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Abstract

Front-end speech processing plays a vital role in many everyday applications
such as teleconferencing and telephone conversations, hearing aid devices, voice-
enabled assistants and more. Such term encompasses a wide variety of tasks
and absolves to at least as many tasks as are the potential applications: voice
activity detection and keyword spotting, denoising, dereverberation, diarization
and so on, each performing an essential pre-processing step for a particular
downstream use-case.
The goal of this dissertation is to give an overview of front-end speech processing
and present different contributions to this important line of research that ad-
dress many practical problems. More in detail, here we focus especially on the
use of deep learning techniques, often supported by classical signal processing
techniques, to tackle the front-end tasks of multi-channel speech enhancement,
channel selection, keyword spotting, speaker counting and diarization.
Emphasis is placed on low computational complexity and/or low-latency ap-
proaches as well as integration between different front-end components to achieve
one particular goal e.g. voice activity detection together with speech separation
to obtain diarization or the use of spatial features to improve speaker counting.
Regarding multi-channel speech enhancement we present a study on the use of
learnable filterbanks for acoustic beamforming which can open up interesting
future research directions towards low-latency applications.
We also address the channel selection problem and propose to formulate it as a
learning to rank problem. Our proposed MicRank algorithm is lightweight and
can achieve performance in some instances close to oracle selection techniques.
Low computational requirements are also the primary goal of our implicit acous-
tic echo cancellation framework, which allows for streamable robust keyword
spotting and device-directed speech detection on edge devices. It is also one
of the main focuses of our study on overlapped speech detection and speaker
counting on real world meeting corpora. Regarding this latter, we show that
spatial based features could boost considerably the performance and at the
same time keep the computational cost contained.
Finally we present a work on speech separation guided diarization for telephone
conversations, in which we place special attention on extreme low-latency use-
cases. The results are promising in terms of recognition and diarization perfor-
mance and open up exciting prospects for applications such as live captioning.
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Chapter 1

Introduction

Our ability to perceive sound plays a vital role in communication, learning, and
interaction with each other and with the world around us. For example, it is
well known that hearing appears much earlier than vision in the development
of the fetus. Vision develops much later and even newborns have very poor
eyesight. Thus, in the very first weeks of our existence, from the sounds of our
mother’s voice to the myriad of sounds of the outside world, we mostly rely on
our ability to hear to make sense of the world around us. At the same time,
this very same ability to process and produce sound has shaped our evolution
over the course of millions of years and led to the development of language,
which is thus intrinsically tied to speech and hearing. Indeed, the capability
to communicate in such a rich manner is arguably one of the most impressive
feats of human beings. It enabled us to share our knowledge, and experiences,
exchange ideas, and ultimately build communities, societies and cultures. And
it continues to do so.

This is why the technical field of audio and, in particular, speech processing
is so important. It can transform the way we communicate and connect with
each other and, in fact, it has been this this way since the invention of the radio
and the telephone. Nowadays, advanced technologies such as speech recogni-
tion, natural language processing and machine translation have the potential
to overcome language barriers and enable more effective communication across
different cultures and communities. Think of live translation, once only imag-
ined in science fiction, is now a reality, although further progress is needed to
make it more robust.

Crucially, audio and speech processing can also play a critical role in improv-
ing accessibility and inclusion for people with hearing impairments or people
with disabilities/learning disorders. For example, by devising better algorithms
for hearing aids, thus helping people with auditory challenges in situations
where classical hearing aid technology fails: during concerts, dinners and, in
general, multi-party conversations in noisy places. Even helping individuals
who lost hearing altogether with reliable live-captioning algorithms is a feat
within reach of the current technology and could be a reality in the next few
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Chapter 1 Introduction

years. Also voice-enabled smart assistant have a lot of potential for assistive
technologies. They offer an intuitive way for human-to-machine interaction,
more accessible for many elderly people or people with disabilities, that cannot
type for example or are not fully self-sufficient. It has been found, for example,
that they can improve the quality of life of people with dementia or Alzheimer
and even help with detecting early signs of cognitive impairment [1].

As said, many of these things 20 years ago belonged mainly to the real of
science fiction. This drastic advancement is mainly due to three factors that
are intimately related: the adoption of Deep Learning (DL) techniques, the
greater availability of data and the progress in parallel-computation hardware
e.g. especially in graphics processing unit (GPU). Since the turning of the
millennium, with the rapid growth of the World Wide Web, massive amounts
of data, in all forms: textual, audio-visual etc. has been more and more within
reach. This led researchers to rediscover the use of deep neural networks (DNN)
based machine learning techniques. The basis for Deep Learning are more than
half a century old: the backpropagation algorithm was developed in the 60s
and later mathematically formalized in the 70s by Rumelhart et al. [2]. The
80s saw the foundations of the convolutional neural networks (CNN) laid by
Fukushima [3], while the 90s gave birth to long short-term memory (LSTM)
networks [4], and saw the successful applications of CNN to practical problems
such as handwritten recognition for signature verification [5].

The AlexNet [6] paper, now already 10 years old, is often pointed out as the
turning point. Aside from winning by a large margin the ImageNet challenge it
introduced several different novelties (e.g. the ReLU activation), and it was one
of the first DNN-based techniques to use the full power of DL embarrassingly
parallelism through GPU hardware and thus scale to large amounts of data.
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Figure 1.1: word error rate (WER) as obtained by the best system each year,
from 2014 to 2022, on LibriSpeech [7] and Switchboard Hub5’00
datasets [8].
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1.1 Front-End Speech Processing

Since then DNN have been widely adopted and now are, ultimately, the
de-facto standard approach to many speech processing problems. For example,
regarding automatic speech recognition (ASR), a drastic reduction in the WER
in most popular benchmark datasets can be observed from 2014 on-wards as
we plotted in Figure 1.1. This is also reflected by the larger adoption of voice-
enabled assistants, whose use has become mainstream now.

Other key developments in the field of deep learning with large impact in
the audio field have been, to name a few, the invention of the Transducer [9],
connectionist temporal classification loss [10], Transformer architecture [11] and
permutation invariant training (PIT) to name a few. Another very recent major
milestones is the development of effective self-supervised training strategies for
in speech separation [12], for general speech representations [13–15], or general
sound representation [16]. These latter have and are transforming the field
as they require no supervision during training and can thus leverage extremely
large amount of data during training. They are also flexible and can be adapted
successfully for many downstream tasks [17]: e.g. ASR, diarization, emotion
classification, speech translation et cetera.

To conclude, the extremely rapid progress of this field, is what ultimately
makes it so stimulating to work with and try to be part of the audio and
speech processing community. Every year it is easy to be amazed by some
novel approach/algorithm with lots of potential.

This said, there are still so many challenges to be overcome, as we will also
see in the rest of this manuscript. Deep learning methods are very powerful, but
are data hungry thus raising both environmental [18, 19] and privacy concerns.
They could be prone to overfitting a particular domain or scenario and can fail
spectacularly when the domain is changed even slightly, in an imperceptible way
(e.g. speech enhancement on top of ASR [20, 21], or adversarial attacks [22,
23]). All these phenomena are in stark contrast with the remarkable capability
of humans to adapt quickly to new settings, contexts and acoustic conditions.
Despite tabloids flamboyant claims, we are still quite far from developing speech
processing techniques capable of tackling “in-the-wild” conversations and as
flexible and reliable as our brain/auditory system.

1.1 Front-End Speech Processing
Audio front-end processing plays a critical role in all areas of speech and audio
processing and will be the main subject of this thesis. As the name implies,
it concerns with the pre-processing of the audio signal for the downstream
applications. This term encompasses a wide-variety of techniques and tasks,
aimed at, for example, improving the quality and reliability of speech and
audio signals or discarding non-relevant audio portions e.g. via voice activity

3



Chapter 1 Introduction

detection (VAD), the task of detecting speech segments. In fact, to process the
speech signal, arguably you need to detect first where it is present in a given
audio stream. It can involve one or, if available, more microphone channels or
even more devices. In the latter case front-end processing could be used to fuse
information across the different microphone channels e.g. as in spatial filtering
or beamforming, in order, for example, to suppress unwanted noise.

In a broad sense, it can be said that it fulfill a function similar to the periph-
eral auditory system and primary auditory cortex: localizing sound sources,
separating them in multiple independent streams and extract the most useful
cues and necessary information from the “raw” sound vibrations, captured by
our eardrums.

1.1.1 Taxonomy
Due to its broad scope, it is difficult to derive an exact taxonomy of front-end
processing as the different tasks often overlap, e.g. historically VAD has been
necessary to perform beamforming or acoustic echo cancellation (AEC).

In this manuscript, we divide front-end processing into three main categories,
defined ultimately by the nature of the problem each task addresses:

• Speech Separation and Enhancement (SSE).

• Sound Localization [24].

• Audio and Speech Segmentation/Detection.

With SSE, following [25], we denote the front-end tasks of speech separation
and enhancement. Enhancement is assumed here in the broader term, where
it can possibly include also dereverberation on top of denoising. These tasks
can be informed or blind and in the informed case, they are usually referred
to as target speaker extraction [26]. In this dissertation we will present two
works on such sub-field of front-end processing, one on joint enhancement and
separation in the multi-channel case (Chapter 2) and another on monaural
speech separation for diarization purposes (Chapter 6). In Chapter 3 we will
study instead the channel selection problem. This problem too could be framed
in an SSE sense, as it can be considered a limit case of spatial filtering with
the filter being a one-hot vector.

Audio and speech segmentation/detection instead deal with the problem of
sequence labeling. This term encompasses front-end tasks such as VAD, over-
lapped speech detection (OSD), speaker counting, keyword spotting (KWS),
device-directed speech detection (DDD) and speaker diarization. In this dis-
sertation a work on joint VAD+OSD and speaker counting will be presented
in Chapter 5, one on diarization in Chapter 6 and finally we will also deal with
on-device KWS and DDD in Chapter 4.
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1.2 Scope and Organization of this Thesis

Another obvious sub-distinction we can make, within each of these three
main categories is between monaural and multi-channel approaches. These
latter are, in principle, more robust as they can exploit more information and
the spatial diversity offered by the position of each microphone/device. In this
work, multi-channel techniques are explored in Chapters 2, 3 and 5.

Finally, we could sub-divide further each front-end task/algorithm accord-
ing to the mathematical formulation and framework adopted to tackle and
describe the problem. Such distinction is often blurred but in general we can
discriminate between “pure” digital signal processing (DSP) approaches, clas-
sical machine learning (ML) approaches and more recent approaches based on
Deep Learning and DNN. It is not uncommon for the two latter approaches to
always integrate DSP-derived “know-how”: e.g. for beamforming as it will be
explained later in Chapter 2.

1.2 Scope and Organization of this Thesis
The goal of this thesis is to present different aspects of front-end processing, fo-
cusing in particular on speech applications, along with some contributions made
in this field during this PhD journey. In the pages that follow, we will propose
different novel algorithms in the areas of speech segmentation and speech sep-
aration and enhancement (SSE), highlight their advantages, shortcomings and
also the potential applications. Our hope is that the reader will get an overview
of the current state of research in many front-end speech processing areas, and
maybe also be inspired with some new ideas and future research directions.

The works in this dissertations share two trends. The first is that we strive to
focus on approaches that have low computational requirements and/or are suit-
able for low-latency streaming applications. This direction is often neglected
in many studies but is crucial for practical applications, more so for front-end
tasks, as they are usually required to run on edge devices. The second trend is
integration between different front-end areas e.g. neural localization to aid in
the task of speaker counting, or combining voice-activity detection and diariza-
tion to perform diarization. The meta-idea of integration between different
tasks and components will be discussed further at the end of this work, but
it is a recent general trend in speech processing which has been helpful in the
design of more robust systems.

This dissertation focuses heavily on the practical aspect, and in each Chap-
ter we explain the potential applications of the proposed frameworks and algo-
rithms. But, at the same time, we place equal emphasis to the methodological
aspect. Designing efficient and/or low-latency front-end solutions with state-of-
the-art performance requires a lot of effort in the development of new methods.
These include the development of completely new frameworks such as our im-
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Chapter 1 Introduction

plicit acoustic echo cancellation (iAEC) framework as well as the design of
novel, efficient DNN architectures (such as the Transformer-based one with the
cat-pool operation in Chapter 5). Or, again, for example, the use of approaches
motivated by classical digital signal processing, such as spatial features, which
can be used to boost the performance of speaker counting classifiers.

This work is organized as follows:
Chapter 2: we give a more in depth overview of SSE, focusing on multi-channel
techniques and present a work on interpretable DNN-based beamforming in a
learnt basis. This work shows that, by using learned filterbanks it is possible
to surpass in some instances even oracle-based classical approaches.
Chapter 3: we introduce the channel selection problem and outline the main
approaches. We then proceed to present MicRank, a framework we developed
in which channel selection is framed as a learning to rank (LTR) problem. In
detail we explore different LTR strategies and perform extensive experimental
analysis on CHiME-6 and a purposely developed synthetic dataset. Results are
promising and we show that such approach on single-talker data considerably
improve over previous selection techniques and reach performance comparable
and, in some instances better, than oracle signal-based measures. As an ad-
ditional contribution, we also report an analysis over the use of signal-based
channel selection in conjunction with speech separation, in the context of the
recent CHiME-7 DASR Challenge.
Chapter 4: we present more in depth the two front-end tasks of on-device KWS
and DDD. Our work on iAEC is then presented, we devise a novel framework
to address in an efficient and effective manner a particular problem of human-
machine interaction due to the user voice overlapping with the device text-to
speech (TTS) response. Results show that our approach can obtain perfor-
mances comparable to other state-of-the-art approaches but with more than
100 times less compute.
Chapter 5: we give an in-depth historical overview of VAD, OSD and speaker
counting and then introduce our proposed overlapped speech detection and
counting (OSDC) framework of which encompasses all these three tasks. We
then proceed to study how supervised deep-learning methods can be used to
tackle these tasks, focusing on real-world distant meeting scenarios with mul-
tiple microphones and on lightweight algorithms. We show that by using ad-
ditional spatial features the performance can be increased considerably (even
surpassing ensemble methods) at a modest increase in computational require-
ments. We also propose two novel carefully designed DNN architectures which
achieve state-of-the-art performance while keeping the computational require-
ment low enough for on-device deployment.
Chapter 6: we present a work on speech-separation guided diarization (SSGD),
focused on telephone conversations and low-latency. We carry extensive ex-
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periments with two state-of-the-art speech separation algorithms on CALL-
HOME [27] and Fisher [28]. A novel, efficient leakage removal algorithm is
devised which is shown to drastically reduce false alarms due to single speaker
segments. Results show that our proposed SSGD approach is an intriguing
direction: it allows to get diarization “for free” on top of speech separation
which is competitive with the state-of-the-art and, in the online case, has two
orders of magnitude less latency. It also allows for decreasing the WER of the
recognizer output thanks to separation, with results close to the oracle.
Chapter 7: we draw conclusions and outline possible future work directions
as well as perspectives over the coming years regarding some of the challenges
that we need to address.
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Chapter 2

Speech Separation and
Enhancement

Context
The work presented in this Chapter was presented at ICASSP 2022 [29] and was
done together with Manuel Pariente from Université de Lorraine and Francois
Grondin from Université de Sherbrooke. The idea actually came towards the
end of 2019. After me and Manuel Pariente finished our work on learnable
analytic filterbanks for monaural speech separation [30], this seemed a natural
extension. Two years afterwards, also thanks to the, then just added, Pytorch
complex numbers support, we decided that the times were ripe to give this idea
a go.

2.1 Multi-Channel Enhancement Techniques
Most current deep learning based beamforming (also called neural beamform-
ing) techniques can be divided into two main categories: hybrid [31–41] and
fully neural [42–46].

Hybrid techniques couple DNN with established beamforming methods such
as minimum variance distortion-less response (MVDR) [47], multi-channel wiener
filter (MWF) or generalized eigenvalue (GEV) [48] solutions. Usually they
employ a DNN to estimate the spatial covariance matrix (SCM) via a time-
frequency mask [31, 34–39] in the magnitude short-time Fourier transform
(STFT) domain. Another approach [40] is to use the DNN model to esti-
mate the target and interferer time domain signals and subsequently derive the
SCMs. In both cases the DNN is usually a monaural model and the mask is
estimated on one microphone channel used as a reference. Additional spatial
features are sometimes used to improve the masks estimation [32, 41]. As they
rely on SCM estimation to derive the beamforming solution, hybrid neural
beamformers performance is greatly affected by the frame size used to estimate
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Chapter 2 Speech Separation and Enhancement

the SCMs of the target and interferer/noise signals.
On the other hand, fully neural models employ a DNN to directly estimate

the beamforming filters [42, 43] or the time domain target signal directly [44,
49, 50] or, via complex spectral mapping, the target STFT [51, 52]. Being fully
data-driven these methods are less sensitive to the frame size of the beamform-
ing filters. For example FasNet [42] is able to reach comparable or superior
performance with respect to conventional oracle beamformers for low latency
applications with remarkably smaller frame size and latency. This is aligned
with results in monaural source separation, where fully learned representations
have been shown to surpass the STFT in both clean [53] and noisy conditions
[30] especially for short windows [54]. They also have a potential for being
computationally lighter than hybrid approaches, as MVDR and MWF require
expensive matrix inversion operations. However, fully neural models are also
arguably “less interpretable" and are prone to introducing non-linear distortion
compared to conventional beamformers. FasNet [42] is a notable exception as
it estimates linear spatial filters for filter-and-sum beamforming, thus enabling
to e.g. visualize the beam-patterns. This however is not possible for other
methods [44, 49, 50] as the multi-channel processing is done inside the DNN.

Still, conventional beamformers and especially MVDR are preferred in actual
applications, in particular ones involving deep learning based systems down-
stream (e.g. for ASR), as the distortion-free constraint is crucial for not intro-
ducing artifacts that would cause a domain mismatch [21]. This is why hybrid
DNN approaches are still very relevant as also recent works suggest [55–58].

2.2 Acoustic Beamforming with Learned
Filterbanks

Given these premises, it would be interesting to attempt to bridge the gap
between these two paradigms and study conventional beamforming with fully
learned filterbanks, as these latter also achieved promising results in monaural
source separation [30, 53, 54]. We propose to train a hybrid neural beamformers
where the DNN is used to estimate the SCMs via a mask. However unlike
previous works [31–41] we learn the analysis and synthesis filterbanks in place
of the STFT along with the mask-estimation DNN using time-domain losses.
We consider for this study fully unconstrained linear filterbanks as used in [53]
and the recently proposed learnable analytic filterbanks [30] which allow for
magnitude shift invariance, an especially desirable property in this case.

We will outline now the signal model and framework which will be used in
the rest of this Chapter.
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2.2 Acoustic Beamforming with Learned Filterbanks

Given an array of M microphones we can denote with

y(t) = [y1(t), y2(t), . . . , yM (t)]T ,

the matrix of the time-domain signals at each microphone, with t being the
sample index. We consider here a situation where y(t) is comprised of two
terms:

y(t) = x(t) + ν(t), (2.1)

with x(t) the matrix of desired source signals and ν(t) the matrix of in-
terfering source signals at the microphones. Our goal here is recovering the
desired signal xr(t) at an arbitrarily chosen reference microphone 1 ≤ r ≤ M

by suppressing the interferer. This implies that, in this study, the target is a
reverberated source signal and joint enhancement and dereverberation is left
for future work. Accordingly, the target signal at reference microphone r is
given by xr(t) =

∑︁Lh

τ=1 hr(τ)xa(t − τ), where xa(t) is the dry desired source
signal and hr(τ) is the impulse response of length Lh characterizing the acoustic
propagation of the desired source signal to the reference microphone at time
lag τ . Recovering of xr(t) can be achieved by conventional spatial filtering
techniques if an estimate of the target signal and the interferer SCMs can be
produced.

Hereafter we follow a simple hybrid neural beamforming framework, illus-
trated in Figure 2.2, where such estimates are produced by a monaural mask
estimation DNN F(·,θ) with θ trainable parameters. An STFT analysis filter-
bank ϕn(t) is used to extract the time-frequency representation for every m-th
microphone input signal, obtaining a third order tensor:

Ym(n, k) =
L∑︂

t=1
ym(t+ kH)ϕn(t), n ∈ [1, . . . , N ] , (2.2)

where {ϕn(t)}n=[1,...N ] are the N STFT analysis filters each of size L = N

and H is the hop-size or stride factor. Consequently n and k denote respectively
the frequency bin and frame indexes.

The mask-estimation DNN has, as input features, this complex STFT repre-
sentation (real and imaginary part) at a chosen reference channel r and outputs
a mask m(n, k) for the target signal in the magnitude STFT domain (i.e. with
shared values between real and imaginary parts):

m(n, k) = σ(F(Ym=r(n, k),θ)) (2.3)

where σ(·) denotes the sigmoid activation. The interferer signal mask is
obtained simply as 1−m(n, k). We found this configuration to work the best
in our experiments rather than outputting two distinct masks and/or using a
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different activation (e.g. softmax). More in detail, this configuration led to
more stable training with the dataset used in our experiments, while the use
of two distinct masks often led to ill-conditioned SCMs especially when the
activation was unbounded (e.g. ReLU).

These masks are then used to compute the frame-wise SCMs of target and
interferer respectively:

Rx(n, k) = Y (n, k)m(n, k)Y (n, k)H ,

Rν(n, k) = Y (n, k)(1−m(n, k))Y (n, k)H ,
(2.4)

where H denotes the Hermitian transpose and both target and interferer SCMs
are 4-th order tensors ∈ CM×M×N×K , where K is the number of frames. In
this study, for simplicity, we consider non-causal systems. In this instance,
following previous works [31, 34–40], the overall SCM can be computed by
simply averaging the frame-wise SCM over the whole input mixture segment:
Rρ(n) = 1

K

∑︁
kRρ(n, k) for both target ρ = x and interferer ρ = n. In addition

to non-causality, this averaging operation requires that the transfer functions
of the target source and interferer do not change in the time-frame over which
the averaging is performed i.e., for the target, hr is assumed stationary.

From such estimated SCMs different beamforming solutions can be com-
puted. In this study we consider MVDR and MWF.

Regarding MVDR, we use the formulation from [59] and estimate the spatial
filter as

wMV DR
m (n) = R−1

ν (n)Rx(n)um

tr
{︁
R−1

ν (n)Rx(n)
}︁ , (2.5)

where tr {·} denotes the trace operator and um is an one-hot column vector
for which the m-th term is 1, and all others are 0. Regarding MWF instead we
simply compute the filter coefficients as:

wMW F
m (n) =

(︃
1

Rx(n) +Rν(n)Rx(n)
)︃
um, (2.6)

and the beamformed signal is obtained as

X̃(n, k) = wm(n)HY (n, k), (2.7)

which is finally brought back to time-domain via a synthesis inverse-STFT
(iSTFT) filterbank ψn(t) filterbank with N synthesis filters {ψn(t)}n=1,...N of,
again, length L = N each:

x̃(t) =
K∑︂

k=1

N∑︂
n=1

X̃(n, k)ψn(t− kH). (2.8)

12



2.2 Acoustic Beamforming with Learned Filterbanks

Figure 2.1: Left: an example of a learnable analytic filter, taken from a trained
model we used in our experiments. The filter belongs to the analysis
filterbank and has a 1024 kernel size. Right: a visually similar filter,
as found in a STFT filterbank with the same kernel size.

2.2.1 Learnable Analysis and Synthesis Filterbanks
In this work we propose to replace the STFT and iSTFT filterbanks with
learnable linear filterbanks and perform spatial filtering in a learned linear basis.
These filterbanks are learnt end-to-end jointly along with the mask-estimation
DNN F(·,θ) as the gradient can be back-propagated from a time-domain loss
also to the analysis and synthesis filterbanks.

We consider here two types of filterbanks: free and analytic [30] (A) along
with the STFT. In free filterbanks both analysis and synthesis parameters are
unconstrained as in [53] with N fully learnable filters.

On the other hand, learnable analytic filterbanks have only half of the filters
fully learnable. For example, regarding the analysis filterbank {ϕn(t)}n=1,...N ,
we consider the first N/2 filters as the real and fully learnable part while,
the corresponding imaginary part is obtained from its real counterpart via the
Hilbert transform H(·):

ϕA
n (t) = ϕn(t) + jH(ϕn(t)). (2.9)

The same is true for the synthesis filterbank {ψn(t)}n=1,...N . For implemen-
tation purposes the analytic filterbanks real and imaginary parts are treated
separately as N real filters and the whole filterbank is implemented as a 1D
convolutional layer1. An example is reported in Figure 2.1. The filter is taken
from a 1024 samples kernel size analysis filterbank belonging to one of the
models used in our experiments in Section 2.4. Because of this coupling, the
modulus of a signal convolved with these learnt filters is invariant to small
shifts in time domain, a property shared with the STFT. This property is cru-

1see github.com/asteroid-team/asteroid-filterbanks
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cial for the estimation of the SCMs in Equation 2.4, as the target signal mask
is estimated on the reference channel and applied across all microphones.

The use of fully learnable filterbanks in place of the STFT poses some prob-
lems regarding the derivation of the SCMs. An implicit assumption for Eq. 2.4
is that the analysis filterbank used is approximately orthogonal. This condition
is commonly referred to as the “narrow-band approximation" and can be satis-
fied by the STFT because of its approximate orthogonality [60]. At least under
some assumptions [60], mainly related to the maximum delay in the relative
transfer function of the array and the length of the analysis window.

Without this assumption, the target and interferer SCMs cannot be reduced
to M ×M matrices as in Eq. 2.4, as with no orthogonality of the basis, one
must take into account also “inter-frequency" terms. This leads to a block
matrix SCM for each frame k that can be partioned as an N ×N block matrix
(modeling the inter-frequency interactions) with the (i, j)-th block being a
M ×M matrix (modeling the inter-microphone interactions). This increases
significantly the computational requirements as e.g. inversion of the full SCM
leads to a complexity of O(N3M3) versus O(NM3) for a diagonal block SCM.

A straightforward, naive, but efficient approach, is to disregard the contri-
bution of the “inter-frequency" interactions in the SCM derivation also for the
learned filterbanks. Since the filterbanks are learnt jointly with the rest of the
model by minimizing a particular loss objective (e.g signal-to-distortion ratio
(SI-SDR)) it can be assumed that the analysis filterbank will learn an approxi-
mately orthogonal basis. We adopt in this work this rather strong assumption
and provide some empirical evidence for this in Section 2.4.

2.3 Experimental Setup

2.3.1 Datasets
Crucially, most neural beamforming studies, being targeted mainly towards
back-end tasks such as ASR, perform their experiments using 16 kHz signals.
Such sampling rate however is sub-optimal for applications aimed towards hu-
man listening. For this reason, we use in our experiments the recently available
First Clarity Enhancement Challenge dataset [61] which, being geared towards
hearing aid development, is sampled higher at 44.1 kHz.

Clarity Challenge Dataset

We use here the training and development subsets from the Clarity Challenge
comprised of, respectively, 6k (∼ 10 h) and 2.5k (∼ 4 h) multi-channel sim-
ulated mixtures. Each simulated mixture consists in a target speaker and an
interferer signal which can be either another competing speaker or a localized
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Figure 2.2: Framework overview. The gradient is back-propagated from wave-
form domain. This allows to learn the analysis and synthesis filter-
banks along with the mask-estimation DNN.

noise source. By dataset construction, each mixture is composed in such a way
that the interferer signal always starts 2 seconds before the target signal. To
make the task more challenging, in this work we only use 1 second of such “pre-
roll". Spatialization is performed using synthetic room impulse response (RIR)
by simulating a randomized room with uniformingly sampled receiver, target
and interferer locations, each constrained to be at least 1 m apart from the oth-
ers. The RIR reverberation time at 60 dB (RT60) has a log-normal distribution
with a mean of 0.3 s and a standard deviation of 0.13 s. The Raven toolkit [62]
is used to perform such simulation. An array with a behind-the-ear hearing aid
topology is employed with 3 microphones per ear. On each ear, microphones
are spaced approximately 7.6 mm (front, mid, rear) from one to another. We
consider the task of recovering the reverberant target signal at one reference
microphone without considering the head related impulse response. In this
dataset, the SI-SDR at the array between the target and interferer signals has
a -30 to 10 dB range with a skewed gaussian distribution centered around 1 dB.
In this work, we report results using the development and use a 90/10 training
set split for the purpose of training and validation respectively.
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2.3.2 Architecture and Training Details

In our experiments we employ ConvTasnet [53] separator as the mask-estimation
DNN in Figure 2.2. We train the whole system comprised of analysis, synthe-
sis mask-estimation DNN and beamforming solution in an end-to-end fashion
using negated time-domain SI-SDR [63] as the loss function. Adam [64] is
used for optimization along with gradient clipping for gradients exceeding an
L2 norm of 5. We tune learning rate and weight decay for each experiment
and train each model for a maximum of 100 epochs with early stopping if no
improvement is seen in the last 10 epochs on the validation set. We halve the
learning rate if no improvement is seen in the last 5 epochs. During training
we randomly choose the reference channel from the 6 available while in testing
and validation we always use the first left microphone as the reference.

2.4 Experimental Results

In our experiments we consider, as an upper bound, MVDR and MWF beam-
formers with oracle wiener-like mask (WLM) in STFT domain. We use as
performance metrics SI-SDR improvement (SI-SDRi) and Signal-to-Distortion
Ratio [65] improvement (SDRi). The SI-SDR and SDR values for no enhance-
ment are respectively 1.537 dB and 1.144 dB. Note that these metric emphasize
the contribution of the lower part of the spectrum as this also carries most of
the energy for speech signals. Better objective metrics that allow for a more
fair assessment of speech enhancement for signals with such high sampling fre-
quency (44.1 kHz and above) are still a matter of ongoing research at the time
of this writing. As here we are merely comparing the proposed method with
oracle beamforming solutions and ones based on STFT we argue that the use
of SI-SDRi and SDRi can still be considered acceptable.

In Figure 2.3a we report the SI-SDRi versus the length of the analysis and
synthesis filters (kernel size) for different configurations. The number of filters
is kept equal to the kernel size, and the stride half of that.

We can see that for both the STFT-based (STFT ) models and oracle (oWLM )
masks, performance improves as the kernel size increases. This is expected as
a bigger kernel allows for more accurate SCMs estimation. Both free and A
learned filterbanks outperform oracle WLM mask for small kernels. Only for
MVDR, this is true also for all kernel sizes considered. Interestingly, learned
filterbanks seem to have opposing trends regarding MVDR and MWF in func-
tion of the kernel size. For MWF performance decreases as the kernel increases.
This may be due to the fact that learning filterbanks with large kernel sizes
is inherently more difficult and leads to more “noisy training” as far as MWF
is considered. On the contrary, the MVDR distortion-less constraint could
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2.4 Experimental Results

Figure 2.3: Performance for different MVDR and MWF configurations: oracle
(oWLM) and learned models with different filterbanks (STFT, Free
and A).
a) SI-SDRi versus kernel size. The number of filters is kept equal
to kernel size and stride to half. b) SI-SDRi versus oversampling
factor. The kernel size and number of filters is kept to 2048. c) SI-
SDRi versus number of filters for learnable filterbanks. The kernel
size and stride are kept fixed at 256 and 128 respectively.
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mitigate this issue.
In Figure 2.3b we study how SI-SDRi changes by increasing the oversampling

factor i.e. decreasing the stride while keeping fixed the kernel size. Here we fix
the kernel size and number of filters to 2048 and vary the oversampling factor
N/H by 2, from 2 (same as in Figure 2.3a) to 8.

Regarding MVDR, for both STFT-based systems and oWLM performance
improves with higher oversampling but at a slower pace compared to what
has been observed by increasing kernel size. Regarding MWF, performance
decreases slightly for STFT and oWLM while is almost constant for the models
with learned filterbanks.

In Figure 2.3c we explore the effect of increasing the number of filters for
learned filterbanks with fixed kernel size and stride of respectively 256 and 128
samples. Such strategy is, in fact, one of the key factors which allows current
monaural source separation algorithms to achieve such impressive performance
[53, 54].

For both beamforming solutions increasing the number of filters and thus
forming an over-complete dictionary, improves significantly the performance.
By comparing with Figure 2.3a, we can see that adding filters has a stronger ef-
fect with respect to expanding the kernel size. This suggests that beamforming
with learned filterbanks may be particularly suited for low-latency applications
as the kernel size can be kept low to suit the latency constraints, while the
number of filters increased with no penalties in terms of latency.

In Table 2.1 we compare the best systems from previous experiments (Figure
2.3) in terms of both SI-SDRi and SDRi. As a term of comparison we also add
iFasNet [44], a state-of-the art fully neural beamformer architecture. For this
model we use the exact same configuration as in [44]: as the sampling rate here
is 44.1 kHz here, iFasNet has more parameters compared to the original one
due to increased window length.

The proposed approach is competitive with the current state-of-the-art. Among
the non-oracle algorithms, MWF with learned filterbanks obtains the highest
figures with the one based on analytic filterbank being the best. This latter
consistently surpasses even the best oracle MVDR result.

In Figure 2.4, we report, at each training epoch, the Mean Absolute Cosine
Similarity (MACS) for the analysis filterbanks of MVDR and MWF models
with learned filterbanks. In detail, to measure the orthogonality of the learned
filterbank, we compute the cosine similarity over each unique pair of filters, take
the absolute value and take the average over the total number of unique pairs.
We can see that the MACS value decreases during the training, indicating that
the analysis filterbank gets more orthogonal as training progresses. This partly
confirms the hypothesis made at the end of Section 2.2.1. On the other hand,
the learned filterbanks converge, at best, to a MACS value of 0.013 which is
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Method N L H SI-SDRi [dB] SDRi [dB] Params
oWLM-MVDR 2048 2048 256 11.023 12.410 -
oWLM-MWF 2048 2048 1024 14.733 15.551 -
STFT-MVDR 2048 2048 256 10.321 12.025 5.2M
STFT-MWF 2048 2048 1024 11.556 12.667 5.2M
free-MVDR 2048 256 128 11.882 12.963 6.3M
free-MWF 2048 256 128 12.435 13.632 6.3M
A-MVDR 2048 256 128 12.024 13.372 5.8M
A-MWF 2048 256 128 13.142 14.272 5.8M

iFasNet [44] - - - 9.896 10.342 4.4M

Table 2.1: Comparison of best performing models in terms of SI-SDRi and
SDRi and number of parameters (Params.).
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Figure 2.4: Mean Absolute Cosine Similarity (MACS) versus training epochs
for learned filterbanks (Free and A) MVDR and MWF models. All
filterbanks have 1024 filters, 1024 kernel and 512 hop-size.

Figure 2.5: Frequency response of STFT, free and A filterbanks. All filterbanks
have 2048 filters with 2048 samples kernel size. For visualization
purposes, filters in learned filterbanks are sorted according to their
center-band frequency.
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Figure 2.6: Some analytic learned filters (real-part only), taken from a trained
model we used in our experiments. The filters belong to the analysis
filterbank and consists of 1024 samples each.

more than one order of magnitude higher than 0.001, obtained for an STFT
filterbank with same 1024 kernel size and number of filters. Future work could
explore orthogonality constraints and their impact on performance.

In Figure 2.5 we illustrate the frequency response of STFT and the learned
filterbanks under study. Both learned solutions tend to focus more on the
lower part of the spectrum where most of speech energy is concentrated. In
fact, for free and A, less filters are localized in the higher end of the spectrum,
following loosely an exponential trend which is less steep than Mel-scale. This
is especially true for A as most of the filters have a center-band frequency in the
sub 2 kHz region leading to an almost piece-wise linear trend. Free filters tend
to have an higher frequency spread than analytic ones. Finally in Figure 2.6
we plot some learned filters from an analytic filterbank (same as the one in
Figure 2.1). We can see that some filters exhibits some periodic structure, but
this is not always the case, others appear more “noisy” and are more difficult
to interpret as they have a wide-band frequency response.

2.5 Conclusions & Future Work

In this Chapter we investigated DNN-supported multi-channel speech enhance-
ment with learned filterbank. We proposed a fully end-to-end hybrid neural
beamforming framework, where a DNN is employed to estimate the SCMs used
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to derive conventional beamforming solutions such as MVDR and MWF. Differ-
ently from previous works, we consider the possibility to learn jointly with the
DNN also the analysis and synthesis filterbanks instead of using the STFT and
iSTFT. We carried an extensive experimental study comparing learned filter-
banks with STFT investigating how performance changes with different kernel
sizes, stride factors and number of filters. Two types of learned filterbanks
have been considered: fully learned ones, which don’t have any constraint, and
analytic ones, which, by design, display shift invariance. We found that such
proposed strategy of performing spatial filtering in a learned representation
is particularly effective for the MVDR beamformer. In fact, in this case, we
found learned filterbanks to consistently outperform STFT-based ones, even
when oracle masks are employed. Regarding MWF, we found out that a gain
over oracle masks is possible only for small kernel sizes. This suggests that
future work could explore causal, low-latency applications. Among the two
learned filterbanks considered, the analytic ones fare the best. This promising
result suggests that it may be worth exploring additional inductive biases for
learned filterbanks such as orthogonality constraints.
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Chapter 3

Learning to Rank Microphone
Channels

Context
MicRank [66] was presented at Interspeech 2021 and is a joint collaboration
with Alessio Brutti and Marco Matassoni from Fondazione Bruno Kessler. The
idea came in 2019 when we were together at JSALT 2019 working on CHiME-5
data, thanks to a seminar on learning to rank approaches within the JSALT
workshop. A special thanks goes also to Maurizio Omologo who coordinated
the JSALT workshop together with Mirco Ravanelli.

3.1 The Channel Selection Problem
In most scenarios, we can envision the presence of multiple heterogeneous
recording devices. Consider for example a company meeting, as depicted in
Figure 3.1, where at least some participants could have a smartphone or a lap-
top, or there could be far-field arrays, as in a teleconferencing room. In such
situations, for the purpose of meeting transcription, we would like to exploit
each device/microphone in order to minimize the transcription errors. This
however is not a so easy feat: results on the recent CHiME-5 [67] and CH-
iME-6 [68] demonstrate that fully exploiting ad-hoc, possibly heterogeneous
microphone networks is still an open issue.

As explained before, multiple audio streams could be used for beamforming,
or in general multi-channel SSE in order to enhance each speaker signal and
then feed it to the back-end task e.g. ASR. However, most of multi-channel SSE
approaches [38, 69–71] are not designed for multi-device processing which, as
said, is particularly challenging due to lack of precise synchronization between
devices and the relative positions of these (they could be in different rooms
for example). Lack of synchronization could lead to severely misaligned signals
between different devices, for example, due to clock drift and packet losses, as
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Noise source

Recording device 1
Recording
device 2

This old desktop 
is really noisy !

I am training an 
ASR model on it

Figure 3.1: Application scenario: a meeting with multiple participants, some
heterogeneous devices that can be used for transcriptions. Which
is the best device/microphone for each speaker ? Is it always the
closest one ?

observed in the CHiME-5 challenge dataset (see Figure 3.2). But also small
misalignment (tens of milliseconds) is known to degrade performance. For
example, STFT-domain beamforming techniques implicitly assume that the
misalignment of the signals is much smaller than the STFT window length
used. If this is not met, the STFT narrow-band approximation does not hold
anymore and the beamforming results will be heavily degraded.

Nonetheless, during the years, also some multi-channel SSE methods pur-
posely targeted towards ad-hoc microphone networks have been proposed [72–
74]. The latter two [73, 74] assume perfect synchronization between devices
while, [72] proposes a pipeline that includes re-alignment of the different audio
streams prior to beamforming.

Figure 3.2: An example of signal-level misalignment between two array de-
vices (but same microphone, CH1) on the CHiME-5 Challenge
dataset [75].

An arguably simpler but still very intriguing approach is trying to select,
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for each speaker and each utterance, the best possible microphone that will
lead to the lowest error (among all available microphones) for a considered
back-end task. Such approach could be very effective too, as nowadays single-
channel ASR models trained on large scale data such as Whisper [76] have
become increasingly robust. In this way, since no combination is made, the
synchronization issue disappears, and moreover, there could be a significant
computational saving as channels are not combined anymore with expensive
SSE algorithms. Or alternatively, one can also select a subset of the most
useful channels, so that the computational requirements of SSE algorithms
could be reduced significantly (e.g. as said in Chapter 2, most beamforming
solutions have ∼ N3 complexity in the number of channels N). The saving is
even more evident if ensembling back-end techniques are used directly over the
multiple channels, e.g. recognizer output voting error reduction (ROVER) [77],
as they are very computational demanding.

This channel selection problem has been widely investigated in the past,
and the approaches proposed could be roughly be classified into four main
categories:

• Signal-based hand-crafted features.

• Decoder-based measures.

• Posterior-based features.

• Data-driven methods.

We explain each in detail thereafter.

3.1.1 Signal-Based Hand-Crafted Features
As the name implies, these channel selection methods are based on hand-crafted
features, carefully engineered according to DSP and acoustic principles, in order
to be indicative of a channel quality.

Several of such methods have been proposed in the past [78–82]. These
include measures such as estimated signal-to-noise ratio [79], ratio between
late reverberation components and whole RIR [78] as well as more elaborate
approaches [80–82]. These include also approaches based on localization, such
as the one proposed by Kumatani et al. [80], that relies on cross-correlation
between the available channels. However, this also requires the channels to be
sample-synchronized, otherwise the time-delay of arrival (TDOA) could not be
estimated easily, thus such approach could be difficult to employ across ad-hoc
networks with heterogeneous devices. Wölfel [83] instead investigate the use of
class separability, with a framework based on linear discriminant analysis they
propose to learn from the features a within-class and a between-class matrix

25



Chapter 3 Learning to Rank Microphone Channels

for linear regression of different target classes (e.g. acoustic sub-units). The
channel that maximizes the class separability is assumed to be the best. Since
these matrices are learned this method can be also considered one of the first
data-driven methods for channel selection, however, it relies heavily on the use
of hand-crafted features due to the use of a linear regression approach.

In the seminal work by Wolf and Nadeau [81], a very effective measure is
proposed based on envelope variance (EV) and it is, to date, amongst the
most effective blind channel selection methods. The core idea is that EV is
able to model the reduced dynamic range in the speech intensity induced by
reverberation quite effectively and, in [81], it is in fact shown to outperform
even decoder-based measures. EV relies, as the name implies, on the variance
of the mel-scaled filterbank energies after utterance-wise mean normalization
in log-space (used to remove the short term effects as e.g. impulse response
of the microphone). An example is reported in Figure 3.3, where the variance
of each of the 40 Mel-subbands is plotted for an utterance from the CHiME-5
dataset and two different channels. We can notice that EV gives correctly the
higher score to the best channel, the left one which appears less noisy and whose
speech has clearly more energy (see the amplitude values on the waveforms).

A more recent work by Guerrero et al. [82] proposes to use the cepstral
distortion (CD) both as an informed and a blind channel selection measure.
It is roughly defined as the mean l2 distance between a reference cepstrum
and each channel cepstrum. In the blind case the reference cepstrum is taken
from the average in the log-magnitude domain across all microphones. This is
justified by the fact that it is assumed that such average in log-domain would
be dominated by the closest microphone channel. However, we argue that such
averaging operation could also lead to failure cases for this approach when the
signals from the different microphones are severely misaligned.

Overall, the main advantage of all these signal-based methods is that they
are inexpensive with respect to the other selection approaches, as they rely on
extremely simple operations, which are also often optimized or have dedicated
hardware (e.g. in the case of fast Fourier transform and cosine transforms
for the cepstral coefficients). Moreover, they also don’t require an extensive
training set, but it suffices only some development/adaptation data for tuning
some hyper-parameters such as the sub-band weights in EV.

3.1.2 Decoder-based Measures

Decoder-based channel selection methods were among the earliest one proposed
along with signal-based ones. They rely, as the name implies, on measures
extracted after the ASR decoding step.

For example Obuchi [84, 85] devised a channel selection method which per-
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3.1 The Channel Selection Problem

Figure 3.3: Envelope variance (EV) output on a segment from CHiME-5 for two
different array devices, same microphone (CH1). We can see, from
the waveform, that the right channel is more noisy. Accordingly,
the EV values are, in fact, overall lower.
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form channel selection by comparing the transcripts produced when the input
to the ASR is normalized versus when it is not. The channel with the lowest
distance e.g. in terms of WER is assumed the best one. This method however
is impractical, especially with the ASR models we have nowadays, decoding
two times all channels is prohibitively expensive. Moreover, it cannot be ap-
plied easily to modern DNN-based techniques, because these are very sensitive
to input normalization. If a model is trained with or without normalization,
then inference should be performed in the same way, otherwise performance
could drop catastrophically.

Wolf and Nadeau [86] propose instead to use the likelihood ratios between
the channels as a selection criterion:

Ĉ = arg max
m

M∑︂
i

p(Om|wm)
p(Om|wi)

where m = 1, . . . ,M and i = 1, . . . ,M are the channel indexes. This is equiv-
alent to selecting the channel that gives overall the highest confidence among
all the other ones. The drawback of this method is that it is asymptotically
quadratic in the number of channels if all the hypothesis wi are different.

3.1.3 Posterior-based Measures

Posterior-based measures rely on the output posteriors of the acoustic model
(AM) to perform selection. As such, they are quite computational demanding
(but less than decoder-based measures) as the AM forward-pass has to be
performed for each channel independently. In [87] a channel selection approach
based on an entropy measure of the AM posterior probabilities is proposed
and validated on the arduous CHiME-5 [75] dataset. The main idea is that an
higher entropy measure and thus uncertainty in the AM predictions suggests
a lower quality microphone channels. In their approach they propose to use
a different AM than the one actually used for the transcription, trained only
on clean data. The idea is that this model will be more sensible to acoustic
degradation than the one trained with multi-condition training; thus leading
to better channel selection. This has also the potential advantage that this
clean AM could also be made smaller. However, it can be argued that there is
also a drawbacks to this approach: the mismatch between the two AMs in the
training data does not guarantee that the channel with lowest entropy for the
clean AM is actually the best for the one trained with multi-condition.
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3.1.4 Data-driven Methods

Recently some fully data-driven methods for channel selection have been pro-
posed [66, 88, 89]. The first work in this direction is our proposed MicRank
framework [66], which will be detailed in the next section. Another recent
work [88], proposes to perform channel selection directly inside the ASR model,
by using a sparsemax operator [90] (a sparsified variant of the popular softmax
operator) in the inter-microphone processing modules. This sparsemax opera-
tor forces the model to mostly attend to one channel, hence learning implicitly
to perform channel selection. Very recently, a work from Amazon Alexa [89]
studies instead the similar problem of device arbitration. In this latter work
the goal is to devise a system which can identify the best device that should
respond to an user, provided that there are more than one smart device in
the environment that received his query. To tackle this task a fully learnable
end-to-end system is employed. This model is designed from the ground up to
be efficient enough to run on on-edge devices.

3.2 MicRank: Channel Selection as a Learning to
Rank Problem

In our work MicRank [66] we formulate the channel selection problem as a rank-
ing problem. The goal is to devise a data-driven algorithm to perform channel
selection e.g. for selecting the channel that minimizes the WER or, in general,
a desired performance metric for the particular task at hand (it can also be a
subjective measure such as mean opinion score (MOS)). Trivially, at first, one
can think that this could be attained by simply training a classifier/regressor to
predict e.g. the WER for each channel. However, we argue that this approach
is sub-optimal: in fact, predicting the absolute value of the metric is not what
matters in the end, we are only interested in the relative performance across
the channels; and the training and inference strategy should be formulated to
account for this important implication.

This can be achieved by training the model to rank the channels based on
a pre-defined performance metric. An advantage of this approach is that this
metric does not have to be differentiable (e.g. we can use the WER).

3.2.1 Learning to Rank

Learning to rank (LTR), is an established framework of information retrieval.
The use of LTR-based algorithms is widespread: for example, they are behind
most web search engines or social networks recommendation algorithms, such
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as the Twitter one1.
The LTR field concerns with the development of algorithms that can auto-

matically learn to rank items in a collection based on their relevance score to a
specific user query. The goal is to obtain a ranking model that can accurately
predict the relevance of a document, webpage, et cetera.

Training Dataset

features Ranking 
Modelqueries

relevances LTR loss

Ranking 
Model

features

query

relevance

document/page

predictions
user

Figure 3.4: Learning to rank paradigm. Left: inference, which is performed on
each item separately. Right: training, which instead is performed
according to different strategies, usually taking into account 2 or
more items at a time, as the model must learn to rank and not
merely predicting relevances.

LTR typically uses supervised learning techniques to learn a ranking func-
tion from a set of training examples and the process is depicted in Figure 3.4.
A training set is collected that consists in pairs of query-item instances, along
with relevance labels and some features related to each item. Relevance scores
indicate the degree of relevance of each item to the user query. During infer-
ence the model is applied to each query+item pair separately to retrieve the
predicted relevances for each item, which can then be used to sort these lat-
ter. Instead, during training different strategies needs to be devised in order to
train the model to learn to actually rank the items and not merely predicting
the relevances of each item.

Throughout the years several training strategies and loss functions have been
proposed to address this task. In our MicRank work we chose to explore two
very popular strategies: RankNet and ListNet created specifically for DNN-
based algorithms.

The LTR formulation for the purpose of ranking microphone channels has to
be adjusted. Here, instead of an user query we will have a particular speaker
utterance, our items will be the different observations at the different channels
and, our relevance score will be some ASR-related performance metric, e.g.
WER or word accuracy (WA). Note that in principle any performance metric
could be used, and, crucially it can be non differentiable (as, in fact, WER
or WA are). Here, WER or WA are used since we focus on ASR, but if the

1github.com/twitter/the-algorithm
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back-end task is different, e.g. enhancement for an applications that required
human listening, MOS could be used or any other enhancement-related metric.

3.2.2 The MicRank Framework

Figure 3.5: Training strategies: a) point-wise training; b) pair-wise training
with RankNet; c) list-wise training with ListNet.

Let us assume that U utterances are recorded by M microphones. For each
utterance u (u = 0, . . . , U − 1), given the observation feature vector xu,i for
the i-th microphone (i = 0, . . . ,M − 1) and a ranking order (or relevance
in information retrieval) wu,i, our goal is to define a function f(xu,i) that
generates the same ranking order: if wu,i > wu,j then f(xu,i) > f(xu,j).
In the following we describe different training strategies to achieve this goal,

31



Chapter 3 Learning to Rank Microphone Channels

graphically depicted in Fig. 3.5.

Point-wise Training

The most straightforward approach to channel selection is to employ a model
trained on each single channel individually to predict its relevance. In this
method, given a set of training pairs (xu,i, wu,i) for each utterance and micro-
phone, the network is trained to minimize a cross-entropy loss:

Lpoint
XCE =

U−1∑︂
u=0

M−1∑︂
i=0

wu,i log [σ(f(xu,i))] , (3.1)

where σ(·) is the sigmoid operator. In this case, the relevance label 0 ≤ wj ≤ 1
is a soft label, representing the quality of the speech signal in an absolute term.
WA for example, and any other bounded metric can be used straightforwardly.
A clipping or normalization strategy instead can be adopted for metrics like
WER which are unbounded or they can be modified accordingly to fit the [0, 1]
range. Alternatively, the cross-entropy training objective can be replaced by
a Mean Squared Error (MSE) objective which does not require any bounded
relevance assumption:

Lpoint
MSE =

U−1∑︂
u=0

M−1∑︂
i=0
∥wu,i − f(xu,i)∥2

. (3.2)

Pair-wise Training

With point-wise training the model tries to learn to rank the channels by
learning to predict their absolute quality. However, it does not consider relative
performance of the other channels, as such it is a sub-optimal approach as it
does not learn really to rank but only to predict their relevance. One way
to account for the other microphones is to train the network in a pair-wise
“siamese” fashion, as it has been proposed in RankNet [91]. In this case,
labels are not required to represent an absolute measure, Thus even unbounded
metrics can be used directly. For a given utterance u, let us consider feature
vectors from two channels xu,i and xu,j with related relevance scores wu,i and
wu,j . We can define a binary pairwise label as:

yu,i,j

{︄
1 if wu,i > wu,j ,

0 otherwise.
(3.3)

Note that yu,i,j is an hard label (i.e. either 1 or 0) whose value depends on
which relevance wu,i, wu,j is higher than the other, and thus on the relative
ranking of the two channels. For each training sample (xu,i,xu,j , yu,i,j) we can
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then define a binary cross-entropy loss as:

Lu,i,j = yu,i,j log[P (wu,i > wu,j)]
+ (1− yu,i,j) log[1− P (wu,i > wu,j)],

(3.4)

where P (wu,i > wu,j) is the probability estimated by the network f(·) that
xu,i is more relevant than xu,j , which can be computed as:

P (wu,i > wu,j) = σ (f(xu,i)− f(xu,j)) . (3.5)

The overall training loss is obtained by summing over all unique microphone
pairs and utterances:

Lpair
BCE =

U−1∑︂
u=0

∑︂
(i,j)∈Iu

Lu,i,j . (3.6)

where Iu = {(i, j) : |wu,i − wu,j | > δ, i ̸= j} is the set of microphone pairs
whose relevance difference in utterance u is larger than δ with δ ≥ 0. Note
that in Eq. 3.6 we consider only pairs where one of the channels is more rel-
evant than the other and discard Note that all pairs where channels have the
same or very similar relevance (in our case WA or WER) are discarded. Thus
the size of the training set is upper bounded to (U − 1)(M − 1)(M − 2)/2.

List-wise Training

In RankNet, the network learns to order the items by comparing them in a
pairwise fashion during training. However, due to the use of hard labels, the
learning process does not take into account the actual difference between two
samples as it cares only for relative pair-wise ordering. But, intuitively, swap-
ping the ranks of two samples with very similar relevance should be less critical
than swapping two samples with a very different relevance.

These problems can be addressed by employing ListNet [92]. Contrary to
the pair-wise approach, for each utterance u all available microphones M are
used to compute a cross-entropy loss:

Llist
XCE =

U−1∑︂
u=0

M−1∑︂
i=0
S(wu,i) log[S(f(xu,i))]. (3.7)

S(·) is the softmax operator which ensures that both labels and network outputs
can be treated as probability distributions. It also enforces that ranking, for
each utterance, is determined only by relative performance of each microphone.
The total number of examples in ListNet is simply the number of utterances
in the training set U − 1 as channels are considered all together in the loss.

33



Chapter 3 Learning to Rank Microphone Channels

3.3 Datasets

In this Chapter we used three different datasets in our experiments: a syn-
thetic dataset generated on purpose, the CHiME-6 Challenge dataset and the
very recent CHiME-7 DASR Challenge dataset. We describe them in detail
thereafter.

3.3.1 Synthetic Dataset

We generated a multi-channel synthetic dataset featuring an ad-hoc network
with 8 cardioid microphones randomly scattered inside a room. Clean speech
utterances are uniformly sampled from LibriSpeech [7] using train-clean-100
for training, dev-clean for validation and test-clean for test. We used a total
of 20k utterances for train and 2k for validation and test splits. Point-source
noise from the dataset in [93] is also employed to make the data more realistic.
A different acoustic scenario is sampled for each utterance. Using gpuRIR [94]
we simulate a rectangular room whose size and reverberation time (T60) are
sampled uniformly between 10 and 60m2 and between 0.2 and 0.6 s respectively.
The positions and orientations of the speaker, noise and of the 8 microphones
are chosen randomly inside the room but with the constraints that the speaker
cannot be closer than 0.5 m from any microphone or wall and each microphone
should be at least 0.5 m apart from any other.

Relevance labels are obtained by training an ASR on the training set using
an opportunely modified Kaldi [95] LibriSpeech recipe2, and then decoding and
computing the errors (insertions, deletions etc.) on such set.

3.3.2 CHiME-6

The CHiME-6 dataset features real dinner parties. The recordings are divided
into 20 sessions for a total of more than 60 h of data. In each session, 4 speakers
are recorded in a real home environment usually across different rooms. Due to
the particular setting, it features conversational speech and low Signal-to-Noise
Ratio (SNR). Recordings from binaural microphones worn by each speaker
are provided along with distant speech captured by 6 array devices with 4
microphones each for a total of 24 microphones. Two different annotations
are provided for the start and end time of every utterance: looser ones geared
towards Automatic Speech Recognition (ASR) and tighter ones obtained via
forced-alignment. The latter ones are more suitable for evaluating VAD and
diarization systems and will be used in Chapter 5. Here instead, as we focus
on ASR, we use the former.

2https://github.com/kaldi-asr/kaldi/tree/master/egs/librispeech/s5
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3.4 Experimental Analysis

To perform our channel selection experiments we employed the ASR back-
end provided by the challenge organizers as the baseline system. We used the
official Kaldi recipe3 with the acoustic model and the two-pass decoding in [96].

3.3.3 CHiME-7 DASR

The CHiME-7 DASR challenge dataset is comprised of three different scenarios/sub-
datasets: CHiME-6, DiPCo [97] and Mixer 6 Speech [98]. CHiME-6 was al-
ready described in the previous section, and here is used unaltered with the
exception that two sessions were moved from training to evaluation and the
text normalization was changed a bit to standardize non-words expressions
such as “mmh”, “mhm” etc. DiPCo features a similar scenario as CHiME-6,
a dinner party among 4 participants but in DiPCo everything takes place in
the same room (which does not change between development and evaluation).
It comprises of 10 sessions recorded by 5 far-field devices each with a 7-mic
circular array. The 10 sessions are divided equally between development and
evaluation. No training partition is provided. Mixer 6 Speech instead setting
is different from the aforementioned two as it consists in 2-persons interviews
recorded in a room with multiple heterogeneous recording devices.

The goal of this challenge is to have participants devise meeting transcrip-
tions systems that can work across multiple scenarios featuring different arrays,
varying number of participants and diverse acoustical conditions.

3.4 Experimental Analysis

3.4.1 Synthetic Dataset

Results on the synthetic dataset are reported in Table 3.1. The first row in the
Table reports results obtained by randomly selecting one of the microphones.
Following we report also the results obtained using different oracle measures.
Interestingly, we can see that picking, each time, the closest microphone to the
source, while of course better than random choice, it is not the best strategy
among all the oracle strategies. In fact, STOI computed with respect to the
oracle anechoic speech signal provides the best result. However, we can also
see that all signal-based measures and closest are still very far from the true
oracle (selection made based on WER).

Among the baseline blind channel selection techniques, EV and AM-Entropy
considerably improve over random selection. They are generally quite effective
as the performance drop is very modest compared to the best signal-based
oracle measures.

3https://github.com/kaldi-asr/kaldi/tree/master/egs/chime6/s5_track1/local

35

https://github.com/kaldi-asr/kaldi/tree/master/egs/chime6/s5_track1/local


Chapter 3 Learning to Rank Microphone Channels

Table 3.1: WER on the synthetic dataset. We report both the best WER as
well as the average WER on the Top-3 selected microphones.

Ranking Method Dev Test

Best Top-3 Best Top-3

Random Selection 51.7 51.5 40.9 41.1

oracle

CD-Informed [82] 45.1 47.7 36.9 38.3

PESQ 41.9 45.8 33.1 36.4

closest 37.0 45.1 29.9 36.1

SDR 37.4 43.8 29.6 34.9

STOI 36.3 44.2 29.2 35.2

WER 32.0 39.6 24.8 30.6

baseline
CD-blind [82] 46.1 48.1 36.2 39.4

EV [81] 39.0 44.9 31.8 35.8

AM-Entropy [87] 41.2 45.8 31.1 35.5

MicRank

Point-wise XCE 37.3 44.1 30.4 34.6

Point-wise MSE 36.9 43.7 30.0 34.3

RankNet 36.5 43.4 28.8 34.1

ListNet 36.0 43.2 28.5 33.9
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Figure 3.6: Pearson correlation plot between the different channel selection
techniques on synthetic data.

All MicRank-based techniques are able to bring substantial gains over such
previous blind selection methods. In particular, we can observe that, as ex-
pected, pair-wise and list-wise methods outperform point-wise ones which can-
not account for relative performance. Notably, the best WER for RankNet and
ListNet is lower than the Top-3 averaged WER of oracle WER selection, indi-
cating that these methods are able to pick up always the best or second-best
channel among the top 3. Amidst previously proposed selection methods, EV
and AM-Entropy have comparable performance despite the former is remark-
ably less computational expensive.

In Figure 3.6 we report a Pearson correlation plot for a subset of selection
metrics obtained on synthetic dataset test set. Interestingly, EV has rather low
correlation with WER despite properly selecting favorable channels as shown
in Table 3.1. We observed that EV fails to rank the channels with high WER.
CD-Blind has the same behaviour while AM-Entropy, which is posterior based,
shows much better correlation even for unfavourable channels. Again, we can
notice that the proposed method is the one with highest absolute correlation
value and surpasses even some oracle measures.
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Table 3.2: WER on CHiME-6 development and evaluation sets.

Ranking Method Dev Eval

Best Best

Random Selection 73.1 68.0

oracle

CD-Informed [82] 70.8 68.7

PESQ 66.0 60.1

SDR 65.2 58.9

STOI 64.8 58.5

WER 56.7 51.3

CHiME-6 Baseline 69.2 60.5

baseline
CD-blind [82] 72.5 67.0

EV [81] 68.6 59.9

MicRank
RankNet 67.4 59.0

ListNet 67.2 59.5

3.4.2 CHiME-6

Finally, in Table 3.2 we report the performance achieved on CHiME-6 data for
the most promising approaches as found on the synthetic set. We can see that
both EV and MicRank methods considerably improve with respect to the CH-
iME-6 Baseline, which benefits from “pseudo-oracle" knowledge of the speaker
position and features dereverberation plus beamforming.

Both RankNet and ListNet based systems improve over EV but, contrary to
the synthetic dataset, are unable to outperform signal-based oracle-level per-
formance especially on the development set. This is mainly due to the fact that
CHiME-6 features a substantial amount of overlapped speech [99], while in the
synthetic data only one speaker is present. And, in fact overlapped speech is
particularly high in the development set, which is where we observe the largest
difference between signal-based oracles and the proposed method. Current se-
lection methods, including MicRank, are unable to account for speaker identity
when ranking the channels for a given utterance. This can lead to mistakenly
rank the channels with respect to the interfering speaker instead of the desired
one, leading to considerable degradation in ASR performance.

On the other hand, signal-based oracle measures are able to implicitly ac-
count for this because they are computed with respect to the correct speaker
close-talk microphone. RankNet seems to generalize better than ListNet on
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CHiME-6 due to the fact that on CHiME-6 relevances are very close to each
other in the training set but not in the dev and eval sets. In this scenario,
using hard labels, as in RankNet, could help boosting discriminability and
generalization, and may help during training as the gradient is stronger.

3.5 Further Analysis on Channel Selection

We present in the following one further study on this matter, which show
promising research directions.

3.5.1 CHiME-7 DASR Baseline: Combining EV Ranking with
Guided Source Separation

As an additional use case for channel selection, we report here a study regarding
the use of EV selection in the contest of the recent CHiME-7 DASR Challenge
of which we are co-organizers.

In particular EV is used in the challenge baseline system for the acoustic ro-
bustness sub-track, which allows the use of oracle diarization and whose ranking
score is based on speaker-attributed WER (SA-WER). In the development of
the baseline system we focused on the use of EV for improving the performance
and inference time of the already effective guided source separation (GSS) al-
gorithm, which performs multi-channel semi-blind target speaker enhancement
prior to ASR transcription. Such baseline model is composed of three compo-
nents and it is summarized in Figure 3.7: EV selection, GSS and ASR. EV is
used to select a promising subset of microphones which are then used for GSS.
The output of GSS is then used for recognition.

The main reason for using EV, instead of MicRank, was due to the fact that
the baseline system had to be simple and it was also motivated by the results
in the previous experiments on CHiME-6, where it achieved results very close
to MicRank.

In Table 3.3 we report the results of such system in terms of speaker-
attributed WER (SA-WER), for both development and evaluation sets. Results
are reported separately for each of the three CHiME-7 DASR scenarios: CH-
iME-6, DiPCo and Mixer 6. Note that, unfortunately, the machine on which
the experiments were run was shared with other users and we didn’t perform
multiple runs to account for random factors of variations (e.g. computational
load due to other users), thus the time figures are indicative.

Nonetheless, we can clearly see some trends, which are made more evident
by plotting in Figure 3.8 and in Figure 3.9 the values in the Table 3.3 above,
respectively for the development and evaluation sets.
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Figure 3.7: Block scheme for the CHiME-7 DASR acoustic robustness sub-track
baseline. GSS uses oracle diarization in this case.

Figure 3.8: Results on CHiME-7 DASR development set for each scenario:
CHiME-6, DiPCo and Mixer 6, plus macro-average across all three.
Left: SA-WER, right: GSS+selection inference time. X-axis: per-
centage of the ranked channels used.
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Table 3.3: CHiME-7 DASR results for each scenario: SA-WER and
GSS+selection inference time versus EV top-k microphones used;
(%) of all available channels.

Top-k (%) Scenario Dev Eval

SA-WER Time SA-WER Time

(%) (h:mm) (%) (h:mm)

100
CHiME-6 36.1 1:53 38.9 3:30

DiPCo 40.0 1:10 41.5 1:10

Mixer 6 22.3 1:48 27.0 0:52

80
CHiME-6 35.3 1:25 38.4 2:58

DiPCo 37.0 0:53 40.3 0:46

Mixer 6 23.1 1:32 29.5 0:31

60
CHiME-6 36.2 1:12 38.6 2:12

DiPCo 36.7 0:38 40.3 0:29

Mixer 6 23.8 1:16 33.8 0:19

40
CHiME-6 39.8 0:49 40.2 1:30

DiPCo 37.7 0:21 42.0 0:19

Mixer 6 25.5 0:59 36.0 0:18

20
CHiME-6 49.9 0:36 48.7 1:05

DiPCo 41.6 0:16 47.1 0:15

Mixer 6 27.6 0:46 37.4 0:14
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Figure 3.9: Results on CHiME-7 DASR evaluation set for each scenario:
CHiME-6, DiPCo and Mixer 6, plus macro-average across all three.
Left: SA-WER, right: GSS+selection inference time. X-axis: per-
centage of the ranked channels used.

First, the inference time seems to grow approximately in a linear manner
with respect to the number of channels used. At the same time however,
generally the SA-WER decreases as the number of channels increases. There
is thus a trade-off between computational complexity and performance. Only
on the two scenarios of CHiME-6 and DiPCo it appears that selecting a subset
also increases performance: the best results are achieved by the top-k 80%
configuration. These two are also the two nosiest datasets and with most
speech overlap, thus it makes sense that in this scenario excluding the most
problematic channels could bring an improvement. On the contrary Mixer 6 is
much less noisy and all channels can contribute significantly in improving the
GSS result.

This study reinforces our remarks, made in Section 3.1 about the fact that
channel selection/ranking can be used also in conjunction with other AFE
methods to lower the computational requirements, but also, in some instances
improve performance. And, in fact, one of the main goals of the proposed CH-
iME-7 DASR challenge is to try to devise new, better channel selection and
ranking algorithms as the participants are forced to devise a single system that
is able to generalize to all three scenarios.

3.6 Conclusions & Future Work
In this Chapter, we presented an overview of the channel selection problem from
the first techniques based on signal, decoder and acoustic model measures to
the latest ones, which instead rely on data-driven, machine learning approaches.

We then made a compelling argument for framing the channel selection as a
Learning to Rank (LTR) problem and we outlined our work, MicRank, in which
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we address channel selection with LTR techniques. Such work is also the first
proposing a data-driven, deep-learning based method to address this problem.
We explored three different LTR training strategies: point-wise, RankNet and
ListNet and validated our method on a synthetic dataset and CHiME-6.

We showed that the proposed method is able to outperform previous state-
of- the-art channel selection approaches and, on single-speaker synthetic data,
is even able to surpass oracle signal-based selection. It is very lightweight
compared to SSE methods, agnostic to the array topology and robust to mis-
alignment across the microphone channels as it can run independently on each
device. Its modest computational requirements could allow to run it on each
device separately and save bandwidth as only the relevance scores needs to
be uploaded server side and then compared. The best channel could then be
uploaded to the ASR pipeline in the cloud.

Results on multi-speaker real-world CHiME-6 data suggest that there are still
some challenges to overcome. In fact, we found very marginal improvement over
effective signal-based methods such as EV, as there is inherently ambiguity in
the channel selection problem when two speakers overlap. For such reason it
may be worth exploring conditioning via target speaker-id embeddings as this
could help the method to learn to disambiguate between the target and the
interferer speakers. Another future direction could be assessing generalization
across different ASR models and scenarios, as well as a stremable extension.

As a further study we also reported an ablation study over the CHiME-7
DASR acoustic robustness sub-track baseline, on the use of EV for the purpose
of channel subset selection prior to GSS multi-channel target-speaker enhance-
ment. The results here indicate that channel selection could bring also in this
instance benefits in terms of performance and reduced computational require-
ment.
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Chapter 4

Robust Keyword-Spotting via
Implicit Acoustic Echo Cancellation

Context
This work was presented at SLT 2022 [100] and was made as an applied scientist
intern at Amazon Alexa with Thomas Balestri and Thibaud Sénéchal from the
Wakeword team. It was done in Cambridge, USA, during summer 2021 and I
had a great time there.

4.1 The “Barge-in” Problem
In many speech-enabled human-machine interactions, the user speech can over-
lap with the device playback audio [101–103], in the same way as e.g. it happens
between human-to-human interactions, where one interlocutor begins speaking
before another has finished. This phenomenon, illustrated in Figure 4.1 and
colloquially called “barge-in” [101, 103], is very challenging since the signal-to-
interferer ratio (SIR) between the user speech and device playback is usually
very low due to the fact that the device loudspeakers are closer to the micro-
phones than the user is.

Moreover, when the playback device audio consists in a TTS generated re-
sponse or podcast audio many tasks can become ill-defined/ambiguous and
thus performance could drop. For example, considering custom/multi-KWS
[104, 105], without appropriate countermeasures, a model will be prone to pick
up also keywords from the TTS playback, especially as TTS models are increas-
ingly realistic or include celebrity-derived custom voices. This can lead to the
device “self waking" and continuously interrupting itself as the model, alone,
cannot implicitly distinguish between user and device speech and ignore this
latter. Such problem also affects ASR or keyword-less initiated interactions,
such as DDD[106–109], and is actually even more serious in these cases due to
the fact that both are open vocabulary. One trivial way to mitigate this issue
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would be disabling the KWS functionality while the device is in playback. Yet,
doing so prevents the user to “barge in", making the interaction significantly
less natural and intuitive for the user.

Assistant, can 
you order me 
some pizza ? 

Sure, what pizza 
do you want ? 
Pepperoni, 
Margherita …

The second one !

A Margherita.

… Marinara, 
Capricciosa, 
Quattro Formaggi
… et cetera. 

Figure 4.1: A picture is worth one thousand words: the “barge-in” problem is
when the user tries to talk over the device playback, being it TTS,
music or anything else.

Following [101–103], this problem is best formulated in the acoustic echo
cancellation (AEC) framework as usually the device playback audio is known.
We can thus define the playback reference signal r and a mixed signal y =
Γ(r)+u, where Γ(·) is a (possibly non-linear) function and u is the target signal
for the task at hand i.e. the signal which would be captured by the device if
there wasn’t any playback return signal Γ(r). This can include instances where
there is no user “barging in", i.e. for which u is only background noise, which
the classifier should ignore.

A common model for Γ(·) is to use a linear approximation such that y =
r ∗ h+ u, where h is the impulse response that characterizes the propagation
of r and includes effects from the room, speaker, and microphone. We will
refer to n = Γ(r) as the interferer signal hereafter. u itself could be the user
far-field speech with reverberation and other interferers.

AEC techniques can be employed to obtain an estimate of the target u by
leveraging the reference signal r. These include both classical [101–103, 110–
114] and neural-based (nAEC) methods [105, 115–119] which are generally more
effective. These latter however require the oracle target signal to be available
at training time, which is difficult to obtain directly on real-world data, at least
in a scalable way. Thus, nAEC methods rely on synthetic data for training,
which is inherently mismatched with respect to real-word data. To counter this
mismatch, [105] proposes the use of an additional ASR auxiliary loss obtained
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from the latent representation of the encoder. Instead [104] leverages ASR in
inference and proposes a framework for cancelling the TTS playback interferer
n by using the textual source of the reference TTS signal. However, this latter
is only applicable to TTS playback and does not generalize to other forms of
playback audio such as podcasts or music. In addition, nAEC methods that
rely on ASR cannot be used for always-on frontend applications such as KWS
since it would be too computationally expensive to perform ASR continuously
on resource-constrained edge devices.

A computationally-effective way to address this problem, suitable for KWS
and DDD tasks on edge devices, could be devised if we directly feed the refer-
ence signal r as an additional input to the back-end task model together with
the mixture signal captured by the device. The main idea is to give the KWS or
DDD classifier access to the reference signal to allow to disambiguate between
the target and the playback return signal and learn to ignore this latter without
the need for an AEC or nAEC pre-processing front-end. If the fusion strategy
is designed well, as we will see, it could allow for considerable computational
resources savings as the computational overhead for having a classifier taking
also the reference signal in input is extremely low.

Such approach was explored with the Amazon Alexa Wakeword team and
presented at SLT 2022 [100]. We called it implicit Acoustic Echo Cancellation
(iAEC) and it led to very promising results. In particular, we studied two
different strategies for feeding the reference channel to the back-end classifier,
one that involves concatenation and another based on latent-representation
masking. We found this latter choice especially promising as it allows for the
KWS and DDD architecture to be unchanged (no computational overhead)
when there is no playback, which is the predominant scenario in deployment.

Moreover, our work explored DDD for always-on, streaming scenarios for
the first time. Previous DDD works [106–109] performed DDD downstream
of a KWS model. These systems are not always running, are more resource
intensive, and have higher latency than front-end components. Here instead we
consider the use of a DDD model that is run continuously and subsumes the
role of a KWS model, allowing for a full keyword-free interaction. Understand-
ably, as it is keyword-free and continuously running, such model is especially
affected by the device playback issue and prone to the “self wake" issue and
thus addressing this task is a necessity for enabling such new DDD application.

4.2 Implicit Acoustic Echo Cancellation
As said, the focus of our iAEC work is to address the KWS and DDD tasks with
the goal of devising a computationally efficient strategy to improve the perfor-
mance during device playback without incurring in a degradation in normal
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conditions (non-playback).
During playback, a KWS or DDD classifier generally observes only the mix-

ture y = Γ(r) + u. As said, this presents a challenge when the interferer
n = Γ(r) and target u could lead to an ambiguity for the task at hand (e.g.
the interferer n contains a keyword but the target u does not). In such situa-
tions, training a classifier on the mixture signal y without access to the reference
could bias the model to learn unintended characteristics of the interferer sig-
nal. For example, the TTS voice/gender or the fact that the playback interferer
has usually more energy than the user speech as the loudspeakers are close to
the microphones. These biases could degrade performance severely when the
model is deployed. In addition, if the interferer and target signals come from
the same distribution (e.g. gender-unbiased overlapping human voices), the
task becomes impossible since the model cannot differentiate between the tar-
get and interferer signals. One way to obviate to this is to feed to the KWS or
DDD classifier the reference signal along with the mixture signal ones to aid
in the classification task. The name iAEC stems from the fact that the model
here does not have to explicitly recover the target signal as in AEC methods
(an arguably more complex task), but only learn how to use the additional
reference input r to ignore the playback return signal n and classify correctly
the target signal u.

In this framework, the goal is to learn a function F (y, r,θ) parametrized
by θ that models the joint conditional distribution P (yτ |y, r) where yτ are
the labels for the task at hand belonging to the target signal u (e.g. for KWS,
keyword or non-keyword). Importantly, this formulation includes non-playback
conditions, e.g. for which the reference r and thus the interferer n = Γ(r) is
zero and the mixture signal is simply equal to the target y = u. For such
instances the problem simply resolves to modeling P (yτ |u) as in “classical"
KWS or DDD.

4.2.1 Reference Signal Fusion

Concatenation: iAEC-C

Since we focus in this work on KWS and DDD tasks, where usually features
like log Mel-filterbank energies (LFBEs) are employed, we can concatenate the
mixture and reference signals feature vectors, respectively xy(k) and xr(k), and
feed them to the classifier. To make notation less cumbersome, we drop the
frame index k in the following. This simple method could allow the classifier
to exploit the reference channel information.

As depicted in Figure 4.2, left panel, during playback mode, we apply batch
normalization [120] (BN) separately to the reference and mixture branches
prior to concatenation. This is done because reference and mixture signals
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Figure 4.2: Schematic of implicit acoustic echo cancellation with concatena-
tion (iAEC-C) and encoder-masking-decoder (iAEC-M) architec-
tures. The LFBE feature extraction part is omitted for simplicity.
Neural blocks and input features are described in detail in Sec-
tion 4.4.1. Tensor dimensions are represented as sequenceLength
× featureMaps and we display the values used during training. 1D
convolutional blocks (conv) are represented as [featureMaps, kernel-
Size, stride, dilation] while linear layers (Dense) as [featureMaps].
Regarding iAEC-M, we show the best configuration (D2) as found
in Section 4.4.2. We also report for convenience the layers used in
each ResBlock, which has the same structure as in [53, 99].
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have usually very different gains, as the latter is often far-field speech. Dur-
ing non-playback conditions, the input is concatenated with the learned bias
parameters β of the BN layer. This is equal to concatenating the mean of the
post-normalized input features (see left-bottom panel of Figure 4.2).

Masking: iAEC-M

Concatenating the input feature with the learned β parameters from the BN
layer is a waste of computing resources in non-playback conditions, which ac-
count for most of the deployment time for always on, on-device applications.
This problem can be obviated by using the reference to produce a sigmoid mask
which is applied to the latent representation of the mixture signal, as illustrated
in the right panel of Figure 4.2.

Compared to iAEC-C, here F is split into an encoder E and decoder D. The
encoder is shared between reference and mixture branches to save L1 cache
memory and produces two latent representations: the reference embedding
Zr = E(xr) and the mixture embedding Zy = E(xy).

These latent representations are ∈ RT ×D, where T is the sequence length
and D the embedding size. They are concatenated and used to derive a mask
through a linear projection layer P with weight matrix ∈ R2D×D, followed by
a sigmoid activation σ(·): M = σ(P([Zy,Zr])). This mask is then applied
to the encoded representation from the mixture branch Zγ = M ⊙ Zy via
element-wise multiplication. This operation acts as a gating mechanism over
Zy. Finally Zγ is fed to D to obtain the predictions. In non-playback mode
the masking mechanism along with the entire reference branch are dropped
and Zγ = Zy directly.

4.2.2 On-the-fly Data Augmentation

In some application scenarios the reference playback signal r from the device
may be not available for training and only the mixture y is available. In edge-
applications for example, the playback TTS signal is usually not uploaded to
the server-side to save bandwidth. Moreover, regarding smart-home devices,
indeed most of the examples available in training can feature limited or no user
barge in scenarios as e.g. could be an experimental/not fully supported feature.
In these instances one obvious solution is to add artificial device playback via
simulation. This may require a complex pipeline involving room, loudspeaker
and front-end simulations and still lead to sub-optimal results as the simulated
data will be mismatched with respect to the real-world one.

Instead, here, as an additional contribution, we propose a simple but effective
on-the-fly data-augmentation strategy to generate (y, r,n) triplets by sampling
multiple mixture signals y from a training set which can also contain only legit
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“fake” 
playback

target

“fake” interferer

mixture signal

Random augmentation
(gain  + shifting)

Training Dataset 

Only legit user queries

Figure 4.3: Proposed on-the-fly data augmentation strategy.

user queries example. It is depicted in Figure 4.3 and explained in detail in the
following.

Given a collection of N training examples xl and corresponding labels yl for
the task at hand {(xl, yl)}1...N we randomly sample two examples (xi, yi) and
(xj , yj). These two examples are arbitrarily assigned the role of target u = xi

and reference r = xj no matter their original labels. We then generate the
mixture y by applying a random time-shift to xj and mixing it with xi at a
randomly chosen SIR. The corresponding mixture y is assigned label yτ = yi

and the interferer label yj is ignored. This strategy forces the model to learn
to ignore xj by using the reference r, whatever the original label yj . As xj

can contain a legit keyword from a user, without the reference r it would
be impossible for the model to ignore the interferer signal (as it would be a
legit user keyword) and output the correct prediction relative to the target u.
Because the target and interferer belong effectively to the same distribution,
this data augmentation can also mitigate potential bias in the training data and
boosts generalization to new speakers as we show in Section 4.4.2. For example,
if artificial reverberation is used in the simulation of the interferer signal, this
could introduce some bias that the model can explore. Here, instead we only
apply gain augmentation and shifting minimizing such possible sources of bias.

In practice it is also possible to leverage unlabeled data when assigning the
interferer, as for this role the label is not needed. However we did not explore
such possibility in our experiments here, demanding it to future works.

We show that, as far as on-device KWS and DDD applications is concerned,
this naive technique is competitive with simulation via image-method tech-
niques such as gpuRIR [94] and, used as an additional data-augmentation strat-
egy, can improve the results even when the true oracle target, interferer and
reference are available in training (see Section 4.4.3). We show in Section 4.4.3
that it can also boost performance of nAEC models and, in Section 4.4.2 that
can help reduce potential biases in the dataset related to the TTS models used
and their perceived gender.
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4.3 Datasets
We used two datasets for our experiments. One, fully synthetic is derived from
the popular KWS benchmark dataset Google Speech Commands v2 (GSCv2).
The second one, instead, is courtesy of Amazon Alexa and was used when
the Author was an intern there with the wakeword team. We describe both
thereafter.

4.3.1 Speech Commands Mix
To study how playback can degrade KWS in a controlled scenario, we extended
GSCv2 [121] with TTS and music. We generated two additional versions of
the original dataset by mixing TTS from LibriTTS [122] and music from Mu-
san [123], respectively. To generate challenging TTS interferers, we sampled
segments from LibriTTS containing GSCv2 keywords. The temporal location
of the keywords from LibriTTS was determined using forced alignment. Inter-
ferer and reference pairs are generated using gpuRIR [94] by adding artificial
reverberation to the original LibriTTS segments. For each room impulse re-
sponse, we sampled a room size from uniform distribution U(10, 50) m2 and
T60 reverberation time from U(0.2, 0.6) s. The position of the source is chosen
randomly inside the virtual room. To simulate a smart-speaker device, the
microphone position is constrained to be in a radius of 5 cm from the source,
oriented outward with cardioid polar pattern. Mixture files are obtained by
mixing the reverberated interferer signal and original GSCv2 signal with SIR
∼ U(−12, 3) dB, which is consistent with what is observed on Alexa devices.
An equivalent procedure is followed for mixtures with music. We use the official
GSCv2 training, development and test split in our experiments. The scripts to
generate this dataset were made available1.

4.3.2 Alexa “Follow-Up Mode" Dataset
Amazon Alexa assistant provides a “follow-up" mode (FUM) [108] that allows
users to interact with the device agent without repeated use of the wakeword.
We leverage this data corpus for training and evaluating our DDD model.
Ground truth DDD speech annotations are provided for each FUM utterance.
The dataset consists of 538k utterances split into train, dev, and test partitions
of 465k, 20k, and 53k utterances, respectively. As FUM does not contain any
playback data, in our experiments we also used a TTS model to generate syn-
thetic playback signals for the default Alexa voice. In our experiments we also
report results when another, unmatched voice (Matthew) is used in training.
We generated 500k clean TTS utterances and used gpuRIR to add artificial

1https://github.com/popcornell/SpeechCommandsMix
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reverberation with the same configuration described in Section 4.3.1. For eval-
uating our models under TTS playback conditions, we used an Alexa Echo
Show 10 device to record both playback-only device responses and instances
where 10 speakers were tasked to say commands over the TTS audio. The
default TTS Alexa voice was used. This lab collection resulted in a corpus of
approximately 2 hours and 45 minutes which was split equally in development
and test partitions. Note that both training/dev and test sets can contain
background environmental noise in the target signal.

4.4 Experimental Analysis

4.4.1 Architecture and Training Details

For our experiments we employ the Temporal Convolutional Network (TCN)
from [99] with a few modifications. Firstly, we use here a smaller network with
X = 3 residual blocks (ResBlock in Figure 4.2) and R = 2 repeats for a total
of 6 blocks. Secondly, we employ an initial 1D convolutional layer with kernel
size 5 and stride 2 instead of a bottleneck convolutional layer. Thirdly, BN
is used instead of global layer normalization [53] and depth-wise convolutions
in ResBlocks have kernel size of 5. A final linear layer with output size C

is used to derive the class logits. A sigmoid activation function is used for
DDD (C = 1) while softmax is used for multi-KWS experiments (C = 35
posteriors, corresponding to the number of keywords in GSCv2, both original
and our augmented version). The total number of parameters is 131k. We use
64-dimensional LFBEs as input features extracted with a Short-Time Fourier
Transform (STFT) 25 ms window and 10 ms stride. The model is trained
using cross-entropy loss on segments of 117 frames, which is the receptive field
of the model. If the input length is less than 117 frames, zero padding is
employed. During testing, we employ max pooling if the input feature sequence
is longer than the receptive field producing a single prediction for the whole
sequence. For regularization, we apply SpecAugment [124] independently on
both reference and input mixture LFBE features after the initial BN layers.
We use the Adam algorithm [64] for optimization and tune the learning rate,
weight decay and SpecAugment hyper-parameters for each experiment using
the validation split. Each model is trained for a maximum of 200 epochs with
10 epochs early stopping. We use a batch size of 256 and 1200 for the multi-
KWS and DDD experiments, respectively. All models are trained on both
playback (where reference is available) and non-playback conditions.

Since both KWS and DDD models employ LFBEs features in input, in our
experiments we perform the proposed on-the-fly data augmentation strategy
described in Section 4.2.2 in the STFT domain, prior to taking the magnitude
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and apply the Mel filterbank transform. This leads to a minor training speed-
up. The time-shift is applied on STFT frames and is sampled from U(15, 20)
frames. The interferer and target signals are mixed such that the SIR falls in
U(−20, 3)dB. Note that such rather extreme frame-wise shifting is necessary
to simulate the non-deterministic delay in the device playback and input audio
pipeline, mainly due to input/output audio software buffers. This delay leads to
substantial misalignment between the reference r and corresponding interferer
n = Γ(r) and must be accounted for during training so the model learns to
compensate for it.

4.4.2 Device-Directed Speech Detection

In this section we present and discuss our DDD experiments on the real world
dataset described in Section 4.3.2 focusing on TTS playback conditions. We
use false reject rate (FRR) and false accept rate (FAR) as our metrics and
report FRR at two fixed FAR values (non-playback and playback). The FAR
values are chosen on the development set according to customer feedback and
are redacted in this document due to privacy reasons. As our goal is to obtain a
practical on-device streaming DDD classifier, we also report the floating point
operations (FLOPs) per output prediction in both playback and non-playback
conditions.

In Table 4.1 (upper panel) we report the results for adding simulated in-
terferer signals while training a standard TCN DDD classifier (Baseline) with
the architecture explained in Section 4.4.1. Here, we compare the strategies
of using a test and dev set matched (default Alexa voice) versus unmatched
(Matthew voice) TTS model during training. As expected, adding simulated
playback with a matched TTS model (+ Alexa TTS) significantly improves
performance especially in playback. On the contrary if an unmatched TTS
model is used in training, very marginal improvement is observed in playback
while in non-playback conditions FRR degrade significantly. This suggests that
the model is learning to ignore the TTS playback mainly based on the “iden-
tity" and, to a less extent, perceived gender of the TTS speech. The FRR in
non-playback increases for the second model because his perceived gender is
male, and the test set is composed mainly by male speakers (while the Alexa
TTS voice perceived gender is female). This biases the model to be more prone
to consider male speakers as TTS and reject them.

In the second panel, we study the effect of extending the classifier by sim-
ply concatenating the reference channel features at the first layer, after BN, as
explained in Section 4.2.1. This model requires slightly more FLOPs than the
standard Baseline TCN classifier. As our training dataset lacks playback con-
ditions (see Section 4.3.2) also here we resort to simulation using both matched
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and unmatched TTS voices. However we also study the effect of the data aug-
mentation strategy outlined in Section 4.2.2 which can be leveraged now since
the model (iAEC-C) has access to the reference.

The proposed data augmentation strategy alone (iAEC-C augm) is able to
improve FRR in both conditions despite the model is trained with no TTS
data but only with legit user queries used both for targets and playback roles.
Adding simulated matched and, to a less extent, even unmatched TTS inter-
ferer/reference data further improves the performance in both conditions. In
the Matthew TTS case, the proposed method helps fighting potential biases in
the training data and prevent overfitting one particular voice/gender. On the
other hand if the iAEC-C model is trained only with matched TTS simulated
data and no data augmentation strategy (- augm + Alexa TTS) we observe
a degradation in performance. This hints that the model with reference ac-
cess is more likely to overfit the simulated interferer acoustic characteristics in
the training set and not generalize well to real-world environments despite our
simulation efforts. More complex simulation pipelines may be able to mitigate
this issue but have their drawbacks (e.g. lots of hand-tuning). As smart-home
assistants offer more voice options, the proposed data augmentation allows to
avoid retraining the DDD classifier for each new TTS voice and reduces the
risk of rejecting speakers whose voices are similar to the TTS model.

Table 4.1: FRR at fixed FAR (redacted) for non-playback and playback (TTS
playing) conditions. We study different training strategies using the
default Alexa voice and an alternative TTS voice named Matthew.
Intra-dataset mixing (intramix) refers to the on-the-fly mixing strat-
egy outlined in Section 4.2.2.

Model Non-Playback Playback

FRR@FAR FLOPs FRR@FAR FLOPs

Baseline 0.189 242k 0.348 242k

+ Alexa TTS 0.187 – 0.241 –

+ Matthew TTS 0.202 – 0.339 –

iAEC-C (augm) 0.188 283k 0.258 283k

+ Alexa TTS 0.185 – 0.227 –

+ Matthew TTS 0.187 – 0.256 –

- augm + Alexa TTS 0.193 – 0.299 –

The top panel of Table 4.2 investigates the effect of concatenating at deeper
residual blocks for iAEC-C from the 1st (D1, same as in Table 4.1) to 3rd (D3)
blocks (see Figure 4.2). All models are trained using the data-augmentation
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(augm) strategy outlined in Section 4.2.2 with no simulated playback TTS data.
Performance improves with deeper layers up to D2, as the encoder receptive
field (FOV) surpasses the maximum offset between reference and interferer
signals observed on real-world collected audio, around 200 ms, as said, mainly
due to the output and input software audio buffers. On the other hand, also
computation increases with the depth at which concatenation is performed. We
can see that concatenation at D2 provides the best trade-off between playback
FRR, non-playback FRR, and FLOPs.

Table 4.2: FRR at fixed FAR (redacted) using iAEC-M and iAEC-C with con-
catenation at different layers in the TCN model.

Model Non-Playback Playback

FOV FRR@FAR FLOPs FRR@FAR FLOPs

iAEC-C (input) 5 0.188 283k 0.258 283k

iAEC-C (D1) 12 0.183 336k 0.178 336k

iAEC-C (D2) 28 0.184 369k 0.165 369k

iAEC-C (D3) 60 0.183 402k 0.168 402k

iAEC-M (D2) 28 0.181 242k 0.150 367k

The bottom panel of Table 4.2 presents the mask-based approach described
in Section 4.2.1. Masking is applied at the second residual block (D2) as in
iAEC-C and shows a further performance improvement on both playback and
non-playback conditions. Regarding computational efficiency at D2, iAEC-M
requires slightly more FLOPs in playback mode than iAEC-C, but significantly
less FLOPs in non-playback mode, as the reference branch is dropped and the
architecture becomes equal to a standard classifier. Since this model is ran
continuously, playback conditions account for a very small fraction of total
inference time and thus iAEC-M leads to the best performance/FLOPs trade-
off.

4.4.3 Multi Keyword Spotting

In Table 4.3 we report our results on the augmented GSCv2 dataset described
in Section 4.3.1. We report keyword-detection accuracy over the 35 possible
GSCv2 keywords for the 3 different test sets in our augmented version: original
GSCv2 (Non-Playback), mixed with music (Playback Music) and with TTS
(Playback TTS).

As with the DDD experiments, we use a standard TCN classifier without ac-
cess to the reference as our Baseline. We also consider a joint model (+nAEC )
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comprised of the state-of-the-art neural AEC model from [105], designed for
edge-devices applications, and the Baseline TCN classifier: the output of the
nAEC is directly fed to the classifier in cascade. Moreover we compare with an
STFT-based normalized least mean squares (NLMS) AEC algorithm with 32
taps, step size µ = 0.5, 512 and 128 STFT window and hop with square-root
Hann window. Pyroomacoustics [125] was used for the implementation.

For this system we use a weighted loss consisting of a spectral loss term as
in [105] and a KWS loss term instead of an ASR on as in [105]. The two cas-
caded models nAEC and TCN are then jointly trained. As another baseline,
we include the performance for MatchBoxNet-3x2x64 [126] (MatchBN) using
the official implementation from NeMo toolkit [127]. We also report results for
three different training strategies for the models with access to the reference
(thus including [105]). In orcl we train the model with access to the oracle ref-
erence, interferer and target signals, e.g. the nAEC model is trained to estimate
the target and is given in input the reference corresponding to the interferer
together with the mixture signal. This is a best-case scenario, possible because
this dataset is fully synthetic. Here there is no mismatch between training and
test data, a rather ideal condition which e.g. will prevent the degradation ob-
served in DDD experiments in Table 4.1 last row due to mismatched simulated
training and real-world interferer acoustic conditions. The augm denotes the
augmentation strategy described in Section 4.2.2 where, in training, we gener-
ate fake playback mixture signals by mixing original GSCv2 examples. Each
example is randomly given the role of interferer/reference or target, without
adding any simulated playback TTS or music. Finally the strategy denoted
both denotes a combination of these two: in training one example is either
generated on-the-fly with augm or comes from orcl with 50% probability.

As expected, we can observe that for both Baseline and MatchBN playback
performance degrades significantly, especially during TTS playback conditions,
which can confuse the model. Regarding the models with access to the refer-
ence (Baseline +nAEC, iAEC-C and iAEC-M), we can see that, in the best case
scenario of matched training and testing (orcl), all models significantly improve
performance over the Baseline classifier especially in playback conditions. The
improvement in non-playback is due to the fact that the MatchBN and Base-
line models are prone to reject a valid keyword as TTS playback, as they have
no access to the reference. If only the augm strategy is used in training the
performance degrades compared to the ideal orcl data but still affords improve-
ment over models with no reference access. On the other hand, as explained,
in many real-world applications the reference signals can be difficult to obtain
or may be biased (e.g. all examples with playback belongs to one TTS model).
Combining both strategies yields the best performance overall for all models
(including nAEC) even surpassing orcl. The NLMS AEC is very effective with
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the music interferer but struggles with TTS. On the other hand it is extremely
light computationally and thus future work could explore combinations of this
approach and the proposed one.

Overall, our proposed iAEC approaches perform competitively with +nAEC
but uses two order of magnitude fewer FLOPs for each prediction. This makes
the proposed methods more suitable for always-on low-resource applications.

Table 4.3: Accuracy and FLOPs on GSCv2 for different models and training
strategies (see Section 4.4.3). Metrics are reported both for original
data (Non-Playback) and our simulated playback corpus, separately
for TTS and Music playback conditions.

Model Non-Playback Playback

Acc % FLOPs Acc % (Music) Acc % (TTS) FLOPs

MatchBN [126] 94.47 185k 61.84 36.78 185k

Baseline 93.35 242k 75.01 61.71 242k

+ NLMS AEC 93.77 242k 78.95 63.13 243k

+nAEC
orcl 94.06 242k 82.87 82.75 15M

augm 93.82 - 75.04 72.21 -

both 94.46 - 83.55 83.81 -

iAEC-C
orcl 94.52 283k 82.60 80.79 283k

augm 94.56 - 77.91 77.52 -

both 94.74 - 83.54 82.93 -

iAEC-M
orcl 94.67 242k 83.87 82.47 367k

augm 94.49 - 78.21 77.01 -

both 94.97 - 84.22 83.79 -

4.5 Conclusions & Future Work

In this Chapter we introduced the two related problems of keyword spot-
ting KWS and device-directed speech detection DDD. Both these tasks are
quintessential for voice-enabled human-machine interaction, with DDD espe-
cially promising (albeit extremely challenging) as a step towards a more natural
interaction. As we have seen these two tasks have to be run on-device as they
absolve the role of a gateway to the server-side and more complex back-end
tasks such as ASR. This fact however is also what makes such tasks particu-
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larly challenging: they have to operate reliably, in a continuous manner, with
low-latency and have to be computationally lightweight.

In our work on implicit acoustic echo cancellation (iAEC), in particular we
addressed the problem of boosting KWS and DDD classifiers performance on
edge-devices during device playback without degrading non-playback perfor-
mance. This work also introduced DDD as a streamable, on device task, a
considerable feat due to its open vocabulary nature. In our proposed frame-
work the DDD and KWS classifiers leverage the known playback signal (ref-
erence signal) to ignore the return “echoed" playback signal (interferer signal)
captured by the device microphones together with the user speech.

We explored two strategies for feeding the reference signal to our models and
found the use of a latent-space masking approach particularly suited for our
KWS and DDD tasks, as it brought significant performance improvements in
device playback conditions. On the KWS task the proposed method obtains
comparable performance with a state-of-the-art neural AEC method but with
much less computational requirements.

As an additional contribution, we devised an effective data augmentation
strategy that is able to further boost performance of neural AEC and iAEC
models, allows to train such models on examples with no playback interferer
and helps reducing bias in the training data.

Future work could explore other tasks such as ASR or speech to speech trans-
lation and scenarios beyond device playback where oracle double-talk detection
is not available, such as teleconferencing.
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Chapter 5

Speaker Counting, Voice Activity
and Overlapped Speech Detection

Context
The work in this Chapter was presented at Interspeech 2020 [99] and also as
an extension to Computer Speech and Language in 2021 [128]. It was done in
collaboration with Emmanuel Vincent from Université de Lorraine and Mau-
rizio Omologo from Fondazione Bruno Kessler. The main idea came in 2019
during the JSALT 2019 workshop with Emmanuel suggesting the use of spatial
features for speaker counting.

5.1 A Brief Historical Overview
VAD is an indispensable task in most speech processing applications. As KWS
and DDD it absolves as a “gateway” for downstream processes. In fact these
latter could be designed only to handle speech (and not long silences) and/or
are too computationally heavy to be ran continuously, or again, to save band-
width if VAD is performed on edge-devices. In fact, the first VAD approaches
were actually carried out with the main goal of reducing the bandwidth in
telecommunications. The advent of the digital age in the 70s, opened up ex-
citing prospects towards ASR and, at the same time, digital signal processing
VAD algorithms started to be devised, initially relying on very simple features
such as the energy of the signal or the zero crossing rate[129]. In the following
decades the research towards robust VAD was mostly focused on devising more
reliable hand-crafted features with the goal of improving detection performance
in noisy-reverberant scenarios. These included harmonic features [130] or spec-
tral shape [131] or assumptions such as stationary noise [132]. In these early
approaches, the speech/non-speech decision was made with heuristic rules e.g.
a series of if-this-the-that rules such as the current frame is speech when an
hand-tuned threshold value for the energy is exceeded. One of the most effec-
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tive approaches following this paradigm was the system proposed by Ramirez
et al. [133] which relies on a sub-band and on long-term (multiple-frames) av-
eraging for more reliable estimation. It also incorporates a Wiener filter for
denoising the signal prior to the VAD decision. The noise statistics for the
Wiener filter are taken from the first frames of the input signal as they are
assumed to be speech-free.

Towards the turn of the millennia, more statistically-principled approaches to
the VAD problem started to emerge. One of the first works in this direction was
performed by Sohn et al. [134] in which many advanced concepts were proposed
such as an hidden Markov model (HMM) hang-over scheme and a decision rule
based on the likelihood-ratio. Their method relied on the assumption that the
STFT bins values could be modelled by complex gaussian distributions with
different variance for the estimated noise the estimated speech bins. Their
approach was able to outperform significantly the state-of-the-art at the time
VAD used in the ITU standard G.729B [135] for telecommunications audio
compression purposes. This general framework was improved over the years.
For example, Shin et al. [136] proposed a follow-up work where the complex
gaussian distribution is instead replaced with a generalized gamma distribution,
which has more modeling capacity. Chang et al. [137] instead proposed to use
an ensemble of different statistical models.

In subsequent works [138, 139], VAD systems started to incorporate more
principled data-driven approaches such as gaussian mixture model (GMM) [140,
141] or support vector machine (SVM)[138, 139] as more computing power got
available even on edge-devices. This eventually led to the adoption of DNN-
based methods, which are now the de-facto mainstream approach when suffi-
cient robustness is needed e.g. when dealing with far-field speech. One of the
very first works on neural VAD was done by Eyben et al. [142] in 2013. The
authors used an LSTM and their results showed a remarkable performance
increase with respect to previous methods such [133, 134]. More up-to-date
work [143] focused on real-time extremely constrained VAD applications by
using an multi-layer perceptron (MLP)-based method, while [144] proposed a
fully end-to-end hybrid CNN-LSTM network. Some works such as [145] and
[146] also explored the use of multi-channel features for VAD. Vesperini et
al. [145] compared several different architectures for this purpose while [146]
proposed an end-to-end system for joint localization and VAD. It is also worth
mentioning the very effective Pyannote VAD model by Bredin et al. [147] which
relies on end-to-end learned features by using a SincNet front-end [148].

The research towards reliable OSD instead is more recent than the one for
VAD, but still spans more than one decade, with again the first systems rely-
ing on handcrafted features and classical machine-learning approaches. Histori-
cally, the main factor that led the development of OSD algorithms was the need
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to improve diarization for ASR speaker adaptation. Most of these early studies
focused on Gaussian Mixture Model (GMM) or Hidden Markov Model (HMM)
based classifiers [149–153] with the exception of [154] who showed a Long-Short
Term Memory (LSTM) neural network to outperform a GMM-HMM system.
[149], [150], and [152] reported a substantial reduction of the Diarization Error
Rate (DER) on the AMI meeting corpus [155] by removing overlapped speech
segments from the segment clustering phase and performing overlap attribution
afterwards.

When multiple microphone channels are available, speaker counting can be
performed by clustering inter-channel features [156, 157] or explicitly local-
izing the speakers in space [158, 159], both in the single-array and multiple-
array scenarios. Single-channel speaker counting is more challenging, with early
works focusing on handcrafted features such as the modulation index [160], the
mean and variance of the 7th Mel filter [161] or the cosine similarity between
Mel Frequency Cepstrum Coefficient (MFCC) feature vectors along with pitch
[162]. More recently, [163] estimated the number of speakers by computing the
distance between the mixture and a reference single-speaker utterance in the
magnitude spectral domain.

CountNet [164] marked a significant departure from these previous works by
showing that a neural network can be trained to perform speaker counting with-
out relying on handcrafted features, and it can even outperform humans. [165]
also showed that a neural network based speaker counting algorithm can defeat
human ability especially when more than three speakers are active. [166] took
a different direction: they trained a neural network to perform joint speaker
counting, speech recognition and speaker identification in a fully end-to-end
fashion. In all these works, synthetic mixtures are employed for both training
and testing and, crucially, the datasets are designed with balanced propor-
tions of single-speaker speech, two-speaker overlapped speech, three-speaker
overlapped speech, and so on. This does not match the characteristics of real-
world datasets where single-speaker speech is more frequent than two-speaker
overlapped speech, which is itself much more frequent than three-speaker over-
lapped speech.

Regarding OSD, [167] and [168] recently showed that deep neural networks
significantly outperform classical machine-learning approaches for this task too.
Notably, [168] evaluated four network architectures for joint VAD and OSD
(VAD+OSD): a feedforward network, a 2-D convolutional network, a recurrent
LSTM network and a hybrid 2-D convolutional-LSTM network. They showed
that these approaches surpass a baseline GMM-based method on both synthetic
data and AMI distant-speech data, that the LSTM-based approach performs
best, and that it significantly improves diarization results. More recently [169]
and [170] reported impressive OSD performance in near-field conditions, with
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[170] reporting up to 20% relative Diarization Error Rate (DER) reduction
on the AMI headset mix. In another vein, [171] addressed VAD+OSD by
employing simple classifiers on top of pre-trained x-vector speaker embeddings
[172] and evaluated them on synthetic data corrupted by noise and artificial
reverberation.

5.2 Overlapped Speech Detection and Counting
Framework

In our work [128], we proposed to treat supervised VAD, OSD, VAD+OSD,
and speaker counting in a unified way, as special instances of a general OSDC
task. This task can be formulated as a multi-class supervised sequence labeling
problem, with a different number of classes for VAD, OSD, joint VAD+OSD,
and speaker counting.

We consider a parametric model F(X; θ) which takes as input a sequence
of frame-level feature vectors X = {x1,x2, . . . ,xm} and outputs a sequence
of class posterior probabilities. We assume that the model may perform in-
ternal subsampling, i.e., one output frame is provided every K input frames.
This is because frame-level estimation is unnecessary for most speech segmenta-
tion applications and, by employing subsampling operations, the computational
burden can be reduced.

In the supervised setting, we are given the ground-truth class label sequence
y = {y1, y2, . . . , yl} of length l ≤ m, and we wish to estimate the optimal model
parameters ˆ︁θ according to a certain criterion. As in this work we focus on neural
approaches, the optimal model parameters are estimated on a suitable training
set composed of N pairs of input feature sequences and corresponding class
label sequences T = {(X1,y1), . . . (XN,yN)} by using Stochastic Gradient
Descent (SGD) to minimize the cross-entropy loss between the estimated frame-
level posterior probabilities and the true class distribution.

In this framework, VAD and OSD can be treated either separately as binary
classification tasks (speech vs. non-speech, overlap vs. non-overlap), or jointly
as a three-class (non-speech, single speaker, overlapped speech) problem. Simi-
larly, speaker counting can be formulated as an C-class classification task where
C is equal to the maximum possible number of overlapping speakers plus one.
While this approach is not the only one for supervised speaker counting, it
has been found to be the most effective [164], provided the maximum possible
number of concurrent speakers is known.
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5.3 Proposed Neural Architectures for OSDC

We studied four neural network architectures for tackling the OSDC task.

5.3.1 Long-Short Term Memory (LSTM)

The first one is the best neural network for joint VAD+OSD among the ones
examined by [168] which, to our knowledge and with the exception of our
preliminary work [99], achieves the best reported performance on AMI single-
channel distant-speech data.

It consists of a unidirectional LSTM layer with a hidden size of 512 neurons,
followed by 3 dense layers with 1024, 512 and 256 neurons, respectively. A final
256 × N pointwise convolutional layer along with softmax is used to output
the probability of each frame belonging to one of the N classes (e.g., N = 3
for VAD+OSD). This network features a total of 2 million parameters and
generates one output vector for every input frame given a context of 11 frames
(current frame plus 5 past and 5 future frames).

As the original architecture lacked any normalization technique, in our exper-
iments we added batch normalization [120] before each dense layer activation
as well as layer normalization [173] on the input features. This, coupled with
data-augmentation, allows us to improve performance over the original network
as it will be shown in Section 5.6.5.

5.3.2 Hybrid Convolutional-Recurrent Neural Network

We also consider the best CountNet architecture among the 5 different networks
compared by [164]. This network is a hybrid Convolutional-Recurrent Neural
Network (CRNN), composed of a 2-D Convolutional Neural Network (CNN)
block followed by an RNN block. The main idea behind this architecture is
that the CNN extracts a local representation of the input features while the
RNN deals with long-term temporal modeling, thus combining the advantages
of both CNNs and RNNs.

Input features of shape F × T are fed to the CNN which is composed of two
blocks, each composed of two 2-D convolutional layers with kernel size 3 × 3
followed by ReLU activation and a 3× 3 max-pooling subsampling operation.
A total of 4 convolutional layers is thus employed with 64, 32, 128 and again
64 channels, respectively. Dropout [174] is applied on the output of the CNN
and the representation is fed to an LSTM layer with a hidden size of 40. As an
LSTM operates on 2-D sequences while the output of the CNN is a 3D tensor
with channel, frequency, and time dimensions, a 2-D sequence is obtained by
stacking the frequency dimension onto the channel dimension.
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[164] performed an additional max-pooling operation on the whole time di-
mension in order to output a single prediction for the entire input because they
aimed to count the maximum number of speakers in the whole sequence. Here,
as explained in Section 5.2, we are interested in estimating the number of speak-
ers in each time frame instead so we omit this final pooling layer. In this way,
the network generates one output vector for every 6 feature vectors in input.
As this architecture also originally lacked any normalization strategy, we added
batch normalization after each convolutional layer and layer normalization at
the input.

5.3.3 Temporal Convolutional Network

In addition to the above two state-of-the-art architectures, we consider a TCN
architecture for the OSDC task. This type of architecture has been shown to
achieve state-of-the-art performance in many sequence-related tasks [175] and
for source separation [176].

TCNs rely on multiple stacked dilated convolutional layers whose dilation
factor increases progressively as depth increases. This makes it possible to
greatly expand the receptive field, such that upper layers can have access to
long-term contextual information without any pooling operation. This in turn
allows TCNs to outperform recurrent models in some tasks [175]. In fact,
because they are based only on convolutional operations, TCNs have several
benefits with respect to RNNs. First, being feedforward, they are not affected
by the vanishing gradient problem which plagues RNNs, as skip-connections
and residual connections can be used to backpropagate the gradient unscathed
down to the very first layers. Second, in RNNs the information about the past
must be contained in the hidden state. This makes it difficult to learn very long-
term dependencies as all relevant information about the past must be squeezed
into this finite-sized representation. On the contrary, TCNs process the whole
sequence and, because no downsampling is performed, the information at all
steps is preserved in all layers. Finally, as no recurrent operations are employed,
TCNs are significantly faster than recurrent models in both the training and
inference phases. However, the fact that the representation is not pooled leads
TCNs to have large memory requirements in general, especially if a very wide
receptive field is desired.

The architecture we employ here [99] is depicted in Fig. 5.1. It is inspired
from MobileNet [177] and Conv-TasNet [176]. Input frame-level feature vectors
of size F (e.g., log-Mel filterbanks) are fed to a layer normalization [173] layer
followed by an F × 64 1D pointwise convolutional layer (denoted as conv 1x1 )
and by R = 3 blocks of X = 5 residual blocks (res blocks) with 1D dilated con-
volutions, where the dilation factor increases in each block as 20, 21, . . . , 2X−1.
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Each residual block consists of a 64×128 pointwise convolutional layer followed
by batch normalization and activation, a dilated depthwise separable 128×128
convolutional layer (d-conv) followed by batch normalization and activation,
and another 128× 64 pointwise convolution which squeezes the representation
back so that it can be summed with the input. We use PReLU [178] as the
activation function in all residual blocks and a kernel size of 3 in depthwise
dilated convolutions.

Figure 5.1: Proposed TCN architecture for the OSDC task.

5.3.4 Transformer
Finally, we propose a Transformer-based architecture for OSDC. Transformers,
which were originally proposed by [11] for natural language processing appli-
cations, are pure attention-based models which have been shown recently to
achieve state-of-the-art performance in many speech processing tasks including
diarization [179]. They have several advantages over recurrent models, includ-
ing faster inference speed and better modeling of long-term dependencies. In
fact, as they are feed-forward models, the whole sequence is attended at once,
eliminating any recurrence and any need for an internal hidden state to keep
track of past elements. Onthe contrary, in recurrent architectures the informa-
tion about the past elements has to be memorized in the internal hidden state,
whose size is fixed. For this reason, Transformers exhibit the same advantages
as TCNs over RNNs, even if their inherent functioning is significantly different.
Similarly to TCNs and while being much faster than RNNs, Transformers also
have higher memory requirements, due to the fact that the attention mecha-
nism grows as O(n2) in memory with n the length of the input sequence.

Our Transformer-based architecture is depicted in Figure 5.2 and, as it can
be seen, has some input and output blocks in common with the previously
described TCN network. To counter the quadratical memory growth induced
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by the attention mechanism, we adopt a concatenate-subsample (cat-pool) op-
eration over the input feature vectors. For each frame, we concatenate the
feature vectors from C past frames and C future frames with the current one.
Afterwards, we subsample this representation on the frame axis by a factor of
S. In this way, the information contained in the temporal dimension is effec-
tively transferred to the feature dimension with a resampling factor of C/S
the original rate. This concatenated and pooled representation is then fed to a
layer normalization layer followed by a pointwise convolutional layer (conv 1x1 )
which shrinks the representation to a predefined size H to reduce the mem-
ory requirements of subsequent blocks, allowing us to process longer sequences
or, alternatively, to reduce the computational footprint of the model as it will
be shown in Section 5.6.4. Sinusoidal positional encoding is added right after
this bottleneck convolutional layer and the result is fed to a succession of R
Transformer Encoder blocks, each composed of two residual sub-blocks.

Figure 5.2: Proposed Transformer architecture for the OSDC task.

The structure of each Transformer Encoder block is identical to the one pro-
posed by [11] with the exception that, in our architecture, layer normalization
is performed at the beginning of each residual block rather than in the end.
Indeed, [180] recently found that this results in better performance as well as
faster convergence. The first residual block consists of a normalization layer
followed by a Multi-Head Attention (MHA) layer and dropout. The second one
consists of a normalization layer followed by a position-wise feedforward neu-
ral network (FFN) composed of one dense layer,1 a ReLU activation followed
by dropout, and another dense layer which projects the hidden representation
back. As in the TCN model, a final H × N pointwise convolutional layer
followed by softmax is used at the output.

1Note that dense layers are equivalent to conv 1x1.
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5.4 Spatial Features and Feature Fusion Schemes
for OSDC

Intuitively, spatial features can help VAD, OSD and speaker counting. For
example, OSD and speaker counting can benefit from knowing whether the
sound comes from one or more Directions of Arrival (DoAs). VAD can also
benefit from spatial features to distinguish speech, which is usually directional,
from noise, which can be spatially diffuse.

In fact, as mentioned in Section 5.1, many works have tackled speaker count-
ing by framing it as a localization problem. These works resort to DoA esti-
mation methods based on generalized cross-correlation with phase transform
(GCC-PHAT) [181] as in [156, 158], magnitude-squared coherence (MSC) [157]
or simple cross-power spectrum [159, 182]. The speaker number is estimated
via a direct approach such as in [158] by counting peaks in GCC-PHAT based
acoustic maps or by clustering methods, where speaker clusters are identified
by iterative grouping of complex-valued time-frequency coefficients [156], mag-
nitude squared coherence feature vectors [157], or DoAs estimated over single-
source time-frequency zones [159] or individual time-frequency bins [182].

Recently, a series of works have proven that neural network based localiza-
tion is more robust than signal-based methods in reverberant and noisy envi-
ronments. In these works, a neural network is trained to estimate the DoA on
a synthetic dataset for which the true position of the sources is known. Input
features include GCC-PHAT [183], cosine-sine interchannel phase difference
(CSIPD) features [184], the phase spectra of all channels (phasemap) [185], the
magnitude and phase spectra [186], or the raw waveform [187].

5.4.1 Signal-based Spatial Features

In this work, for what concerns signal-based spatial features, we explore the
interchannel phase difference (IPD) and CSIPD, as they have been shown in the
aforementioned works to work well in reverberant and noisy environments. In
particular, our choice of IPD instead of phasemap is justified by the fact that,
both in AMI and CHiME-6, microphones are close to each other and thus some
microphone pairs can be discarded as they do not add much spatial diversity
at 16 kHz. On AMI, we consider only those pairs of microphones with maximal
distance from each other, i.e., the 4 pairs formed by opposite microphones in
each circular array instead of all 28 possible pairs. On CHiME-6, due to the
asymmetrical placement of microphones in Kinect devices, we consider the 3
pairs formed by channels 1 and 4, channels 2 and 4, and channels 3 and 4.
The IPD or CSIPD features of all pairs are then concatenated together over
the frequency dimension. Thus, in these contexts, using interchannel features

69



Chapter 5 Speaker Counting, Voice Activity and Overlapped Speech Detection

allows us to reduce the feature size with respect to the phasemap and hence
save computational resources with practically no loss in spatial information.

IPD and CSIPD features are tightly related and derive from the phase spec-
trum. Denoting by xi(n, f) and xj(n, f) the STFT of the i-th and j-th micro-
phone signals, where n and f are respectively the frame and frequency index,
the IPD ϕi,j(n, f) between channel i and j is given by

ϕi,j(n, f) = ∠xi(n, f)− ∠xj(n, f), (5.1)

where ∠(.) is the function returning the phase from the input complex value.
The IPD feature vector in time frame n is then defined as

IPD(n) = [ϕi,j(n, 0), ϕi,j(n, 1), . . . , ϕi,j (n, F/2)]T , (5.2)

with F the FFT size. IPD features are depicted in Figure 5.3.

Figure 5.3: Overview of IPD features, extracted with 16 ms STFT window with
4 ms stride from an utterance in the synthetic dataset described in
Section 5.5. We used the two microphones at the edges of the
linear array. Top: using only the direct anechoic signal component.
Bottom: using in input the full signal.

The CSIPD feature vector in time frame n can be obtained directly from the
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IPD feature vector and is another way of encoding the information contained
in it by using its cosine and sine values:

CSIPD(n) = [cosϕi,j(n, 0), sinϕi,j(n, 0), . . . , sinϕi,j (n, F/2)]T . (5.3)

An important property of CSIPD is that the GCC-PHAT angular spectrum
for a given microphone pair (or the SRP-PHAT spectrum when there are 3 or
more microphones and all pairs are considered) can be expressed as a linear
transformation of the CSIPD feature vector [188]. When these features are
to be input to a neural network model, there is therefore no benefit in using
the GCC-PHAT or SRP-PHAT angular spectra as inputs instead, since this
linear transformation can be learned by the neural network itself. This was
confirmed by our experiments, so we do not report results obtained with GCC-
PHAT or SRP-PHAT features in the following. CSIPD features are depicted
in Figure 5.4. We can see how they exhibit much more evident structure with
respect to IPD.

5.4.2 Neural Network-based Localization Features
As an alternative, we also consider the strategy of training a neural network
to estimate the DoAs of multiple overlapped speakers on a suitable synthetic
dataset for which the true DoAs are known. The embeddings extracted by
some intermediate layer of this network can then be used as “higher-level”,
possibly more robust spatial features to be employed in the OSDC system.
In this work, we adopt the multi-speaker localization method of [185], where
the space of DoAs is discretized and the neural network is trained to estimate
the posterior probability that a speaker is active for each discrete DoA by
minimizing the sum of binary cross-entropies across all discrete DoAs. Binary
cross-entropy is used as the cost function since multiple concurrent speakers
with different DoAs can be active at the same time.

In detail, even for localization, we use the networks outlined in Section 5.3
by modifying the output layer which is replaced with mean pooling over the
sequence dimension and a new linear layer with output size D followed by
sigmoid activation, where D is the number of discrete DoAs considered. The
network representation before the mean pooling operation is then employed as
a spatial feature vector for OSDC systems.

One advantage of neural network-based features over signal-based features is
that joint fine-tuning of the two networks can be performed, thus optimizing
the localization feature extraction network for OSDC applications. However,
it must be noted that the computational footprint significantly increases by
using neural network based features. Also, the fact that true source DoAs are
needed for training necessitates the use of a synthetic training dataset, which
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Figure 5.4: Overview of CSIPD features, extracted with 16 ms STFT window
with 4 ms stride from an utterance in the synthetic dataset de-
scribed in Section 5.5. We used the two microphones at the edges
of the linear array. Top: using only the direct anechoic signal com-
ponent. Bottom: using in input the full signal.
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can be mismatched with real-world data.

5.4.3 Fusion schemes

Spatial features are not sufficient for reliable OSDC when used alone. For
example, directional noise sources may sometimes be confused with speech, or
concurrent speakers can have the same DoA. They must hence be combined
with single-channel spectral features, such as log-Mel spectra. We consider
two different fusion schemes for this combination, which we call early and late
fusion.

These fusion schemes are illustrated in Figure 5.5 for the Transformer-based
network. In early fusion, the two features are stacked together in the very
first layer of the neural network. Layer normalization on spatial features is
performed separately prior to concatenation. In late fusion, after layer nor-
malization, the spatial features are injected before each Transformer Encoder
Block (TE Block), using Feature-wise Linear Modulation FiLM [189]. In this
way, each block of the architecture can focus on a different aspect of the input
spatial features since they are available even in deeper layers. As the spa-
tial and single-channel features are concatenated together in early fusion, they
must have same temporal length. Thus, for proposed Transformer network we
employ the same cat-pool operation also on spatial features prior to concate-
nation. The same argument applies also for late fusion where instead spatial
features are used to modulate activations at multiple layers.

Figure 5.5: Fusion strategies for single-channel features and spatial features
for the proposed Transformer architecture: a) early fusion, b) late
fusion. TE stands for Transformer Encoder.
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5.5 Datasets
We conduct experiments on two real-world multi-microphone datasets: AMI
and CHiME-6. Moreover, we also use a synthetic dataset to further study, in
a controlled situation, the use of spatial features to improve the performance
of OSDC systems. CHiME-6 has already been described in Chapter 3, Sec-
tion 3.3.2 and we refer the reader to such section.

5.5.1 Synthetic Dataset

We simulate multi-speaker mixtures captured by a single microphone array.
Clean speech utterances are taken from Librispeech [190] train-clean-100 for
training, dev-clean for validation, and test-clean for test. The Montreal Forced
Aligner (MFA) [191] is used to split these original Librispeech utterances in
order to obtain shorter “sub-utterances" for each speaker. This splitting is
performed whenever pauses of more than 150 ms are encountered. MFA is
also used, in parallel, to obtain ground truth word-level speaker activity. For
each mixture, we sample from 1 to 4 different speakers, and, for each speaker
one clean speech sub-utterance is sampled. The starting time of each speaker
sub-utterance is sampled independently from an exponential distribution. In
this way, by varying the decay rate parameter, the amount of overlap between
the speakers and the amount of silence can be controlled. A different acoustic
scenario is sampled for each mixture. We simulate a rectangular room whose
size is varied between 10 and 60 m2. The position of each speaker is chosen
randomly inside the room but with some constraints. Namely, the speakers
cannot be less than 0.5 m from each other and from the walls. We consider
a 4-microphone linear array placed randomly with respect to the walls, whose
height with respect to the floor can vary between 1.7 and 2 m and whose
distance to the closest wall is larger than a minimal distance which is varied
between 10 and 30 cm. We use the gpuRIR [192] toolkit for room simulation
with a T60 reverberation time uniformly sampled between 0.2 and 0.6 s. Ane-
choic noise from [193] is also employed to make the dataset more realistic. The
positions of noise sources inside the room are selected with the same criteria
as the speakers’ ones. The whole synthetic dataset consists of a total of 10 k
mixtures (∼ 23 hours) for training, 2 k for validation and 2 k for test (∼ 4.6
hours).

5.5.2 AMI

The AMI Corpus [194] is over 100 h of meeting recordings. Each meeting has
been recorded by a variety of devices including cameras, microphone arrays, and
per-speaker headset and lapel microphones and has from 3 to 5 participants.
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Ground truth speaker activity was obtained by human annotators from close-
talk speaker-worn microphones while distant speech was recorded by two 8-
microphone circular arrays, each with a 10 cm diameter: one placed at the end
and another at the centre of the meeting table used by the participants.

5.6 Experimental Analysis
In the following, we evaluate the neural architectures in Section 5.3 and the
spatial features and feature fusion schemes in Section 5.4 on the datasets de-
scribed in Section 5.5. Firstly, in Section 5.6.1, we define and motivate the
chosen performance metric. In Section 5.6.2, we outline the training and test-
ing procedure adopted in our experiments and, in Section 5.6.3, we highlight
the impact of different choices of hyperparameters and single-channel input
features for the Transformer-based architecture. Then, in Section 5.6.4, we
provide an analysis of the computational footprint of the four considered neu-
ral architectures when applied to single-channel data and, in Section 5.6.5,
we report their OSDC performance on AMI and CHiME-6. Finally, in Section
5.6.6, we assess the impact of spatial features on the best single-channel system:
we explore different spatial features, fusion schemes and number of microphone
pairs, and evaluate the results on AMI, CHiME-6 and the proposed synthetic
dataset.

5.6.1 Evaluation Metric
On real-world data, VAD, OSD and speaker counting tasks are affected by class
imbalance. This imbalance, which arises from intrinsic characteristics of human
conversations, can be more or less severe depending on the context. This can
be seen in Table 5.1, which reports the class statistics on AMI and CHiME-6 for
the counting task.2 Due to its informal, “cocktail-party” scenario, the CHiME-
6 dataset exhibits a slightly higher proportion of overlapped speech than the
AMI dataset, which consists of meetings. Nevertheless, in both datasets, the
proportion of 4-speaker and 3-speaker overlap is very small. The imbalance
is less severe for VAD and OSD tasks but, even for these, the choice of the
evaluation metric can be crucial.

We argue that metrics such as accuracy and precision-recall, as used respec-
tively by [168] and by [169] and [170], do not provide a fair evaluation of OSDC
algorithms on real-world data due to this fundamental imbalance. For exam-
ple, concerning OSD on the AMI evaluation set, an accuracy of 83.7% can be
reached by labeling all the material as no-overlap. As it has been observed
by [99, Table 5], this leads to small accuracy differences even for classifiers

2We disregard the 5-speaker overlap class on AMI since it does not occur in practice.
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Table 5.1: Frame-level class frequency (%) for the speaker counting task on the
AMI and CHiME-6 development and evaluation sets.
Class frequency 0-spk 1-spk 2-spk 3-spk 4-spk

AMI dev 15.87 67.17 13.95 2.59 0.42
eval 15.12 68.39 12.63 3.09 0.76

CHiME-6 dev 24.05 54.25 17.74 3.49 0.47
eval 33.47 51.52 12.03 2.46 0.51

with drastically different performance. In this scenario, precision and recall
are a better choice than accuracy. However, similarly to accuracy, their value
depends on the choice of the detection threshold which can be application-
specific (e.g., a different threshold for diarization and speech recognition is
often desirable). This does not allow for a fair comparison between different
OSDC algorithms.

For these reasons, we propose the use of Average Precision (AP) metric which
summarizes the precision-recall curve and is widely used, for example, in object
segmentation [195], information retrieval [196] and other tasks exhibiting strong
class imbalance. It can be obtained from precision P and recall R at the k-th
threshold as:

AP =
M∑︂

k=1
(Rk −Rk−1)Pk, (5.4)

where M is the total number of unique thresholds considered. The number
of elements in this set is upper bounded by the number of unique elements in
the classifier output probabilities vector. In this work we use each time the
maximum number of possible thresholds to compute AP. As it can be seen, AP
has the advantage that it does not depend on a particular threshold, making
it both more robust to imbalanced data and more suitable for comparison
purposes. In all experiments, AP scores are computed on 10 ms time frames.3

AP in Equation (5.4) is suitable only for binary classification tasks such as
VAD and OSD. However, it can be extended easily to multi-class classification
problems such as Speaker Counting with a leave-one-out classification strategy:
e.g. AP for the 1-spk class can be obtained by considering an equivalent binary
task where the true positives are the frames correctly classified as 1-speaker and
the true negatives are the frames classified as silence (0-spk), 2-speaker (2-spk),
3-speaker (3-spk), or 4-speaker (4-spk). In a similar way one can compute VAD
and OSD AP from a neural network trained to perform Speaker Counting or
VAD+OSD. For example, for a Speaker counting algorithm, VAD predictions

3The sequence output by the Transformer model is stretched by a factor of S, in order for
the number of input and output frames to be equal, similarly to the other models.
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can be obtained by summing the probabilities for the classes with at least one
speaker: 1-spk, 2-spk, 3-spk, and 4-spk, thus obtaining the total probability of
speech; OSD by summing classes with at least 2 speakers: 2-spk, 3-spk, and
4-spk.

Unless stated otherwise, in each Table, we highlight in bold font the best
result and the ones which are statistically equivalent to it (if any) with p =
0.001. Because we found the distribution of the AP metric to be highly non-
gaussian, we use the Wilcoxon-Signed Rank non-parametric test [197].

5.6.2 Training and Testing Procedure

In the following experiments, we use the exact same training and testing pro-
cedure as in our preliminary work [99]. This allows the results to be directly
comparable. In detail, we train all models using RAdam [198] on 5 s chunks
obtained from training signals with 50% overlap. The last chunk is discarded
if shorter. Hyperparameters such as batch size, learning rate and dropout rate
are tuned for each network, dataset and training objective (speaker counting or
VAD+OSD) on the development set. Inference is performed by using a sliding
window approach is used where the logits of overlapping blocks are averaged to
obtain the final estimate. Popular speech processing toolkits such as Pyannote
[147] use this approach. In this work we use a sliding window of 3 s with 50%
overlap.

In our preliminary work [99], we found that using training targets obtained
via Forced-Alignment (FA) brings considerable improvement even when manual
annotation is used as the ground truth in the testing phase. We also studied
the efficacy of FA as an automatic labeling procedure for speech segmentation
applications using synthetic data and we found that, when close-talk worn
microphones are employed, it can be considered reliable even in overlapped
speech regions and challenging SNR conditions. Thus, we employ FA labels to
train OSDC models on both AMI and CHiME-6. In detail, we use the Kaldi
[95] recipes for AMI and CHiME-6 and get the segmentation from the tri3
GMM-HMM speech recognition model.

The results on the test set are evaluated using the official annotation, which
is manual in the case of AMI and FA-based in the case of CHiME-6. In fact,
the FA-based annotation of the CHiME-6 development and evaluation sets was
obtained with similar FA procedure as used here.

Moreover, to further improve performance on real-world data and counteract
class imbalance, we resort, in our experiments, to the data-augmentation strat-
egy described by [99], where it was shown to bring significant improvements.
This data-augmentation technique, which is itself an extension of the one pro-
posed by [170], consists of on-the-fly creation, at training time, of new concur-
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rent speaker examples by overlapping 2, 3, and 4 random single-speaker chunks
from the original dataset in order to re-balance the classes. To further increase
the training material, a random gain factor sampled from N (µ = −16.7, σ = 4)
in dB scale is applied to each chunk independently. In this way, we augmented
the original AMI data by a factor of 70% and CHiME-6 data by 40 %. This
augmentation factor is tuned for each dataset using the development set. In
parallel, to improve generalization, we also use SpecAugment [199] on both
single-channel and spatial features separately.

5.6.3 Choice of Transformer Hyperparameters and
Single-Channel Features

In Table 5.2, we show the hyperparameter space explored for the proposed
Transformer-based architecture. We varied number of future and past frames
(C) and subsampling factor (S) used in cat-pool operation as well as size of hid-
den representation (H), number of attention heads, size of feed-forward neural
network hidden layer (FFN size) and number of transformer encoder blocks
(R). The hyperparameters were tuned on the development set of AMI, for
fair comparison with [168] who also optimized his LSTM model on AMI. The
models were trained to perform VAD+OSD according to the framework intro-
duced in Section 5.2. The best combination was selected using two criteria:
overall VAD+OSD performance and inference-time computational footprint,
to give an overview of how much demanding the model is when used in prac-
tical applications. In fact, if the OSDC model has a modest computational
burden, using it at the very first stage of a speech processing pipeline has the
advantage of lowering the computational requirements of the whole pipeline,
as subsequent processing can be applied only when needed. Moreover, models
with modest computational requirements allow for deployment on mobile and
edge-computing devices.

Table 5.2: Hyperparameter space explored for the Transformer-based architec-
ture. The best combination of hyperparameters is highlighted in
bold.

Hyperparameter C S H heads FFN size R

Values (7, 5) (10, 5) (256, 384) (4, 8, 16) (1024, 2048) (2, 4, 8)

In Table 5.3, we show the VAD and OSD performance on the AMI devel-
opment set, as well as the total number of floating point operations (FLOP)
and total memory consumption (Mem) with the best combination of hyperpa-
rameters (Best) and when changing the value of one hyperparameter at a time.
FLOP and Mem are computed with a 300-frame (3 s) dummy 80-dimensional
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feature sequence (matching the 80 log-Mel features used in the following exper-
iments), generated from a uniform distribution. These computational footprint
figures are estimated using the built-in profiler in the Pytorch toolkit and the
Performance Application Programming Interface [200]. Several observations
can be made. First, the choice of hyperparameters does not affect the VAD
performance, which is arguably a simpler task than OSD and is more easily
tackled by the network. Second, doubling the number of Transformer Encoder
blocks only marginally improves performance at the cost of a significant in-
crease of the computational footprint. Third, increasing time resolution by
halving the sub-sampling rate also significantly increases the computational re-
quirements without bringing significant benefits, meaning that a resolution in
the order of 100 ms is enough in the application scenario considered here.

Table 5.3: VAD and OSD AP (%) and computational footprint of the
Transformer-based architecture on the AMI development set for dif-
ferent architecture hyperparameter values.

Model Parameters FLOP [106] Mem [106] AP
VAD OSD

Best 85.6 3.3 98.5 57.4
S = 5 166.8 6.9 98.5 57.5
R = 8 161.0 6.2 98.5 57.8

heads = 8 85.4 3.6 98.5 56.9
FFN size = 2048 153.1 5.1 98.5 57.6

In Table 5.4, we report the results achieved by the proposed Transformer-
based architecture on the AMI development set for different choices of single-
channel input features. In the past, [168] and [164] explored different single-
channel features for the LSTM and CountNet architectures: [168] used gam-
matone filterbanks, log-Mel and other features such as kurtosis and spectral
flatness, while [164] explored magnitude STFT spectra, log spectra and 40
Mel-scale filterbanks. In both studies, the features were extracted with a 25 ms
window and 10 ms hop-size. Hereafter, we consider magnitude spectra com-
puted over 32 ms and 64 ms windows (512 and 1024 samples respectively),
40 and 80 log-Mel, 40 and 80 gammatone filterbanks, and 20 and 40 MFCCs
instead. All these features were computed with a 10 ms hop-size. Regarding
MFCCs, we used 20 and 40 Mel bands, respectively. A window of 25 ms was
used for log-Mel, gammatone and MFCCs. We can see that OSD and to a
lesser extent VAD performance correlate with frequency resolution. In fact,
especially for OSD, the use of compact features such as MFCCs, 40 log-Mel or
40 gammatone filterbanks leads to a loss in performance. These results par-
tially agree with the findings of [168], who found 64 gammatone filterbanks to
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be superior to 40 log-Mel features for OSD.

Table 5.4: VAD and OSD AP (%) achieved by the Transformer-based archi-
tecture on the AMI development set with different choices of single-
channel features.

AP MagSpec Log-Mel Gammatone MFCC
512 1024 40 80 40 80 20 40

VAD 98.5 98.5 98.4 98.5 98.4 98.5 98.3 98.4
OSD 61.1 61.0 58.2 61.0 58.0 59.8 56.8 58.4

Because no statistical difference was found between 80 gammatones and 80
log-Mel and higher-resolution features (e.g., 64 ms magnitude spectra) did not
result in higher performance, we ultimately decided to use 80 log-Mel features
in the following.

5.6.4 Computational Footprint Comparison Across
Architectures

In Figure 5.6 we report the total number of floating point operations (FLOP),
the total memory usage and the inference time in clock cycles for the four
considered network architectures as a function of the input signal duration
from 1 s to 100 s. Inference time is computed over batches of 64 examples
in order to get reliable estimates. As we are interested in comparing only
the architectures, we use the same single-channel features for all architectures,
namely 80 log-Mel features with 25 ms window and 10 ms hop-size. An Intel
i9-10920X CPU is employed to perform the comparison.

As expected, regarding inference speed, the RNN-based architectures (LSTM
and CRNN) are slower than the TCN and the Transformer, which do not
employ recurrence. A similar trend is observable in the FLOP plot, with the
difference that the CRNN has a much higher FLOP count than the other
architectures due to the use of 2-D convolutions, despite the fact that it is
slightly faster than the LSTM architecture as it employs pooling operations
and the CNN part is parallelizable. The use of 2-D convolutions also increases
the CRNN memory footprint with respect to the other architectures. The small
number of parameters employed in the TCN leads to similar memory footprint
as the LSTM architecture.

Overall, the proposed Transformer architecture is the most efficient accord-
ing to the three criteria despite having the second largest number of parameters
after the LSTM. Due to the cat-pool operation, the total memory usage is kept
contained and grows almost linearly until a duration of 100 s. In practice,
due to the fact that OSDC typically requires a context of a few seconds only,
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Figure 5.6: Inference-time computational footprint for the four considered neu-
ral network architectures as a function of the input signal duration.
Top: number of floating point operations (FLOP). Middle: Total
memory usage in GB. Bottom: number of CPU clock cycles. The
numbers in parentheses in the legend indicate the number of model
parameters. The two axes are in log-scale.

inference is never performed directly over such long signals. In fact, a sliding
window approach, as explained in Section 5.6.2 is employed. More generally,
all architectures, including previously proposed LSTM and CRNN ones, attain
overall computational resources figures which are suitable for edge devices de-
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ployment. For example, the FLOP count for one second of audio is comparable
to the one reported by [201] for keyword spotting in smartphone devices.

An important take from these results is also that the number of parameters,
which is widely used as a gauge for model computational burden, does not cor-
relate well with the latter and can be deceptive when comparing very different
architectures.

5.6.5 Single-Channel Experimental Results

We now evaluate the performance achieved by the four architectures on the
AMI and CHiME-6 distant speech datasets. For the sake of comparison with
[168] and [164], we use single-channel features only, namely 80 log-Mel features
with 25 ms window and 10 ms hop-size.

Each architecture is trained and evaluated according to two different tasks:
VAD+OSD and speaker counting. Indeed, we are interested in assessing the
feasibility of VAD+OSD and speaker counting on real-world data. Speaker
counting, as already said, has the advantage of providing more information to
downstream tasks, but it is plagued by extreme class imbalance. VAD+OSD,
by contrast, does not provide any clue about concurrent speakers, but exhibits
a less extreme class imbalance.

Concerning AMI, to allow direct comparison with previous works [99, 168],
data from all microphone channels is used during training while testing is per-
formed on the first microphone of array 1. Regarding CHiME-6, training is
also performed using all microphone channels from all array devices but, when
evaluating, we consider for each array the first channel and then average the
outputs of single-channel systems across all arrays because of the multi-room
environment of CHiME-6.4

In Table 5.5, we report the VAD and OSD results obtained when training the
models with a VAD+OSD objective. It can be seen that the AP figures on both
datasets are considerably higher for VAD than for OSD. This is expected since
OSD is inherently a more challenging task than VAD. As also expected, the
performance is better on AMI than CHiME-6, as CHiME-6 is arguably a much
more challenging dataset, having lower SNR due to the more unconstrained
setting. The proposed Transformer architecture performs on-par or better than
the other architectures, with the TCN architecture closely following. LSTM
and CRNN perform significantly worse, despite the addition of normalization
layers which were not present in the respective original works of [168] and
[164].5

4The single-channel evaluation protocol for CHiME-6 differs from the multichannel proto-
col adopted by [99], who averaged the outputs of single-channel systems across all 24
microphones instead.

5These normalization layers do improve performance, as can be seen by comparison with
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Table 5.5: VAD and OSD AP (%) achieved by the four considered neural net-
work architectures on the AMI and CHiME-6 evaluation sets using
single-channel features and VAD+OSD as a training objective.

VAD+OSD Model VAD OSD
AMI CHiME-6 AMI CHiME-6

LSTM 95.4 93.4 34.3 28.7
CRNN 96.7 93.8 38.9 33.2
TCN 98.5 94.3 54.2 49.0

Transformer 98.5 94.3 57.8 49.9

Similarly, Tables 5.6 and 5.7 report the speaker counting results achieved
on the evaluation sets of AMI and CHiME-6, respectively, when training the
models with a counting objective. The fact that the AP for the 0-spk class is
remarkably lower on AMI is a rather unexpected result, as it features a much
higher SNR than CHiME-6 overall. This could be explained by class imbalance
since, as reported in Table 5.1, the proportion of 0-spk in AMI is significantly
lower than in CHiME-6. The proposed Transformer architecture achieves the
best figures overall on both datasets. In general, compared to the 0-spk and
1-spk classes, the AP degrades considerably for the 2-spk class and even more
so for the 3-spk and 4-spk classes. This suggests that the data-augmentation
strategy, is only able to partially compensate for the extreme imbalance of 3-
spk and 4-spk classes. Therefore, it can be said that speaker counting is still
far from being reliable on real-world data.

Table 5.6: Speaker counting AP (%) achieved by the four considered neural
network architectures on the AMI evaluation set using single-channel
features and counting as a training objective.

Counting Model 0-spk 1-spk 2-spk 3-spk 4-spk
LSTM 47.0 82.4 24.7 6.4 0.02
CRNN 49.8 84.2 34.8 9.2 0.03
TCN 50.7 86.1 40.4 11.3 0.03

Transformer 50.9 87.2 41.8 11.2 0.03

In Table 5.8 we compare the performance of Transformer models trained to
perform either VAD, OSD, VAD+OSD or counting for the VAD and OSD tasks.
For each dataset, we report the evaluation set performance and, in parentheses,
the development set performance. Regarding VAD, the choice of the training
objective has little impact on performance on all datasets. Regarding OSD, in-

the results reported in our preliminary work [99] which did not include them.

83



Chapter 5 Speaker Counting, Voice Activity and Overlapped Speech Detection

Table 5.7: Speaker counting AP (%) achieved by the four considered neural
network architectures on the CHiME-6 evaluation set using single-
channel features and counting as a training objective.

Counting Model 0-spk 1-spk 2-spk 3-spk 4-spk
LSTM 79.1 69.7 20.5 6.1 0.002
CRNN 86.2 73.8 25.4 8.5 0.003
TCN 88.3 77.3 30.0 12.3 0.003

Transformer 88.2 77.3 30.6 12.5 0.003

terestingly, the model trained to perform speaker counting, which is inherently
a more difficult task, leads to better OSD performance than the model trained
directly with a VAD+OSD or OSD objective on the AMI development and
evaluation sets and on the CHiME-6 evaluation set. This is especially evident
on AMI, where a larger gap between the two models is observed. So, while
speaker counting performs poorly on real-world data, it can be convenient to
use models trained to perform speaker counting to perform VAD and OSD in-
stead. This may be explained by the fact that speaker count labels provide the
model with more information during training than mere OSD labels.

Table 5.8: VAD and OSD AP (%) achieved by the Transformer-based ar-
chitecture on the AMI and CHiME-6 development and evalua-
tion sets when using single-channel features and either VAD, OSD,
VAD+OSD or counting as the training objective. The values ob-
tained on the development sets are in parentheses.

Method VAD OSD
AMI CHiME-6 AMI CHiME-6

Transformer-VAD 98.5 (98.6) 94.3 (93.2) n.a. n.a.
Transformer-OSD n.a. n.a. 57.8 (61.0) 50.2 (55.4)

Transformer-VAD+OSD 98.5 (98.6) 94.3 (93.1) 57.8 (61.0) 49.9 (55.1)
Transformer-Counting 98.5 (98.5) 94.3 (93.2) 59.1 (64.3) 50.8 (55.8)

5.6.6 Multichannel Experimental Results

In the following, we select the best model found in Section 5.6.5, namely the
proposed Transformer model trained with a speaker counting objective, and we
show how its performance can be improved by employing spatial features along
with single-channel features. To do so, we evaluate the IPD, CSIPD and neural
network-based spatial features and the early and late fusion schemes described
in Section 5.4 using AMI, CHiME-6 and the proposed synthetic dataset.
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In order to allow direct comparison with single-channel results, we adopt the
same training strategy as above. Data augmentation is extended to the multi-
channel scenario by overlapping multichannel audio chunks and being careful,
when mixing, in maintaining the array topology (i.e., the first channel is always
mixed with the first channel). Training is performed by considering each array
separately and using the same FA-based targets as above. Testing is performed,
on AMI and CHiME-6, by averaging the predictions made independently for
each array across all arrays (i.e., 2 devices for AMI and 6 for CHiME-6).

The IPD and CSIPD features are computed with an STFT window length
of 50 ms and the same 10 ms hop-size as single-channel log-Mel features. The
corresponding feature vectors, for each microphone pair, are thus of size 801
and 1602, respectively.

Neural network based localization features are extracted using the same
Transformer-based architecture as for OSDC, but with R = 2 and the modifi-
cations outlined in Section 5.4.2. The network takes CSIPD features relative
to most distant microphone pairs with the same STFT window length and
hop-size as above, and it outputs D = 181 discrete DoAs. It is trained on
matched synthetic datasets. More specifically, concerning AMI, we use our
synthetic dataset by simulating a circular array instead of the linear one and
compute CSIPDs over the 4 pairs obtained by taking opposing microphones in
the circular array.

Regarding CHiME-6, we perform training on the Kinect-WSJ2Mix dataset
[202] which involves simulated Kinect devices and real CHiME-6 noise and
we use CSIPD features between the 3 microphone pairs with largest distance,
as explained in Section 5.4.1. Because Kinect-WSJ2Mix involves at most 2
overlapping speakers while in CHiME-6 up to 4 concurrent speakers can be
present, we extend the original data by creating on-the-fly mixtures of up to 4
overlapped speakers and use this newly generated data to train the localization
network.

Regarding the experiments performed on the synthetic dataset, we also use
CSIPD features between the 3 microphone pairs with largest distance as in-
puts. Contrary to the AMI and CHiME-6 real-world datasets, in which the
localization network is trained on a separate dataset, here we use the same
synthetic data for both the OSDC and the localization network.

In addition, to avoid possible domain mismatch between the simulated train-
ing dataset for the localization network and the test dataset for the OSDC
network, we fine-tune the localization network with the OSDC model by joint
optimization with respect to the speaker counting task on the OSDC training
dataset. This fine-tuning step is critical to achieve good performance when
applying the OSDC network to real-world datasets: for example, on CHiME-6
without fine-tuning the resulting AP is in the order of 50% only. We summarize

85



Chapter 5 Speaker Counting, Voice Activity and Overlapped Speech Detection

the datasets used for training the neural localization network, fine-tuning and
testing with the back-end OSDC system in Table 5.9.

Table 5.9: Datasets used for the neural localization network experiments: train-
ing (train), fine-tuning (adapt) with OSDC back-end and testing
(test) dataset splits. The total number of hours for each dataset is
reported in parenthesis.

Datasets

Localization Network OSDC Network

train adapt test

Synthetic (23h) AMI (81h) AMI (9h)
Reverberated WSJ-2mix (47h) CHiME-6 (40.3h) CHiME-6 (5.2h)

Synthetic (23h) Synthetic (23h) Synthetic (4.6h)

In Tables 5.10 and 5.11, we report the performance achieved for the VAD
and OSD tasks, respectively, with different spatial features, fusion schemes,
and numbers of microphone pairs. Microphone pairs are selected as described
in Section 5.4.1, by considering, as the upper bound (all), only pairs which
add significant spatial diversity, i.e., from 1 to 4 pairs formed by opposing
microphones in AMI and from 1 to 3 pairs in CHiME-6 and the synthetic
dataset. We also include in the comparison of a single-channel ensemble system
with no spatial features, where ensembling is done by averaging the OSDC
network outputs over all microphones in the array and a single-channel system
trained on beamformed audio using BeamformIt [70].

Table 5.10: VAD AP (%) achieved on the AMI, CHiME-6 and synthetic eval-
uation sets by the Transformer-based architecture trained with
a speaker counting objective for different spatial features, fusion
schemes, and numbers of microphone pairs (1, 2 or all), as com-
pared to single-channel features only (None, 1 ch.), an ensemble of
single-channel systems (None, all ch.) and a single-channel system
+ BeamformIt (None, enh).

Dataset Fusion IPD CSIPD Neural None

1 2 all 1 2 all all 1 ch. all ch. enh

AMI early 98.6 98.7 98.7 98.6 98.7 98.7 98.7
late 98.6 98.7 98.7 98.6 98.7 98.7 98.7 98.5 98.6 98.5

CHiME-6 early 94.7 94.8 94.8 94.7 94.9 95.1 95.4
late 94.8 95.4 95.4 94.9 95.4 95.4 95.5 94.3 94.5 94.3

Synth early 96.3 96.8 97.2 96.1 96.4 96.8 97.5
late 96.5 97.2 97.4 96.3 97.1 97.4 97.5 96.4 96.6 96.4
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For what concerns VAD performance in Table 5.10, it can be seen that neu-
ral network-based localization features result in on-par or higher performance
than the other spatial features, and they outperform single-channel systems by
a significant margin on CHiME-6 and the synthetic dataset. Regarding AMI,
the AP saturates for most models due to the fact that, as noted previously
in Section 5.6.5, silence is under-represented in the material. An interesting
trend which appears on CHiME-6 and synthetic data is that the performance
of signal-based spatial features improves when increasing the number of mi-
crophone pairs and by using late fusion. Especially on models with late fu-
sion, using more microphones considerably boosts the performance for IPD
and CSIPD features. Instead, a smaller improvement is noticeable when early
fusion is employed, due to the fact that the size of CSIPD and IPD features
grows linearly with the number of pairs but the bottleneck convolutional layer
applied in early fusion maps them to a fixed-size representation (384 neurons,
as reported in Table 5.2). Thus some information is inevitably lost in early
fusion. On top of that, in late fusion spatial features are available at multiple
stages of the architecture.

Table 5.11: OSD AP (%) achieved on the AMI, CHiME-6 and synthetic eval-
uation sets by the Transformer-based architecture trained with
a speaker counting objective for different spatial features, fusion
schemes, and numbers of microphone pairs (1, 2 or all), as com-
pared to single-channel features only (None, 1 ch.), ensemble of
single-channel systems (None, all ch.) and a single-channel system
+ BeamformIt (None, enh).

Dataset Fusion IPD CSIPD Neural None

1 2 all 1 2 all all 1 ch. all ch. enh

AMI early 58.1 58.6 59.4 57.8 58.4 58.9 59.3
late 58.4 59.5 60.3 58.1 59.6 60.4 59.7 57.8 58.6 57.6

CHiME-6 early 51.4 51.5 51.6 51.3 51.4 51.5 51.8
late 51.6 52.4 52.4 51.7 52.3 52.2 51.9 50.8 51.2 50.2

Synth early 81.8 82.3 82.7 81.6 82.0 82.4 83.8
late 82.8 83.4 84.2 82.9 83.6 84.4 84.3 82.4 83.1 82.1

Similar trends can be also observed for OSD performance in Table 5.11 re-
garding the number of microphone pairs and early fusion versus late fusion.
Notably, neural network-based spatial features are outperformed by signal-
based ones on AMI and CHiME-6 when late-fusion is used but reach on-par
or top performance when early fusion is employed instead. This suggests that
fine-tuning the localization network compensates for the synthetic/real domain
mismatch only up to a certain point regarding OSD. It can also be observed
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that the performance gain achieved by late fusion with respect to early fusion
appears modest for neural spatial features, while it is substantial for signal-
based ones. This is explained by the fact that neural network-based features
are less affected by the aforementioned “bottleneck issue” in early fusion, as
they have a more compact size than signal-based ones and, moreover, are jointly
fine-tuned with the OSDC system. Again, models with spatial features are able
to outperform the single-channel systems and ensembles of single-channel sys-
tems. This is notable, as the ensemble is performed using all channels in the
array and it comes at the cost of increasing the computational footprint lin-
early in the number of channels. By contrast, spatial features allow us to boost
performance with a smaller increase in computational requirements. The use of
beamformed audio degrades OSD performance but not VAD performance with
respect to the single-channel only baseline system. This could be explained by
the fact that BeamformIt tends to enhance the source with the highest energy
and attenuate the rest.

In Tables 5.12 and 5.13 we report the counting performance achieved for
different spatial features on AMI and CHiME-6, respectively, using two micro-
phone pairs and late fusion. On both datasets, a similar trend can be noticed.
On the one hand, neural network based localization features achieve the best
figures regarding the 0-spk and 1-spk classes which are the most represented
ones. This is in accordance with the VAD results in Table 5.10 where neural
spatial features have in general higher scores. On the other hand, CSIPD and
IPD obtain similar or higher AP values for 2 and 3 concurrent speakers. This
is in accordance with the OSD results in Table 5.11. Nonetheless, while sys-
tems based on spatial features are able to substantially increase the speaker
counting performance over single-channel systems, the observations made in
Section 5.6.5 are still valid, and reliable speaker counting remains out of reach
on real-world data.

Table 5.12: Speaker counting AP (%) achieved on the AMI evaluation set by the
Transformer-based architecture trained with a speaker counting ob-
jective for different spatial features, as compared to single-channel
features only (None, 1 ch.) or an ensemble of single-channel sys-
tems (None, all ch.).

Spatial Features 0-spk 1-spk 2-spk 3-spk 4-spk
IPD 52.8 88.3 45.0 12.8 0.03

CSIPD 52.9 88.4 45.1 12.7 0.03
Neural 53.1 88.8 44.9 11.8 0.03

None, 1 ch. 50.9 87.2 41.8 11.2 0.03
None, all ch. 51.3 87.9 42.4 11.5 0.03
None, enh 50.8 87.4 41.6 10.8 0.03
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Table 5.13: Speaker counting AP (%) achieved on the CHiME-6 evaluation
set by the Transformer-based architecture trained with a speaker
counting objective for different spatial features, as compared to
single-channel features only (None, 1 ch.) or an ensemble of single-
channel systems (None, all ch.).

Spatial Features 0-spk 1-spk 2-spk 3-spk 4-spk
IPD 89.9 78.8 32.6 12.4 0.003

CSIPD 90.1 78.7 32.5 12.4 0.002
Neural 90.2 79.0 32.2 11.9 0.003

None, 1 ch. 88.2 77.3 30.6 12.5 0.003
None, all ch. 90.1 78.4 31.4 11.9 0.003
None, enh 88.1 77.4 30.3 11.8 0.003

Finally in Figure 5.7 we use the synthetic dataset to further explain the
benefit of spatial features. Using mixtures of two speakers, we report the OSD
AP values obtained by the system using single-channel features only versus
the ones obtained with late fusion and CSIPD features computed using the 3
microphone pairs with largest distance. The OSD AP performance is plotted
against the mean distance of the two speakers from the array and the angle
between them as seen from the array. It can be seen that, for the single-channel
model, performance degrades to some extent as the speaker distance increases
(i.e., colors become darker from bottom to top), but it is largely independent of
the angle between the speakers. By contrast, for the model employing spatial
features, performance still degrades as the speaker distance increases but at
the same time it clearly improves as the angle between the speakers increases
(i.e., colors become lighter from left to right). In fact, the AP is significantly
boosted for angles greater than 30 degrees, indicating that spatial features
offer complementary information which allows the model to more effectively
discriminate frames with overlapped speech.

5.7 Conclusions & Future Work

In this Chapter, we presented a brief state-of-the-art and historical overview of
VAD, OSD and speaker counting. We then reported a study about VAD+OSD
and speaker counting on real-world meeting scenarios recorded with distant
microphone arrays. We focused on neural network based approaches and com-
pared different architectures for the two tasks, on AMI, CHiME-6 and a pur-
posedly developed synthetic dataset. Among the neural networks compared
we introduced two novel architectures: one based on TCNs and another based
on the Transformer. In parallel we explored the use of spatial features, both
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Figure 5.7: OSD AP (%) achieved on the synthetic evaluation set by the
Transformer-based architecture trained with a speaker counting ob-
jective as a function of the mean distance of the speakers from the
array and the angle between the speakers. Left: single-channel fea-
tures only. Right: CSIPD spatial features and late fusion.

signal-based and neural-based, to aid in the VAD+OSD and speaker counting
tasks when multiple microphones are available. We conducted an extensive
experimental evaluation by comparing the models’s computational footprint
and VAD, OSD and counting performance on single-channel and multichannel
distant speech data. On CHiME-6, our proposed TCN and Transformer-based
architectures achieve an absolute improvement in AP of 15% and 16% over
previous techniques, respectively. Overall, we found the proposed Transformer-
based architecture to be the most promising as it was shown to be able to reach
on-par or better results than the other architectures with a significantly lower
computational footprint. In general, in comparing VAD+OSD and speaker
counting tasks we found that, due to class imbalance, speaker counting per-
forms poorly on real-world data, but, on the other hand, it is desirable to use
a speaker counting objective to train a system to perform VAD+OSD as it is
shown to improve OSD. Finally, concerning spatial features, we found that sig-
nificant further improvements can be obtained by using a late-fusion strategy
and by increasing the number of microphone pairs considered. Neural-based
spatial features show a clear advantage over signal-based ones for VAD across
all datasets, but no spatial feature shows a clear advantage over another for
OSD or counting. Future work includes fusing estimates over multiple arrays
in a way that favors arrays closer to the speakers and exploits the relative
positions and orientations of the arrays whenever they are known.
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Chapter 6

Leveraging Speech Separation for
Low-Latency Speaker Diarization

Context
This work was presented at SLT 2022 [203] and is an equal contribution with
Giovanni Morrone. It was done within the AGEVOLA project in collaboration
with Desh Raj from John Hopkins University, Enrico Zovato from PerVoice
s.r.l. Alessio Brutti from Fondazione Bruno Kessler and Luca Serafini from
UNIVPM. The following section about the history and current state of the art
diarization is part of a review article [204] done also within the AGEVOLA
project.

6.1 A Brief History of Speaker Diarization
Speaker diarization (or diarisation), also often referred to as simply diarization,
aims at segmenting an audio recording into temporal segments denoting the
boundaries of each speaker’s utterances. It addresses the problem of “who
spoke when?”, without a-priori knowledge of the speakers’ identities and is an
essential front-end task for many applications, such as meeting transcription,
live captioning, speaker-based indexing, and telephone conversation analysis to
name a few.

The Early Days

The first works on speaker diarization can be traced back to the 1990s [205–209]
with these early works focusing on applications such as radio broadcast news
and communications. The focus of these early works was ASR speaker adapta-
tion and indeed some relied on features derived from the ASR outputs directly
[207, 209] (e.g. two pass decoding). The use of speech separation for performing
diarization was proposed by [206] again mainly for ASR applications.
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Importantly, some of these early works [205, 208], laid the foundations for
the clustering-based diarization paradigm (Figure 6.1) which would be the de-
facto standard approach for decades to come. They realized that diarization
was best addressed at the time as a clustering problem. The input audio
stream was first segmented using VAD, and then on each segment, speaker
discriminative features are extracted with a sliding window approach (chunking
block in Figure 6.1). These speaker discriminative features are then clustered
together in order to assign each of the original chunks to each speaker. The
number of clusters is also used to detect the total number of speakers in the
recording. The clustering step was largely based on agglomerative hierarchical
clustering (AHC) and common measures or criterion to define similarity (or
distances) between the speaker features were bayesian information criterion
(BIC) [208] and generalized likelihood ratio (GLR) [205]. In these early days
the features used were mostly “hand-crafted": Mel-spaced frequency cepstrum
coefficients (MFCC), perceptual linear predictive (PLP) [210], linear predictive
coding (LPC) [211] features were a common choice.

Voice Activity
Detection

(optional)
chunking

Embedding
Extraction Clustering

spk1 spk2Input audio stream

Figure 6.1: General block scheme for a clustering-based diarization system.

The 2000s and Beyond

During the first decade of the new millennium researchers understood the need
to move from fully hand-crafted to principled data-driven methods to obtain
more robust and higher-level speaker-id discriminative features. A significant
advancement in this sense was done by Reynolds et al. [212]. This work
introduced the speaker-independent gaussian mixture model (GMM) univer-
sal background model (GMM-UBM altogether) for speaker verification. In
this new paradigm, each vector of features is derived in a data-driven fash-
ion from a GMM, a probabilistic generative model that represents the data
with a weighted sum of a finite number of multi-dimensional Gaussian com-
ponents. The main idea is that this GMM-UBM model could be trained on a
large amount of data with a large speaker identity variability via a maximum a
posteriori (MAP) criterion. Then, for diarization applications, after VAD some
parameters Such GMM-UBM paradigm remained the mainstream approach to
diarization since the invention of DNN-based speaker discriminative features.
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Other key works of this decade built upon the GMM-UBM paradigm try-
ing to address its shortcomings [213–215]. The research focused on boost-
ing speaker discriminative features robustness against intra-speaker variabil-
ity (e.g., due to changes in intonation, background noise, etc.) and, at the
same time, inter-speaker discriminability. This latter to allow for better dif-
ferentiating distinct speakers. For example, joint factored analysis (JFA) [213]
and Eigenvoice priors [214] try to tackle these issues by exploiting lower di-
mensional factorizations of the GMM supervectors, to use as a more robust
speaker-dependent features with lower intra-speaker variability. JFA in par-
ticular assumes that the supervector covariance matrix can be decomposed
into a channel space and speaker space, with the channel space responsible
for the intra-speaker variations. It then introduces the concept of speaker
and channel-dependent supervectors and uses these two to obtain disentangled
speaker representations by factoring out the channel-dependent component.

While effective, Dehak et al. [215] found that this decomposition is far from
perfect and speaker-related information tend to leak into channels factors. They
propose instead to define just only total variability matrix which models jointly
the channel and speaker factor simultaneously and not two independent chan-
nel and speaker spaces as in JFA. Speaker id features then can be obtained via
a projection of this total variability space. This can be done for each utterance
through Baum-Welch statistics. They call this projection vector i-vector and it
found to be a the most effective pre-deep learning speaker discriminative fea-
ture. Channels effect are compensated via linear discriminant analysis (LDA)
[215] or via [216] probabilistic LDA (PLDA). Such use of PLDA and i-vectors
has been a popular technique for speaker verification and diarization till the
advent of deep learning based approaches.

The Deep Learning Era

Starting from 2014, the studies and refinements in the deep learning area,
together with the increasing availability of annotated transcriptions and data,
made it possible to exploit DNNs in place of GMMs for obtaining speaker-
discriminative features. One of the first works in this direction is the one of
Variani et al. [217], in which DNN-based features (so-called d-vectors) were
shown to be able to outperform i-vectors, the state-of-the-art approach of the
time, especially in noisy conditions. As it happens with the GMM-UBM, in
[217] the DNN was trained on large corpora with a vast number of speakers and
different acoustic conditions to try to classify the correct speaker (multi-class
classification problem) among all the ones in the training set. In inference then
the output of the last hidden layer was used as a speaker-discriminative feature
for speaker verification or diarization.
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A very popular and effective follow-up work, is the invention of the x-vector
extractor [172] which employs a time-delay neural network (TDNN) and a
statistical pooling layer to obtain a low-dimensional speaker-id representa-
tion. This trend of designing better DNN architectures to improve speaker-
id discriminative features is continuing today [218]. Some recent improve-
ments include the use of ResNet-based designs [219], TitaNet [220], ECAPA-
TDNN [221] and the use of self-supervised learning pre-trained models such as
WavLM [15]. Other works [222–224] instead have focused on the loss function
and training strategy to use to train such a DNN speaker-id feature extractor.
For example, [222, 224] proposed to use metric learning approaches, whereas
[223] the use of angular-softmax loss to improve performance. This is also
a very active research direction. In all these works, clustering continued to
be, as said, the main approach with DNN-based speaker-id representation and
was used often in conjunction with PLDA to reduce dimensionality and intra-
speaker variability before clustering.

Indeed many advances also regarded other components of the diarization
pipeline, such as the clustering step or the post-processing step. For exam-
ple, Park et. al. [225] showed that by leveraging spectral clustering is possi-
ble to improve over the at the time state-of-the-art PLDA followed by AHC
approach. Another notable work, this time regarding post-processing, is vari-
ational Bayesian (VB) resegmentation, initially proposed for an i-vector-based
system [226] and later adapted to an x-vector-based system [227]. This latter
approach called VBx has been proven extremely effective on a wide number
of datasets [228] and challenges [229]. Among the post-processing works it
is worth mentioning ensembling or fusion methods that allow combining the
output of multiple heterogeneous diarization systems in order to improve the
performance. Such works include diarization output voting error reduction
(DOVER) [230] and DOVER-Lap, a recent improvement over DOVER that
allows handling also overlapped speech regions [231, 232].

A number of recent works also explored how to improve clustering-based
methods with deep learning based techniques in order to let them deal also
with overlapped speech. For example, Bullock et al. [170] proposed to use an
overlap detector to mask the speaker posterior matrix in the VBx method. Raj
et al. [233] instead devised a way to handle speaker-id discriminative features
from overlapped speech regions during the clustering step.

Due to the greater availability of annotated data and possibilities opened
up by deep learning recently a new line of research arose, involving other al-
ternative approaches to diarization that try a tighter integration with DNNs.
Among such works are region-proposal networks diarization (RPND) [234], un-
bounded interleaved-state recurrent neural network (UIS-RNN) [235], discrim-
inative neural clustering (DNC) [236], deep learning SSGD-based approaches
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[203, 237], target-speaker VAD (TS-VAD) [238]. Some of these approaches
and in particular SSGD and TS-VAD have proven to be particularly effective:
for example, the system winning the recent third DIHARD Challenge [239],
was based on a combination of SSGD and TS-VAD based approaches [240].
UIS-RNN [235] and DNC [236] consist of supervised neural models based on
speaker embeddings. The former is clustering-free, whereas the latter relies on
neural-based clustering. They are both not overlap-aware, but they are able to
manage a variable number of speakers.

Building on the invention of PIT for DNN-based speech separation in 2019
[241], Fujita et al. developed the first fully end-to-end DNN-based system
[242] which was later improved using self-attention [243]. This again sparkled
another research direction on systems based on end-to-end neural diarization
(EEND) which is very active nowadays. Horiguchi et al. [244] proposed to
extend EEND with an encoder-decoder-based attractor architecture (EEND-
EDA) able to handle a flexible number of output speakers thanks to an autore-
gressive decoder.

Kinoshita et al. proposed several improvements to the initial EEND ap-
proach by integrating speaker-id embeddings extraction so that the strengths
of EEND and clustering-based approaches can be combined in a framework
called EEND-vector clustering (EEND-VC) [245–248].

Other recent works focused on streaming processing: [249] proposed to ex-
tend EEND with a speaker-tracing buffer to solve the permutation ambiguity
caused by PIT when the model inference is performed via sliding windows.
EEND-EDA streaming versions have been also recently proposed [250, 251].
Also focusing on online processing, [252], combined the use of EEND with
an x-vector extractor and online clustering, where the EEND model is used
to gate the representation before the x-vector statistical pooling layer, to ex-
tract per-speaker embeddings even in overlap regions. Recent results in the
most popular diarization challenges indicate that EEND-based systems are in-
creasingly competitive [240, 253, 254] and nowadays surpass clustering-based
methods.

Finally, other end-to-end approaches, that do not rely on PIT, such as DIVE
[255] or joint speaker diarization and ASR systems based on a recurrent neural
network transducer (RNN-T) [256], have been also recently proposed.

6.2 Low-latency Speech Separation Guided
Diarization with Leakage Removal

A classical speech-separation guided diarization pipeline [237] is composed of
two main modules: a speech separation algorithm and a VAD.
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Figure 6.2: General diagram for the SSGD method.

In our recent work [203] we propose the addition of a third module, a leakage-
removal post-processing step whose goal is to reduce the false alarm due to
leaked speech in single speaker segments. Our newly proposed SSGD is shown
in Fig. 6.2. The input of the system is a single-channel mixed audio stream,
denoted as Y ∈ R1×T , where T is the number of audio samples. In Fig.6.2 we
also consider the possibility that the speech separation is done independently
for each chunk, and the result is aggregated using continuous speech separation
(CSS) [257]. This is different from [258, 259] where instead a classical diariza-
tion system is used to resolve the permutation ambiguity between neighboring
CSS chunks.

6.2.1 Speech Separation Module

We consider in our experiments SSGD based on causal separation models (i.e.,
Conv-TasNet [176] and dual-path recurrent neural network (DPRNN) [54]).
Since the majority of diarization approaches only work offline, we also ex-
periment with non-causal separation models (as used in [237]) to carry out a
more comprehensive comparison with clustering-based and EEND-based state-
of-the-art systems. Additionally, we analyze the application of CSS with non-
causal speech separation (SSep) models. In such configuration, the latency of
these models is tied to the CSS window size and thus can be used online. CSS
is not applied to causal SSep models since they are already capable to process
the input in a streaming fashion with low latency.

Briefly, CSS consists of three stages as shown in Fig. 6.2: framing, separation
and stitching. In the framing stage, a windowing operation splits Y into I
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overlapped frames Yi ∈ R1×W , i = 1, . . . , I, with I = ⌈ T
H ⌉, where W and

H are the window and hop sizes, respectively. Then, separation is performed
independently on each frame Yi, generating separated output frames Oi ∈
RC×W , where C is the number of output channels. In this work, C is fixed to
2, meaning that we assume that the maximum number of speakers in any frame
is 2. This is a common assumption made for CSS systems, and is also valid in
general for telephone conversations (which is the focus of this work). To solve
the permutation ambiguity between consecutive frame outputs, the stitching
module aligns channels of two separation outputs Oi and Oi+1 according to
the cross-correlation computed on the overlapped part of consecutive frames.
The final output stream X ∈ RC×T is generated by an overlap-add operation
with an Hanning window.

6.2.2 Leakage Removal Post-Processing

In the presence of long input recordings, even state-of-the-art separation mod-
els are prone to channel leakage when only one speaker is active (e.g., see
estimated sources in Fig. 6.2). As a result, the “leaked” segments are detected
as speech by the following VAD module, leading to a higher false alarm er-
ror in the final diarization output. To alleviate this problem, we propose a
post-processing algorithm to reduce false alarms without significantly affecting
missed speech, speaker confusion errors, and separation quality. It does not
introduce additional latency and its computational overhead is negligible.

Given an input mixture Y and two estimated sources X1 and X2, we split
each signal into disjoint segments Yℓ, X1

ℓ , X2
ℓ of length L. For each segment,

we compute the SI-SDR [260] s1
ℓ , s2

ℓ between segments of every source X1
ℓ , X2

ℓ

with the associated segment Yℓ of input mixture. If both s1
ℓ , s2

ℓ are above
a threshold tℓr, a segment with leakage is detected. Leakage is removed by
filling with zeros the segment with lower SI-SDR. This process results in new
estimated sources X̃ℓ, which are passed as input to the VAD module. The
leakage removal algorithm is summarized in the pseudo-code below.
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Algorithm 1 Leakage Removal
Input: Y, X1, X2, T , L, tℓr

Output: X̃ℓ
1, X̃ℓ

2

X̃ℓ
1 ← X1; X̃ℓ

2 ← X2

for i← 0 to T by L do
s1

ℓ ← SI-SDR(Y[i:i+L], X1[i:i+L])
s2

ℓ ← SI-SDR(Y[i:i+L], X2[i:i+L])
if s1

ℓ > tℓr and s2
ℓ > tℓr then

if s1
ℓ > s2

ℓ then
X̃ℓ

2[i:i+L] ← 0
else

X̃ℓ
1[i:i+L] ← 0

6.2.3 Voice Activity Detection (VAD)

The VAD module is used to extract active speech segments from the post-
processed estimated sources and generate the diarization output. It is applied
on each estimated source X̃ℓ independently but future work could also consider
a multi-source VAD. We experiment with two different VAD models: an energy-
based VAD [219], and a neural model which employs a temporal convolutional
network (TCN), as proposed in [99, 128] and already outlined in Chapter 5.

6.3 Experimental Setup

6.3.1 Datasets

Since the focus of our work is on the conversational telephone speech (CTS)
scenario, we use the Fisher Corpus Part 1 [28] for both training and test
purposes. Fisher consists of 5850 telephone conversations in English, sampled
at 8 kHz, between two participants. It provides a separated signal for each of the
two speakers. This allows training a separation model directly on this dataset
and computing source separation metrics such as the SI-SDR improvement (SI-
SDRi). Training, validation and test sets are created by drawing 5728, 61, and
61 conversations, respectively, with no overlap between speakers identities. The
amount of overlapped speech is around 14% of the total speech duration.

In addition, we generate a simulated fully-overlapped version of Fisher for
the purpose of training the SSep models. This portion is derived from the
training set and amounts to 30000 mixtures for a total of 44 hours.

We also test the proposed methods on the portion of the 2000 NIST SRE
[27, 261] denoted as CALLHOME, consisting of real-world multilingual tele-
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phone conversations. Following the recipe in [179], we use the 2-speaker subset
of CALLHOME and the adaptation/test split that allows to compare with most
end-to-end diarization methods mentioned previously (including SA-EEND [179]).
The amount of overlapped speech is around 13% of total speech duration.

6.3.2 Architecture, Training and Inference Details

We employ our Asteroid toolkit [262] to experiment with 2 SSep architectures:
Conv-TasNet and DPRNN, both in online (causal) and offline (non-causal)
configurations (for a total of 4). For both, we use the best hyperparameter
configuration as found in [54, 176] with these exceptions: to reduce memory
footprint we employ a 16 analysis/synthesis kernel size for encoder/decoder
also for DPRNN and, regarding causal models, we use standard layer normal-
ization versus the non-causal global layer normalization employed in non-causal
models. Additionally, we set the DPRNN chunk and hop sizes to 100 and 50,
respectively. These models are trained on the simulated fully overlapped Fisher
dataset using the SI-SDR objective to separate two speakers. We use Adam
optimizer [263], batch size 4 and learning rate 0.001. We clip gradients with l2
norm greater than 5. Learning rate is halved if SI-SDR does not improve on
validation for 10 epochs. If no improvement is observed for 20 epochs, train-
ing is stopped. Each SSep model is then fine-tuned using a learning rate of
0.0001 and batch size 1 on the real Fisher data, by taking 60 s long random
segments from each recording. We tried to train the models from scratch using
the real-world Fisher data directly but we failed. Since the speech is sparse, the
models where prone to not separate at all and the training was excessively slow.
Hence the use of the simulated fully overlapped data in order to “bootstrap”
the training.

As said, we adopt the TCN VAD from [128], which is causal and for which
the latency amounts to 10 ms. This model is trained here on the original Fisher
data, using each speaker source separately, as the VAD is then applied only
to separated sources. We train on random 2 s long segments with a batch size
of 256. The rest of training hyperparameters are the same as those used for
SSep models. During inference we employ a median filter to smooth the VAD
predictions. In addition, we remove segments shorter than a threshold ts to
further reduce false alarm errors. For each SSGD model, we tune the median
filter, leakage removal threshold and ts parameters on the Fisher validation set
(CALLHOME adaptation set for CALLHOME models). The segment length
L of the leakage removal algorithm is set to 10 ms, which results in the same
latency as the TCN VAD.
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Table 6.1: Speech separation and diarization results on the Fisher and CALL-
HOME test sets in the online scenario. Separation is assessed using
the SI-SDR (dB) improvements over the input mixtures. Diariza-
tion is assessed using diarization error rate (DER), missed speech
(MS), false alarm (FA) and speaker confusion errors (SC). Latency
of the system is reported in seconds. The best results among pro-
posed techniques are shown in bold, and among EEND methods are
underlined.

Method VAD Latency Fisher CALLHOME

(s) SI-SDRiMS FA SC DER MSFA SC DER

SA-EEND+STB [249] 1 12.5
BW-EDA-EEND [250] 10 11.8
SA-EEND-EDA+STB [265] 10 10.0

Oracle sources Energy ∞ 7.4 1.4 0.1 8.9
Oracle sources TCN ∞ 3.2 1.7 0.1 5.0
Conv-TasNet Energy 0.01 -0.9 11.539.1 9.5 60.1 7.3 55.8 5.6 68.7
Conv-TasNet TCN 0.01 -0.9 1.7 70.3 2.2 74.1 3.4 82.3 0.6 86.4

+ Leakage removal TCN 0.01 -3.1 5.2 5.6 25.9 36.8 6.2 21.915.5 42.6
DPRNN Energy 0.1 22.6 7.6 1.4 0.8 9.7 5.5 6.9 1.9 14.3
DPRNN TCN 0.1 22.6 3.8 2.6 0.8 7.1 5.9 4.5 1.6 12.0

+ Leakage removal TCN 0.1 22.2 4.3 1.8 0.8 6.8 6.9 2.3 1.9 11.1

6.4 Experimental Analysis
We evaluate the performance on Fisher and CALLHOME test sets in terms
of diarization error rate (DER) including overlapped speech and using a collar
tolerance of 0.25 s, as in [179]. The evaluation is carried out using the standard
NIST md-eval scoring tool [264]. For the Fisher test set we also report the
SI-SDRi [260] source separation metric since oracle sources are available.

6.4.1 Online Separation/Diarization

The results for online SSGD diarization models are reported in Table 6.1. Or-
acle sources refers to SSGD with oracle SSep, thus with error coming only
from the VAD module. We carry out the oracle evaluation only for Fisher,
as for CALLHOME separated sources are not provided. For the CALLHOME
evaluation, we also show DERs obtained by EEND, as reported in the original
papers.

We observed that the Conv-TasNet model failed to deal with long recordings,
generating large false alarm errors. This is due to the fact that, being fully
convolutional, it has a limited ∼1.5 s receptive field. On the other hand, the
DPRNN, being based on recurrent neural networks, has no such limitations
and was effectively able to track the speakers for much longer and generate
better diarization results. The proposed leakage removal algorithm was highly
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effective for both architectures. This was especially true in the case of TCN-
based VAD since it was more prone to false alarms caused by leaked speech due
to being trained on real Fisher data and not on the output of the separators.
Although the algorithm was only partially able to mitigate the low separation
capability of the Conv-TasNet, it improved the DER by 50.3% and 50.7% on
Fisher and CALLHOME, respectively. For DPRNN, the improvement was
lower as the system without leakage removal was already able to obtain good
diarization performance. However, the proposed post-processing almost halved
the false alarm error rates and improved the DER by 4.2% and 7.5% on Fisher
and CALLHOME, respectively.

As a comparison, the current best performing online system on the CALL-
HOME dataset (i.e., SA-EEND-EDA with speaker tracing buffer [265]), obtains
10.0% DER, which is slightly better than ours but is obtained with significantly
higher latency of 10 s. Our approach works with a latency of 0.1 s, making
it appealing for applications where real-time requirements are very important
(e.g., real-time captioning). Last but not least, the SSGD is trained using a
dataset of ∼900 hours of speech, which is considerably smaller than the ones
used to train the state-of-the-art EEND models (i.e., ∼10000 hours) and re-
sults in shorter training times and less burden regarding additional costs for
the generation of simulated mixtures.

6.4.2 Offline Separation/Diarization
For the offline scenario, we compare our approach with clustering-based and
EEND methods. For the former, we use VBx [266] and spectral clustering [225],
along with their overlap-aware counterparts [170, 233]. For VAD in these sys-
tems, we use the publicly available Kaldi ASpIRE VAD model [267]1. For
overlap detection, we fine-tune the Pyannote [147] segmentation model2 on
the full CALLHOME adaptation set. The hyperparameters for each task are
tuned on the corresponding validation set. The scripts for reproducing the
baseline results are publicly available 3. For fair comparison, we also report
the performance of VBx with the TCN VAD, which however leads to degraded
performance for this system.

The results for baselines and the offline SSGD diarization models are reported
in Table 6.2. As in Table 6.1, we show DERs of the EEND methods for the
CALLHOME test set.

In contrast to the online scenario, Conv-TasNet obtained good separation
capability. However, DPRNN-based SSGD strongly outperformed the Conv-
TasNet version on all metrics on the Fisher dataset, and even surpassed the

1https://kaldi-asr.org/models/m4
2https://huggingface.co/pyannote/segmentation
3https://github.com/desh2608/diarizer

101

https://kaldi-asr.org/models/m4
https://huggingface.co/pyannote/segmentation
https://github.com/desh2608/diarizer


Chapter 6 Leveraging Speech Separation for Low-Latency Speaker Diarization

Table 6.2: Speech separation and diarization results on the Fisher and CALL-
HOME test sets in the offline scenario. The best results among
proposed techniques are shown in bold, and those among baselines
are underlined. Oracle sources evaluation is the same of Table 6.1,
as the VADs works online in both online and offline scenarios.

Method VAD Fisher CALLHOME

SI-SDRi MS FA SC DER MS FA SC DER

VBx [266] TCN 10.0 0.3 0.5 10.8 7.3 1.9 3.1 12.3
VBx [266] Kaldi 8.9 0.4 0.9 10.2 8.3 0.9 2.6 11.7

+ Overlap assignment [170] Kaldi 4.4 2.1 0.9 7.4 5.3 2.5 2.4 10.3
Spectral clustering [225] Kaldi 8.9 0.4 0.2 9.5 8.3 0.9 5.3 14.5

+ Overlap assignment [233] Kaldi 5.2 2.0 0.2 7.4 5.7 2.7 5.8 14.1
SA-EEND [179] 9.5
SA-EEND-EDA [244] 8.1
EEND + VC [245] 4.0 2.4 0.5 7.0
DIVE [255] 6.7

Conv-TasNet Energy 17.5 8.0 4.5 1.6 14.1 6.0 12.0 2.8 20.6
Conv-TasNet TCN 17.5 6.2 5.0 1.1 12.4 6.1 13.6 1.8 21.6

+ Leakage removal TCN 17.1 5.5 2.5 2.0 10.1 6.0 10.1 2.8 18.9
DPRNN Energy 22.6 7.6 1.2 0.7 9.5 5.5 4.4 0.5 10.4
DPRNN TCN 22.6 3.4 2.2 0.7 6.3 5.0 5.4 0.4 10.8

+ Leakage removal TCN 22.2 3.9 1.6 0.7 6.1 6.6 1.9 0.7 9.3

overlap-aware VBx which scored best among all clustering baselines. Regard-
ing separation performance (SI-SDRi), we can see that the offline DPRNN did
not improve over the online one. In general, the TCN VAD outperformed
the energy-based one, especially when the former was used jointly with the
proposed leakage removal, which continued to be effective in the offline config-
uration.

For the CALLHOME data, the best performing SSGD model is comparable
with SA-EEND [179]. Although the diarization capability is good, it is not
competitive with the current best performing approaches [245, 255], making it
less attractive for offline applications. However, as we show in Section 6.4.4,
it can be a more cost effective solution as the separated signals can be readily
used in downstream applications such as ASR.

In future work we will consider several strategies to reduce this gap such as
training with more data, comparable to the amount used in EEND models, and
fine-tuning our models on the CALLHOME adaptation set (as done in [179,
244]).

6.4.3 CSS Window Analysis
Recall from Section 6.2.1 that the CSS framework, besides allowing the pro-
cessing of arbitrarily long recordings, also allows to use a non-causal separa-
tion model in an online fashion with latency reduced to the length of the CSS
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window. Therefore, it can be regarded as an alternative approach for perform-
ing diarization online. We use the best SSGD offline model from Table 6.2
(DPRNN+TCN+Leakage removal) to investigate the effect of varying window
sizes on SSGD. Evaluation results are reported in Fig. 6.3 for both datasets.
As expected, the DER consistently decreased as the window size increased. In
particular, the performances were almost on par with the offline models for
windows larger than 60 and 30 seconds, respectively, for Fisher and CALL-
HOME. This suggests a possible parallelization scheme for offline SSGD by
applying CSS on minute-long frames simultaneously, resulting in significant in-
ference speed-ups and less memory consumption. The optimal chunk sizes are
different for the two datasets because of the difference in their average record-
ing duration (which is 10 minutes and 72 seconds for Fisher and CALLHOME,
respectively).
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Figure 6.3: Separation and diarization results on the test sets with different CSS
windows. The overlap between windows is set to 50%. The results
are obtained with the DPRNN+TCN+Leakage removal model.

As the window was shortened, missed speech and false alarm error rates
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remained approximately constant while speaker confusion errors consistently
increased, indicating that the main source of error comes from speaker per-
mutation due to wrong channel reordering during the stitching stage of the
CSS. For smaller windows, the cross-correlation used for reordering consecu-
tive chunks is less reliable due to the smaller size of the overlapping portion.

The CSS framework is not competitive with the online approach with causal
SSep (Sec. 6.4.1) in terms of latency. However, it could be a convenient choice
for applications in which better diarization accuracy is more desirable than
the low-latency requirement, and memory footprint is an important concern,
especially for very long recordings (e.g., > 10 minutes).

6.4.4 Automatic Speech Recognition Evaluation
A great advantage of the SSGD framework over other diarization methods is
that separated sources together with the segmentation provided by the VAD
can be readily fed in input to a back-end ASR system. To investigate ASR per-
formance, we feed to a downstream ASR the estimated sources for the DPRNN
models with and without leakage removal and using oracle segmentation or not.
We use the pre-trained Kaldi ASPiRE ASR model [95]4 and report the perfor-
mance in terms of word error rate (WER). We compare the results with the
ones obtained with input mixtures and oracle sources, which ideally represent
the upper and the lower bound for WER evaluation.

The results are reported in Table 6.3. We can see that for all SSGD systems
the degradation was small compared to using oracle signals. This suggests that
the separation is highly effective. A large improvement was obtained over the
mixture, and we can observe that the main source of performance degradation
versus a fully oracle system (oracle VAD + oracle sources) comes from the
VAD segmentation. This is consistent with what we observed for diarization
in Sections 6.4.1 and 6.4.2. The leakage removal algorithm slightly degraded
the performance, but, on the other hand, in the proposed framework it could
be only used for obtaining the segmentation and avoided for ASR (+ Leakage
removal (seg-only)). In this latter case the performance was slightly increased.

6.5 Conclusion & Future Work
In this Chapter we gave a brief historical overview of the field of speaker di-
arization, including the most recent directions which have a strong focus on
better handling of overlapped speech.

Following we presented our study [203] on the use of SSGD for real-world
telephone conversations. In this work we extended SSGD to online diarization

4https://kaldi-asr.org/models/m1
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Table 6.3: WER evaluation on the Fisher test set. The best online/offline non-
oracle results are reported in bold.

Method Online VAD
TCN Oracle

Mixture 38.74 30.69
Oracle sources 25.44 19.50
DPRNN ✓ 26.42 20.89
+ Leakage removal ✓ 26.94 21.03
+ Leakage removal (seg-only) ✓ 26.21 n.a.
DPRNN ✗ 26.21 21.13
+ Leakage removal ✗ 26.68 21.26
+ Leakage removal (seg-only) ✗ 26.13 n.a.

scenarios and arbitrarily long audio streams. We have shown that our best
online SSGD system is able to achieve comparable performance with state-
of-the-art methods based on EEND on the CALLHOME dataset with signif-
icantly lower latency (for instance, 0.1 s compared to 10 s). It also exhibits
overall stronger performance than state-of-the-art clustering methods even in
their overlap-aware variant. We considered also the use of CSS with non-causal
separation models and how this could impact downstream diarization perfor-
mance. Our findings suggest that DERs were almost on par with the offline
case with a sufficiently large CSS window of 60 or 30 seconds for Fisher and
CALLHOME datasets, respectively. Finally, we have shown that SSGD is
particularly appealing for multi-talker speaker-attributed ASR, since the esti-
mated sources could be fed directly to an ASR module, leading to significant
ASR performance boost. Future work could investigate joint fine-tuning of sep-
aration and VAD to reduce these errors, e.g. on the CALLHOME adaptation
set. Another direction is to extend the SSGD framework performance to do-
mains other than CTS (e.g., meeting-like and dinner scenarios) where an higher
number of speakers could be involved. This however requires the development
of new techniques since most current source separation methods struggle to
track 3 or more speakers for very long inputs.
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Chapter 7

Conclusions

In this dissertation we addressed various aspects of front-end speech processing
and proposed various algorithms for the tasks of multi-channel speech enhance-
ment, channel selection, keyword spotting, speaker counting and speech sepa-
ration driven diarization. As said, our main focus was on deep learning driven
techniques, which have become the de-facto standard approach for many of
these tasks. Such techniques are considered computational intensive compared
with more classical machine learning and classical DSP approaches. For this
reason particular attention has also been given to the computational aspect
in the works presented here, and, in some instances also on low algorithmic
latency. This is an often neglected aspect but it is of utmost importance in
practical applications, and is even more crucial for applications that have to run
on edge-devices, as the front-end pre-processing is done on-device usually. An
higher computational cost often means a lower budget for other on-device par-
allel applications, as well as an higher impact on energy consumption, leading
to worse battery life and/or to environmental concerns [18, 19, 268].

To allow for efficient DNN-based front-end processing algorithms, in the
works presented in this dissertation, we had to develop novel techniques and
methodologies. For example regarding the DNN architecture (as seen e.g. in
Chapter 5 for the transformer-based network), or again, regarding the devel-
opment of novel algorithms (as the leakage removal algorithm in Chapter 6),
or even the invention of completely novel frameworks for channel selection
(Chapter 3), acoustic echo cancellation (Chapter 4) and acoustic beamforming
(Chapter 2). We summarize our contributions more in detail in the following.

7.1 Summary of Contributions
In Chapter 2: we presented a work on multi-channel speech enhancement
via DNN-supported classical beamforming. In this framework, a single-channel
DNN is used to estimate a magnitude STFT mask for the target speaker and the
interferers/noise; this mask is then exploited to compute conventional beam-
forming solutions such as MWF and MVDR which are then used to enhance the
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input signal. The novelty of our work is the fact that we also explore learned
domains beyond the STFT. This is possible by learning suitable analysis and
synthesis filterbanks together with the mask estimation DNN.

Our experiments, performed on the First Clarity Enhancement dataset [61],
shows that in some instances and MVDR solution by using learned filterbanks
is possible to consistently outperform STFT-based systems, even when oracle-
based masks are employed. We found out that such performance improvement
is generally afforded by the use of an over-complete basis, with the best results
found for filterbanks with small kernel size compared to the number of filters.
This reflects findings on encoder-masker-decoder end-to-end monaural speech
separation, which has relied on this principle since TasNet [269] and Conv-
TasNet [176].
In Chapter 3: we presented our MicRank framework, which allows for fully
neural data-driven channel selection. We propose to frame the channel selection
problem as a learning to rank (LTR) problem and several ranking strategies
are compared, notably RankNet and ListNet. The model is designed to be
lightweight and suitable for edge-devices deployment.

Results on synthetic data show that this approach is able to surpass con-
siderably previous techniques and even some oracle-based measures. However
further work is needed to address successfully multi-speaker data, due to the
presence of speech overlap. On such scenario the gap with respect to ora-
cle measures, remains large, but it still outperforms previously proposed blind
channel selection approaches.

As an additional contribution we also studied the effect of envelope variance
(EV) channel selection when used in combination with GSS in the context of
the CHiME-7 DASR challenge. The results show that channel selection is able
to improve the separation stage in some scenarios and, in all scenarios, reduce
the computational requirements.
In Chapter 4: a novel framework called implicit acoustic echo cancellation was
presented, and validated experimentally for the arduous tasks of on-device con-
tinuous keyword spotting (KWS) and device-directed speech detection (DDD)
using both a synthetic dataset and a real-world Alexa device dataset. This
framework tackles the “barge-in” problem, which consists in the user voice
overlapping with the device playback sound, usually a TTS response. Since the
device playback signal is known a-priori we propose to feed it as an additional
feature to the KWS or DDD classifier such that it can learn to disambiguate
between the use and the TTS response and ignore this latter. This technique
leads to two order of magnitude less computational requirements than compet-
ing approaches. A contrastive, on-the-fly data augmentation technique is also
developed, which allows to reduce potential biases (e.g. perceived TTS model
gender) in the data.
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In Chapter 5: we propose to treat voice-activity detection (VAD), overlapped
speech detection (OSD) and speaker counting in an unified way under an unique
novel overlapped speech detection and counting (OSDC) framework. Several
DNN architectures are compared, with a particular attention to computational
complexity and two novel architectures are proposed one based on TCN and an-
other based on Transformer. We validate them on real-world meeting scenarios
captured by array devices (AMI and CHiME-6) and compare results obtained
with speaker counting, OSD and VAD training targets. We also conduct exper-
iments on the use of spatial features to aid in these tasks and conclude these
can bring significant improvement especially when employed in a late-fusion
fashion.
In Chapter 6: a study on speech-separation guided diarization (SSGD) for
conversational telephone speech is presented. The main focus is on low-latency
diarization, we compare two state-of-the-art separation models Conv-TasNet
and DPRNN, both causal and non-causal and also with/without the continuous
speech separation framework. The two popular telephone diarization CALL-
HOME and Fisher datasets are considered. A novel, simple and very effective
leakage removal algorithm is proposed for the SSGD framework, and it is shown
it can considerably boost the performance without significant computational
overhead. Results outline that SSGD is competitive with current state-of-
the-art diarization methods in the low-latency scenario, and can achieve near
perfect separation in telephone conversational data, leading to significant im-
provements for applications such as ASR.

7.2 Current Trends and Possible Future Directions

7.2.1 End-to-End Integration and Modularity

One common theme in some of the works presented in this dissertation, is the
integration between different front-end speech processing aspects, such as lo-
calization and speaker counting, speech separation and diarization or acoustic
echo cancellation and keyword spotting. This is a more general trend in the
speech processing field right now. This trend has been made possible largely
by the adoption of data-driven deep learning techniques. Such methods natu-
rally allow for end-to-end optimization when the blocks are cascaded together,
leading to large improvements in terms of performance as well as new oppor-
tunities related to the fact that data from different domains can be leveraged.
For example, regarding SSE, end-to-end optimization with ASR, it is possible
to reduce the reliance on synthetic data, as the oracle target signal is not any-
more needed for the fine-tuning part, but only transcriptions if the ASR loss
only is used. Several works explore this direction and reported clear perfor-
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mance gains in doing so [25, 58, 270–274]. As said, integration is a general
trend and significant efforts are ongoing for e.g. integration between ASR and
diarization [275, 276], diarization and SSE [203, 237, 258, 277] or as seen also
between ASR and SSE (ASR can also help SSE [278]). Our recent contribu-
tion, the ESPNet-SE++ [25] toolkit for example, is meant to help explore such
integration possibilities between SSE and different downstream applications,
not limited to ASR.

Related to the concept of end-to-end integration is also the concept of mod-
ularity. Complete black-box fully neural end-to-end methods that perform
implicitly different tasks e.g. beamforming within ASR [57, 279, 280] are ap-
pealing, They can be optimized directly for a given specific task without the
additional burden of using simulated data for training the front-end. How-
ever, we argue that a modular approach has several advantages even if it may
not reach the same level of performance on that very same task/domain due
to lower capacity. First, they are more interpretable compared to fully neu-
ral methods, as the output of each different component is well defined, as it
belongs to a given sub-task e.g. SSE and ASR. Second, a modular system com-
ponents may be swapped e.g. depending on the domain. Single components
are reusable. Third, they can possibly leverage more data as a whole, since
different components may require different heterogeneous training data as for
each task the annotation can differ. Fourth, if designed well they can still al-
low for fine-tuning on a given domain, thus reaching very close performance to
end-to-end black-box approaches, and possibly, even surpass these latter due
to the capability of leveraging data from different heterogeneous sources. One
great example of this is the recently proposed LegoNN approach [281] which
proposes a end-to-end but modular ASR framework where language compo-
nents and acoustic components can be “swapped” based on the language and
the domain. It is easy to see that this could also allow to leverage more data
as a whole, as each module can be trained on different corpora which may not
be suitable for other modules. Another example is our recent MultiIRIS [58]
work, in which we explored the integration of beamforming, ASR and also
self-supervised learning representation (SSLR) features. We report here, for
convenience, in Figure 7.1 the block scheme of such work.

In this recent work we demonstrate how an hybrid DNN-based beamforming
front-end based on a weighted power minimization (WPD) [282] solution could
be used to boost ASR performance in noisy-reverberant environments even
when this latter is quite strong. The ASR model employs WavLM [15] as the
input feature extractor, and it thus leverages tens of thousands of training
data used in the WavLM pre-training. It is also trained on multi-condition,
both on clean and corrupted utterances. With joint fine-tuning of the ASR
back-end with the front-end, we found that one can considerably improve the
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Figure 7.1: Integration between beamforming, ASR and self-supervised learn-
ing representation (SSLR), as proposed recently in MultiIRIS.

performance not only of the ASR back-end but also, surprisingly of the front-
end, as the objective signal-based metrics also increase. This latter, via fine-
tuning, can now leverage also real-world data for which the oracle clean speech
targets are not available.

In our opinion we will see more works following these paradigms of integration
and modularity, and maybe even on the line of the “network of neural networks”
paradigm proposed by Ravanelli [283] scaled to several speech processing tasks,
e.g. SSE, diarization and ASR with each task/module helping refining the
predictions of the other.

7.2.2 Efficiency

Another recurrent theme in this dissertation is computational efficiency. Deep
learning has proven to be extremely effective and has enabled a significant leap
in performance as we discussed in the Introduction. However it is undoubted
that some of these results also came to the detriment of important concepts
such as efficiency and parsimony.

This is exemplified for example by the field of speech/source separation,
where in the last few years the ongoing trend has been to design new methods
each time more computational intensive in terms of FLOPs; this to beat the
state-of-the-art on the popular WSJ0-2mix benchmark dataset [284]. Undoubt-
edly, this research direction brought significant improvements and new ideas
and very effective neural architectures such as Conv-TasNet, DPRNN and Sep-
Former. But it is also true that the performance on such dataset has saturated
for the past 3 years at least. The SI-SDR is so high that the results have be-
come almost indistinguishable from the oracle targets. Some exceptions, to be
fair, exists such as SuDoRM-RF [285]. The same trend is observed on ASR and
has been pointed out by Parcollet et al. [18]. By focusing only on improving
a particular metric a few decimal points, on a over-used dataset we may be
missing the bigger picture. Instead the focus should shift more, in our humble
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opinion, towards more ambitious goals such as generalization across real-world
speech-in-the-wild domains and computationally efficient methods.

This is not to say that all efforts in the direction of pushing the state-of-the-
art are wasted resources. But that some little additional effort, such as also
reporting results on more up-to-time datasets, and/or reporting the number
of FLOPs or multiply-accumulate operations should be encouraged more and
more.

After all large scale models trained on massive amounts of data are undoubt-
edly useful and crucial to advance in the field. Whisper [76] is a good example
of this and we are sure there will be more works that go into the direction
of performing quantization and/or knowledge distillation with such large scale
models for the purpose of obtaining an efficient and more practically viable
ASR system that can be deployed, while retaining robustness.

Another thing we researchers can do is to try to push more for efficiency
by organizing challenges and special sessions that focus also on this aspect.
An example is our recently organized DCASE Task 4 2022 challenge 1, where
we also explored a new requirement for the participants to also report energy
consumption at training and test time. Or our recent ICASSP special session2

focused on resource-efficient real-time neural speech separation. Through this
special sessions we are trying to foster research towards practically viable SSE
algorithms that can lead to deployment in real-world products and have a
tangible impact in the everyday world.

Last but not least, efficiency may also hold the key for true artificial intel-
ligence, after all our brain is orders of magnitude more efficient compared to
current deep learning algorithms.

7.2.3 Limits of this Dissertation

Probably the single most important missing argument in this dissertation is self-
supervised learning. As mentioned in the Introduction, in the last two years,
from roughly Wav2vec 2.0 [13] on-wards (but the trend was already visible
before, at least in ASR), the use of self-supervised learning (SSL) techniques
is changing the field of speech processing and more and more research is been
done in this direction. Regarding the field of front-end speech processing, large-
scale pre-trained SSL models such as Wav2Vec 2.0 and WavLM, have been
demonstrated to be very effective for example in KWS [286] and diarization [15].

On the other hand, they have been found to be less effective on other tasks,
for example speech separation and enhancement [15]. For these two latter
tasks, in recent years purposely tailored SSL methods have been developed,

1dcase.community/challenge2022/task-sound-event-detection-in-domestic-environments
22023.ieeeicassp.org/detailed-presentation-schedule/
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such as MixIT [12] and its variants such as RemixIT [287], Self-Remixing [288]
as well as SAMoM [289] for target-speaker extraction. These methods have
been proven to achieve, on synthetic data, performance comparable in some
cases to fully supervised techniques. However how useful MixIT and its vari-
ants can be for e.g. boosting ASR performance in real-world applications such
as meeting transcription, is still an open question. On the contrary, there is
little doubt about the capability of ASR-targeted SSL to improve performance
on real-world data. There are already some encouraging works [290] about the
use of MixIT for semi-supervised speech separation. Another example is the
ongoing CHiME-7 UDASE Challenge3 which focuses exactly on this issue and
employs RemixIT as the baseline approach. On our side, we successfully em-
ployed unsupervised universal sound separation via MixIT to improve sound
event detection performance (SED) for the DCASE 2021 Task 4 baseline 4.
By leveraging a model trained with MixIT in a totally unsupervised way on
the YFC100m [291] dataset, we were able to considerably boost the SED per-
formance on the evaluation set. The joint separation+SED model generalized
better as it could leverage orders of magnitude more data due to the unsuper-
vised pre-training of the front-end separation module. Again, the leitmotifs of
integration and modularity explained before are also valid for this work.

Another open question, especially for what regards large-scale SSL models
such as WavLM is how to leverage them, in the best possible way when multi-
channel data is available. Such research question is still open and is one of the
focuses of the ongoing CHiME-7 DASR Challenge5 for example.

It is must be also said that, most works that explore the use of SSL, have been
focusing largely on raw performance alone, without too much consideration for
efficiency. As explained before efficiency is a must-have in many front-end
speech processing applications. Some exceptions however exists, especially for
KWS [292], as well as ASR [293–295]. Some of these works employ knowledge
distillation to reduce the computational requirements at run-time by distilling a
large model into a smaller one. However, while this technique is well developed
and proven for classification tasks, it is an open question if it can be also
effective for tasks such as speech separation.

Another very recent “hot topic” missing in this dissertation, at the time of
this writing, are generative methods. So-called large language models (LLM)
such as ChatGPT have been demonstrating impressive capabilities in gener-
ating coherent and contextually relevant text, from news articles and creative
writing to automated dialogue systems. LLMs have opened up exciting possi-
bilities for natural language generation and have the potential to revolutionize

3chimechallenge.org/current/task2/index
4dcase.community/challenge2021/task-sound-event-detection-and-separation-in-domestic-

environments
5chimechallenge.org/current/task1/index
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many fields, from assistive technologies to content creation. In the last year
we have also assisted in a significant stride in the field of conditional image
generation. Models such as DALL-E [296] and, more recently ones based on
stable diffusion [297], can generate high-quality realistic images from textual
descriptions, effectively bridging the gap between natural language and visual
information. They are also undoubtedly fun to use as Figure 7.2 demonstrates,
with often unexpected and interesting results.

(a) (b)

Figure 7.2: An image generated using stable diffusion via the Huggingface Sta-
ble Diffusion 2.1 API when prompted with (a) “speech separation”
and (b) “dereverberation”. The result is quite “Kafkaesque” in the
left one.

These technologies are also impacting the audio field as the recent works done
in the past months demonstrate. For example, in the direction of conditional
audio generation [298, 299], music generation [300], text-to-speech [301], spoken
dialogues [302], and even audio neural encoding [303], as well as multi-modal
systems able to process audio and text seamlessly [304]. Potential applications
include more principled synthetic data generation. For example, regarding
audio applications, high-quality audio scene synthesis could allow for better
robustness for front-end and back-end audio applications (as more data can
be leveraged), less mismatch with real-world data and more crucially, privacy
preservation. This latter aspect is crucial for domains where data is espe-
cially sensitive such as doctor-patient meetings, industry (e.g. trade secrets)
as well as in government and international institutions, just to name a few.
In these domains data could be very scarce or not even available at all due
to being extremely sensitive. Automatically generating fake synthetic data in
such domains then could be extremely effective, and promising results have
been already produced for example in the field of data analytics [305, 306]. We
believe that these approaches could be be very well extended also to the audio

114

https://huggingface.co/spaces/stabilityai/stable-diffusion
https://huggingface.co/spaces/stabilityai/stable-diffusion


7.3 Final Remarks

field by leveraging these new powerful techniques, thus allowing the training of
the models on “proxy” fake data, with minimal mismatch with respect to the
target domain.

To be fair, it must be also said that, as with any rapidly advancing technology,
there are also concerns about the ethical implications of such powerful tools,
including the potential for misuse e.g. identity theft or fake news creation (so-
called “deep-fakes”). As we continue to develop these approaches it is thus also
crucial to consider the ethical implications and ensure that these technologies
are used to the benefit of society and not to its detriment, as instruments of
oppression.

7.3 Final Remarks
As said in the Introduction, it is an especially exciting time to be able to
work in this field due to the astounding progress made in recent years. With
access to vast amounts of data and powerful computing resources, we are seeing
breakthroughs well beyond the realm of speech processing: computer vision,
drug discovery, natural language processing and so on. However, we also believe
that in the next years we will have also to address some of the main limitations
of deep learning in order to get further advancements. For one, as we already
mentioned, it is far from being efficient, current state-of-the-art models that go
into newspaper headlines such as ChatGPT or Whisper [76], require massive
resources to be trained. Whether such approach could scale much further,
and whether noticeable gains will be reached by doing this, would be likely
found in the next couple of years, but there is already indication of diminishing
returns [18].

We believe that one main ingredient that is missing from the current main-
stream approach is the concept of feedback and long-term memory. Humans
learn by interacting with the environment in a continuous manner. Instead
the current approaches are mostly based on stochastic gradient descent and
mini-batch training. During training each example is assumed independent
and identically distributed amongst the dataset and the model weights are ad-
justed for each mini-batch independently. There is no explicit memory of the
past examples in the current learning paradigm, leading e.g. to phenomena
such as catastrophic forgetting.

To be able to attain more flexible and robust machine learning algorithms
we should strive to gradually move away from such assumptions and, inspired
by biological systems, move towards more plausible and principled learning
schemes.
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