-air. From the Equation (371), it
is not hard to determine such propellers’ spinning velocity as:

ωss =

√
gMq

2b
(rad/s). (373)

In order to exemplify the values of the parameters mentioned in this section, an OS4
Mini-VTOL (Vertical Take-Off and Landing) drone has been taken as reference model,
as reported in [49]. The numerical values of the parameters corresponding to such quadrotor
model are shown in the Table 1.

Table 1. Table recapitulating typical parameter values of a OS4 Mini-VTOL quadcopter.

Description Parameter Value

Overall quadrotor mass Mq 650 g
Inertia on x axis Jx 7.5× 10−3 kg ·m2

Inertia along y axis Jy 7.5× 10−3 kg ·m2

Inertia along z axis Jz 1.3× 10−2 kg ·m2

Thrust coefficient b 3.13× 10−5 N · s2

Drag coefficient γ 7.5× 10−7 N ·m · s2

Rotational inertia JR 6× 10−5 kg ·m2

Arm length r 0.23 m

The value of the gravitational acceleration constant g was approximated at 9.81 m · s−2.
The calculated steady-state rotor velocity corresponding to such set of parameters is ωss =√

g Mq/2 b ≈ 319 rad/s (roughly corresponding to 3046 revolutions per minute (RPM),
quite a fast spinning). Numerical simulations show that even a fractional deviation of one
RPM with respect to the steady-state velocity produces a dramatic impact on the motion of
a quadrotor.

6.2.3. Numerical Recipes to Implement Synchronization of Quadrotors

We shall now illustrates a numerical technique to implement the recalled mathematical
model as well as the synchronization algorithm on a computing platform.

A pseudo-code corresponding to the numerical solution of the differential equations
describing the rotational component of the motion of a single drone is illustrated in the
Algorithm 1. The invoked numerical integration method represents a counterpart of the
well-known Euler method adapted to manifolds.
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Algorithm 1 Pseudo-code to implement the (uncontrolled) mathematical model of a quadro-
tor on a computing platform

Initialize the attitude R0 and the rotation velocity ξ0
Set the step-size h and the number of numerical steps K to complete a simulation
for k = 0 to K− 1 do

Update the attitude Rk+1 = Rk Exp (h ξk)
Update the angular velocity ξk+1 = ξk + h σuc(ξk)

end for

A pseudo-code corresponding to the numerical counterpart of the differential equa-
tions describing the rotational component of the motion of a leader-follower pair of drones
along with the application of a velocity-synchronization control field is illustrated in the
Algorithm 2.

Algorithm 2 Pseudo-code to implement numerically a leader-follower pair and velocity
synchronization by a proportional-type control algorithm

Initialize the attitudes Rm,0, Rs,0 and the rotation velocities ξm,0, ξs,0
Set the step-size h, the number of numerical steps K and the proportional control gain KP
for k = 0 to K− 1 do

Update Rm,k+1 = Rm,k Exp (h ξm,k)
Update ξm,k+1 = ξm,k + h σuc(ξm,k)
Evaluate the control field Uk = σuc(ξm,k)− σuc(ξs,k) + KP(ξm,k − ξs,k)
Update Rs,k+1 = Rs,k Exp (h ξs,k)
Update ξs,k+1 = ξs,k + h (σuc(ξs,k) + Uk)

end for

Moreover, a pseudo-code corresponding to the numerical implementation of atti-
tude synchronization by a proportional-derivative-type controller is illustrated in the
Algorithm 3.

Algorithm 3 Pseudo-code to implement numerically a leader-follower pair and an attitude
synchronization control by a proportioanal-derivative-type controller

Initialize the attitudes Rm,0, Rs,0 and the rotation velocities ξm,0, ξs,0
Set the discrete step-size h, the number of numerical steps K, the proportional control
gain KP and the derivative control gain KD
for k = 0 to K− 1 do

Update Rm,k+1 = Rm,k Exp (h ξm,k)
Update ξm,k+1 = ξm,k + h σuc(ξm,k)

Evaluate the synchronization error εk = Log (R>s,kRm,k)

Evaluate the synchronization error velocity ε̇k = ξm,k − (R>s,kRm,k)
>ξs,k(R>s,kRm,k)

Evaluate the control field (from Equation (341)) Uk = (R>s,kRm,k)σuc(ξm,k)(R>s,kRm,k)
>−

σuc(ξs,k) + (R>s,kRm,k)ε̇k(R>s,kRm,k)
>ξs,k − ξs,k(R>s,kRm,k)ε̇k(R>s,kRm,k)

> +

KP(R>s,kRm,k)εk(R>s,kRm,k)
> + KD(R>s,kRm,k)ε̇k(R>s,kRm,k)

>

Update Rs,k+1 = Rs,k Exp (h ξs,k)
Update ξs,k+1 = ξs,k + h (σuc(ξs,k) + Uk)

end for

If the leader quadrotor is subjected to a difference in its rotor velocities that is too large
(the maximum value of the difference for which the controller is effective depends on the
value of the gains set), the control algorithm may loose effectiveness might hence be no
longer able to synchronize the two subsystems. Such observation is in accordance with the
practice: as mentioned, a quadrotor usually keeps a low difference among its propellers
spinning velocities in order to be able to trace a stable trajectory.
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6.3. Synchronization of Second-Order Systems on Manifolds with Vanishing Control Effort

In the previous section we surveyed synchronization of two dynamical systems on
Lie groups without regard to control effort, which quantifies the effort demanded to the
actuators by the control algorithm as well as their energy consumption. In the present
section we are going to recall from [50] a control theory that ensures the control effort to
vanish asymptotically as synchronization takes place.

In the present section we are studying a category of dynamical systems on a manifold
M expressed by {

ẋ = v, with x(0) = x0 ∈M, t > 0,
∇vv = f (x, v), with v(0) = v0 ∈ Tx0M, t > 0,

(374)

where f : TM → TM denotes a system’s state-transition function and ∇vv denotes the
covariant acceleration of the state. The first equation denotes a state-transition law, in the
manifold-valued variable x, while the second equation denotes a velocity-transition law in
the vector field v. Since the pair (x, v) is an element of the tangent bundle, the tangent
bundle TM represents a phase-space for the system (374).

Given a system trajectory (t, x(t)) ∈ R × M and a control vector field
(x(t), u(t)) ∈ TM, one may introduce a control effort index associated to the vector control
field u as the scalar field (x(t), σ(t)) ∈M×R+

0 defined by

σ := 1
2‖u‖

2
x. (375)

The scalar field σ is defined as the squared amplitude of the control field and hence
quantifies the ‘effort’ demanded by the control algorithm to the actuators [51].

An undesirable effect of the control schemes discussed in the previous sections is
that the control effort σ does not necessarily vanish after synchronization is achieved,
which entails unnecessary consumption of energy (and may therefor cause premature
discharge of battery). In the present section, we shall describe a control scheme, valid for
a generic Riemannian manifold, capable of making the control effort vanish to zero while
synchronization is being achieved. By denoting as xs ∈M the state of the follower system,
one such control scheme reads{

ẋs = vs + u,
∇ẋs vs = f (xs, vs) + k u,

(376)

where k ∈ R denotes an effort-limitation gain (not to be confused with the proportional
control gain) and f : TM → TM denotes the follower state-transition function. Notice
that the follower system is described by a couple of first-order differential equations on
the tangent bundle TM through the paired variables (xs, vs) and that the control field u is
present not only in the equation governing the evolution of the velocity but even in the one
governing the evolution of the state, as opposed to the previous synchronization scheme
described by Equation (330). It is hence legitimate to wonder as to whether one such system
of equations represents a physical object. To answer such question, let us recast the above
two equations as a single, second-order, equation by applying the covariant differentiation
operator ∇ẋs to both sides of the first equation, which gives

∇ẋs ẋs = ∇ẋs vs +∇ẋs u = f (xs, ẋs − u) + k u +∇ẋs u. (377)

The controlled system hence is described by the equation

∇ẋs ẋs = f (xs, ẋs) + ũ, with ũ := k u +∇ẋs u + f (xs, ẋs − u)− f (xs, ẋs), (378)

that represents a physical (second-order or double-integrator) dynamical system controlled
by an effective control field ũ that appears to depend on a primary control field u. As an
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instance, if the primary control u is proportional to an error feedback and the state-transition
function is independent of the velocity field vs, then the effective control field ũ is of
proportional-derivative type.

It is worth emphasizing that the constant k plays a fundamental role in ensuring the
asymptotic vanishing to zero of the control efforts. Before getting to the main result of this
section, it is surely instructive to take a look at a couple of simpler cases.

Example 26. Assume that M ≡ Rn and that the function f is continuous in the first argument
and Lipschitz-continuous in the second argument, with Lipschitz constant L f . In this case, we shall
consider the control system

ẋm = vm

v̇m = f (xm, vm)

}
(Free leader)

ẋs = vs + u,

v̇s = f (xs, vs) + k u,

}
(Controlled follower)

u := vm − vs − c
2 (xs − xm), (Primary control field)

(379)

where c > 0 is a constant (that determines the synchronization speed). The control field ‘u’ makes
the follower synchronize to the leader exponentially fast. Moreover, a main finding is that, provided
k 6= L f +

c
4 and k > L f , the control effort asymptotically vanishes to zero.

In order to show that the above control scheme is synchronizing, let us adopt again a Lyapunov-
function perspective and define{

W := 1
2 (xm − xs)>(xm − xs),

σ := 1
2 u>u.

(380)

It is not hard to show that W is indeed a Lyapunov function for the controller-follower
subsystem, in fact:

Ẇ = (xm − xs)
>(ẋm − ẋs)

= (xm − xs)
>(vm − vs − u)

= (xm − xs)
>(vm − vs − vm + vs +

c
2 (xs − xm)

)
= − c

2 (xm − xs)
>(xm − xs)

= −c W .

(381)

The last equation implies that ‖xm(t)− xs(t)‖ = D0 e−c t/2, where ‖ · ‖ denotes the Euclidean
vector norm and D0 := ‖xm(0)− xs(0)‖. Therefore, the inter-state distance tends asymptotically
to zero with an exponential speed (namely, quickly at the beginning and slowly while approaching
synchronization).

In order to ascertain the dynamics of the control effort, it pays to rewrite the expression of the
control field in two equally meaningful ways, namely

vm − vs = u + c
2 (xs − xm), (382)

vs + u− vm = − c
2 (xs − xm). (383)

The above two equations imply, respectively, that

‖vm − vs‖ 6 ‖u‖+ c
2‖xs − xm‖, (384)

ẋs − ẋm = − c
2 (xs − xm). (385)
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The dynamics of the control effort is hence found to be governed by the following relation:

σ̇ = u>u̇

= u>
(
v̇m − v̇s − c

2 (ẋs − ẋm)
)

= u>
(

f (xm, vm)− f (xs, vs)− k u− c
2 (ẋs − ẋm)

)
= −k u>u + u>( f (xm, vm)− f (xs, vs)) +

1
4 c2u>(xs − xm),

(386)

with initial condition σ(0) = σ0 and with t > 0. Since the function f was assumed to be continuous
with respect to its x-argument and Lipschitz-continuous with respect to its v-argument, for all
constants ε > 0, vectors vm and vs, there exist two constants δ, L f > 0 such that, for every ẋm, ẋs
such that ‖ẋm − ẋs‖ < δ, it results that ‖ f (xm, vm)− f (xs, vs)‖ < ε + L f ‖vm − vs‖. By taking
profit of such inequality and of the Cauchy-Schwarz inequality about the inner product of two
vectors, the right-hand terms in the differential Equation (386) may be approximated to give the
following differential inequation:

σ̇ < −2kσ +
√

2σ(ε + L f ‖vm − vs‖) + c2

4

√
2σ‖xs − xm‖. (387)

By invoking the relationships (384) and (385), from the above inequality one obtains

σ̇ < −2kσ +
√

2σ
(

ε + L f ‖u‖+ 1
2 cL f ‖xs − xm‖

)
+ 1

4 c2
√

2σ‖xs − xm‖

= (−2k + 2L f )σ +
(

ε + 1
2 cL f D0e−c t/2 + 1

4 c2D0e−c t/2
)√

2σ.
(388)

For the sake of notation conciseness, it is convenient to define the following two quantitiesk∗ := 2(k− L f ),

ρ(t) := ε +
( cL f

2 + c2

4

)
D0e−c t/2,

(389)

in such a way that the above differential inequation may be rewritten compactly as

σ̇ + k∗σ < ρ
√

2σ. (390)

In view of applying a Grönwall argument [52], it is convenient to study the associated
differential equation which, upon the change of variable 2σ =: ξ2, may be cast as

ξ̇(t) + k∗ξ(t) = ρ(t). (391)

This is a first-order, inhomogeneous linear differential equation with initial condition
ξ(0) =

√
2σ0 whose closed-form solution reads

ξ(t) = ξ∗e−k∗t +
D0

2k∗ − c

(
cL f +

c2

2

)
e−c t/2 +

ε

k∗
, (392)

where ξ∗ depends from the initial condition ξ(0) and is given by

ξ∗ := ξ0 −
ε

k∗
− c D0

2k∗ − c

(
L f +

c
2

)
. (393)

Note that, by hypothesis, k? > 0 and k? 6= c
2 , hence the above quantities are well-written.

Therefore, by the Grönwall’s inequality the solution of the differential inequation (390) satisfies

σ <
1
2

{
ξ∗e−k∗t +

c D0

2k∗ − c

(
L f +

c
2

)
e−c t/2 +

ε

k∗

}2
. (394)



Symmetry 2022, 14, 1144 73 of 96

The first and the second term within the square brackets converge to zero. Since the quantity ε
is arbitrary, it may be assumed as small as desired, from which the assertion follows.

Since the two exponential functions within the square brackets peter out with dif-
ferent speed, the vanishing speed of the control effort to zero is dominated by the value
max

{
k?, c

2
}

.
The second simpler result examines the case that M is a general manifold but under the

assumption that the leader subsystem and the follower subsystem are perfectly synchronized.

Example 27. Consider the coupled dynamical systems

ẋm = vm,
∇ẋm vm = f (xm, vm),
ẋs = vs + u,
∇ẋs vs = f (xs, vs) + k u,
u := Pxm→xs(vm − c

2 logxm
xs)− vs

(395)

evolving on a Riemannian manifold M and assume that the velocity-transition function f is
Lipschitz continuous in the second argument, uniformly in the first argument, with Lipschitz
constant L f . The state manifold is supposed to be equipped with a Levi-Civita connection ∇.
At perfect synchronization, the control scheme (395) with k > L f makes the control effort vanish to
zero at least exponentially fast.

In order to justify such statement, assume that the leader subsystem and the follower subsystem
are perfectly synchronized, namely, that xs = xm := x, ẋs = ẋm := ẋ. Notice that, even at
perfect synchronization, one must assume that vs 6= vm, in general, although the pair vs, vm
belongs to the same tangent space TxM. At perfect synchronization, the control vector field
u = Pxm→xs

(
vm − c

2 logxm
(xs)

)
− vs simplifies to u = vm − vs ∈ TxM, therefore it holds that

σ̇ = 〈u,∇ẋu〉x = 〈u,∇ẋvm −∇ẋvs〉x = 〈u, f (x, vm)− f (x, vs)− k u〉x. (396)

By the hypothesis made, the function f satisfies the Lipschitz inequality in the space TxM

‖ f (x, vm)− f (x, vs)‖x 6 L f ‖vm − vs‖x = L f ‖u‖x, (397)

with the constant L f being independent from the state x; therefore, from the relation (396), by ap-
plying the Cauchy-Schwarz inequality for the inner product and by recalling the above Lipschitz
continuity condition, we may obtain the following differential inequation:

σ̇ 6 L f ‖u‖2
x − k〈u, u〉x = 2(L f − k)σ, (398)

with initial condition σ(0) = σ0 and where it is understood that t > 0. Set k? := 2(k− L f ) as
effective decay constant. By the Grönwall’s inequality, the above relation implies that the actual
control effort magnitude σ(t) is always bounded from above by the exponential curve σ0e−k?t, hence
the control effort vanishes to zero at least exponentially fast.

In the equations that describe second-order dynamical systems discussed in the paper [30],
the velocity-transition function appears as the summation of a gradient term (that depends only
on the system’s state) and of a number of non-linear damping terms that depend on the system’s
state velocity and on the system’s state itself. We should underline that the assumption that the
velocity-transition function appears Lipschitz in its whole domain is rather strict, although in some
circumstances such requirement is indeed met, for instance:

• in undamped systems, the function f depends only on the system’s state, therefore, the Lip-
schitz continuity condition is automatically verified and the differential inequation (398)
becomes a differential equation, hence the control effort magnitude peters out as fast as e−k t,
as long as k > 0.
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• in linearly damped systems, the transition function is of the type f (x, v) = −µv + a term
that depends on the state ‘x’ only. In this case, it is trivial to verify that the function f is
globally L f -Lipschitz with L f = µ.

In a number of applications, the design of the leader-follower systems pair is up to the user and
does not have to obey any particular physical constraints (this is the case, for example, in secure
transmission of information by signal masking). Therefore, linear damping may be safely assumed
(which includes the case of an undamped oscillators wherever µ = 0).

On the basis of the above considerations, in the context of systems on manifolds it
seems reasonable to prescribe that the momentum-transition function f : TM → TM
satisfies a mixed continuity condition in the first argument and Lipschitz continuity in the
second argument. To express such requirement more precisely, let us define the following
auxiliary function

ϕx(y, v) := Py→x( f (y,Px→y(v))), (399)

where x, y ∈M, v ∈ TxM and ϕx(y, v) ∈ TxM. Note that the following identities hold true

ϕx(x, v) = Px→x( f (x,Px→x(v))) = f (x, v), (400)

f (x, v)− Py→x( f (y, w)) = ϕx(x, v)− ϕx(x,Py→x(w)), (401)

for every w ∈ TyM. We shall say that the function (399) is uniformly continuous in the
argument y and Lipschitz continuous in the argument v if for every x ∈ M, for every
r, v ∈ TxM and for every εϕ > 0 there exist a δϕ > 0 and a L > 0 such that, for each pair
z, y ∈ Bϕ

x with D(z, y) < δϕ, it holds that

‖ϕx(y, r)− ϕx(z, v)‖x < εϕ + L‖r− v‖x, (402)

where Bϕ
x ⊂ M denotes a neighborhood of the point x. Such condition, ultimately, en-

sures that
‖ f (x, v)− Py→x( f (y, w))‖x < εϕ + L‖v− Py→x(w)‖x, (403)

for every y ∈ Bϕ
x , v ∈ TxM and w ∈ TyM, at every point x ∈M.

The above-defined mixed continuity condition is discussed in the following example
concerning a specific instance of momentum-transition function.

Example 28. Let us consider the transition function f : TSn−1 → TSn−1 defined by

f (x, v) := −Sx + (x>Sx)x− µv, (404)

with S being a symmetric, positive-definite matrix and µ denoting a real-valued parameter. It
is straightforward to verify that (x, f (x, v)) represents a tangent vector field in Γ(Sn−1), in fact
x> f (x, v) = −x>Sx + (x>Sx)(x>x)− µ(x>v) = 0. The above function is continuous in the
variable x, while it is obviously Lipschitz-continuous in the variable v.

In the following, the effects of the control term in the dynamical system (376) on the
control effort magnitude in the case of a full dynamics will be analyzed in details. In order to
state the main findings, it is convenient to present and comment some preliminary results.

A first instrumental result concerns the computation of the covariant derivative of
a vector field obtained from the logarithmic map applied to a pair of (nearby) curves. Let
x = x(t) and y = y(t) denote two given smooth curves on the Riemannian manifold M
endowed with the Levi-Civita connection ∇. Consider the parametrized smooth vector
field on TM given by t 7→ (x(t), λ(t)), with λ(t) := logx(t) y(t). The covariant derivative
of the vector field λ along the velocity field associated to the curve x may be proven to take
the expression

∇ẋλ = (d−1
v exp)x,λ(ẏ− (dx exp)x,λ(ẋ)), (405)
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where dx exp and dv exp denote the partial pushforward maps of the exponential map
computed with respect to its positional argument x and its tangential argument v, re-
spectively. In order to explain such result, let a function q : TM → M be defined as
q(x, v) := expx(v), with x ∈ M and v ∈ TxM. Let us denote the pushforward map
of the function q with respect to the first argument by dxq and the pushforward map
of q with respect to the second argument by dvq. Since the function q is a local diffeo-
morphism in TM around v = 0, in a neighborhood of zero the linear map dvq is full-
rank, which ensure that there exists its inverse d−1

v q. In addition, notice that the identity
y(t) = expx(t)(logx(t) y(t)) = expx(t)(λ(t)) = q(x(t), λ(t)) holds. Differentiating both
sides with respect to the parameter t gives ẏ = (dxq)x,λ(ẋ) + (dvq)x,λ(∇ẋλ), therefore,
by inversion, the result relationship (405) is immediately obtained.

In order to get the reader acquainted with the notion of partial pushforwards of the
exponential map, detailed computations in the case of a unit hyper-sphere are carried out
in the following example.

Example 29. Let us recall that the exponential map for the unit hypersphere corresponding to
a Euclidean metric is given by

expx(v) = x cos(‖v‖) + v sinc(‖v‖), (406)

where ‖ · ‖ denotes the standard 2-norm and ‘ sinc’ denotes the cardinal sine function. Its partial
pushforward maps may be represented as linear operators mapping Rn to itself, that is to say,
by square matrices.

The computation of the sought tangent maps may be worked out by defining the curve

y(t) = expx(t)(v(t)) = x(t) cos(‖v(t)‖) + v(t) sinc(‖v(t)‖), (407)

where x(t) : t > 0 7→ x ∈ M, y(t) : t > 0 7→ y ∈ M, and v(t) : t > 0 7→ v ∈ Tx(t)M. Taking
the derivative of both sides of the expression (407) with respect to the parameter t yields

ẏ = ẋ cos(‖v‖)− x sin(‖v‖)d‖v‖
dt

+ v̇ sinc(‖v‖) + v sinc′(‖v‖)d‖v‖
dt

= ẋ cos(‖v‖) + v̇ sinc(‖v‖) + ( sinc′(‖v‖)v− x sin(‖v‖))v>v̇
‖v‖ ,

(408)

where v̇ denotes the naïve derivative of the vector field v(t) and sinc′ denotes the derivative of the
cardinal sine function.

Recall, from Equation (115), that v̇ = ∇ẋv− xẋ>v, therefore the above expression may be
recast as

ẏ = ẋ cos(‖v‖) + (∇ẋv− xẋ>v) sinc(‖v‖) + ( sinc′(‖v‖)v− x sin(‖v‖)]v
>∇ẋv
‖v‖ , (409)

because x>v = 0. A comparison of the above expression with ẏ = (dx exp)x,v(ẋ) +
(dv exp)x,v(∇ẋv) leads to a matrix-type representation of the sought partial pushforward maps as

J(dx exp)x,vK = cos(‖v‖)In − sinc(‖v‖)xv>, (410)

J(dv exp)x,vK =

{
sinc(‖v‖)(In − xv>) + cos(‖v‖)− sinc(‖v‖)

‖v‖2 vv>, for v 6= 0,

In, for v = 0,
(411)

where the symbol J·K denotes a matrix representative of a linear operator.
In correspondence of the null vector v = 0, the pushforward map dv exp equals the identity

and in a neighborhood of zero such pushforward map is invertible. For v 6= 0, since the matrix
J(dv exp)x,vK is written as the sum of two terms, one may utilize Woodbury’s matrix inversion
lemma [53] to compute such inverse pushforward map. Notice that an application of the matrix
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inversion lemma gives (In − xv>)−1 = In + xv>. Applying such lemma a second time yields the
sought result

J(d−1
v exp)x,vK =

{
In+xv>

sinc(‖v‖)

[
In − cos(‖v‖)− sinc(‖v‖)

‖v‖2 cos(‖v‖) vv>
]
, for v 6= 0

In, for v = 0.
(412)

Notice that a singularity occurs in correspondence of ‖v‖ = π
2 , where it holds that

J(dv exp)x,vK|‖v‖=π/2 = In −
(

x + 8
π3 v
)

v>, whose rank is 2. A second singularity occurs when

‖v‖ = π, where J(dv exp)x,vK|‖v‖=π = − 1
π2 vv>, whose rank is 1. Because of rank deficiency,

in correspondence of these balls in TxM such partial pushforward map is singular.

The inverse map (d−1
v exp)x,logx y : TyM→ TxM plays a central role in the computation

of the covariant derivative of the function logx y. Likewise, the map (dx exp)x,logx y :
TxM→ TyM will play a central role in the analysis of the control effort dynamics. Notice
that whenever x = y, the partial pushforward map (dv exp)x,logx y coincides to the identity
idTyM, while the map (dx exp)x,0 coincides to the identity idTxM. We are going to assume
some sort of continuity of the dicussed partial pushforward maps with respect to their
positional and vectorial arguments. In order to make such assumptions precise, let us
define two further auxiliary maps that play a role in the computation of the covariant
derivative of the logarithmic-map-based vector field, namely:

µx(y, r) := ((d−1
v exp)x,logx y ◦ Px→y)(r), (413)

βx(y, v) := (Py→x ◦ (dx exp)x,logx y)(v), (414)

where x, y ∈M and r, v ∈ TxM. We chose the above notation to underline that the functions
µ and β exhibit an asymmetric dependence from the variables x and y; in addition, one such
notation makes it easy to remember that, for every given pair (x, y) ∈ M2, the operators
µx(y, ?) and βx(y, ?) are linear endomorphisms of TxM. The following identities are
immediate to verify:

µx(x, r) = ((d−1
v exp)x,0 ◦ Px→x)(r) = r, (415)

βx(x, v) = (Px→x ◦ (dx exp)x,0)(v) = v, (416)

−∇ẋ logx y = µx(y, βx(y, v)− Py→x(w)). (417)

In the following we shall assume the function µx defined in (413) to be continuous
with respect to the variable y, namely that for every x ∈ M, for every r ∈ TxM and
for every εµ > 0, there exists a constant δµ > 0 such that, for any y ∈ Bµ

x that satisfies
D(x, y) < δµ, it holds that ‖µx(y, r)− r‖x < εµ, where Bµ

x denotes a neighborhood of the
point x ∈M. Such assumption tells that the linear map µx(y, ?), thought of as a function
of y, behaves like an approximate identity when x gets close to y. Note that, because of
the linearity in the argument r, it is not necessary to make any restriction on its value.
The continuity assumption carries over an useful consequence. By virtue of the triangular
inequality, it holds that ‖µx(y, r) − r‖x > ‖µx(y, r)‖x − ‖r‖x, therefore the assumption
‖µx(y, r)− r‖x < εµ implies that

‖µx(y, r)‖x < εµ + ‖r‖x in Bµ
x . (418)

Likewise, the map βx(y, ?) will be assumed to be continuous with respect to the
variable y, in a neighborhood Bβ

x of a point x for every value x ∈M. That is to say, for every
point x ∈M, every r ∈ TxM, and every scalar εβ > 0 there exists a scalar δβ > 0 such that,

for any y ∈ Bβ
x with D(x, y) < δβ, it holds that ‖βx(y, v)− v‖x < εβ.
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By virtue of the triangular inequality of the norm, taking any tangent vector w ∈ TyM,
we may write that ‖βx(y, v)− Py→x(w)− (v− Py→x(w))‖x > ‖βx(y, v)− Py→x(w)‖x −
‖v− Py→x(w)‖x. As a consequence, the assumption ‖βx(y, v)− v‖x < εβ implies that

‖βx(y, v)− Py→x(w)‖x < εβ + ‖v− Py→x(w)‖x in Bβ
x . (419)

The implications (418) and (419), together with the identity (417), tell that irrespec-
tive of how the positive values εµ and εβ are chosen small, there certainly exists a point

y ∈ Bµ
x ∩B

β
x \ {x} such that

‖(d−1
v exp)x,logx y[(dx exp)x,logx y(v)− w]‖x < εµ|β + ‖v− Py→x(w)‖x, (420)

where εµ|β := εµ + εβ. The inequality (420) appears as a sort of mixed continuity/Lipschitz-
continuity condition on the composition of the partial pushforward maps associated to the
exponential map.

Let us evaluate the continuity of the expressions µx(y, u) and βx(y, v) for the unit-
hyperpshere, as an instructive case of study, in the following example.

Example 30. The expression of µx(y, u), when x 6= y ∈ Sn−1, may be obtained by composing the
expression (412) and the expression of the parallel transport on the unit hyper-sphere, that we recall
to take the expression

Px→y(u) =

(
In −

(x + y)y>

1 + x>y

)
u. (421)

We shall avoid writing the expression of the auxiliary function µ explicitly because it is
quite cumbersome and not particularly illuminating. It suffices to note that, as we have seen
in the Example 29, the map (412) is continuous as long as ‖v‖ < π

2 , while the map (421)
is continuous as along as D(x, y) < π. Therefore, the function µx(y, ?) is continuous in
Bµ

x := {y ∈ Sn−1|D(x, y) < π
2 }. Likewise, the expression of βx(y, v) may be obtained by compos-

ing the expression (410) and the expression (421), to give:

βx(y, v) =

(
In −

(y + x)x>

1 + cos D(x, y)

)
(In cos D(x, y)− xy>)v. (422)

Such function is continuous in Bβ
x := {y ∈ Sn−1|D(x, y) < π}. Gluing the two above

results, one gets Bµ
x ∩B

β
x \ {x} = {y ∈ Sn−1|0 < D(x, y) < π

2 }.

Observation 2. The inverse map µ−1
x (y, ?) has been studied in details in the unpublished contri-

bution [54]. (In particular, to make the notation uniform, the map µ−1
x (y, ?) corresponds to the map

Ex(logx y) := I−1
x (logx y) ◦ (dv exp)x, logx y in [54].) The contribution [54] shows that this map

may be written explicitly as a Taylor series of higher-order covariant derivatives of the Riemannian
curvature endomorphism.

As a further instrumental result in the present analysis, we may express the covariant
derivative of the parallel transport operator ∇P on a manifold M endowed with a Levi-
Civita connection ∇. Consider the parametrized smooth vector field t 7→ (y(t), w(t)) ∈
TM and define the new parametrized vector field t 7→ (x(t),Py(t)→x(t)(w(t))) ∈ TM.
The covariant derivative of such vector field along the velocity field of the curve x(t) takes
the expression

∇ẋPy→x(w) = (dxPy→x)x,y,w(ẋ)− (Py→x ◦ (dxPy→x)y,x,v)(ẏ) + Py→x(∇ẏw), (423)

where (dxPy→x)x,y,w : TxM → TxM for every y ∈ M and w ∈ TyM, and (dxPy→x)y,x,v :
TyM → TyM for every x ∈ M and v ∈ TxM. In addition, the ‘diagonal’ part of the linear



Symmetry 2022, 14, 1144 78 of 96

map (dxPy→x)x,y,w is identically zero, namely (dxPy→x)x,x,v ≡ 0, for every point x ∈ M
and tangent vector v ∈ TxM.

The above statements may be motivated as follows. Let h : M× TM→ TM be defined
as h(x, y, w) := Py→x(w) for any two points x and y in M and for any tangent vector
w ∈ TyM. Note, in particular, that the function h is linear in the third argument. Now, set
v(t) := h(x(t), y(t), w(t)) and note that v is a vector field in Γ(M), namely v(t) ∈ Tx(t)M.
By definition of covariant derivative along a curve, we have that

∇ẋv = lim
s→0

1
s

{
Px(t+s)→x(t)(v(t + s))− v(t)

}
= lim

s→0

1
s

{
Px(t+s)→x(t)(h(x(t + s), y(t + s), w(t + s)))− h(x(t), y(t), w(t))

}
= lim

s→0

1
s

{
Px(t+s)→x(t)(h(x(t + s), y(t + s), w(t + s)))− h(x(t), y(t + s), w(t + s))

+ h
(

x(t), y(t + s), w(t + s)− Py(t)→y(t+s)(w(t))
)

+h
(

x(t), y(t + s),Py(t)→y(t+s)(w(t))
)
− h(x(t), y(t), w(t))

}
.

(424)

The covariant derivative ∇ẋv may thus be expressed as

∇ẋv = (dxh)x,y,w(ẋ) + (dyh)x,y,w(ẏ) + h(x, y,∇ẏw), (425)

where ẋ ∈ TxM, ẏ ∈ TyM and ∇ẏw ∈ TyM. Since the notation might lead to some
confusion, let us specify that the symbol dxh denotes the pushforward map of the function
h with respect to its first argument, while the symbol dyh denotes the pushforward map
of the function h evaluated with respect to its second argument. Such partial pushforward
maps are defined as

(dxh)x,y,w(ẋ) := lims→0
1
s {Px(t+s)→x(t)(h(x(t + s), y(t + s), w(t + s)))
−h(x(t), y(t + s), w(t + s))},

(dyh)x,y,w(ẏ) := lims→0
1
s

{
h
(

x(t), y(t + s),Py(t)→y(t+s)(w(t))
)
− h(x(t), y(t), w(t))

}
.

(426)

Moreover, the notation (dxh)x,y,w indicates that the pushforward map, that is a func-
tion of three variables (besides of its argument), is evaluated at a point where the first
variable is instantiated to the value x, the second variable is instantiated to the value y and
the third variable is instantiated to the value w.

Now, since Px→y ◦ Py→x = idTxM, the identity w = h(y, x, h(x, y, w)) holds. Applying
to both sides the covariant derivative ∇ yields the identity

∇ẏw = (dxh)y,x,v(ẏ) + (dyh)y,x,v(ẋ) + h(y, x, (dxh)x,y,w(ẋ) + (dyh)x,y,w(ẏ) + h(x, y,∇ẏw)). (427)

Notice that (dxh)y,x,v is an operator that maps TyM to itself, while the operator
(dyh)x,y,w maps TyM to TxM. Since the velocity vector fields ẋ and ẏ are arbitrary, the above
identity, rewritten as

∇ẏw = (dxh)y,x,v(ẏ) + (dyh)y,x,v(ẋ) + h(y, x, (dxh)x,y,w(ẋ)) + h(y, x, (dyh)x,y,w(ẏ)) +∇ẏw, (428)

yields two independent operator identities, one of which is h(y, x, (dyh)x,y,w) +
(dxh)y,x,h(x,y,w) = 0, namely

(dyh)x,y,w = −h(x, y, (dxh)y,x,h(x,y,w)). (429)

By using the Equation (425) and the definition of the function h leads to the sought result.



Symmetry 2022, 14, 1144 79 of 96

The statement about the diagonal part of the tangent map (dxPy→x)x,y,w follows from
the definitions (426), in fact

(dxh)x,x,v(ẋ) = lim
s→0

1
s
{Px(t+s)→x(t)(h(x(t + s), x(t + s), v(t + s)))

− h(x(t), x(t + s), v(t + s)},

= lim
s→0

1
s

{
Px(t+s)→x(t)(v(t + s))− h(x(t), x(t + s), v(t + s))

}
,

= lim
s→0

1
s

{
Px(t+s)→x(t)(v(t + s))− Px(t+s)→x(t)(v(t + s))

}
,

= 0,

(430)

no matter how the point x ∈M and the tangent vector v ∈ TxM are chosen on the tangent
bundle. But since ẋ is arbitrary, the statement follows.

The following example clarifies the above findings.

Example 31. Consider the parallel translation map for the unit hyper-sphere Sn−1 corresponding
to a Euclidean metric. By applying the definitions of partial pushforward maps in terms of time-
derivatives, it is not hard to compute the maps (dxPy→x)x,y,w and (dyPy→x)x,y,w. Let us initiate
by recalling that, in the present example,

h(x, y, w) :=

(
In −

(y + x)x>

1 + x>y

)
w. (431)

(Notice that this instance of parallel transport is from y to x! In fact, w ∈ TyM). The naïve
derivative of such instance of the function h reads

ḣ =

(
− (ẏ + ẋ)x>(1 + x>y) + (y + x)ẋ>(1 + x>y)− (y + x)x>(ẋ>y + x>ẏ)

(1 + x>y)2

)
w

+ h(x, y, ẇ).

(432)

By making use of the expression of the covariant derivative of the vector fields v = h(x, y, w)
and w given in (115), the relation (425) may be recast as:

ḣ + xh> ẋ = (dxh)x,y,w(ẋ) + (dyh)x,y,w(ẏ) + h(x, y, ẇ + yw>ẏ). (433)

Plugging the Equation (432) into the relation (433) leads to

−

(
(ẏ + ẋ)(x>w)(1 + x>y) + (y + x)(ẋ>w)(1 + x>y)− (y + x)(x>w)(ẋ>y + x> ẏ)

)
(1 + x>y)2

+xw>
(

In −
x(y + x)>

1 + x>y

)
ẋ = (dxh)x,y,w(ẋ) + (dyh)x,y,w(ẏ) + (w> ẏ)

(
In −

(y + x)x>

1 + x>y

)
y.

(434)

Upon splitting the terms in ẋ and ẏ, after some tedious but not hard calculations, we obtain
a matrix representation of the sought partial pushforward maps given by

J(dxPy→x)x,y,wK = − (x>w)(In + xy>) + (y + x)w>

1 + x>y
+ xw> +

(x>w)(y + x)y>

(1 + x>y)2 , (435)

J(dyPy→x)x,y,wK = − x>w
1 + x>y

(
In −

(y + x)x>

1 + x>y

)
− yw> +

(x>y)(y + x)w>

1 + x>y
. (436)
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It is not hard to verify that x>(dxPy→x)x,y,w(ẋ) = x>(dyPy→x)x,y,w(ẏ) = 0 by using the
above matrix representations. In addition, some lengthy – yet straightforward – calculations allow
one to verify the identity (429), that may be rewritten explicitly as

(dyPy→x)x,y,w(ẏ) = −Py→x ◦ (dxPy→x)y,x,Py→x(w)(ẏ). (437)

Such identity establishes that the partial pushforward map dyP may be written in terms of
the partial pushforward map dxP, which justifies why the latter is termed principal pushfor-
ward map (of the parallel transport operator). It is also straightforward to verify directly that
J(dxPy→x)x,x,vK = 0 for the diagonal part of the partial pushforward map dxP.

Some remarks on the partial pushforward maps of the parallel transport operator are
in order. The map (dxPy→x)x,y,w is linear in the variable w (as well as in its argument),
therefore, the only way it could possibly be bounded over the whole domain M× TM
is that it is identically zero. Moreover, since the linear map (dxPy→x)x,y,w gets close to
the null map when the points x and y come close to one another, it is natural to express
the continuity of the term (dxPy→x)x,y,w(ẋ)− (Py→x ◦ (dxPy→x)y,x,v)(ẏ) by requiring that
the function (dxPy→x)x,y,w(v)− (Py→x ◦ (dxPy→x)y,x,Py→x(w))(τ) is continuous within its
domain of definition if, for every εψ > 0, there exists a scalar δψ > 0 such that, for any pair
x, y ∈M2 that satisfies the inequality D(x, y) < δψ, it results that

‖(dxPy→x)x,y,w(v)− (Py→x ◦ (dxPy→x)y,x,Py→x(w))(τ)‖x < εψ, (438)

for every choice of the tangent vectors w, τ ∈ TyM and v ∈ TxM.
We have by now set all the analytic tools that are indeed necessary to justify the main

result of the present section. We shall in fact show that the control scheme (376) ensures
that the control effort vanishes to zero under conditions of continuity.

Let us assume that the parallel-transport operator and the manifold exponential map
are locally continuous together with their tangent maps in the tangent bundle TM. Let us
further assume that the velocity-transition function is continuous in its first argument and
Lipschitz continuous in its second argument with Lipschitz constant L f . If the constant k
meets the conditions k 6= L f +

c
4 and k > L f , then the control effort presents a convergence

to zero that results to be almost exponentially fast.
In order to justify such statement, it is convenient for easier tractability to define a dual

control field (xm, u?) ∈ TM as

u? = vm − Pxs→xm(vs)− c
2 logxm

(xs). (439)

It is worth noticing that, since u? = Pxs→xm(u), it holds that

σ = 1
2‖u‖

2
xs =

1
2‖u

?‖2
xm . (440)

Moreover, since the manifold M was endowed with a metric connection∇, the control
effort possesses a time-dynamics described by the covariant derivative of the dual control
field through the expression

σ̇ = 〈u?,∇ẋm u?〉xm . (441)

The covariant derivative of the dual control field, in turn, consists of three terms:

∇ẋm u? = ∇ẋm vm −∇ẋmPxs→xm(vs)− c
2∇ẋm logxm

(xs). (442)

According to the expression (405), the covariant derivative of the logarithmic map
applied to the trajectories of the leader and of the follower subsystems reads

∇ẋm logxm
(xs) = (d−1

v exp)xm,logxm (xs)(ẋs − (dx exp)xm,logxm (xs)(ẋm)). (443)
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In addition, according to the expression (423), the covariant derivative of the parallel-
transport-related field reads

∇ẋmPxs→xm(vs) = (dxmPxs→xm)xm,xs,vs(ẋm) + Pxs→xm(∇ẋs vs)

− (Pxs→xm ◦ (dxmPxs→xm)xs,xm,Pxs→xm (vs))(ẋs)

= (dxmPxs→xm)xm,xs,vs(ẋm) + Pxs→xm( f (xs, vs)) + k u?

− (Pxs→xm ◦ (dxmPxs→xm)xs,xm,Pxs→xm (vs))(ẋs).

(444)

Putting all those terms together in a single expression gives, for the covariant derivative
of the dual control field along the trajectory of the leader subsystem, that reads

∇ẋm u? = f (xm, vm)− Pxs→xm( f (xs, vs))

− (dxmPxs→xm)xm,xs,vs(ẋm) + (Pxs→xm ◦ (dxmPxs→xm)xs,xm,Pxs→xm (vs))(ẋs)

− c
2 (d
−1
v exp)xm,logxm (xs)(ẋs − (dx exp)xm,logxm (xs)(ẋm))

− k u?.

(445)

It is convenient to recall from the very definition of dual control field that{
u? + c

2 logxm
(xs) = vm − Pxs→xm(vs),

ẋm − Pxs→xm(ẋs) = vm − Pxs→xm(vs)− u?,
(446)

from which, by the triangular property of the norm, it follows directly that{
‖vm − Pxs→xm(vs)‖xm 6 ‖u?‖xm + c

2D(xs, xm),
‖ẋm − Pxs→xm(ẋs)‖xm = c

2D(xs, xm).
(447)

Let us also recall that the distance D(xs(t), xm(t)) takes on the expression
D0 exp

(
− c

2 t
)
, where D0 := D(xs,0, xm,0).

For the inner product in Equation (441), it holds that

〈u?,∇ẋm u?〉xm =

− k〈u?, u?〉xm

+ 〈u?, f (xm, vm)− Pxs→xm ( f (xs, vs))〉xm

+ 〈u?, (Pxs→xm ◦ (dzmPxs→xm )xs,xm,Pxs→xm (vs))(ẋs)− (dxmPxs→xm )xm,xs,vs (ẋm)〉xm

+ c
2 〈u

?, (d−1
v exp)xm,logxm (xs)((dx exp)xm,logxm (xs)(ẋm)− ẋs)〉xm .

(448)

Let us examine the four terms in the right-hand side of the above lengthy expression:

• the term −k〈u?, u?〉xm clearly equals −2k σ because of the identity (440);
• the term 〈u?, f (xm, vm) − Pxs→xm( f (xs, vs))〉xm may be majorized by means of the

Cauchy-Schwarz inequality, by the assumption that the function f is continuous in
the first argument and Lipschitz-continuous in the second argument, and by the
properties (447). Namely, ∀εϕ > 0, ∃δϕ > 0, L f > 0 such that ∀xm, xs ∈ M with
D(xm, xs) < δϕ, it holds that
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〈u?, f (xm, vm)− Pxs→xm( f (xs, vs))〉xm

6 ‖u?‖xm‖ f (xm, vm)− Pxs→xm( f (xs, vs))‖

< ‖u?‖xm

(
εϕ + L f ‖vm − Pxs→xm(vs)‖xm

)
6 ‖u?‖xm

(
εϕ + L f (‖u?‖xm + c

2D(xs, xm))
)

= L f ‖u?‖2
xm + ‖u?‖xm

(
εϕ + 1

2 L f cD(xs, xm)
)

= 2L f σ +
√

2σ
(

εϕ + 1
2 L f cD(xs, xm)

)
;

(449)

• the further scalar component 〈u?, (Pxs→xm ◦ (dxmPxs→xm)xs,xm,Pxs→xm (vs))(ẋs) −
(dxmPxs→xm)xm,xs,vs(ẋm)〉xm may be majorized by invoking the Cauchy-Schwarz in-
equality and the continuity of the parallel transport and of its tangent maps. Namely,
∀εψ > 0, ∃δψ > 0 such that ∀xm, xs ∈M with D(xm, xs) < δψ, it holds that

〈u?, (Pxs→xm ◦ (dxmPxs→xm )xs,xm,Pxs→xm (vs))(ẋs)− (dxmPxs→xm )xm,xs,vs (ẋm)〉xm

6 ‖u?‖xm‖(Pxs→xm ◦ (dxmPxs→xm )xs,xm,Pxs→xm (vs))(ẋs)− (dxmPxs→xm )xm,xs,vs (ẋm)‖xm

< εψ‖u?‖xm

=
√

2σεψ;

(450)

• to end with, the term c
2 〈u?, (d−1

v exp)xm,logxm (xs)((dx exp)xm,logxm (xs)(ẋm) − ẋs)〉xm

may be majorized by the help of the Cauchy-Schwarz inequality, by the assump-
tions on the continuity of the pushforward maps of the exponential map and by
the inequalities (447), namely, ∀εβ > 0, ∃δβ > 0 such that ∀xs, xm ∈ M for which
D(xs, xm) < δβ then

c
2 〈u

?, (d−1
v exp)xm,logxm (xs)((dx exp)xm,logxm (xs)(ẋm)− ẋs)〉xm

6 c
2‖u

?‖xm‖(d−1
v exp)xm,logxm (xs)((dx exp)xm,logxm (xs)(ẋm)− ẋs)‖xm

< c
2‖u

?‖xm

(
εβ + ‖ẋm − Pxs→xm(ẋs)‖xm

)
= c

2‖u
?‖xm

(
εβ +

c
2D(xs, xm)

)
= c

2

√
2σ
(
εβ +

c
2D(xs, xm)

)
.

(451)

Majorizing the quantity in (448) by means of the inequalities (449)–(451), and choosing
εϕ = ε

3 , εψ = ε
3 and εβ = 2ε

3c , for t sufficiently large to fulfill D(xs, xm) < min{δϕ, δβ, δψ}, it
holds that

σ̇(t) < −k?σ(t) +
√

2σ(t)ρ(t), (452)

with k? and ρ(t) defined as in (389). By a Grönwall-like majorization argument, we conclude
that the control effort vanishes to zero at least exponentially.

6.4. Feedback Error Velocity, Principal Pushforward Map and Relation to Curvature

The cornerstone of control theory is error feedback control, based on the definition of
a suitable error figure between the actual state of a system to control and a desired state,
to be fed to a control algorithm. The control algorithm, in turn, will produce the appropriate
commands to the system aimed at reducing the value of the error, hence forming a closed
loop. Denoting by e such control error, it pays to study the evolution law of the error,
often determined by a differential equation in the terms ė and ë, in order to make sure that
effectively the error converges to zero (asymptotically). Such differential equation describes
an error system, as it was exemplified in Section 6.1. The above-mentioned time-derivatives
of the error also intervene in designing the control algorithm itself, which in industrial
applications is often chosen to include proportional, integral and derivative (PID) terms. It
is, in fact, known that each of these term may contribute in shaping the error system and in
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compensating each others’ drawbacks in order to attain a desired dynamics for the error
field e.

When considering two dynamical systems whose common state space is a curved
Riemannian manifold M, whose states are described by the manifold-valued variables
x, y ∈ M (where let us say that the reference system has state-variable x), there is not
a straightforward definition of error. According to the prevailing literature (see, e.g., [55,56]),
and on the present author’s personal experience, the error term e ∈ TxM should be defined
as a tangent field along the trajectory of one of the systems as, for example, e := logx y.
A problem with this definition often comes when formulating the derivative and integral
control terms. What is most relevant to the present discussion is the computation of
a derivative term which, for consistency, cannot be the naïve derivative ė of the error but
needs to be, for example, the covariant derivative ε := ∇x

t e = ∇x
t logx y. Such calculation

was already detailed in Section 6.3 and we may recall from Equation (405) that

ε = ∇ẋ logx y = (d−1
v exp)x,logx y(ẏ)− (d−1

v exp)x,logx y((dx exp)x,logx y(ẋ)). (453)

In practice, such expression, which depends on the partial pushforwards of the ex-
ponential map, is deemed to be overly convoluted to employ and hence is replaced by
a simpler expression that retains the meaning of error velocity and the property of being
a tangent vector field yet being much simpler to utilize, namely

ε := Py→x(ẏ)− ẋ. (454)

It is interesting to recall that such an error term appears in the Cucker-Smale model on
manifold recalled in the introductory discussion of the present Section.

Now, the dynamics of the error depends on the (covariant) time-derivative of the
velocity of the error, namely on ∇x

t ε = ∇x
t Py→x(ẏ) −∇x

t ẋ. The second term coincides
with the state-acceleration of one of the systems, while the term ∇x

t Py→x(ẏ) needs to be
studied aside. The present section is devoted to the analysis of the quantity ∇ẋPy→x(ẏ).
The analysis carried out in the present section elucidates some interesting algebraic proper-
ties of the principal pushforward map associated to the parallel transport operator and the
connection between such principal pushforward map and the curvature endomorphism of
the state manifold.

The scientific content recalled in the present section is largely based on the earlier
contribution [18].

6.4.1. Algebraic Properties of the Principal Pushforward Map of Parallel Transport
We have already shown in Section 6.3 and, in particular, by Equation (423) that, given

two smooth curves t 7→ x(t) and t 7→ y(t) in M and a smooth vector field wy(t) ∈ Ty(t)M,
the covariant derivative of the vector field x 7→ Py→x(wy) along the velocity field of the
curve x(t) reads

∇ẋPy→x(wy) = (dxPy→x)x,y,wy (ẋ)− Py→x((dxPy→x)y,x,Py→x(wy))(ẏ)) + Py→x(∇ẏwy), (455)

where (dxP)x,?,? ∈ End(TxM) for any x ∈ M. Such differential map is termed principal
pushforward map since the covariant derivative ∇P may be expressed entirely on the basis
of such map without any need to refer to the further partial pushforward map dvP.

One might notice that the covariant derivative ∇ẋPy→x(wy) of the transported field
equals the sum of an ‘obvious’ term, given by the transported covariant derivative
Py→x(∇ẏwy), and of further terms purely related to the dynamics of parallel transport
and, hence, on the curvature of the state manifold M. (Such terms appear to be somehow
reminiscent of the kinematic corrections due to a change in reference systems in physics.)

The principal pushforward map enjoys some interesting algebraic properties. Since
these are not directly instrumental to the present analysis, let us recall them under the form
of an example.
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Example 32. Denoting by (dxPy→x)†
x,y,wy : TxM → TxM the adjoint (or dual) of the operator

(dxPy→x)x,y,wy with respect to the Riemannian metric of M, it holds that

(dxPy→x)†
x,y,Px→y(vx)

(vx) = 0. (456)

for every x, y ∈M and vx ∈ TxM. In order to explain such statement, let us recall that, since the
parallel transport is an isometry, the vector fields t 7→ (x(t), v(t)) and t 7→ (y(t), w(t)) enjoy
the property

‖vx(t)‖2
x(t) = ‖wy(t)‖2

y(t). (457)

Taking the derivative of both sides with respect to the parameter t yields the equation

〈vx,∇ẋvx〉x = 〈wy,∇ẏwy〉y. (458)

By replacing the expression (455) for the covariant derivative ∇ẋvx in (458), we get:

〈vx, (dxPy→x)x,y,wx (ẋ)〉x − 〈vx, (Py→x ◦ (dxPy→x)y,x,vx )(ẏ)〉x
+〈Py→x(wy),Py→x(∇ẏwy)〉x = 〈wy,∇ẏwy〉y.

By way of the isometry property of parallel transport, it is immediate to see that the last term on
the left-hand side equals the term on the right-hand side, therefore the above property is equivalent to

〈vx, (dxPy→x)x,y,wy(ẋ)〉x = 〈vx, (Py→x ◦ (dxPy→x)y,x,vx )(ẏ)〉x. (459)

It pays to recall that, given a linear operator L : V → V on a vector space V endowed
with a positive-definite inner product 〈·, ·〉 : V2 → R, its adjoint L† with respect to the met-
ric satisfies the relation 〈L(v), u〉 = 〈v, L†(u)〉 for every u, v ∈ V. The left-hand side of the
Equation (459) may thus be rewritten as 〈(dxPy→x)†

x,y,Px→y(vx)
(vx), ẋ〉x. Since x, y, ẋ and ẏ are

arbitrary, the Equation (459) may hold only if the identity (456) holds.
Let us further recall the following two properties of linear operators on vector spaces:

• Equivalence of matrix representations: Given a linear operator L : V → V on a vector
space V ⊂ Rm, two of its matrix representations JLK1 and JLK2 are equivalent on the vec-
tor space V if JLK1x = JLK2x for any x ∈ V, although the matrices JLK1 and JLK2 may
appear different.

• Representation of the adjoint: If JLK is a matrix representation of a linear operator L :
V→ V on a vector space V ⊂ Rm with respect to an orthonormal basis of V, then the matrix
representation of its adjoint, namely JL†K coincides with the transpose JLKT (this is a reason
why the adjoint is sometimes also referred to as transpose operator).

It is immediate to recognize that the matrix-representation (435) of the operator (dxPy→x)x,y,wy

is not unique. For example, if we add to the matrix J(dxPy→x)x,y,wyK the term x>wy(1 +

x>y)−1xx>, we get an equivalent representation of the map (dxPy→x)x,y,wy given by:

J(dxPy→x)x,y,wyK1 := −
(x>wy)(In + xy> − xx>) + (y + x)w>y

1 + x>y

+ xw>y +
(x>wy)(y + x)y>

(1 + x>y)2 .

(460)

A further equivalent representation is

J(dxPy→x)x,y,wyK2 := J(dxPy→x)x,y,wyK1 −
(w>y x)2

(1 + x>y)2
[Py→x(w)]x>

‖wy‖2 , (461)

that serves to exemplify the property (456). In fact, in the present context, it
holds that J(dxPy→x)†

x,y,wyK = J(dxPy→x)x,y,wyK> and it is not hard to verify that
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J(dxPy→x)x,y,Py→x(vx)K
>
2 vx = 0, no matter how one chooses the points x ∈ Sn−1, y ∈

Sn−1 \ {−x} and the tangent vector v in TxSn−1.
As a further property of the principal pushforward map, more related to system dynamics,

let us consider two trajectories t 7→ x(t) and t → y(t) that intersect at a point p ∈ M. Since
vx = Py→x(wy), when x = y = p the vector fields vx and wy align to one another at p, namely
vp ≡ wp ∈ TpM. On the other hand, the two curves are arbitrary and we assume that ẋp 6= ẏp.
An interesting finding is that at the point p, ∇ẋvx = ∇ẏwy. In fact, at any points x, y ∈M and
for every wy ∈ TyM, it holds that

(∇ẋvx)x = (dxPy→x)x,y,wy(ẋx)− Py→x
(
(dxPy→x)y,x,Py→x(wy))(ẏy)− (∇ẏwy)y

)
. (462)

Setting x = y = p gives

(∇ẋvx)p = (dxPy→x)p,p,wp(ẋp)− (dxPy→x)p,p,wp(ẏp) + (∇ẏwy)p, (463)

namely
(∇ẋvx)p − (∇ẏwy)p = (dxPy→x)p,p,wp(ẋp − ẏp). (464)

The right-hand side is identically zero because it is an element of the diagonal of the pushforward
map, whence the conclusion follows.

The above statement, written explicitly for the unit hyper-sphere, leads indeed to non-trivial
constraints on the naïve derivatives (v̇x)p, (ẇy)p ∈ A. By using the Equation (115) for the
covariant derivative, the above property reads

(v̇x)p + pv>p ẋp = (ẇy)p + pw>p ẋp. (465)

Since vp = wp, the above equation may be rewritten, for example, as

(v̇x)p − (ẇy)p = p v>p (ẏp − ẋp). (466)

Whenever ẏp = ẋp, it happens trivially that (v̇x)p = (ẇy)p, otherwise, the two naïve
derivatives differ by the amount v>p (ẏp − ẋp) along the radial direction p.

To conclude this review of the abstract properties of the principal pushforward map,
let us suppose that one of the two trajectories x(t) and y(t) is constant, for example,
suppose that

y(t) = y = constant for every t ∈ I, (467)

in such a way that its image reduces to a point-set {y}. As a consequence, we have that
ẏ = 0 and therefore ∇ẏwy = 0 and (dxPy→x)x,y,vx (ẏ) = 0. Nevertheless, the vector field
vx(t) = Py→x(t)(wy) changes over time and its covariant derivative along the velocity field
ẋ is still given by the relation (455) that, by the hypothesis made, reads:

(dxPy→x)x,y,wy(ẋ) = ∇ẋPy→x(wy)
∣∣
y(t) = const. (468)

The above relation supplies a meaning to the principal pushforward map
(dxPy→x)x,y,wy as the covariant derivative of the transported ‘constant’ vector field wy.

6.4.2. Relationship between the Principal Pushforward Map and the
Curvature Endomorphism

Parallel transport does not behave trivially under composition. For instance, given
three points x, y, z ∈ M not aligned along the same geodesic arc, in general it happens
that Py→x ◦ Pz→y 6= Pz→x. Such fundamental observations leads to the holonomy theory
which is closely related to the theory of curvature manifold by the Ambrose–Singer theo-
rem [57]. The aim of the current section is to explore and exemplify such relationship with
some details.
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To start with, let us recall that to any point x ∈M is associated an algebraic structure
Holx(M) termed holonomy group formed by the set of linear operators that realize a parallel
transport along any piecewise smooth closed loops originating and ending at the base-
point x. An instance of piecewise smooth closed loop easy to visualize is a geodesic triangle
determined by three non-aligned points x, y, z ∈ M and by the three geodesic arcs that
connect them. Then, given a tangent vector wy ∈ TyM, one may start by transporting the
vector wy from the point y to the point z along the geodesic arc originating at the point y
and ending in the point z by means of the parallel transport operator Py→z, then one may
transport the resulting tangent vector from the point z to the point x along the geodesic
line connecting such points by means of the parallel transport operator Pz→x, and then one
may transport the resulting tangent vector from the point x back to the point y along the
geodesic line connecting such pair of points by means of the parallel transport operator
Px→y. The resulting tangent vector, that we denote as

w̄y := (Px→y ◦ Pz→x ◦ Py→z)(wy) (469)

will, in general, differ from the vector wy that one started with, because of the curvature
of the manifold. The compound linear map Hy(z, x) := Px→y ◦ Pz→x ◦ Py→z is an element
of the holonomy group, namely, Hy ∈ Holy(M). Notice that, since each element of the
parallel transport chain in the definition of the operator H realizes an isometry, the map Hy
represents an isometry as well, therefore ‖w̄y‖y = ‖wy‖y.

An interesting relationship between the notion of principal pushforward map
(dxPy→x) and that of manifold holonomy descends directly from the definition (426).
In fact, such definition may be rewritten equivalently as

(dxPy→x)x(t),y(t),wy(t)
(ẋ(t))

= lim
s→0

1
s

{
(Px(t+s)→x(t) ◦ Py(t)→x(t+s))(wy(t))− Py(t)→x(t)(wy(t))

}
,

= lim
s→0

1
sP

y(t)→x(t)
{
(Px(t)→y(t) ◦ Px(t+s)→x(t) ◦ Py(t)→x(t+s))(wy(t))− wy(t)

}
,

= Py(t)→x(t)
{

lim
s→0

1
s

(
(Px(t)→y(t) ◦ Px(t+s)→x(t) ◦ Py(t)→x(t+s))(wy(t))− wy(t)

)}
.

(470)

The last line of the above relationship reveals that the argument of the limit involves
a comparison between the vector wy and the result of its transformation by the operator
Hy(t)(x(t + s), x(t)) = Px(t)→y(t) ◦ Px(t+s)→x(t) ◦ Py(t)→x(t+s) belonging to the holonomy
group Holy(M) and, in particular, the relationship

(dxPy→x)x,y,wy(ẋ) = Py→x
{

lim
s→0

1
s
(
Hy(x(?+ s), x)− idy

)
wy

}
(471)

holds true. In turn, as we have already observed, the above-defined operator H represents
parallel transport along a geodesic triangle, which is an instance of closed loop. Since the
curvature endomorphism arises from parallel transport along an infinitesimal closed loop,
it might be guessed how parallel transport along a non-infinitesimal loop may be expressed
as a path-integral of the curvature.

In order to clarify the relationship that relates the principal pushforward map to the
curvature endomorphism, it is instrumental to recall a few results from manifold calculus.

As a first result to recall, which stands by itself as a fundamental finding in manifold
calculus, let us survey the notion of anti-covariant-derivative, an homologous of the notion of
anti-derivative in standard calculus. Such notion may be expressed in the following way:
Let γ : [0, 1]→M denote a curve and w ∈ Γ(M) a smooth vector field defined at least on
the image of γ and such that wγ(0) = 0; then one might wonder how to recover the vector
field w from its covariant derivative vγ(t) := ∇γ

t w, supposed to be known. The answer is
given by the anti-covariant-derivative formula
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wγ(t) =
∫ t

0
Pτ→t

γ (vγ(τ))dτ. (472)

Let us verify the correctness of such assertion. By definition of covariant derivative, it
holds that

∇γ
t w = lim

s→0

1
s

{
Pt+s→t

γ

∫ t+s

0
Pτ→t+s

γ (vγ(τ))dτ −
∫ t

0
Pτ→t

γ (vγ(τ))dτ

}
= lim

s→0

1
s

{∫ t+s

0
(Pt+s→t

γ ◦ Pτ→t+s
γ )(vγ(τ))dτ −

∫ t

0
Pτ→t

γ (vγ(τ))dτ

}
= lim

s→0

1
s

{∫ t

0
(Pt+s→t

γ ◦ Pτ→t+s
γ − Pτ→t

γ )(vγ(τ))dτ +
∫ t+s

t
(Pt+s→t

γ ◦ Pτ→t+s
γ )(vγ(τ))dτ

}
.

(473)

Moreover, let us recall that parallel transport enjoys composition over the same curve
(no matter as to whether such curve is a geodesic or a non-geodesic line), therefore Pt+s→t

γ ◦
Pτ→t+s

γ ≡ Pτ→t
γ . As a consequence, the first integral in the last line of the above multiline

equation is identically zero, while the second integral equals∫ t+s

t
Pτ→t

γ (vγ(τ))dτ = s vγ(t) +O(s2), (474)

by a continuity argument, hence the assertion (472) follows.
The second result that is convenient to recall is based on the notion of geodesic homotopy.

Let us define the function h : [−ε, ε]× [0, 1] → M to be a geodesic homotopy, namely,
a family of curves such that for any fixed s ∈ [−ε, ε], t 7→ h(s, t) traces a geodesic curve on
M connecting the point h(s, 0) to the point h(s, 1). The image of an homotopy is sometimes
referred to as homotopic net. In addition, let us define σ : [−ε, ε] × [0, 1] → TM to be
a smooth vector field parallel along the homotopy, namely, such that σ(s, t) ∈ Th(s,t)M and

(∇∂shσ)(s, 0) = 0 and ∇∂thσ(s, t) = 0 (475)

for every value of the index s ∈ [−ε, ε] and for every value of the affine parameter
t ∈ [0, 1]. Namely, the vector field σ is parallel along the back-end curve h(s, 0) and along
each geodesic h(?, t) of the homotopic net. Notice that one such vector field is entirely
determined by its value σ(0, 0) given and by the homotopy itself. Then, the following
relationship holds:

(∇∂shσ)(s, 1) =
(∫ 1

0
Ph(s,t)→h(s,1) ◦ R∂th,∂sh

h(s,t) ◦ P
h(s,1)→h(s,t)dt

)
σ(s, 1), (476)

where R denotes the Riemannian curvature endomorphism associated to the manifold and
to its Levi-Civita connection. Namely, the transversal covariant derivative of the vector
field along the front-end curve h(s, 1) is given by a linear operator, which depends on the
curvature of the manifold along the homotopic net, applied to the field. In the following,
to ease notation we shall denote as ξ := ∂sh the transversal velocity and as v := ∂th the
velocity along each geodesic belonging to the homotopic net. By definition of Riemannian
curvature endomorphism, we have that

∇v∇ξ σ = ∇ξ∇vσ +∇[v,ξ]σ + Rv,ξ
h σ. (477)

As we had already observed earlier, the vector fields v and ξ commute, moreover,
by hypothesis, the vector field σ is parallel along the homotopy, therefore ∇vσ = 0. As
a consequence, the expression (477) simplifies to

(∇v∇ξ σ)(s, t) = Rv(s,t),ξ(s,t)
h(s,t) σ(s, t). (478)
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By the assumption of parallelism, for any given index s, the vector σ(s, t) may be
recovered from its front-end value σ(s, 1) through parallel transport, hence

(∇v∇ξ σ)(s, t) = Rv(s,t),ξ(s,t)
h(s,t) Ph(s,1)→h(s,t)σ(s, 1). (479)

Applying the notion of anti-covariant-derivative to the left-hand side of the expres-
sion (479) gives

(∇ξσ)(s, t) =
∫ t

0
Ph(s,τ)→h(s,t)

(
Rv(s,τ),ξ(s,τ)

h(s,τ) Ph(s,1)→h(s,τ)σ(s, 1)
)

dτ. (480)

Setting t = 1 gives the sought result.
On the basis of the Equation (476), it is possible to express the principal pushforward

map in terms of the Riemannian curvature endomorphism. Such relationship may be made
explicit by observing that the principal pushforward map may be expressed in closed
form as

(dxPy→x)x,y,wy (ẋ) = (F0
x,y ◦ Py→x)(wy), where

F0
x,y :=

∫ 1
0 Pexpy(t logy x)→x ◦ R0

x,y,ẋ(t) ◦ P
x→expy(t logy x)tdt, with

R0
x,y,ẋ(t) := Rexpy(t logy x)((d exp)y,t logy x(logy x), (d exp)y,t logy x((dx log)y,x(ẋ))).

(481)

Such statement may be explained by choosing an appropriate homotopy h and a vector
field σ. In particular, let us choose the homotopy h : [−ε, ε]× [0, 1]→M as

h(s, t) := expy(t logy expx(sẋ)), (482)

where the back-end curve s 7→ h(s, 0) is such that h(0, 0) = y ∈ M and the front-end
curve s 7→ h(s, 1) is such that ∂sh(s, 1)|s=0 = ẋ(s)|s=0. In addition, we have denoted,
for simplicity, by ẋ the tangent vector ẋ(0). The vector field σ : [−ε, ε]× [0, 1]→ Th(s,t)M
along the corresponding homotopic net is defined as

σ(s, t) := Py→h(s,t)(wy), (483)

with wy ∈ TyM fixed. Apparently, the homotopy (482) traces a smooth geodesic net, in fact,
for s fixed, t 7→ h(s, t) traces a geodesic line that departs from the point y and ends at
the point expx(sẋ). Moreover, the vector field (483) satisfies both conditions (475), in fact,
for any fixed value of the index s, the vector field t 7→ σ(?, t) arises as the result of parallel
translating the vector wy along the corresponding geodesic of the homotopy net, hence
σ(?, t) is parallel along each geodesic; in addition, the tangent value σ(s, 0) is obtained by
parallel transporting the vector wy along the curve h(s, 0), hence the vector field s 7→ σ(s, 0)
is parallel along the back-end arc of which ξ represents the velocity. Therefore, from the
relationship (476), it follows that{

(∇ξσ)(s, 1) = F(s)(σ(s, 1)), with

F(s) :=
∫ 1

0 Ph(s,t)→h(s,1) ◦ Rv(s,t),ξ(s,t)
h(s,t) ◦ Ph(s,1)→h(s,t)dt,

(484)

where F(s) ∈ End(Th(s,1)M) for every s ∈ [−ε, ε]. The relationship between the covariant
derivative (∇ξ σ) and the principal pushforward map (dxPy→x)x,y,wy(ẋ) is given by the
observation that

(dxPy→x)h(s,1),y,wy(ξ(s, 1)) = ∇h(s,1)
s Py→x(s)(wy)

= (∇ξ σ)(s, 1).
(485)

Therefore, on the fiducial geodesic corresponding to the value s = 0, it holds that
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{
(dxPy→x)x,y,wy(ẋ) = F0(σ(0, 1)), with

F0 =
∫ 1

0 Ph(0,t)→h(0,1) ◦ Rv(0,t),ξ(0,t)
h(0,t) ◦ Ph(0,1)→h(0,t)dt,

(486)

where, in particular, h(0, t) = expy(t logy x). The partial derivative of the homotopy (482)
with respect to the parameter t, namely the velocity along each geodesic of the homotopic
net, reads

(∂th)(s, t) = (dx exp)y,t logy expx(sẋ)(logy expx(sẋ)), (487)

where dx exp : (TM)2 → TM denotes the pushforward map of the exponential map
(x, v) 7→ expx(v) with respect to the x argument, therefore the velocity of the fiducial
geodesic reads

v(0, t) = (d exp)y,t logy x(logy x). (488)

Instead, the partial derivative of the homotopy (482) computed with respect to the
index s reads

(∂sh)(s, t) = (dx exp)y,t logy expx(sẋ)

(
t(dx log)y,expx(sẋ)(dx exp)x,sẋ(ẋ)

)
, (489)

where dx log : M2 × TM → TM denotes the pushforward map of the logarithmic map
(y, x) 7→ logy x with respect to the x argument. Such partial derivative at s = 0 reads

ξ(0, t) = (dx exp)y,t logy x
(
t(dx log)y,x(d exp)x,0(ẋ)

)
. (490)

Since (d exp)x,0 = idx and the pushforward map d exp is linear, the above relation
may be simplified to

ξ(0, t) = t((dx exp)y,t logy x ◦ (dx log)y,x)(ẋ). (491)

Such expression emphasizes the fact that the transversal velocity ξ(0, t) is linear in the
vector ẋ. In conclusion, replacing the Equations (488) and (491) into the expression (486),
we get: 

(dxPy→x)x,y,wy(ẋ) = (F0 ◦ Py→x)(wy),

F0 =
∫ 1

0 Ph(0,t)→h(0,1) ◦ Rv(0,t),ξ(0,t)
h(0,t) ◦ Ph(0,1)→h(0,t)dt,

v(0, t) = (d exp)y,t logy x(logy x),

ξ(0, t) = t((dx exp)y,t logy x ◦ (dx log)y,x)(ẋ),

(492)

which justifies the assertion (481). Notice that the integral in the second equation of (481) is
well defined because the integrand is a linear endomorphism in End(TxM).

Let us apply the above formula to the unit hypersphere as an example of calculation.

Example 33. For the unit hypersphere Sn−1 endowed with the canonical metric we have determined
that the curvature endomorphism reads

Ru,v(w) := (v>w)u− (u>w)v, (493)

for every u, v, w ∈ TxSn−1 and x ∈ Sn−1. Since the curvature endomorphism does not depend
explicitly on the point x, we omitted its indication.

A matrix representation of the curvature endomorphism R is the curvature tensor
JRu,vK := uv> − vu>, from which the bilinearity and antisymmetry properties are easily veri-
fied. For the ordinary sphere S2, denoting by ∧ : R3 × R3 → R3 the outer product in R3,
the skew-symmetric matrix JRu,vK coincides with the matrix representation of the 3-vector u ∧ v,
namely JRu,vK∨ = u ∧ v.
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Let us recall that the exponential map is expressed as

expy(w) =

{
y cos(‖w‖) + w sinc(‖w‖), if w 6= 0,
y, if w = 0,

(494)

therefore, its inverse, the logarithmic map, is expressed by the relation:

logy x =
(In − yy>)x
sinc D(x, y)

, (495)

where it is assumed that the points x, y ∈ Sn−1 are not antipodal. In the above formula, the symbol
sinc : R→ R denotes the cardinal sine function defined as:

sinc ζ :=

{
ζ−1 sin ζ for ζ 6= 0,
1 for ζ = 0,

(496)

and the geodesic distance between two points x, y ∈ Sn−1 associated to the canonical metrics reads

D(x, y) = ‖ logy x‖y = acos(x>y), (497)

where the inverse cosine function ranges in [0, π].
Matrix representations of the derivatives of the exponential and the logarithmic maps are

computed to be

J(d exp)y,wK = cos(‖w‖)In − sinc(‖w‖)yw>, (498)

J(dx log)y,xK =
In − yy>

sinc2D(x, y)
[ sinc D(x, y)In − ( sinc′D(x, y)) acos′(x>y)xy>], (499)

where the prime denotes derivation. The corresponding matrix representation of the endomorphism
R0 takes the form:

JR0K = J(d exp)y,t logy xK
{
(logy x)ẋ>J(dx log)y,xK> − J(dx log)y,xKẋ log>y x

}
J(d exp)y,t logy xK>, (500)

which denotes an anti-symmetric matrix.

7. Discrete-Time Dynamical Systems on Manifolds

Dynamical systems on manifolds may appear under the form of discrete-time systems
as well as continuous-time systems. In turn, discrete-time systems may be natively discrete-time
or may be derived from continuous-time systems through time sampling. Discrete-time
dynamical systems are nowadays conceived as algorithms and implemented as pieces of
codes running on computing platforms.

The aim of the present last section of this tutorial paper is to recall an auto-regressive,
moving average (ARMA) mathematical model from [58] that generates a discrete-time temporal
sequence on a smooth manifold. In such setting, not only the algorithmic structure of the
ARMA model reflect the mathematical structure of the state manifold but the input and the
output of the ARMA dynamical system are structured sequences that belong to the tangent
bundle TM of same smooth manifold M.

The present section is organized in the following way. The Section 7.1 describes second-
order discrete-time auto-regressive moving-average dynamical systems on Riemannian
manifolds. To end with, Section 7.2 illustrates examples of ARMA-type dynamical systems
on manifold.

7.1. Auto-Regressive Moving-Average (ARMA) Systems on Riemannian Manifolds

An ARMA model on a manifold is described in terms of a pair of sequences (xk, vk) ∈
TM, where xk denotes the output signal of the model, vk denotes the state of the model
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and k ∈ Z denotes a discrete-time index. In the familiar case that M ≡ Rp, choosing the
standard identification TxRp ∼= Rp, for any x ∈ Rp, an ARMA(r, q) model on the tangent
bundle TRp appears under the form of a state-evolution equation and of a state-to-output
transformation equation. In particular, the equation that governs the evolution of the
internal state vk ∈ TxkRp reads:

vk =
r

∑
i=1

Aivk−i︸ ︷︷ ︸
Auto-regressive

(AR)

+
q

∑
i=0

Biwk−i︸ ︷︷ ︸
Moving average

(MA)

, (501)

where the transition matrices Ai ∈ Rp×p and Bi ∈ Rp×p denote the parameters of the
auto-regressive and of the moving-average subsystems, respectively, and the sequence
wk ∈ TxkRp denotes a white noise. Let us recall the salient features of the two subsystem of
an ARMA model:

• Moving average (MA) subsystem: The moving-average subsystem consists of a linear
combination of the current value and of previous samples of the input signal;

• Auto-regressive (AR) subsystem: The auto-regressive subsystem consists of a linear
combination of previous values of the internal state of the system.

The integer r > 1 denotes the memory depth of the AR subsystem, while the integer
q > 0 denotes the memory depth of the MA subsystem. (Notice that speaking of ‘memory
depth’ for the AR subsystem is purely conventional since an AR subsystem has an infinite
memory span.) In addition, the equation that describes how the internal state vk transforms
into the output xk ∈ Rp reads:

xk+1 = xk + vk + c, (502)

with c ∈ Rp denoting a constant bias (or drift term). It is worth remarking that, since the
tangent bundle TRp is trivial (in fact, TRp is isomorphic to Rp ×Rp), the Equation (501) is
based on vector addition. On a general Riemannian manifold M, however, vector addition
in the tangent bundle TM (that is, in the AR part and in the MA part) may be hardly defined
without invoking the concept of parallel transport. Likewise, Equation (502) is based on
vector addition on Rp, which is not defined on a general (curved) Riemannian manifold
and needs rather to be replaced by the exponential map.

The proposed extension of the above ARMA system to a Riemannian manifold M is
based on the following considerations:

• At each step k, it is necessary to compute a linear combination of several tangent
vectors in TxkM via the transition operators Ai : (x, v) ∈ TM 7→ w ∈ TxM for
the auto-regressive subsystem and Bi : (x, v) ∈ TM 7→ w ∈ TxM for the moving-
average subsystem, where the operators Ai and Bi are linear in the second (namely,
the vectorial) argument.

• In order to compute the linear combination of previous and current values of the state
variable, at each step k it is necessary to parallel transport each tangent vector vk−1,
. . ., vk−r, wk−1, . . ., wk−q to the tangent space TxkM.

• In order to propagate the constant bias, at each step k it is necessary to parallel
transport it to the tangent space TxkM.

On the basis of the above considerations, a manifold-type auto-regressive, moving
average M-ARMA(2, q) dynamical system on the tangent bundle TM of the manifold M
may be cast as:{

vk = ∑2
i=1Ai(xk,Pxk−i→xk (vk−i)) + ∑

q
i=0 Bi(xk,Pxk−i→xk (wk−i)),

xk+1 = expxk
(vk + Px0→xk (c)),

(503)
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for k = 0, 1, 2, . . .. At k = 0, it is necessary to know the initial seed x0 ∈M and to put into
effect an extension of standard zero-padding to account for lagged vector-samples that are
not available at k = 0: 

v−1 = v−2 = 0,
w−1 = w−2 = . . . = w−q = 0,
x−1 = x−2 = . . . = x−β = x0,

(504)

with β := max{2, q} denoting the memory depth of the whole M-ARMA system. Notice
that the memory depth on the state variable v has been chosen to be 2 since this tutorial
paper cover mostly second-order systems and for illustrative purposes. The tangent state-
vectors vk are computed as the output of an auto-regressive moving-average system on
the tangent bundle TM. In a M-ARMA(r, q) system whose dynamics manifests through
a state-sequence vk ∈ TxkM as a response to an input sequence wk ∈ TxkM, the current state
variable value vk depends from the past state-variable values vk−1 and vk−2 and from the
current and past input-variable values wk, wk−1, . . . , wk−q. The additional term Px0→xk (c)
in the second equation of the mathematical model (503) represents a drift term that causes
a slight change in the current state even when the scalar velocity ‖vk‖xk is close to zero.

The M-ARMA model (503), may be cast in a different way by replacing parallel
transport with vector transport. The corresponding alternative version of such M-ARMA
system reads {

vk = ∑2
i=1Ai(xk, Πxk (vk−i)) + ∑

q
i=0 Bi(xk, Πxk (wk−i)),

xk+1 = expxk
(vk + Πxk (c)),

(505)

for k = 0, 1, 2, . . .. In some occasions, even if a parallel transport formula is available,
vector transport is invoked due to its alleged lighter computational burden.

The steps required to implement the M-ARMA(2, q) models (503) and (505) are sum-
marized in Algorithm 4.

Algorithm 4 Pseudocode to implement the M-ARMA(2, q) systems (503) and (505).

1: Choose a metric for the manifold M and make sure the exponential map exp : TM→M
and the parallel transport operator Px→y : TxM→ TyM or the vector transport operator
πx, with x, y ∈M, are available

2: Choose the initial seed x0 ∈M and the drift constant c ∈ Tx0M
3: Choose 2 transition operatorsAi : TM→ TM and q transition operators Bi : TM→ TM
4: Set β := max{2, q} and set up the zero-padding v−1 = v−2 = 0, w−1 = w−2 = . . . =

w−q = 0, x−1 = x−2 = . . . = x−β = x0
5: for k = 0 to K do
6: Get a tangent vector wk ∈ TxkM from an input source
7: Compute tangent vectors ṽk,i := Pxk−i→xk (vk−i) and w̃k,j := Pxk−j→xk (wk−j),

or ṽk,i := Πxk (vk−i) and w̃k,j := Πxk (wk−j), for i = 1, 2 and j = 0, . . . , q and the
actualized drift term dk = Px0→xk (c) or dk = Πxk (c)

8: Compute the next state-velocity term vk = ∑2
i=1Ai(xk, ṽk,i) + ∑

q
j=0 Bj(xk, ṽk,j)

9: Compute the next term in the output sequence xk+1 = expxk
(vk + dk)

10: end for

By adding extra terms to the right-hand side of the first equation of the system (503)
or (505), the discussed M-ARMA model may be extended to a M-ARMAX (M-ARMA with
exogenous inputs, see, for instance [59]).

7.2. Examples of M-ARMA-Type Dynamical Systems

The aim of the present section is to illustrate some examples of the discussed M-ARMA
model. The general M-ARMA(2, q) system and the notion of autocorrelation function on
manifold will be illustrated through examples on the unit hypersphere, the manifold
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of symmetric positive-definite matrices and the compact Stiefel manifold. In particular,
examples about how to choose the auto-regressive and the moving-average transition
operators Ai and Bi will be given. In particular, in the following we shall assume that
the purpose of running a M-ARMA algorithm is to generate a non-white pseudo-random
sequence on a given manifold, on the basis of a random number generator that is used to
produce a pseudo-random input sequence wk.

7.2.1. Generation of Pseudo-Random Paths on the Unit Hyper-Sphere

In order to generate a pseudo-random vector v ∈ TxSp−1, given a point x ∈ Sp−1,
the following algorithm may be employed:

• Generate a random vector ṽ ∈ Rp by stacking the outputs of a pseudo-random
scalar generator;

• Project the vector ṽ into the tangent space TxSp−1 by v = Πx{ṽ}.
The generation of a pseudo-random path over the hyper-sphere Sp−1 requires to

choose the transition operators that take part in the M-ARMA(2, q) model (503). In particu-
lar, a possible choice for the transition operators Ai : (x, v) ∈ TSp−1 7→ w ∈ TxSp−1 and
Bi : (x, v) ∈ TSp−1 7→ w ∈ TxSp−1 is:

Ai(x, v) = Πx{Aiv}, i = 1, 2, Bi(x, v) = Πx{Biv}, i > 0, (506)

where the square matrices Ai, Bi ∈ Rp×p may be chosen arbitrarily.

Example 34. To give an example of the above setting, let us choose p = 3 and q = 4. Moreover, let
us opt for the version based on parallel transport. The resulting pseudo-random path-generation
algorithm M-ARMA(2, 4) on the hypersphere S2 may be particularized from the general expression
(503) as follows:

vk = (I3 − xkx>k )A1Pxk−1→xk (vk−1) + (I3 − xkx>k )A2Pxk−2→xk (vk−2) + (I3 − xkx>k )B0wk+

= (I3 − xkx>k )B1Pxk−1→xk (wk−1) + (I3 − xkx>k )B2Pxk−1→xk (wk−2)+

= (I3 − xkx>k )B3Pxk−3→xk (wk−3) + (I3 − xkx>k )B4Pxk−4→xk (wk−4),

xk+1 = expxk
(vk + Px0→xk (c)),

(507)

with xk ∈ S2, wk, vk ∈ TxkS2 for k = 0, 1, 2, . . . , K and c ∈ Tx0S2 generated randomly by
projection over the tangent space Tx0S2. The value of the integer K may be chosen as large as
one needs.

7.2.2. Generation of Pseudo-Random Paths on the Manifold of Symmetric,
Positive-Definite Matrices

The starting point is to generate a pseudo-random tangent matrix V ∈ TPS+(n), given
a symmetric, positive-definite matrix P ∈ S+(n). Such result may be achieved by putting
into effect the following scheme:

• Generate a pseudo-random matrix Ṽ ∈ Rn×n by means of a pseudo-random scalar
generator;

• Project the matrix Ṽ into the tangent space TPS+(n) by the rule V = ΠP(Ṽ) =
1
2 (Ṽ + Ṽ>).

In addition, we may recognize that a way to select the transition operators Ai :
(P, V) ∈ TS+(n) 7→W ∈ TPS+(n) and Bi : (P, V) ∈ TS+(n) 7→W ∈ TPS+(n) is:{

Ai(P, V) = ai(PV + VP), i = 1, 2
Bi(P, V) = bi(PV + VP), i > 0,

(508)

where ai ∈ R and bi ∈ R denote constant parameters chosen arbitrarily.
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7.2.3. Generation of Pseudo-Random Paths on the Compact Stiefel Manifold

The canonical metric is the metric of choice in the present section.
With the aim to generate a pseudo-random tangent matrix V ∈ TXSt(n, p), given

a point X ∈ St(n, p), the following scheme may be used:

• Generate a pseudo-random matrix Ṽ ∈ Rn×p by a pseudo-random scalar generator;
• Project the matrix Ṽ into the tangent space TXSt(n, p) by the rule V = Ṽ − XṼ>X.

The generation of a pseudo-random path over the manifold St(n, p) requires to se-
lect transition operators Ai : (X, V) ∈ TSt(n, p) 7→ W ∈ TXSt(n, p) and Bi : (X, V) ∈
TSt(n, p) 7→W ∈ TXSt(n, p). A possible way to effect such choice is:

Ai(X, V) = aiV, i = 1, 2, Bi(X, V) = biXV>X, i > 0, (509)

where ai ∈ R and bi ∈ R denote arbitrarily chosen constant parameters.

Example 35. For exemplification purposes, one may select n = 5, p = 2 and q = 4. The initial
seed needs to be chosen randomly in St(5, 2) and one may choose, for simplicity, not to include any
drift term in the equations. The pseudo-random path generation rule (505) particularizes, in this
case, to:

Vk = ΠXk

(
a1Vk−1 + a2Vk−2 + X>k (

4

∑
i=0

biWk−i)Xk

)
,

Xk+1 = expXk
(Vk),

(510)

for k = 0, 1, 2, . . . , K. The exponential is implemented as:

expX(V) = [X Q]Exp
([

X>V −R>

R 02

])[
I2
02

]
, (511)

where Q and R denote the factors of the compact QR decomposition of the matrix (I5 − XX>)V.

8. Conclusions

The present tutorial paper, the second of a series of tutorials on manifold calculus with
application to non-linear control systems, was devoted to topics from manifold calculus apt
to describe properties of non-linear dynamical systems subject to holonomic constraints
in its state variable as well as to control non-linear dynamical systems whose state belong
to curved manifolds. As an interesting cases of study for illustrative purpose, special
emphasis was put on designing algorithms to achieve synchronization of manifold-type
systems based on feedback control and on developing numerical methods tailored to
curved manifolds to implement such systems and algorithms.

Aside of practical applications to system theory and control, the present tutorial
focuses even on purely theoretical topics such as curvature and covariant derivation. The
present tutorial paper does not cover further topic of great interest, such as integration on
manifold and systems of order larger than two. Such important arguments will be treated
in a forthcoming part of this multi-part tutorial.
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