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ARTICLE HISTORY

Compiled May 7, 2024

ABSTRACT
This paper deals with the inventory control in supply chains under the following
assumptions: 1) perishable goods with uncertain deteriorating factor, 2) a future
uncertain customer demand that, over a limited prediction horizon, belongs to a
known compact set. The problem is to define a smooth control policy maximizing
the fulfilled customer demand, and minimizing the inventory level. This problem
is here solved through a new Robust Model Predictive Control (RMPC) approach.
This implies solving a min-max optimization problem with hard constraints on the
control effort (i.e. the sequence of replenishment orders). To drastically reduce the
numerical complexity of this problem, the control signal is sought in the space of
B-spline functions, which are known to be universal approximators admitting a
parsimonious parametric representation. This allows us: 1) to reduce the number
of both decision variables and constraints involved in the optimization procedure,
2) to reformulate the numerically demanding minimization of the worst case cost
functional as a simpler Weighted Constrained Robust Least Squares (WCRLS) esti-
mation problem. The WCRLS algorithm can be efficiently solved using interior point
methods. A rigorous analysis of stability and feasibility conditions is provided.

KEYWORDS
Supply chain, Optimal inventory management, Model predictive control, Min-Max
optimization.

1. Introduction

The widely acknowledged importance of MPC in inventory management problems is
mainly due to the constraint handling capability and to the receding horizon nature
of the control law (Rossiter, 2004). The first feature allows limiting the inventory level
and the replenishment orders, the second one allows a proper incorporation of the
demand forecast into the control problem and compensates for the negative effects of
possible time delays. As a consequence, an extensive research on the application of
MPC to different aspects of inventory control problem in supply chain systems has
been carrying out for many years. Just to cite a few contributions we mention the fol-
lowing ones: an adaptive MPC scheme for the simultaneous identification and control
of production-inventory systems has been proposed in (Aggelogiannaki, Doganis, &
Sarimveis, 2008), the same authors consider a similar problem in ( Doganis, Aggelion-
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naki & Sarimveis, 2008) using a neural network time series forecasting method, the
stock replenishment policy defined in ( Alessandri, Gaggero, & Tonelli, 2011) deals
with the uncertainty affecting the future customer demand using a worst case ap-
proach. A comparison between MPC and Internal Model Control strategies is made
in (Schwartz &Rivera, 2010), the case of multiple supply sources is considered in (
Xie, Wang, & Yang, 2021).
In the case of multi echelon SC, a self-adaptive MPC is applied in (Fu et al., 2016)
using centralized and decentralized control schemes. To reduce the numerical complex-
ity of classical centralized MPC schemes, (Schildback & Morari, 2016) propose a novel
centralized scenario based MPC strategy.
More recently, distributed MPC schemes have been proposed using non cooperative
(Fu et al., 2019) and cooperative (Fu et al., 2020; Kohler et al., 2021) strategies.
A thorough list of MPC based techniques, dealing with different aspects of the inven-
tory problem in supply chain, can be found in (Dotoli et al. , 2019; Ivanov et al., 2018;
Sarimveis et al., 2008).
All the previous papers do not consider the problem implied by the presence of per-
ishable goods in the inventory system. On the other hand, if the effect of stock dete-
rioration is not taken into account, a serious degradation of the supply chain system
is observed. This is especially true for highly perishable products like food, blood,
chemical materials, medicines, etc.
The inventory level control problem for deteriorating stocks is much less developed
with respect to that of nonperishable goods. In the framework of MPC, (Gaggero
& Tonelli , 2015) propose a method based on a graph representation of distribution
chains, (Hipolito et al., 2022) define a centralized MPC scheme based on a suitably
defined extended discrete state-space representation including perishable goods, also
the MPC proposed in ( Taparia, Janardhanan &Gupta, 2020) is based on a discrete
state-space representation of the supply chain dynamics. Perishability of goods is taken
into account through a decay parameter ρ ∈ (0, 1]: for ρ = 1 the case of non perishable
goods is recovered.
We also mention that different control techniques for inventory systems with deterio-
rating stock have been proposed outside the MPC framework. For example (Ignaciuk ,
2012) proposes a generalized Smith predictor, (Ignaciuk & Bartoszewicz, 2012) frames
the problem in the context of linear quadratic optimal control, the non linear sat-
urated control strategy proposed in (Ignaciuk , 2013) reduces the output overshoot
observed in the Smith predictor approach following abrupt changes in the customer
demand, (Ignaciuk , 2015) defines an appropriately modified base-stock type policy to
compensate the effects of goods decay.

All the above mentioned papers dealing with perishable goods compute the control
input (i.e.the replenishment policy) under the assumption of an exact knowledge of
the decaying factor. In (Ignaciuk , 2015) the effect of an uncertain decay factor is only
evaluated ”a posteriori” through simulations.
Unfortunately, the assumption of an exactly known decay factor is rarely satisfied in
practice due to unstable and variable storage conditions. This calls for robust control
techniques where uncertainties are directly taken into account in the replenishment
policy optimization.
Thorough surveys on inventory management for perishable products are reported in (
Chaudary, Kulshrestha, & Routroy, 2018; Li & Mawhinney, 2010).

Based on the foregoing considerations, the purpose of this paper is to propose a
Robust MPC (RMPC) approach for the optimal inventory control under the ”a priori”
assumption of perishable goods with an uncertain decay factor belonging to a given
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compact interval. To the best of the author’s knowledge this problem has not yet been
considered in the literature.
As for the customer forecast information, we only assume that at any time instant k ∈
Z+ and over an M -steps prediction horizon, the future customer demand is arbitrarily
time varying inside a given compact set. This underlying assumption is based on very
practical experience based considerations, it is general enough to include almost all real
situations regardless the sources of uncertainty on the future customer demand. No
assumption is here made on the statistics of the demand generation process. Though
many forecasting methods based on time series analysis have been proposed (see e.g.
(Box et al., 2016; Montgomery, Jennings & Kulachi, 2015)), it has been observed
that they are not able to capture several statistical phenomena underlying the nature
of the demand generation process (Lafont et al., 2015). Moreover, they often result
in numerically demanding algorithms requiring tools like neural networks, see e.g.
Kochak &Sharma (2015) and references therein, vector regression analysis, see e.g.
Levis & Papageorgiu (2005) and references therein, big-data analytics, see e.g. Seyedan
& Makafery (2020) and references therein.

Coherently with the assumptions on the uncertainties, we develop a RMPC ap-
proach based on a min-max optimization procedure: the control law is obtained mini-
mizing the worst case of a quadratic cost functional, which is computed by maximizing
with respect to all the possible decay factor values.

Another significant novelty of our approach is the parametrization of the control
input u(k), k ∈ Z+, as a B-spline function. This drastically decreases the number of
decision variables involved in the optimization procedure because B-splines admit a
parsimonious parametric representation (De Boor, 1978).
Improving the numerical efficiency of MPC through a parametric representation of the
control law has been proposed in (Wang, 2004), where Laguerre functions are used.
This approach has been applied to inventory systems in (Taparia al., 2020).
Our preference for B-splines has a twofold motivation: 1) B-splines are smooth func-
tions that can be used as universal approximators of curves which exhibit different
shapes over different time-intervals, 2) B-splines admit a parsimonious parametric rep-
resentation given by a time varying, linear, convex combination of some parameters
named ”control points” (De Boor, 1978).

Property 1 allows us to obtain a smooth replenishment order signal u(k), k ∈ Z+.
Property 2 allow us to transfer any hard constraint on u(k) to its control points and to
reformulate the constrained minimization of the cost functional with respect to u(k)
as a WCRLS estimation problem with only constraints on the unknowns (the control
points defining the admissible B-spline function u(k)). The WCRLS problem can be
efficiently solved using interior point methods (Lobo, Vandenberghe, Boyd, & Lébret,
1998). Finally, as shown in the theorem of Section 5, Property 2 allows us to rigorously
prove both stability and feasibility of the proposed control law without any further
assumption. This is a very important difference with respect to (Wang, 2004) where
terminal state constraints are imposed and recursive feasibility is ”a priori” assumed
to hold.
With reference to this last point we stress that although, stability and feasibility
are recognized to be fundamental issues of MPC approach, see e.g. (Kouvaritakis &
Cannon, 2016; Lofberg, 2012; Rossiter, 2004) and references therein, most applications
of MPC to supply chain do not rigorously face these topics. This paper fills this gap.

The paper is organized in the following way. Some mathematical preliminaries on
B-splines and the Robust Least Squares problem are recalled in Section 2. The system
model is described in Section 3. The RMPC problem is formally stated in Section 4
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and solved in Section 5, where it is reformulated as a WCRLS estimation problem.
Numerical results and concluding remarks are reported in Sections 6 and 7 respectively.

2. Mathematical background

A scalar B-spline curve is defined as a linear combination of B-splines basis functions
and control points:

s(t) =
∑̀
i=1

ciBi,d(t), t ∈ [t̂1, t̂`+d+1] ⊆ R, (1)

where the ci’s are real numbers representing the control points of s(t), the integer d
is the degree of the B-spline, the (t̂i)

`+d+1
i=1 are the non decreasing knot points and the

Bi,d(t) are the uniformly bounded B-spline basis functions which can be computed by
the Cox-de Boor recursion formula

Bi,d(t) =
t− t̂i

t̂i+d − t̂i
Bi,d−1(t) +

t̂i+1+d − t
t̂i+1+d − t̂i+1

Bi+1,d−1(t), d ≥ 1, (2)

with Bi,0(t) = 1 if t̂i ≤ t < t̂i+1, otherwise 0.
In (2) possible division by zero are resolved by the convention that ”anything divided
by zero is zero”.
An equivalent representation of s(t) in (1) is

s(t) = Bd(t)c, t ∈ [t̂1, t̂`+d+1] ⊆ R, (3)

where c
4
= [c1, · · · , c`]T and Bd(t)

4
= [B1,d(t), · · · , B`,d(t)].

Convex hull property. Any value assumed by s(t), ∀t ∈ [t̂j , t̂j+1], j > d, lies in the
convex hull of its d+ 1 control points cj−d, · · · , cj . 4

Smoothness property. Suppose that t̂i < t̂i+1 = · · · = t̂i+m < t̂i+m+1, with 1 ≤
m ≤ d+ 1 then the B-spline function s(t) has continuous derivative up to order d−m
at knot t̂i+1. This property implies that the spline smoothness can be changed using
multiple knot points. It is common choice to set m = d + 1 multiple knot points for
the initial and the last knot points and to evenly distribute the other ones. In this way
(1) assumes the first and the final control points as initial and final values. 4

Remark 1. From (3) it is apparent that, once the degree d and the knot points t̂i have
been fixed, the scalar B spline function s(t), t ∈ [t̂1, t̂`+d+1], is completely determined
by the corresponding vector c of ` control points. 4

2.1. The robust least squares problem (Lobo et al., 1998)

Given an overdetermined set of linear equations Df ≈ g, with D ∈ IRr×m, g ∈ IRr,
subject to unknown but bounded errors: ‖δD‖s ≤ β and ‖δg‖s ≤ ξ, the robust least

squares estimate f̂ ∈ IRm is the value of f minimizing

min
f

max
‖δD‖s≤β, ‖δg‖s≤ξ

‖(D + δD)f − (g + δg)‖, (4)
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where ‖ · ‖s denotes the spectral norm.
Problem (4) is equivalent to minimizing a sum of Euclidean norms

min
f
‖Df − g‖+ β‖f‖+ ξ (5)

Possible constraints on f of the kind

f ≤ f ≤ f̄ (6)

can be taken into account by imposing all the scalar linear inequalities deriving from
the above vector constraint.

3. The system model

We consider a single echelon supply chain where the operations of stock updating
of a given product are periodically performed at equally separated time instants kT ,
k ∈ Z+, T is the review period.

We assume: A1) each non null replenishment order placed at the supplier is realized
with a time delay Td = nT , where n ∈ Z+. The goods arrive at the distribution centre
new and deteriorate while kept in stock; A2) the perishability rate of the stocked

goods inside each review period is α ∈ [α−, α+]
4
= Λα ⊂ (0, 1); A3) the operations

of inventory replenishment and goods delivery are executed simultaneously at the
beginning of each review period; A4) The demand is a nonnegative uniformly bounded
function w(k), k ∈ Z+. More specifically we assume that at any time instant k, and

limitedly to an M -steps prediction horizon Pk
4
= [k + 1, k + M ], the unknown future

customer demand w(k+ `), ` = 1, · · · ,M , k ∈ Z+ fluctuates within a compact set Wk

limited below and above by two known boundary trajectories: w−(k+`) and w+(k+`),
` = 1, · · · ,M . The minimum value of w−(k+ `) and the maximum value of w+(k+ `),
` = 1, · · · ,M , are denoted by w−k and w+

k respectively.
Figure 1 shows a typical example of a customer demand over a fixed Pk.

𝑘 + 1

actual demand:

𝑘 +𝑀

𝑤,	 𝑘 + ℓ|𝑘 	predicted demand

𝑤!(𝑘 + ℓ)

𝑤 𝑘 + ℓ

𝑎

𝑏

𝑤"(𝑘 + ℓ)

Figure 1. Example of a set Wk with known time varying boundaries trajectories: w−(k+ `) and w+(k+ `),

` = 1, · · · ,M . The solid and dashed trajectories are the actual and predicted customer demand respectively.
Points a and b denote w−

k and w+
k , respectively.

The above considerations imply that the stock level dynamics is described by the
following uncertain equation

y(k + 1) = ρ(y(k) + u(k − n)− h(k)) (7)
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where:

• y(k) is the on hand stock level, i.e. the amount of goods left in stock after
satisfying the demand at the beginning of the k − 1 review period; u(k − n) is
the replenishment order placed at time k − n and realized at time k. The sum

y(k) + u(k − n)
4
= y1(k) represents the effective amount of goods available for

sale at the beginning of k-th review period,
• h(k) is the fulfilled customer demand and is given by

h(k)
4
= min{w(k), y1(k)} (8)

• ρ = 1− α ∈ [ρ−, ρ+]
4
= Λρ ⊂ (0, 1) is the decay factor.

4. Problem setup

With reference to the uncertain supply chain model described in Section 3, the control
problem we consider is to define an optimal replenishment order policy u(k) conciliat-
ing the three following conflicting Control Requirements: CR1) the satisfied customer
demand should be maximized, CR2) the warehouse storage should be minimized, CR3)
the replenishment order policy u(k) should be as smooth as possible.

The antagonism of CR1, CR2 and CR3 calls for an optimum criterion. Owing to
the presence of uncertainties, we formulate this control problem in the framework of
the RMPC. This requires to repeatedly solve a Min-Max Constrained Optimization

Problem (MMCOP) over a future N steps control horizon Hk
4
= [k, k + N − 1], (for

some N ≤M), and, according to the receding horizon control, to only apply the first
sample of the computed optimal control sequence [u(k), · · · , u(k + N − 1)], k ∈ Z+.
The min-max formulation of the optimization problem allows us to minimize at each k
the worst case of the cost functional which is computed as the maximum with respect
to all the possible values of ρ = 1− α.

The counterpart of this powerful approach is the numerical complexity of the algo-
rithm (Scokaert & Mayne, 1998). As explained in Section 5, this drawback is drastically
reduced through a WCRLS formulation of the MMCOP problem.

On the basis of CR1, CR2 and CR3, the MMCOP is formally defined as follows:

min
[u(k),··· ,u(k+N−1)]

max
ρ∈[ρ−,ρ+]

Jk, (9)

subject to: u−k ≤ u(k + i) ≤ u+
k , i = 0, · · ·N − 1, k ∈ Z+, (10)

where:

Jk =

N∑
i=1

eT (k + n+ i|k)qie(k + n+ i|k) +

N−1∑
i=1

λi∆u
2(k + i) (11)

e(k + n+ i|k)
4
= w+(k + n+ i)− y(k + n+ i|k), (12)

∆u(k + i)
4
= u(k + i)− u(k + i− 1) (13)
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y(k + n+ i|k) = ρn+iy(k) +

n−1∑
`=0

ρn+i−`u(k + `− n) +

i−1∑
`=0

ρi−`u(k + `|k) (14)

−
n+i−1∑
`=0

ρn+i−`h(k + `|k).

Remark 2. Some considerations on the cost functional Jk are now in order.

1 Note that by (12), the number M of future steps over which w+(k + `), ` =
1, · · · ,M must be known is inferiorly limited by M = N + n.

2 In (12), the tracking error has been defined with respect to a desired inventory
level given by w+(k + n + i), i = 1, · · · , N . Taking into account CR1, CR2,
and the interval type uncertainty on w(k + `), ` = 1, · · · ,M , this is the most
appropriate choice: keeping the actual inventory level as near as possible to
the possible maximum level of the customer demand maximizes the amount of
fulfilled demand over each shifted prediction horizon [k+n+ 1, k+n+N ] ⊆ Pk
and prevents unnecessarily larger stock levels.

3 the predicted stock level y(k+n+i|k) in (14) is affected both by the uncertainties
on ρ and h(k + `). How to minimize the maximum effect of these uncertainties
are explained at point 6 of this remark and in Section 5 respectively.

4 the term
∑N−1

i=1 λi∆u
2(k + i) has been introduced to take into account CR3:

penalizing large deviations on the control variables smoothes the control effort,
thus reducing the unvoidable costs related to the order quantity changes.

5 The terms qi, i = 1, · · · , N , and λi, i = 1, · · · , N − 1, are positive coefficients
introduced to progressively decrease the weight of future predictions.

6 the future values of h(k+ `|k) in (14) are estimated conforming to (8) assuming:
A5) a predicted demand w̄(k + `|k) , coinciding with the middle trajectory
between w−(k+ `) an w+(k+ `), ` = 1, · · · , n+ i− 1 (see dashed line in Fig. 1),
A6) y(k + n+ i) + u(k + i) ≥ w(k + n+ i), i = 0, · · · , N − 1.
A5) minimizes the maximum `2 norm of the approximation error between the
true and predicted demand over each [k+1, k+n+i−1], A6) is justified because
the control sequence minimizes the maximum weighted `2 norm of the distance
between the on-hand stock and the maximum customer demand.
As a consequence of A5,A6) and (8), the term h(k+ `|k) in (14) is replaced by
w(k) for ` = 0 and by h̄(k + `|k) + δh(k + `|k) for ` 6= 0, where h̄(k + `|k) =
w̄(k+ `|k) and δh(k+ `|k) is the approximation error with minimum maximum
l2 norm over each Hk.

4.1. Determining the hard constraints on the control effort

The hard constraints on u(k + i) imposed by (10) are determined on the basis of
CR1 and CR2, taking into account the opportunity of limiting the amplitude of the
interval [u−k , u

+
k ] to reduce the bullwhip effect ( Moussaoui, Abbou & Loiseau, 2017).

More precisely we search for an interval [u−k , u
+
k ] whose amplitude is the smallest one

among all those that guarantee a fully acceptable degree of satisfaction of any possible
customer demand fulfilling the assumptions A1)-A4) of Section 3.

Owing to the uncertainty on the future customer demand and on the perishabil-
ity factor, we estimate u−k and u+

k with reference to two possible, limit situations
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compatible with the considered supply chain dynamics.
Consider the plant equations (7)-(8) and the following scenario:

- h(k+n+ i) = w(k+n+ i), i = 0, · · · , N − 1, according to Point 6 of Remark 2;
- w(k + n + i), i = 0, · · · , N − 1, is a constant signal with value w̃k ∈ [w−k , w

+
k ].

The two mentioned limit scenarios are w̃k = w−k and w̃k = w+
k ;

- each control horizon Hk = [k, k+N − 1] is long enough to allow y(k+n+ i), i =
1, · · · , N , to practically attain the steady-state value ỹk under the forcing action
of a constant u(k + i) = ũk, i = 0, · · · , N − 1.

Note that the existence of an output steady-state response is assured by the asymptotic
stability of (7) (consequence of ρ < 1) and it is practically attained for a sufficiently
large N such that ρN is significantly smaller than ρ0 = 1. The problem we now consider
is: for a given w̃k ∈ [w−k , w

+
k ] it is required to find the corresponding constant control

input ũk over each Hk, such that ỹk ≥ w̃k, ∀ρ ∈ [ρ−, ρ+].
Using classical z-transform methods and applying the final value theorem (Kuo, 1980)
we have

ỹk = [Wu,y(z)]z=1ũk − [Ww,y(z)]z=1w̃k, (15)

where Wu,y(z) = ρ
zn(z−ρ) is the transfer function between the Z transforms of u(k−n)

and y(k + 1), k ∈ Z+, and Ww,y(z) = ρ
(z−ρ) is the transfer function between the Z

transforms of h(k) = w(k) and y(k + 1), k ∈ Z+.
If ρ were exactly known, then, choosing ũk = w̃k

ρ , equation (15) would readily imply

ỹk = w̃k,∀w̃k ∈ [w−k , w
+
k ]. As ρ is uncertain, the minimum ũk guaranteeing ỹk ≥ w̃k,

∀ρ ∈ [ρ−, ρ+] is uk = w̃k

ρ− .

In conclusion, over each Hk we choose u−k according to the limit scenario 1: w̃k = w−k
and u+

k according to the limit scenario 2: w̃k = w+
k , obtaining

u−k
4
=
w−k
ρ−
≤ u(k + i) ≤

w+
k

ρ−
4
= u+

k , k ∈ Z+, i = 0, · · · , N − 1. (16)

5. Robust estimation of the optimal control policy

In this section we reformulate the MMCOP as a WCRLS estimation problem. The
purpose is to drastically reduce the numerical complexity of the algorithm solving the
MMCOP.

For any fixed k, the functional (9) is minimized assuming that the control sequence
[u(k), · · · , u(k +N − 1)], is given by the sampled version (with sampling period coin-
ciding with the review period T ) of a B-spline function. According to (3) one has

u(j)
4
= Bd(j)ck, j = k, k + 1, · · · , k +N − 1, (17)

and the parameter vector ck
4
= [ck,1, · · · , ck,`]T defining u(j) is computed as the solu-

tion of the WCRLS estimation problem defined beneath.
As ρ ∈ [ρ−ρ+], an equivalent representation of ρ is

ρ = ρ̄+ δρ, ρ̄
4
= (ρ− + ρ+)/2 (18)

8



where ρ̄ is the nominal value and δρ is the perturbation with respect to ρ̄ satisfying
|δρ| ≤ (ρ+ − ρ−)/2.
From (18) it follows that

ρk = (ρ̄+ δρ)k = ρ̄k + ∆ρk (19)

where ∆ρk
4
= (ρ̄ + δρ)k − ρ̄k is the sum of all terms containing δρ in the explicit

expression of (ρ̄+ δρ)k. Exploiting (19) one has that the term ρn+1y(k) of (14) can be
rewritten as

ρn+1y(k) = (ρ̄n+1 + ∆ρn+1)y(k) (20)

Analogously, for the remaining terms of (14), one has

n−1∑
`=0

ρn+i−`u(k + `− n) =

n−1∑
`=0

(ρ̄n+i−` + ∆ρn+i−`)u(k + `− n) (21)

i−1∑
`=0

ρi−`u(k + `) =

i−1∑
`=0

(ρ̄i−` + ∆ρi−`)Bd(k + `)ck (22)

and

n+i−1∑
`=0

ρn+i−`h(k + `|k) =

n+i−1∑
`=0

(ρ̄n+i−` + ∆ρn+i−`)h(k + `|k)

By (20)-(23), an equivalent representation of the predicted tracking error given by (12)
is

e(k + n+ i|k) = (bk,i + δbk,i)− (Dk,i + δDk,i)ck

where

bk,i
4
= w+(k + n+ i)− ρ̄n+1y(k)−

n−1∑
`=0

ρ̄n+i−`u(k + `− n) +

n+i−1∑
`=0

ρ̄n+i−`h̄(k + `|k)(23)

δbk,i
4
= −∆ρn−1y(k)−

n−1∑
`=0

∆ρn+i−`u(k + `− n) +

n+i−1∑
`=0

ρ̄n+i−`δh(k + `|k) +

n+i−1∑
`=0

∆ρn+i−`h(k + `|k) (24)
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Dk,i
4
=

i−1∑
`=0

ρ̄i−`Bd(k + `) (25)

δDk,i
4
=

i−1∑
`=0

∆ρi−`Bd(k + `) (26)

Equations (23)-(24) have been obtained expressing h(k + `|k) as h(k + `|k) = h̄(k +
`|k) + δh(k + `|k). For ` = 0 one has h̄(k|k) = w(k) and δh(k|k) = 0. According to
point 6 of Remark 2, h̄(k + `|k) = w̄(k + `|k) is the nominal term and δh(k + `|k)
is the corresponding approximation error. The way w̄(k + `|k) is defined implies that
δh(k + `|k) has the minimum maximum l2 norm over each Hk.
Similarly, the term ∆u(k + i) in the functional (9) can be rewritten as ∆u(k + i) =
buk,i
−Duk,i

ck where buk,i
= 0 and Duk,i

= − (Bd(k + i)−Bd(k)).
Define the following vectors and matrices

ek =



q
1/2
1 e(k + n+ 1|k)

...

q
1/2
N−1e(k + n+N − 1|k)

λ
1/2
1 ∆u(k + 1)

...

λ
1/2
N−1∆u(k +N − 1)


, Dk =



q
1/2
1 Dk,1

...

q
1/2
N−1Dk,N−1

λ
1/2
1 Duk,1

...

λ
1/2
N−1Duk,N−1



bk =



q
1/2
1 bk,1

...

q
1/2
N−1bk,N−1

0
...
0


, δbk =



q
1/2
1 δbk,1

...

q
1/2
N−1δbk,N−1

0
...
0



δDk =



q
1/2
i δDk,1

...

q
1/2
N−1δDk,N−1

λ
1/2
1 δDuk,1

...

λ
1/2
N−1δDuk,N−1


(27)

Exploiting the above defined vectors and matrices, allows us to reformulate the con-
strained min-max optimization problem (9)-(11) as the following WCRLS estimation
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problem:

min
ck

max
‖δDk‖s≤βk ‖δbk)‖s≤ξk

Jk (28)

where

Jk = ‖(bk + δbk)− (Dk + δDk)ck‖2 (29)

subject to u−k ≤ ck,i ≤ u+
k , i = 1, · · · , `. (30)

Constraints (30) derive from (17) and the convex hull property of B splines.
It is seen that (28)-(30) define a problem of the kind (4)-(6). Hence, according to

Section 2.1, at any k the WCRLS estimation problem (28)-(30) can be reformulated
as

min
ck

‖bk −Dk ck‖+ βk‖ck‖+ ξk (31)

where the components of ck must satisfy (30).

Remark 3. As for the numerical calculation of βk and ξk, the following considerations
hold:

1 As the term ξk of (31) is independent of ck, it cannot be minimized. Hence it
can be removed from the objective function. This implies that in (31) only the
upper bound βk on ‖δDk‖s needs to be determined at each k.

2 The way the B-spline basis functions are defined by the Cox de Boor formula
(2) implies that Bd(τ) = Bd(τ +N), ∀τ ∈ Hk, k ∈ Z+. Hence, by (26) and (27)

one has that βk
4
= β, ∀k = 0, 1, · · · and moreover β is easily determined putting

ρ = ρ+.

Feasibility and stability properties of the proposed control strategy can be now
formally stated in the following theorem.
Theorem The control input u(k) computed as the solution of the WCRLS
estimation problem (28)-(30), guarantees the recursive feasibility and the internal
asymptotic stability of the proposed RMPC control strategy.

Proof. Recursive feasibility is a consequence of parametrizing u(k) as in (17), namely
as the convex combination of the elements of the vector ck. This vector is computed as
the solution of an optimization problem where the box-constraints (30) are imposed
on the components of the same vector ck with respect to which the functional Jk is
minimized. Hence, constraints (30) (and therefore (10)) are surely feasible. Internal
asymptotic stability is a direct consequence of the internal asymptotic stability of
the supply chain model (implied by ρ < 1) and of the uniform boundedness of u(k)
resulting from (17) and (30).

6. Numerical results

The performance of the RMPC strategy has been tested by a numerical simulation
and compared with the Order Up To (OUT) control policy, see e.g. Sarimveis et al.
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Table 1. Model parameters

time delay perishability factor decay factor review period

n = 5 α ∈ [α−, α+] = [0.1, 0.14] ρ = 1− α ∈ [ρ−, ρ+] = [0.86, 0.9] T = 1 day

Table 2. Parameters of the control algorithm

B-spline degree number of control points length of the prediction horizon scalar weights in (11)
d ` N = M − n qi λi

3 6 12 e−0.1 (i−1) e−1 (i−1)

(2008) adapted to the plant model (7) and with the Dead-Time Compensation
Mechanism (DTCM) proposed in (Ignaciuk , 2013).
The model parameters are reported in Table 1. The uncertainty interval
[ρ−, ρ+] = [0.86, 0.9] is centered on the value ρ = 0.886 (the same chosen in
(Ignaciuk , 2013)). At each k, the future customer demand w(k), is known to belong
to a compact set Wk, with M = 17, like the example shown in figure 1. Figure 2
shows the actual customer demand over the whole simulation period (800 samples)
enclosed in the contiguous positioning of all the Wk’s.

1 The parameters of the control
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Figure 2. The actual customer demand w(k) (solid line), the upper w+(k) and the lower w−(k) boundaries

(dashed lines)

algorithm are reported in Table 2. The value N = 12 has been chosen to guarantee
that, even for ρ = ρ+ = 0.9, a significant amount of transient modes is included in the
prediction horizon (0.912 = 0.28) (Rossiter, 2004). According to point 2 of Remark
3, the upper bound β = 0.6559 has been found. The simulation has been performed
choosing ρ = 0.885 and a desired inventory level ỹ(k) = w+(k), where w+(k) is the
upper dashed line of figure 2. The simulation has been stopped at time k = 800. The
generated orders u(k) are shown in figure 3. This figure shows the actual control effort
(solid line) and the constraints curves computed as in (16). The effective amount of
goods y1(k), available for sale at the beginning of each k-th review period, is reported
in figure 4. This figure shows that y1(k) > w(k), ∀k ∈ Z+, hence, as shown in figure
5, the customer demand is always satisfied i.e. h(k) ≡ w(k).
Figure 6 compares the desired inventory level ỹ(k) = w+(k) with the amount of goods

1The customer demand has been generated as the sum of bounded white noise with two S-shaped curve

membership functions obtained through the smf function of Matlab.
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Figure 3. (RMPC with α ∈ [0.1, 0.14]) The generated order u(k) (solid line) and the constraints u−k and u+k
(dashed lines).

left in stock y(k) after satisfying the demand for the k − 1 review period.
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Figure 4. (RMPC with α ∈ [0.1, 0.14]) The effective amount of goods y1(k) (dashed line) available for sale

and the actual demand w(k) (solid line).

Assume now to shift the interval [α−, α+] from [0.1, 0.14] to [0.2, 0.24] (the
width of the intervals is the same) and to run the simulation with ρ = 0.785, while
all the other parameters are kept identical. The value ρ = 0.785 corresponds to a
deviation of 0.005 from the central value of the range (similarly to ρ = 0.885 used
in the scenario [α−, α+] = [0.1, 0.14]). The performed simulations give fairly similar
results in terms of amount of goods available for sale and of amount of goods left
in stock (compare figures 4 and 6 with 7 and 8 respectively). According to figure 7,
also in this case, the customer demand is fully satisfied. The substantial difference
between the two scenarios is in the replenishment policy (compare figure 3 with 9).
The greater the degree of perishability, the greater the range of variability of u(·)
(as indicated in (16)) to allow the replenishment policy to compensate for a faster
decaying goods.

With reference to the scenario α ∈ [0.1, 0.14], the performance of the proposed
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Figure 5. (RMPC with α ∈ [0.1, 0.14]) The fulfilled demand h(k) = min{w(k), y1(k)} coinciding with the

actual demand w(k).
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Figure 6. (RMPC with α ∈ [0.1, 0.14]) The on hand stock level y(k) (solid line) and the desired inventory

level ỹ(k) (dashed line)

RMPC has been compared with the following version of the OUT replenishment policy
adapted to take into account the presence of perishable goods and of a time delay in
the plant model (7)

u(k) = (ỹ − ρn+1y(k)−
n+1∑
`=2

ρ`u(k − `+ 1))/ρ (32)

where the fixed desired inventory level ỹ has been computed as

ỹ = w+
n∑
j=0

ρj (33)

and w+ is the maximum value of the customer demand over all the simulation period
to guarantee a strictly positive on-hand stock level y(k) for k ≥ n − 1 (Ignaciuk ,
2013). The OUT replenishment policy (32) has been applied to the customer demand
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Figure 7. (RMPC with α ∈ [0.2, 0.24]) The effective amount of goods y1(k) (dashed line) available for sale

and the actual demand w(k) (solid line)
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Figure 8. (RMPC with α ∈ [0.2, 0.24]) The on hand stock level y(k) (solid line) and the desired inventory

level ỹ(k) (dashed line)

reported in figure 2 to which the value w+ = 75 corresponds. Assuming ρ = ρ̄ = 0.88,
condition (33) gives ỹ = 335. The orders u(k) generated with ρ = ρ̄ = 0.88 and the
on hand stock level y(k) (generated with ρ = 0.885) are reported in figures 10 and 11
respectively. Also the OUT replenishment policy guarantees a full demand satisfaction.
The relative plot is identical to that shown in figure 5.

A second comparison has been performed with the DTCM proposed in (Ignaciuk
, 2013) (eqns. (33), (34)). In the present case (where n = 5 and δn = 0) the DTCM
has been applied choosing: ρ = ρ̄ = 0.88, umax = dmax = w+ = 75 (according to
(45)) and yref = umax

∑n
j=0 ρ̄

j = 335 (according to (46)). The orders u(k) generated

with ρ = ρ̄ = 0.88 and the on hand stock level y(k) (generated with ρ = 0.885) are
reported in figures 12 and 13 respectively. Also the DTCM guarantees a full demand
satisfaction.

6.1. Discussion

A comparison between the reported simulations highlight the following:
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Figure 9. (RMPC with α ∈ [0.2, 0.24]) The generated order u(k) (solid line) and the constraints u−k and u+k
(dashed lines).
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Figure 10. (OUT) The generated order u(k)
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Figure 11. (OUT ) The on hand stock level y(k) (solid line) and the desired inventory level ỹ (dashed line).
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Figure 12. (DTCM) The generated order u(k)
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Figure 13. (DTCM) The on hand stock level y(k) (solid line) and the desired constant reference level ỹ
(dashed line).

- All the three methods fully satisfy the customer demand, but the proposed
RMPC approach requires a very smaller warehouse occupancy with respect to
OUT and DTCM. This is visually evidenced by figures 6, 11 and 13 and nu-
merically quantified by the sum of stored goods at each kT , k = 1, · · · , 800. See
the entries of row 1 of Table 3. Row 2 of the same table shows the respective
average stocks of goods in warehouse. The reduction of warehouse occupancy
is a consequence of tracking a time varying inventory level which is adapted
at any k on the basis of the current w+(k). On the contrary, both OUT and
DTCM define a constant desired inventory level, which is ”a priori” computed
using a conservative formula requiring the ”a priori” knowledge of the maximum
value w+ of the customer demand over an indefinitely long future time interval.
Moreover, as w+ is never exactly known, it is often over-estimated.

- Figures 14-16 and the entries of row 2 of Table 3 show that the RMPC policy
provides a smoother control signal with respect to OUT and DTCM strategies.

This is a consequence of: 1) introducing the term
∑N−1

i=1 λi∆u
2(k + i) in the cost

functional (11), 2) expressing u(k) as a linear combination of smooth functions like
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Figure 14. (RMPC) The zoomed generated order u(k) (solid line) between the two boundaries trajectories

u−k and u+k (dashed lines)
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Figure 15. (OUT) The zoomed generated order u(k) .
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Figure 16. (DTCM) The zoomed generated order u(k)
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Table 3. The total sum of the inventory stock
∑800

k=1 y(k), the

average stock of goods
∑800

k=1 y(k)

800
and the sum of the point-wise

changes of the orders
∑799

k=1(u(k + 1)− u(k)).

RMPC OUT DTCM∑800
k=1 y(k) 4.6908e4 1.1510e5 8.0696e4

∑800
k=1 y(k)

800
58.635 143.875 100.870∑799

k=1(u(k + 1)− u(k)) 187 478 943

polynomial B-splines.
The improved smoothness deriving from RMPC yields less order quantity changes with
respect to OUT and DTCT. As evidenced in ( Song, Li & Garcia, 2009), frequency
and amplitude of control changes are elements for measuring the bullwhip effect.

7. Conclusions

The main novelties we have proposed in this paper are: 1) the supply chain dynamics is
characterized by perishable goods with uncertain perishability factor, 2) the proposed
RMPC approach provides a B-splines parametrization of the replenishment order.
The assumption on the supply chain dynamics generalizes many existing modeling
approaches. The B-splines parametrization allowed us to reformulate the conceptually
and numerically demanding min-max optimization problem implied by the RMPC as
a simpler WCRLS estimation problem. The method we propose also allowed us to
define a time-varying inventory level conciliating the opposite control requirements
CR1 and CR2. CR3 is addressed penalizing the difference between control moves and
also parametrizing the control moves as polynomial B-Spline functions. A rigorous
proof of feasibility and stability of the RMPC strategy has been also provided. The
numerical test confirmed the validity of the approach: it is actually able to reduce the
inventory level without affecting customer service quality and without incurring in an
excessive control effort.

8. Data availability statement

The authors declare that the data supporting the findings of this study have been
generated by simulation. Data are available from the corresponding author [V.O.] on
request.
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