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Abstract  

The assessment of occupants’ behavior impact on building energy performance is becoming a key 

topic in recent years due to increasing performance of the building stock still threaten by 

occupants’ variable. The paper aims to deeply investigate human perception in indoors which 

drives occupants’ behavior. A novel measurement procedure is developed aiming at producing a 

multipurpose comfort perception scheme, i.e. considering thermal, visual, acoustic, and air quality 

comfort spheres. Data belonging to different domains of human perception are simultaneously 

measured: physical environmental parameters, physiological signals, and psychological response 

of the subject. A first series of measurement tests is here presented specifically focused on human 

response to thermal stimuli, i.e. subject exposed to increasing/decreasing temperature. Obtained 

data and signals are thus analyzed coupling (i) physiological and psychological response through 

machine learning techniques, and (ii) personal attributes to actual sensation votes and 

environmental data variations. Results show potentials of the proposed measurement procedure 

which allows a comprehensive collection of physical attributes and subjects’ psychological 

characterization. In conclusion, this work demonstrates the strictly connection, with a prediction 

accuracy up to 84%, between physiological parameters (Heart Rate Variability and its indices) and 

human thermal comfort, opening the perspective of real-time measuring comfort for control 

purposes, taking into account human-centric parameters. 
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1. Introduction 

Reduction in building energy consumption is a key goal within the sustainable development 

framework since building sector globally consumes more than one-third of the total primary 

energy [1]. Great results have already been achieved by the scientific community during the last 

decades mainly focusing on the development of (i) passive strategies for the building envelope 

[2]–[4] and (ii) advanced technologies for the building energy system [5], [6]. Nevertheless, the 

optimization of resources and the energy efficiency enhancement of buildings facilities seems not 

to produce the expected results in terms of energy consumption reduction and wellbeing 

improvement of the building sector. In particular, many studies highlighted the existence of the 

so-called “performance gap” between designed and real energy use in buildings [7], [8] also due 

to boundaries wrong estimation in the specific built environment [9]. The magnitude of the 

outlined discrepancy could be significant with measured consumption reaching up to 2.5 times 

their predicted values [10]. Bridging this gap is therefore of primary importance to achieve the 

designed target in terms of building efficiency which can be better managed by implementing 

innovative technologies for the control of the indoor environment [11]–[13].  

In this perspective, a better understanding of occupants’ behavior has a key role since many 

studies identify in this term the main cause of the performance gap [10], [14]–[17]. Occupants are 

generally oversimplified in modeling and analysis due to its stochastic, complex and 

interdisciplinary nature [18]. To overcome this issue, researchers investigate how people interact 

with the building through its control system, its components, and appliance usage [19]–[23] and 

what are the main drivers of certain habits.  

Among them, human comfort perception plays an important role as it is highlighted by Ortiz 

and al. [24] in their comprehensive review on comfort, health, and energy use. Particularly, the 

review provides building energy usage influencing factors from a psychological and behavioral 

perspective of the occupants in their environment. Moreover, occupants’ actual comfort perception 

is strictly related to specifics of each individual and the assessment of these “drivers of diversity” 

is extremely important as highlighted by Schweiker et al. in [25] specifically focusing on thermal 

perception. Actual standards [26]–[29] already consider occupants’ perception in indoors by 

defining limits and goals that must be achieved during the design phase of a building in terms of 

indoor environmental quality parameters, i.e. IEQ. These factors are all related to measurable 

physical characteristics of the indoor environment including visual, thermal, acoustic, and air 



  

   

 

quality parameters [30]. Physiological characteristics of the occupants are also taken into account, 

but these are generally oversimplified [31] while their correct evaluation require the 

implementation of novel measurement devices and methods [32], [33].  Furthermore, standards 

still do not consider other aspects of the human comfort whose holistic definition is given by Slater 

as a pleasant state of physiological, psychological and physical harmony between a human being 

and its environment [34]. Subjective and objective techniques [35] should be implemented to 

correctly determine the three domain of human perception, i.e. psychological, physiological and 

physical. Occupants’ perception of the IEQ leans on a cognition process which leads to a 

physiological and behavioral response. Novel approaches in comfort investigation are therefore 

necessary to improve actual regulations. These approaches should aim to link (i) environmental 

stimuli to (ii) physiological signals alteration considering (iii) personal characteristics of the 

investigated subject [36], [37]. 

In this perspective, investigation by means of wearable devices for physiological variables 

monitoring of subjects shows an increasing trend in research. Electrocardiogram, electrodermal 

and electroencephalogram signals, i.e. ECG, EDA, and EEG respectively, are the main 

investigated physiological signals in relation to human comfort perception [38]. EDA signal allows 

to quantify changes in the sympathetic nervous system and it is mainly tested to assess Arousal 

level in patients. Therefore, it is useful to get information about emotional state of the subject [39], 

[40]. Choi and Yeom [41] investigate thermal perception of occupants in office environment by 

means of their physiological responses finding out a priority order in skin temperature data 

collection on thermal satisfaction information. Nevertheless, EDA standardized features still do 

not exist, and that leads researchers to look for algorithms’ identification and software solutions 

[42]. Concerning ECG signals, literature shows that the Heart Rate Variability (HRV) parameter 

and the indices extracted from HRV could be used as a predictor of the comfort status of the subject 

[43]. The HRV is defined as the variation over time of the distance between two consecutive 

heartbeats (R-R intervals) and it is an important indicator for evaluating the correct functioning of 

the autonomic nervous system, i.e. ANS. ANS manages thermoregulation of the body in response 

to an external stimulus, i.e. environment temperature changes. HRV can be deeply investigated 

using the time-domain and frequency-domain analysis to obtain HRV indices. Time-domain 

indices allow to describe the beat-to-beat variability using a statistical approach while frequency-

domain decompose HRV into its fundamental frequency components providing an overall insight 

in the fluctuations of heartbeat [44]. A review of the literature revealed that there is an increasing 

interest in discovering HRV measurements as indices of the thermal comfort of the occupant. 

Nkurikiyeyezu et al. [45] propose to adopt HRV indices extracted from the ECG signal to 

determine occupants’ thermal comfort and therefore design real-time thermal comfort controllers. 



  

   

 

Zhu et al [46] correlated features extracted from ECG signal recording to estimate thermal 

comfort.. Their analysis points out that the ratio between low (LF) and high frequency (HF) 

components of the HRV, i.e. LF/HF ratio, is strictly connected to changes in thermal sensation. 

Higher LF/HF ratio is expected in cold and hot environments, while lower LF/HF ratio ranges in 

more neutral conditions, giving to the LF/HF ratio-temperature waveform a trend with its 

minimum representing the thermal comfort. Kim et al. [47] get a personal comfort model with a 

tested mean accuracy of 75% training a Random Forest algorithm with physiological, i.e. skin 

temperature and HRV, and environmental parameters. Other studies associate EEG signal to IEQ 

perception and its relation to human performance [48], [49]. Tiago-Costa et al. [50] focus on 

specific spectral frequencies of the EEG, i.e. Alpha and Beta waves, and observe their amplitude 

variation varying external thermal stimuli. Local thermal discomfort and cerebral response is the 

focus of the work from Lv et al. [51].  In Shan et al. [52] the EEG analysis is adopted to enhance 

human-building interaction which is a really promising field in the main framework of smart 

buildings and IoT systems development [53]. 

On the other hand, the psychological dimension and how subjective characteristics influence 

occupants’ perception and thus their interaction with building facilities needs to be further 

investigated in the framework of an interdisciplinary approach between engineering and social 

sciences [54]. Such investigation field is of particular interest since behavior changes are 

demonstrated to have significant potentials in reducing, for example, energy-related costs for 

social housing residents which are particularly vulnerable categories [55]. Cottafava et al. [56] 

demonstrate how behavioral changes induced through feedbacks directly provided to occupants 

could simultaneously provide energy reduction and comfort improvement. Socio-economical and 

personal attitude impact on occupants’ behavior are commonly invested through surveys 

submission mainly focused on pro-environmental behavior awareness of the interviewed [57]–

[59]. Moreover, a variety of studies already point out gender influence on IEQ perception in 

indoors [60]–[62], and even the adaptive thermal comfort theory, in general, takes into account 

thermal history of people to assess their actual thermal sensation [63]–[65]. 

Based on the outlined background, this work presents a novel measurement campaign and 

monitoring setup aiming to get an overview of IEQ occupants’ perception and proposes a new 

holistic and multi-domain indoor comfort analysis protocol. To this aim, in section 2, authors get 

through the implemented methodology focusing on: 

- The measurement procedure, where the sensors network is presented as composed by (i) 

an environmental monitoring system collecting physical parameters associated to visual, both 



  

   

 

global and local thermal comfort, and indoor air quality and (ii) wearable sensing devices for the 

contemporary acquisition of ECG, EDA, and EEG signals; 

- The measurement test procedure, where all the timing of the performed tests and 

information about subjective response collection through survey submission are given; 

- Data processing, including (i) preliminary elaboration of raw physiological signals and 

validation procedure through combined analysis of HRV features and environmental parameters 

of the acquired dataset with current literature; (ii) the adoption of machine learning classification 

algorithms to predict thermal sensation vote basing on computed HRV indices to explore the 

relationship between the physiological data and human perception [66];  (iii) the evaluation of 

physical stimuli affection on expressed sensation vote and psychological aspects affecting comfort 

perception. 

Achieved results are thus presented in section 3 and main outcomes summarized in section 4 in 

which also future developments of the work are presented. 

The described measurement campaign specifically focuses on thermal comfort which has been 

recognized as a main driver domain for the IEQ perception [67]. Moreover, comparable outcomes 

in terms of the adopted biometrics, i.e. HRV and in particular LF/HF ratio, are at disposal in 

literature to allow a first validation phase of the experimental setup proposed [45], [46]. As future 

development, the same approach will be adopted to deepen the investigation of others field of 

comfort, i.e. visual, acoustic and air quality, through the subjects’ exposure to specific 

environmental stimuli. 

2. Methodology 

The implemented methodology aims to comprehensively assess comfort perception of 

occupants to produce a multidimensional occupancy-related comfort perception scheme. The 

measurement activity includes the simultaneous collection of (i) physical environmental 

parameters, (ii) human physiological metrics, and (iii) subjective responses of the occupants. The 

measurement set-up includes different monitoring tools whose outputs are therefore synchronized 

and analyzed. More details about the measurement test procedure, implied tools and data analysis 

are given in the following sections. 

2.1. Measurement setup 

All the tests take place in the same mechanically controlled environment. It is a house-like 

cubicle located within the Engineering campus of the Perugia University (Italy). The cubicle inner 



  

   

 

dimensions are 3 m x 3 m and the reduced volume allows to easily control the indoor environment 

by means of the installed air-conditioning system which is a heat pump with an inverter. The 

system provides also three different levels of ventilation, i.e. low, medium, and high-speed mode, 

while no air change is provided. The Southern wall has a rectangular window which is shaded 

during all the tests to let the lighting level within the space as constant as possible, only depending 

by the lighting system of the test-room [68]. 

The space is continuously monitored by means of a fixed microclimatic station located in the 

middle of the room recording data every minute. The monitored parameters are: air temperature at 

both 1.1 and 0.1 m [°C], relative humidity [%], superficial temperatures of floor, roof, North- and 

South-facing walls [°C], black globe temperature [°C], net-radiation between glazed and opaque 

surfaces [W/m2], air velocity [m/s], concentration of CO2 [ppm], and illuminance level [lux]. The 

accuracies of all involved sensors are reported in Table 1.  

Table 1. Technical information of the sensors for monitoring environmental parameters. 

Sensor Environmental parameter Accuracy 

Thermal-hygrometer Air Temperature [°C] ± 0.1°C 

 Relative humidity [%] ± 1.5% 

Surface and air temperature 

sensor 

Floor temperature [°C] ± 0.15°C 

 Roof temperature [°C] ± 0.15°C 

 Walls temperature [°C] ± 0.15°C 

Black globe radiant temperature 

sensor 

 Mean radiant Temperature 

[°C] 

± 0.15°C 

Hot wire anemometer Air velocity [m/s] ± 0.5-1.5 m/s 

CO2 sensor CO2 concentration [ppm] ± 50 ppm (+2%) 

Luxmeter Illuminance [lx] ± 5% 

 

These parameters are therefore adopted to assess (i) global and (ii) local thermal comfort, by 

computing vertical temperature gradient, radiant asymmetry of the environment, and draught rate, 

and (iii) indoor air quality, in terms of CO2 concentration. Moreover, visual comfort is measured 

through illuminance data collection taking into account that the subject has no relevant visual tasks 

to solve. All the implied sensors are compliant with ISO 7726 [69].  

The physiological parameters of the tested subject are measured by means of three wearable 

systems. The subject wears a multi-parametric belt, BioHarness 3.0. from Zephyr, with an attached 

electronic module at the thorax level for the ECG signal acquisition (sampling rate 250 Hz, Heart 

Rate accuracy ±1 bpm, operating range 25-240 bpm) [66], [70]. Measured data are stored within 



  

   

 

the device and downloaded at the end of the test. A wireless neural headset with 14 electrodes 

gives the EEG signal with a sampling rate of 128 Hz per channel (operating bandwidth 0.16-43 

Hz) [71]. Finally, the EDA signal is measured through a BITalino acquisition board developed by 

the authors (sampling rate 100 Hz, operating range 0-1 MOhm) [72]. The subject wears two EDA 

electrodes on his/her left index and middle finger while the acquisition board and the sensors 

modules are fixed in the left arm. Open-Source software allows waveforms acquisition through 

Bluetooth communication protocol.  

Finally, personal information of subjects are collected through survey submission. The 

submitted survey comprehends three parts. The first one aims to collect general personal 

information which are divided into objective and subjective as shown in Table 2. The outlined 

distinction points out personal characteristics which are (i) independent from personal attitude of 

the subject, i.e. objective, and (ii) general information which already express subject lifestyle, i.e. 

subjective.  

Table 2. Personal information gathered in the first part of the survey divided into objective and subjective categories 

Objective Subjective 

Gender Body-Mass-Index* 

Age Education 

Birthplace (origin) Smoking habits 

 Worn garments** 
*
expressed as body mass on the square of body height [kg/m2] 

**
selected from a list of garments of known thermal insulation, expressed in [clo] 



  

   

 

The second section of the survey focuses on health state and psychological description of the 

subject. This is an adaptation of the Physiological General Well-Being Index questionnaire, i.e. 

PGWBI [73]. The last part concerns the environmental perception of the subject and it is fulfilled 

directly in the test-room during different parts of the test, as it is described in detail in the following 

section. In this part of the survey, questions are developed according to ISO 10551 [74] which is 

focused on the thermal perception assessment. The same typologies of questions, i.e. concerning 

perceived sensation, comfort level, preferences, acceptability, and tolerability, and the same rating 

scale are therefore applied to the whole comfort domain, i.e. thermal, visual, acoustic, and air 

quality. In particular, the sensation vote for each domain is given through a 7-points scale going 

from -3 to +3 where 0 corresponds to neutrality. Figure 1 shows the above described experimental 

set-up. 

2.2. Measurement test procedure 

The current work includes outcomes of two different series of measurement tests done in winter 

and summer seasons. The winter series comprehends 34 participants, while 28 are the participants 

considered in  summer tests,  for a total amount of 62 performed measurement tests. The involved 

subjects are all volunteers and the general personal information of the winter and summer samples 

are resumed by the graphs in Figure 2Errore. L'origine riferimento non è stata trovata..  

Figure 1. Measurement procedure setup: (a) microclimatic station, (b) neural headset EPOC+, (c) Bioharness, 

(d) BITalino, (e) on-going test. 



  

   

 

 

 

Figure 2. Personal information of the sample composition during winter and summer 

tests. 



  

   

 

The two series have the same measurement setup, i.e. same test-room and same adopted 

monitoring systems, but slightly differ in terms of followed measurement procedure as express in 

Figure 3 which schematically shows the adopted procedure for both the seasons. 

 During both the campaigns, the subject is firstly exposed to a stabilization period of 20 minutes 

outside the test-room, in the conditioned spaces of the closest building. The space is conditioned 

at the same temperature settled in the test-room for the first part of the test which corresponds to 

the neutral state according to standards [26], [29], i.e. 20 °C and 25 °C in winter and summer 

respectively. In particular, the initial values of air temperature are selected considering a normal 

level of expectations, i.e. environment belonging to II category, for subjects wearing typical 

clothes for the considered season, i.e. clothing insulation of 1.0 clo and 0.5 clo in winter and 

summer respectively. The initial temperature set point in summer is 1 °C lower than the value 

suggested by standards, i.e. 25 °C instead of 26 °C, to guarantee reasonable time for the test 

considering the double temperature ramp realized as specified later. Such initial temperature 

assumptions are necessaire since no specific constraints are given to the tested subjects considering 

the personal attitude of everyone in wearing comfortable suites according to weather and his/her 

own personal preferences. Nevertheless, clothing information are collected in the first part of the 

survey, as specified in the above section, in order to check the validity of such assumptions during 

the data analysis process. 

During the stabilization period, the subject fulfills the first two sections of the survey and wears 

the chest strip for the ECG recording. Once in the test-room, the subject seats in between of the 

microclimatic station and the window and the monitoring set-up is completed connecting the 

headset and the electrode for the EEG and EDA signals record respectively. These actions are 

Figure 3. Timelines of the experimental test procedure in winter and summer. 



  

   

 

made by an operator that will stay with the subject in the test-room for the whole test. When the 

set-up is completed the test starts.  

 During the winter, the measurement test last 40 minutes in total, progressively: 5 minutes of 

acclimatization at 20 °C, 30 minutes of warming up with an air-conditioning set-point at 30 °C, 5 

minutes at the same temperature, but increasing the ventilation speed, i.e. from medium to high 

speed, and 5 minutes with the conditioning system switched off. The operator asks the subject to 

answer the third part of the survey at the end of the first period of acclimatization, i.e. at 20 °C, 

and at the end of the whole test. During the summer, the test last 65 minutes in total, progressively: 

10 minutes of acclimatization at 25 °C, 10 minutes of cooling down with an air-conditioning set-

point at 18 °C, 15 minutes at constant temperature, i.e. 22 °C, 15 minutes of warming up with an 

air-conditioning set-point at 30 °C, 15 minutes at constant temperature, i.e. 28 °C. The ventilation 

speed is settled at the high mode for the whole test in summer. The operator asks the subject to 

answer at third part of the survey at the end of each period characterized by stable temperature, i.e. 

at 25 °C, 22 °C, and 28 °C. During the whole test and for both the seasons, the subject expresses 

any kind of changes in his/her environmental perception which are noted by the operator.  

The authors want to specify that since the measurement test is not done in a climatic chamber a 

perfect control of the thermal environment is not guaranteed, but air temperature is continuously 

monitored by the operator in the test-room who checks the environmental data in real time. The 

continuous control allows to have the two above mentioned 15 minutes-periods of constant 

temperature during the summer test. 

2.3. Analysis of measured data 

Due to the variety of monitoring systems adopted in the current experimental work, a first 

process of measured data synchronization is needed to provide exact correspondence among all 

the data time-series at disposal for the analysis, i.e. environmental data, EDA, ECG, and EEG 

signals. 

Physiological raw data are therefore processed to reduce signal noise, get a smooth waveform, 

and extract useful features to be correlated to the measured environmental data and subjective 

responses. These features are extracted every minute which corresponds to the environmental data 

sampling rate. In particular, this paper focuses the physiological investigation on ECG signal 

processing since it is commonly related to thermal comfort evaluation in literature. On this 

purpose, authors conducted a first analysis that examines the correlation of the trend of LF/HF 

extracted from the ECG with the trend of some environmental parameters (air temperature, CO2 

concentration, relative humidity, mean radiant temperature, PMV) and thus to check effectively 



  

   

 

the influence of environmental changes on physiological quantities i.e. LF/HF.  After this analysis, 

that proofs how environmental parameters can affect the trend of LF/HF, ML classification is 

introducted excluding environmental parameters and using only physiological quantities. The 

reason of this approach is to determine with a certain degree of accuracy whether user experiences 

comfort or discomfort without taking into account environmental quantities thus allowing to add 

this parameter for a more precise subjective evaluation of comfort. 

Processed signals are thus analyzed through supervised machine learning algorithms to predict 

occupants’ thermal comfort as expressed by subjects during the performed tests. Finally, expressed 

sensations are correlated to measured environmental parameters and personal characteristics of the 

subjects in order to point out how IEQ perception is subjective and its dependency on personal 

aspects, i.e. subjective and objective information. All the above-mentioned data analysis steps are 

given in details in the following subsections. 

2.4. ECG signal processing and validation procedure 

The goodness of the proposed methodology is evaluated analyzing the ECG signal in relation 

with the thermal comfort expressed by the subject, i.e. HRV and LF/HF ratio. Before extracting 

HRV, the raw signal is processed according the procedure shown in Figure 4: initially a mean 

removal is performed, and the resulting signal is filtered with a bandpass filter [0.8-40 Hz]. The 

signal passes through a 3rd order high-pass Butterworth filter with cut-off frequency of 0.8 Hz and 

the a 3rd low-pass Butterworth filter with 40 Hz of cut-off frequency in cascade. The following 

step consists on dividing the ECG signal in 5 minutes consecutive windows for extracting the R-

R intervals (also named normal-to-normal intervals) through the deployment of the Pan-Tompkins 

algorithm [75]. The algorithm is used to denoise the signal and detect QRS complexes in the ECG 

signal. A QRS complex indicates the presence of a beat and therefore its detection is useful to 

compute RR intervals. A bandpass filter is firstly applied to reduce noise, to eliminate movement 

artifacts, 60 Hz powerline interference and baseline wandering. Then a derivative filter is applied 

to obtain information about the slope of the QRS complex, followed by the squaring of the signal 

which highlights better QRS complexes. Finally, signal passes through a moving integrator. 

Figure 4. ECG raw signal processing procedure 



  

   

 

 

After detecting RR intervals from Pan-Tompkins algorithm it is possible to compute HRV 

measurements. In particular, time-domain measurements include: RMSSD defined as the square 

root of the mean squared difference of successive R-R intervals; SDANN which is the standard 

deviation of the R-R intervals; NN50 that represents the number of interval differences of 

successive R-R intervals greater than 50 milliseconds; and pNN50 which is the ratio between 

NN50 and the total number of R-R intervals. Fast Fourier Transform (FFT) is implemented to 

obtain frequency-domain measurements by computing the power spectral density (PSD) of HRV. 

Three frequency-domain indices are extracted from PSD: the very low frequency (VLF) in the 

range [0.01 - 0.04] Hz, the low frequency (LF), and the high frequency (HF) in the range [0.04 - 

0.15] Hz and [0.15 - 0.40] Hz, respectively. Finally, the computed ratio between LF and HF 

spectral density provides LF/HF [76]. 

Therefore, indices computed from data processing are compared to the ones existing literature 

mentioned in the Introduction section to evaluate the goodness of the experimental setup. In 

particular, the relationship between LF/HF and environmental quantities is explored: LF/HF is 

correlated with environmental quantities, i.e. air temperature (Ta), mean radiant temperature (𝑡𝑟̅), 

and CO2 concentration (CO2), acquired during the test by computing Pearson’s correlation 

coefficient, i.e. R. The provided analysis computes R-Ta , R-𝑡𝑟̅ , and R-CO2 , for consecutive 5-

minutes-long time windows. This kind of approach seems to be more suitable, respect to a 

correlation made throughout the entire test, because highlights every minute of the testif any 

change in the external environment have an impact on LF/HF ratio and though, the 

thermoregulatory system. The analysis is considered preliminary to the following section: the 

relationship between LF/HF and environmental parameters allow to shift the focus from 

environmental quantities measured in the room by paying attention to the occupant thermal 

perception and the physiological quantities acquired. 

2.5. Analysis of environmental and physiological quantities 

This section describes the procedure adopted to investigate how LF/HF is influenced by 

environmental parameters. After the synchronization of the signals, Pearson’s linear correlation is 

applied between LF/HF and each environmental quantity, e.g. mean radiant temperature, air 

temperature, relative humidity, PMV, CO2 concentration.  

On this assumption, the correlation analysis conducted in this work first individuates windows 

of 5 minutes that slide of 1 minutes for the environmental and LF/HF signals. For each window, 

the Pearson’s coefficient between the environmental parameters and LF/HF is computed. At this 



  

   

 

point, a vector of Pearson’s coefficient is provided for each participant’s test and for each 

environmental quantities. The second step considered the percentage of Pearson’s coefficient that 

are greater and equal of 75 % to evaluate which are the most influenced environmental parameters 

on the LF/HF signals.  

2.6. Supervised Machine Learning Analysis 

To predict the thermal comfort of occupants from the knowledge of HRV and its indices, 

supervised machine learning (ML) algorithms are implemented. In this study, authors select six 

classification algorithms: Linear Discriminant Analysis (LDA), K-nearest neighbors (KNN), 

Decision Tree (DT), Naïve Bayes (NB), Support Vector Machine (SVM), and Random Forest (RF) 

classifiers. ML classifiers are applied to four datasets to point out what are the HRV indices that 

classify with higher accuracy human’s thermal sensation vote. The first dataset consists on LF/HF; 

the second dataset comprises time-frequency indices, the third dataset is made up by frequency-

domain indices while the last one includes the entire set of estimated HRV indices.  The HRV 

indices are used to train the ML algorithms to foresee the thermal sensation surveys used as label 

in the analysis. The datasets are built using the surveys and the related HRV indices of subjects 

which have provided a realistic survey and excluding all the thermal perception assessment that 

never changed during the test.  

The classification accuracy (A) of each algorithm is computed using a 5-fold cross-validation, 

in which the dataset is partitioned into 5 randomly chosen subsets (or folds) of equal size. One 

subset is used by the classifier to validate the trained model using the residual subsets. The 

procedure is replicated 5 times, so every subset is adopted only once for the validation. The 

accuracy of the model is the average accuracy of each fold. 

2.7. Subjective attributes affecting IEQ perception 

The analysis of the psychological affection on IEQ perception moves from a preliminary 

analysis of expressed sensation and corresponding measurement environmental data. In particular, 

thermal and air quality perception expressed by tested subjects in both the seasons, i.e. winter and 

summer tests, are analyzed with respect to measured air temperature and drought rate. 

Thereafter, the analysis of the psychological affection on IEQ perception leans on the assessment 

of existing correlation between the characteristics of the participants, assumed as dependent 

variables, and the perceived sensations expressed through the third part of the survey, i.e. the 

independent variable. Strength of tested hypothesis is expressed by the probability value, i.e. p-

value. Furthermore, the outlined hypothesis is tested considering both single personal 



  

   

 

characteristics and group of objective and subjective descriptors, i.e. not-depending or depending 

from the will of the subject (Table 2). 

3. Results and Discussion 

The current section deals with an analysis of the complex dataset measured during tests 

performed following the proposed innovative measurement procedure. Section 3.1 presents 

preliminary analyses on recorded ECG signals and extracted features which are correlated to 

monitored environmental parameters. The obtained results are thus compared to literature 

achievements in the field in a view of measuring procedure validation. Section 3.2 shows obtained 

results in predicting thermal comfort from ECG features through supervised machine learning 

algorithms, while section 3.3 summarizes achieved outcomes psychological investigation of the 

perceived comfort in relation to measured environmental data.  

3.1. Preliminary analysis results 

Results related to the analysis of the environmental and physiological quantities are here 

presented.. LF/HF ratio is correlated with air temperature (T), mean radiant temperature (MRT), 

CO2 concentration (CO2), relative humidity (RH) and PMV. Figure 5 shows an example of the 

output provided by the analysis for two subjects: Subject 1 which performs the test in winter and 

Subject 2 which performed the test in summer. Pearson coefficient is computed for time intervals 

of 5 minutes; therefore, every coefficient expresses the linear correlation between LF/HF and one 

environmental parameter taken in the same time interval.  

Figure 5 shows the results of the analysis conducted for two participants. Participants 1 was 

tested in winter. In the upper panel there is the LF/HF computed from the ECG while the middle 

panel represents the trend of the air temperature for the whole duration of the test. The lower panel 

contains the data referred to the Pearson coefficient computed for every time interval and for every 

environmental parameter considered. The color of every pixel in the image is associated with the 

value of the Pearson coefficient computed between LF/HF and the respective time interval of the 

environmental parameter. Lighter region is associated with a low Pearson coefficient while darker 

region of the image results in a high correlation coefficient. Every row of the image represents in 

the lower panel represents the Pearson correlation coefficients between LF/HF and air temperature 

(R-T), mean radiant temperature (R-MRT), CO2 concentration (R-CO2), PMV (R-PMV) and 

relative humidity (R-RH). Participant 1 and participant 2 were chosen to show how a variation in 



  

   

 

the trend of the LF/HF does not correlate only with one environmental parameters but, on the 

contrary, the trend is also strictly connected with other environmental parameters. 

For example, participant 1 exhibits an LF/HF ratio increase between 10 and 15 minutes during the 

test that is strongly correlated with all the four environmental parameters of interest, i.e. T, MRT, 

CO2, PMV and RH. In fact, increasing the LF/HF ratio derives from the simultaneous increasing 

of the correlated parameters. In the same way, it is possible to interpret results of  Participant 2: T 

and MRT  do not exhibit significant correlation with LF/HF especially considering the first LF/HF 

Figure 5. (Upper Panel )Waveform of LF/HF ratio, (Middle panel) air temperature, across time during the 

test for participant 1 (left) and participant 2(right). (Lower panel) Pearson correlation coefficient 

computed between 5 minutes time interval of LF/HF and the respective time interval in the 

environmental parameter.  



  

   

 

ratio observed peaks, i.e. around minute 5 and 10. This can be probably explained due to the small 

variation of the environmental parameters in the first part of the test, while a higher variation is 

presented at the end. These results put in evidence that LF/HF trend during a variation in the 

environmental parameters is not only strictly related on one parameters but can be also influenced 

by CO2 concentration in the room, mean radiant temperature and relative humidity. 

The observed correlations are quantitatively given in Figure 5 where each color map in the lower 

panel refers to a specific Pearson value showing the degree of correlation between LF/HF ratio 

and one time interval of the five parameters. Computed Pearson coefficient between LF/HF ratio 

and both CO2 and MRT, is generally above the 80% for the entire duration of the subject 1 test. 

Moreover, R-CO2 is higher in correspondence of the peaks in LF/HF ratio at minute 10, 29 and 40 

of the subject 2 test. This is an important result showing that subject’s comfort is not only related 

to Ta which is relevant for the second peak together with CO2 and 𝑡𝑟̅ but not for the first one where 

the LF/HF ratio waveform increase for a R- CO2 raising. 

The analysis has been repeated for every participant in which the Pearson’s coefficient has been 

computed. Then, just the Pearson’s coefficient values that are greater and equal to 75 % are taken 

into account for the final evaluation. Table 3 presents the percentage of LF/HF time interval that, 

correlated with environmental parameter, showed a Pearson’s coefficient greater and equal 

thanto75%. For example, 66.4 % of the air temperature time intervals correlated with LF/HF 

scored a Pearson’s coefficient higher than 75 % in winter, suggesting that there is a relationship 

between LF/HF and air temperature. Same considerations can be done for CO2 concentration, since 

65.3% of the time interval has correlated more that 75 %.  

Table 3. Percentage of LF/HF signal correlated with environmental signal time interval that has a Pearson 

coefficient greater than 75%, in summer and winter.  

Winter 

 MRT-

LF/HF 

T – 

LF/HF 

CO2 – 

LF/HF 

RH – 

LF/HF 

PMV – 

LF/HF 

Average (%) 
56.8 66.4 65.3 60.0 37.0 

Standard 

Deviation (%) 8.1 0.5 5.0 0.6 13.9 

 

Summer 

 MRT-

LF/HF 

T – 

LF/HF 

CO2 – 

LF/HF 

RH – 

LF/HF 

PMV – 

LF/HF 



  

   

 

Average (%) 
59.1 62.5 56.7 65.8 40.8 

Standard 

Deviation (%) 10.4 8.0 10.7 9.3 8.5 

 

3.2. Machine Learning results 

Tables 3 expresses the average prediction accuracy of the classification algorithms used to 

predict the thermal sensation vote expressed from subjects that participated to the study in relation 

with HRV indices. In particular, in the first row the six classification algorithms are trained only 

using the LF/HF as input data and the thermal survey as label. The average accuracy of DT, KNN, 

LDA and RF are close to 50% while NB and SVM increases up to 76 %.  

Table 4. ML classification accuracy computed as the average accuracies for each of the 29 subjects.  

Mean ML classification accuracy (%) 

Indices DT KNN LDA NB SVM RF 

LF/HF 52 52 55 75 76 51 

Time 69 73 74 81 82 73 

Frequency 63 68 64 79 80 69 

All 72 68 77 82 84 79 

 

The second and third row show the average accuracy of the algorithms trained with a dataset 

obtained from the aggregation of time-domain and frequency-domain HRV measurements 

respectively. Accuracy has increased in both cases in all the classifiers but also in this case NB 

and SVM have provided higher accuracy, up to 82%. Moreover, it has to be pointed out that all 

algorithms classify the thermal vote with lower accuracy in the frequency domain with respect to 

time-domain indices. Finally, the accuracy of the algorithm trained with a dataset obtained from 

the aggregation of all the computed HRV indices is shown in the last row. The higher accuracy is 

reached by SVM algorithm (84%) while KNN provides the lowest performance (68%). 

Figure 7 shows the trend of the predicted thermal sensation vote from the model against the real 

vote obtained for one subject analyzed.  

 



  

   

 

As final consideration, ML classification approach, and in particular NB and SVM allow to use 

LF/HF to predict the thermal comfort vote of a user in an indoor environment even if better results 

are shown for the accuracy of time, frequency and aggregated indices. 

 

3.3. Subjective attributes affecting IEQ perception 

This section focuses on subjectivity of the perceived IEQ moving from a preliminary combined 

analysis of environmental data measured by the indoor microclimate station end expressed actual 

sensation votes. These are continuously noted by the operator throughout the whole test being 

translated into a 7-points comfort scale ranging between -3 and +3 where 0 expresses neutral 

conditions. Presented data are thus referring to a collection rate of 1 minute which is the settled 

rate for the microclimate monitoring. More specifically, the analysis focuses on comfort domains 

mainly affected by given environmental stimuli which are related to the activation of an HVAC 

system causing air temperature and velocity variation.  

Graphs of Figure 8 show thermal (Figure8a, c) and air quality (Figure 8b, d) perception given 

by the subjects during both winter (Figure 8a, b) and summer (Figure 8c, d) tests with respect to 

corresponding monitored operative temperature and CO2 concentration respectively, i.e. left y-

axes, which are the physical environmental parameters mainly related to such spheres of comfort. 

Same expressed sensations are also correlated to draught rate, i.e. percentage of people predicted 

to be bothered by draught according to ISO 7730 (right y-axes), which reaches up to 100% during 

Figure 7. Thermal sensation vote predicted from SVM classification model (red line) against the real thermal 

sensation vote (blue line) for one subject as example. 



  

   

 

summer tests. The observed high values of air velocity and local turbulence intensity are due to 

the small dimensions of the test-room, i.e. 27 m3, and thus to the proximity between the split of 

the HVAC system and the subject.  

In Figure 8, plots dispersion expresses the extent of the physical variable range corresponding 

to specific sensation vote while plots transparency gives an idea of the statistical strength of the 

pointed-out correlation. Presented outcomes highlight how much IEQ perception varies among 

different subjects and thus occupants in general. Physical variables ranges corresponding to 

specific sensations are wide, e.g. up to 14.6 °C and 8.9 °C of operative temperature interval 

expressing thermal neutrality in winter and summer respectively, and almost overlapped. 

Nevertheless, correlations among thermal sensation votes and both operative temperature and 

draught rate are found out to be weak but consistent throughout the seasons. In particular, operative 

temperature seems to positively influences actual thermal votes with an R2 equal to 0.18 and 0.48 

during winter and summer tests respectively. On the other hand, percentage of people predicted to 

Figure 8. Actual Thermal and Air Quality sensation votes given with respect to most influencing physical 

parameters, i.e. measured operative temperature, draught rate, and CO2 concentration. 



  

   

 

be bothered by draught is negatively correlated to expressed thermal sensation with an R2 of 0.15 

during summer tests. 

No significant relationships are highlighted between air quality perception and detected CO2 

concentration within the room even if during almost all the performed tests this value overcomes 

the suggested limit of 1000 ppm, i.e. up to 2319 ppm observed in winter, due to missing ventilation 

rate during the experiment. Clear correlation is also missing between air quality perception and 

draught rate in summer when this value reaches up to 100% while a weak positive correlation is 

shown in winter meaning that not particularly strong draught may improve the perception of air 

quality towards “fresh air”. 

In order to understand reasons underneath the presented differences among expressed sensations 

combined to monitored environmental parameters, possible influences due to personal attributes 

of the subject are here investigated. In particular, the hypothesis here statistically tested assumes 

expressed IEQ satisfaction, i.e. fill-up survey part III, as dependent from personal characteristics 

of the subject gathered in survey part I. This hypothesis is tested considering both single personal 

characteristics and group of objective and subjective descriptors, i.e. not-depending or depending 

from the will of the subject (Table 2). 

Figure 9. Statistical investigation of objective and subjective groups of personal characteristics 

impact on expressed IEQ during both winter and summer tests. 



  

   

 

The p-value quantifies the goodness of the proposed assumption as shown in Figure  9 for 

perception dependency from groups of personal variables. The lower the p-value, the higher the 

significance of the tested hypothesis. Only few of the proposed correlations show up to be 

significant assuming a level of significance equal to 0.07 but such relations are not consistent 

throughout different tested seasons. The lowest p-value is 0.02 obtained for the hypothesis of 

objective personal parameters influencing the visual perception in winter at the beginning of the 

test. The other significant relation found out in the coldest season still refers to the initial phase of 

the test, it has a p-value of 0.07, and concerns thermal comfort perception as depending on personal 

subjective attributes, i.e. Body-Mass-Index, education, smoking habits, and worn garments. This 

is the only relation confirmed by the summer test with a p-value of 0.03.  

Table 5. The three most significant single personal characteristics influencing expressed IEQ perception in winter 

and related p-value 

 Initial test phase Final test phase 

 Personal characteristic p-value Personal characteristic p-value 

Thermal comfort  Smoking habits 0.01 Education 0.30 

Gender 0.05 BMI 0.43 

BMI 0.36 Age 0.47 

Acoustic comfort  Age 0.06 Birthplace 0.20 

Gender 0.26 Smoking habits 0.24 

BMI 0.36 Age 0.27 

Visual comfort  Birthplace 0.05 Birthplace 0.14 

Age 0.10 Age 0.17 

Gender 0.47 Gender 0.65 

Air quality  Education 0.03 Gender 0.44 

Smoking habits 0.20 Worn garments 0.45 

Worn garments 0.28 Smoking habits 0.46 

Table 6. The three most significant single personal characteristics influencing expressed IEQ perception in summer 

and related p-value 

 Initial test phase Middle test phase Final test phase 

 Personal 

characteristic 

p-value Personal 

characteristic 

p-value Personal 

characteristic 

p-value 

Thermal 

comfort 

Worn garments 0.03 Gender 0.07 Gender 0.02 

Education 0.12 Smoking habits 0.11 Age 0.11 

Age 0.26 BMI 0.18 BMI 0.30 

Acoustic 

comfort 

Gender 0.02 Gender 0.15 Gender 0.04 

BMI 0.40 Birthplace 0.45 Age 0.53 

Age 0.55 Age 0.58 Birthplace 0.53 

Visual 

comfort 

Age 0.25 Smoking habits 0.34 Birthplace 0.12 

Smoking habits 0.57 Worn garments 0.55 BMI 0.22 



  

   

 

Gender 0.65 Gender 0.58 Age 0.31 

Air quality Age 0.01 Age 0.13 Age 0.08 

Gender 0.20 Gender 0.37 Education 0.35 

Worn garments 0.20 Worn garments 0.37 BMI 0.39 

Table 5 and Table 6 report the obtained results testing each single personal characteristic as 

driver of the perceived level of comfort in all the comfort-domains, i.e. thermal, acoustic, visual, 

and air quality. Significant relations are highlighted in bold. Some of the obtained p-values identify 

stronger relations, but these are never consistent throughout seasons or different phases of the test.  

The outlined findings suggest that the tested hypothesis are generally not convincing. 

Nevertheless, the influence on IEQ perception due to complex life-styles seems more reasonable 

than single-parameter affection. The investigation of such groups of personal characteristics on 

indoor comfort perception could be promising in deepening psychological aspects. 

4. Conclusions and future developments 

Building energy consumption is driven by occupants’ energy-needy behaviors which are driven, 

again, by human comfort perception in indoors, among other personal variables. Nowadays, 

scientific community is approaching the theme of human comfort assessment in indoors trying to 

overcome the strictly environmental-driven procedure proposed by actual regulations. Comfort 

should be indeed investigated in all its components including physiological and psychological 

parameters. 

Within this framework, the current work aims to present a novel measurement procedure 

designed to get a complete overview of occupants’ IEQ perception. From a technical point of view, 

the challenge of the study is to involve at the same time different typologies of measurement 

systems since a unique platform is not available so far. Proper synchronization of all the measured 

signals is therefore fundamental for the goodness of the pretended outcomes and it represents one 

of the key original efforts performed in this research. In fact, environmental data, as well as 

physiological and psychological ones are simultaneously monitored during specific tests 

conducted in winter and summer. These are mainly focused on the variation of the thermal 

environment, but the study is not only restricted to thermal perception in order to investigate even 

the existing interaction among different domains of comfort, i.e. thermal, visual, acoustic, and air 

quality. In particular, the current work presents preliminary results in terms of both (i) combined 

physical and physiological analysis and (ii) psychological interpretation of the expressed 

perception even combined to environmental data. 



  

   

 

ECG signal processes of 29 out of the 62 performed tests are presented in this study. Extracted 

features are the ones most related to thermal comfort variation according to the literature, i.e. HRV 

and LF/HF ratio. ML algorithms allow to confirm that HRV and its indices are strictly connected 

with human thermal comfort with prediction accuracy up to 82%.  

The combined analysis of expressed sensation votes with both (i) physical environmental 

variables and (ii) personal characteristics does not lead to statistically significant results. 

Nevertheless, the obtained outcomes highlight that subjective responses are most probably driven 

by the identification of complex life-style while relations among physical stimuli and univocal 

response from occupants is not so strict as it is proposed by actual regulations. 

As further development, similar experimental tests will be performed with varying typology of 

environmental stimuli given to the subjects and a complete database is going to be collected to 

finally get to the definition of a new comfort model. This complex and complete model could 

enhance building energy consumption prediction reducing performance gaps and could be 

associated to real-time environmental control system for a better management of the building 

during its operative life and without compromise occupants’ comfort perception. Additionally, the 

evaluation of the whole personal perception, together with collection of physical measurements 

within the indoors may be of key help for improving indoor environmental quality and for 

elaborating more tailored human-centered building design strategies. 
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