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• This paper proposes Brain-on-Cloud to automatically diagnose Alzheimer’s disease

• Brain-on-Cloud considers the spatial coherence of a 3D magnetic resonance scan

• Being reliable and lightweight, Brain-on-Cloud can be used in real-time scenarios
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Abstract

Background and objective: Alzheimer’s disease accounts for approximately 70% of dementia cases.

Cortical and hippocampal atrophy caused by Alzheimer’s disease can be appreciated easily from a

T1-weighted structural magnetic resonance scan. Since a timely therapeutic intervention during the

initial stages of the syndrome has a positive impact on both disease progression and quality of life of

affected subjects, Alzheimer’s disease diagnosis is crucial. Thus, this study relies on the development of

a robust yet lightweight 3D framework, Brain-on-Cloud, dedicated to efficient learning of Alzheimer’s

disease-related features from 3D structural magnetic resonance whole-brain scans by improving our

recent convolutional long short-term memory-based framework with the integration of a set of data

handling techniques in addition to the tuning of the model hyper-parameters and the evaluation of its

diagnostic performance on independent test data.

Methods: For this objective, four serial experiments were conducted on a scalable GPU cloud service.

They were compared and the hyper-parameters of the best experiment were tuned until reaching the best-

performing configuration. In parallel, two branches were designed. In the first branch of Brain-on-Cloud,

train, validation and test were performed on OASIS-3. In the second branch, unenhanced data from

ADNI-2 were employed as independent test set and the diagnostic performance of Brain-on-Cloud was

evaluated to prove its robustness and generalization capability. The prediction scores were computed

for each subject and stratified according to age, sex and mini mental state examination.

Results: In its best guise, Brain-on-Cloud is able to discriminate Alzheimer’s disease with an accuracy

of 92% and 76%, sensitivity of 94% and 82%, and area under the curve of 96% and 92% on OASIS-3

and independent ADNI-2 test data, respectively.

Conclusions: Brain-on-Cloud results to be a reliable, lightweight and easily-reproducible framework

for automatic diagnosis of Alzheimer’s disease from 3D structural magnetic resonance whole-brain

scans, performing well without segmenting the brain into its portions. Preserving the brain anatomy, its

application and diagnostic ability can be extended to other cognitive disorders. Due to its cloud nature,

computational lightness and fast execution, it can also be applied in real-time diagnostic scenarios

providing prompt clinical decision support.

1. Introduction

Dementia is affecting around fifty million people world-

wide and Alzheimer’s Disease (AD) is the most predominant

form [1], contributing up to 70% of all dementia cases as

reported by the World Health Organization (WHO)2. AD is
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a cognitive disorder that begins with mild memory losses

and worsens progressively until death, as it damages brain

cells irreversibly, ending up with the destruction of the brain

area that controls cardiac and respiratory functions [1, 2].

Age may significantly affect the evolution of the syndrome:

the prevalence of AD after 85 years of age (up to 35%)

is estimated to be higher than in other age groups [3, 4].

However, AD is not an exclusive consequence of biological

ageing. According to the WHO, the onset of symptoms before

65 years of age accounts for up to 9% of all AD cases.

Anatomically, as neurons are injured, connections between

neurons may break down and many brain regions begin to

shrink dramatically [5, 6]. Even relatively early in its clinical

expression, brain atrophy caused by AD targets mainly the

cerebral cortex and the anterior hippocampal regions that are

involved in thinking, reasoning and keeping new memories

[4, 7, 8].

The diagnosis of AD requires careful medical evalua-

tions, including anamnesis, neuropsychological tests, such

as Mini Mental State Examination (MMSE), and other

neurobiological exams [5]. In addition, neuroimaging data

are extensively used as diagnostic support [6]. Structural

Magnetic Resonance Imaging (sMRI) is widely exploited
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for the investigation of progressive neurological impairment

[9, 10]. It offers a painless and non-invasive method of

analyzing the anatomical changes of the brain, combining

radio waves and strong magnetic fields, in order to guarantee

high level of spatial resolution [11, 12]. The clinical utility

of sMRI in distinguishing AD from other cognitive disorders

is well established [13], especially when using T1-weighted

(T1w) sMRI scans [14, 15]. T1w images are useful to analyze

the brain structure from an anatomical point of view, reliably

differentiating between the gray and white matters [16]. Since

strong T1 contrast is present between fluid and more solid

anatomical structures, T1w images are more suitable for the

morphological assessment of the brain anatomy [16]. Thus,

the presence of cortical and hippocampal atrophy caused by

AD can be easily appreciated from a T1w sMRI scan [14].

Despite the available diagnostic tools, the diagnosis of

AD is still very difficult due to similar symptoms with other

cognitive disorders. In clinical practice, AD diagnosis can be

confirmed only after the patient’s death by means of a post-

mortem examination of the brain tissue [17]. Furthermore, an

effective cure to reverse or arrest AD progression has not been

identified yet [17]. Nevertheless, given the disproportionate

aging of the population, AD-related socio-economic impact

is continuing to rise [18]. Hence, AD diagnosis is crucial,

as a timely therapeutic intervention especially during the

initial stages of the syndrome appears to have a positive

impact on both the progression of symptoms and the quality

of life of diseased subjects [1, 2, 19]. In this regard, Artificial

Intelligence (AI)-guided computer-aided systems have been

widely parsed to automatically diagnose AD, especially using

Deep Learning (DL) algorithms [20].

DL has been one of the crucial factors for the success

of AI in the medical field [21, 22]. Compared with conven-

tional Machine Learning (ML) algorithms, DL has multiple

advantages in analyzing medical images, presenting high

power in identifying complex structures and in automatizing

feature extraction [7]. Indeed, DL is able to adaptively learn

from the data (i.e., fully data-driven process), obtaining the

optimal representation of the problem, without relying on

handcrafted features [1, 21]. Handcrafted feature extraction

is difficult and time-consuming, especially due to the com-

plexity of the diagnostic problem and the difficulty to model

prior knowledge completely [17, 23]. Moreover, handcrafted

features potentially lead to non-optimal diagnostic results, as

they may not be well coordinated with succeeding classifiers

[10]. Therefore, DL algorithms are better suitable than ML

ones for generalizing even under slight anatomical changes,

like the ones caused by AD [13, 24].

To the best of our knowledge, our recent manuscript

was the first and only to propose an end-to-end frame-

work, named ConvLSTM4AD3, leveraging exclusively on

a Convolutional Long Short-Term Memory (ConvLSTM)-

based neural network to investigate the presence of AD [1].

Despite the promising results, ConvLSTM4AD was designed

to work with only 5 slices per scan. Furthermore, neither

the impact of data handling techniques nor the impact of

3https://github.com/airtlab/ConvLSTM4AD

model parameter optimization were analyzed there. Thus,

the motivation behind the hereby presented study is to find

a more robust yet lightweight 3D framework, named Brain-

on-Cloud, for automatically detecting AD from 3D sMRI

whole-brain scans on cloud. In this regard, the focus is on

improving the end-to-end ConvLSTM-based model dedicated

to efficient learning of AD features while overcoming the

main limitations raised in [1] by: increasing the cardinality of

3D sMRI scans used to feed the neural network; increasing

the number of analyzed slices per scan; automatizing the

entire workflow; and conducting in-depth studies, including

the impact of different data handling techniques, the impact of

hyper-parameter selection on the performance of the model,

and the investigation of the diagnostic performance of Brain-

on-Cloud in relation to age, sex and MMSE. Additionally,

the entire source code of Brain-on-Cloud will be available on

GitHub under copyright, to ensure its full reproducibility4.

2. Literature review

Discovering an algorithm able to automatically classify

the anatomical brain changes caused by AD is an interesting

research topic for the scientific community.

DL algorithms for automatic AD diagnosis mainly fo-

cused on semisupervised learning algorithms to make full

use of both labelled and unlabelled sMRI data, and supervised

learning algorithms to make use of labelled sMRI data only.

As for semisupervised learning algorithms, Yu et al. [15]

were the first to propose a tensor-train, high-order pooling-

based Generative Adversarial Network (GAN) to assess Mild

Cognitive Impairment (MCI) and AD from T1w sMRI scans

taken from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) database. Yu et al. [25] also proposed a multi-

directional perception GAN to visualize the morphological

features indicating the severity of AD for subjects of different

stages, conducting extensive experiments on the same ADNI

database. As for supervised learning algorithms, Convolu-

tional Neural Network (CNN) has become the standard DL

model for automatic diagnosis of AD from sMRI data, mainly

thanks to the ability to automatically extract the most relevant

features [7, 26, 27]. The majority of CNNs takes as input

2D data. Since the sMRI scan is inherently a volume, such

architectures split the 3D information into 2D multi-channel

data (i.e., each slice is analyzed independently). However,

analyzing the 3D sMRI scan slice by slice may lead to loss

of valuable information, as the spatial correlation between

adjacent slices is neglected, which can thus not be taken into

account [1, 17, 24]. Integrating the volumetric information

into the learning can help the process. CNN-based methods

that take as input sMRI volumes, referred to as scan-based

approaches, can possibly improve the model performance as

they capture richer spatial information (i.e., the entire brain

or the most significant brain portions can be encapsulated)

and extract more discriminative features than slice-based

approaches [1, 28]. Thus, scan-based approaches have the

potential to investigate the overall information in a more

4https://github.com/airtlab/Brain-on-Cloud
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detailed way, resulting in clinically more reliable judgments

[29].

Focusing exclusively on supervised learning, scan-based

approaches starting from 2017, Luo et al. [20] presented

an automatic AD recognition system based on a 3D CNN

fed with sMRI whole-brain scans, taken from a subset of

the ADNI database. Specifically, 47 AD and 34 Cognitively

Normal (CN) scans were taken into account. The input

consisted of 5 neighbouring slices per scan, each having a

post-processed resolution of 54 pixels × 54 pixels. Brain reg-

istration was accomplished through a series of pre-processing

steps. Random zooming and in-and-out cropping were used

to augment and balance the dataset. Once pre-processed,

the dataset was split into 66% data for training and 33%

for testing, without reserving a percentage for validation.

Their framework gained a good AD detection, reaching a

SPecificity (SP) of 93% and a SEnsitivity (SE) of 100% on

test data. In the same year, Korolev et al. [30] compared a 3D

CNN and a residual neural network, emphasizing to achieve

high performance without incorporating any handcrafted

feature extraction step. The input consisted of 110 slices

per scan, each having a resolution of 110 pixels × 110 pixels.

The first model, trained, validated and tested on a subset of

sMRI whole-brain data (50 AD and 61 CN) of the ADNI

database, that has been pre-processed with alignment and

skull-stripping, gained a test ACCuracy (ACC) of 79% and

an Area Under the Curve (AUC) of 88% in discriminating AD

from CN subjects. In 2018, Bäckström et al. [31] proposed

a 3D CNN for automatic feature learning and AD detection

on a pre-processed sMRI whole-brain subset of the ADNI

database, considering multiple scans per subject. Image pre-

processing consisted of cortical reconstruction (performed by

the dataset provider), trimming, resizing and normalization.

The 3D CNN, made up of five convolutional layers for

feature extraction and three fully-connected layers for AD/CN

classification, was fed with 110 slices per scan, each with

a resolution of 110 pixels × 110 pixels, and reached a test

ACC of 98.73%. In 2019, Basaia et al. [13] developed a 3D

CNN leveraged on a single axial sMRI whole-brain scan to

discriminate AD from CN subjects. Data of 294 AD and

352 CN subjects were selected from three subsets of the

ADNI database, and split into train and test sets according

to a ratio of 9:1. They also reserved 10% data from the train

set to perform validation. In AD versus CN classification,

their transfer learning-based method reached an ACC of

99.20%, SP of 99.50% and SE of 98.90% on test data. In

the same year, Jabason et al. [17] built a framework based

on an ensemble of CNNs fed with the 100 most informative

slices of each sMRI scan taken from the OASIS-3 subset of

the Open Access Series of Imaging Studies (OASIS) database.

By applying a combination of voting algorithms of the three

pre-trained CNN pipelines, the best-performing experimental

setup reached a test ACC of 95.23% without specifying how

the data were pre-processed. In 2020, Xia et al. [24] designed

a hybrid framework to separate AD from CN, consisting

of a 3D CNN to learn low-level features, coupled with a

ConvLSTM module to extract high-level spatial information.

Experiments were performed on T1w sMRI whole-brain data

(198 AD and 229 CN) taken from a subset of the ADNI

database. All scans were pre-processed and reduced to 143

slices per scan, each with a resolution of 119 pixels × 119

pixels. The best experiment gained a test ACC of 94.19%, SP

of 94.57%, SE of 93.75% and AUC of 96% for classifying

AD. In 2021, Saratxaga et al. [32] implemented a DL-based

method for AD automatic diagnosis from sMRI whole-

brain scans, considering both state-of-the-art and customized

architectures. Data were selected from two subsets (OASIS-

1 and OASIS-2, separately used to train, validate and test

the models) of the OASIS database. According to the input

size requirements of each implemented model, two slice

sizes were considered: 176 pixels × 176 pixels and 224

pixels × 224 pixels. Moreover, a data augmentation strategy

(rotation, vertical flip and horizontal flip) was performed

to avoid overfitting. Over the OASIS-1 subset, the best 3D

model performing a subject-level classification resulted to

be a customized architecture with five convolutional blocks,

named BrainNet3D, as it achieved a test ACC of 80%. Over

the OASIS-2 subset, the same model achieved a test ACC of

84% in discriminating AD from CN subjects.

3. Brain-on-Cloud

With the aim to improve our end-to-end ConvLSTM-

based neural network, four serial experiments were con-

ducted, adding in each experiment new improvements in

relation to the previous one. In the first experiment, only

intensity normalization and automated cropping were per-

formed. In the second and third experiments, scan registration

and brain extraction were respectively added, as they are the

distinctive steps in the analysis of sMRI brain scans [26].

In the fourth experiment, data augmentation was performed

on the train set. Then, the output scans of each experiment

were used to feed the ConvLSTM-based neural network

for feature extraction and classification. All experiments

were compared in terms of classification metrics and the

hyper-parameters of the best experiment were tuned until

reaching the best-performing configuration. In parallel, two

branches were designed. In the first branch of Brain-on-

Cloud, train, validation and test were performed on the

OASIS-3 dataset. In the second branch, unenhanced data

from the ADNI-2 dataset were employed as independent test

set and the diagnostic performance of Brain-on-Cloud was

evaluated to prove its robustness and generalization capability.

Also, prediction scores were computed for each subject and

stratified according to age, sex and MMSE.

The described workflow is shown in Figure 1 and details

are reported in the following subsections.

3.1. Data selection
For ensuring a less database-specific, thus more gen-

eralizable approach, two datasets (OASIS-3 and ADNI-2)

of two different openly-available databases (OASIS5 and

5https://www.oasis-brains.org/
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second branch Diagnostic performance evaluation 

in relation to age, sex and MMSE

Figure 1: The workflow of Brain-on-Cloud. Four serial experiments were conducted. In the first experiment, intensity normalization
and automated cropping were performed. In the second and third experiments, scan registration and brain extraction were
respectively added. In the fourth experiment, train data augmentation was performed. Then, the output scans of each experiment
were used to feed the ConvLSTM-based neural network for feature extraction and classification. In parallel, two branches were
designed. In the first branch of Brain-on-Cloud, train, validation and test were performed on OASIS-3. In the second branch,
unenhanced data from ADNI-2 were employed as independent test set and prediction scores were stratified according to age, sex
and MMSE.

ADNI6) were chosen, as better detailed in subsection 3.1.1

and subsection 3.1.2.

For more reliable outcomes and also to lighten the overall

computational effort, it is important to choose the most

informative slices from the available data [17]. Thus, the

slices corresponding to the anterior hippocampal regions

were carefully selected, as affected early in AD progression

[7]. To do so, the recommendations for anterior hippocampal

area contouring from axial T1w sMRI proposed by Chera

et al. [33] were followed. As the hippocampus is the gray

matter located inside the temporal horn curve [34], this

latter structure was identified first. After contouring the

hippocampus inside the temporal horn curve, it was identified

inferiorly from the level of the temporal horn, as its caudal

portion is located at the level of the pituitary gland and

pons [33]. Then, the hippocampus was identified superiorly

from the level of the temporal horn, as its cranial portion is

located at the level of the splenium of the corpus callosum

[33]. Hence, of the totality of slices per scan, only slices

comprised in the interval ranging from 85 to 135 were

automatically selected for both OASIS-3 and ADNI-2, as

that range perfectly encapsulated both anterior hippocampi.

The slice selection procedure (Figure 2) led to a total of 50

whole-brain slices for each 3D sMRI scan.

3.1.1. OASIS-3

Data for the first branch (Figure 1) were selected from the

OASIS-3 dataset, as it is the most recent subset of the OASIS

database. Only one raw T1w 3D sMRI scan was considered

for each subject, resulting in 275 scans, 145 AD and 130 CN.

In case of multiple scans per subject, the first in chronological

order was chosen to avoid an intra-subject bias. Each scan

contains 256 stacked slices, having an original resolution of

176 pixels × 256 pixels, a thickness of 1 mm and a pixel size

of 1 mm [35]. AD scans belong to 74 anonymized women

and 71 anonymized men ranging from 52 to 95 years in age,

6https://http://adni.loni.usc.edu/

whereas CN scans belong to 81 anonymized women and 49

anonymized men ranging from 45 to 86 years in age. All

selected scans were acquired with 1.5 T and 3.0 T Siemens

scanners and stored as Digital Imaging and Communications

in Medicine (DICOM) files, then converted to compressed

Neuroimaging Informatics Technology Initiative (NIFTI)

files.

3.1.2. ADNI-2

Data for the second branch (Figure 1) were selected from

the ADNI-2 dataset, which is a subset of the ADNI database7.

Only one unenhanced T1w 3D sMRI scan was considered

for each subject, resulting in 66 scans, 33 AD and 33 CN. In

case of multiple scans per subject, the first in chronological

order with at least one clinical assessment (e.g., MMSE) was

chosen to avoid an intra-subject bias. Each scan contains 256

stacked slices, having an original resolution of 176 pixels ×

240 pixels, a thickness of 1.2 mm and a pixel size of 1 mm.

AD scans belong to 8 anonymized women and 25 anonymized

men ranging from 57 to 88 years in age, whereas CN scans

belong to 23 anonymized women and 10 anonymized men

ranging from 57 to 82 years in age. All selected scans were

acquired with 1.5 T and 3.0 T Siemens scanners and stored

as DICOM files, then converted to compressed NIFTI files.

3.2. Neural network architecture and setup
Seeking the best trade-off between the model computa-

tional cost, speed and performance, a 6-layered sequential

neural network with 56,425,794 total parameters was de-

signed. The first layer, a ConvLSTM layer, is the backbone

of the model. It has 8 convolution filters with a kernel of 3 ×

3. ConvLSTM is a variant of a recurrent neural network that

exploits convolution filters and is able to model the long-term

interactions while exploring the spatial information [1, 24].

7The investigators within ADNI, listed at http://adni.loni.usc.

edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf, con-

tributed to the design and implementation of ADNI and/or provided data

but did not participate in analysis or writing of this study
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Figure 2: The slice selection procedure. Of the 256 slices per scan, 50 slices were automatically selected for both OASIS-3 and
ADNI-2, perfectly encapsulating both anterior hippocampal regions.

Discriminative features are automatically extracted through

convolution mechanisms different from the ones exploited

by a CNN [24]. During convolution operations, the model

learns which filters have to be activated when seeing a feature

at a specific spatial position in the input. The main function

of LSTM, instead, is to help the preservation of the error

in order to be back-propagated [21, 26]. In a LSTM hidden

unit (Figure 3), each sequence is treated entirely and the

information is stored in a gated memory cell. The memory

cell itself decides about what to store and when to allow

the reading and updating of the information via three gates,

which open and close whenever required [26]: the input gate

transfers new input information to the memory cell, the forget

gate selectively forgets non-valuable information, whereas

the output gate allows the storage of relevant information

[12, 24]. As pointed out in [36], the output ℎt at time point t

MEMORY

CELL

INPUT

GATE

OUTPUT

GATE

FORGET

GATE

xt xt

xt

xt

ht

it

tanh tanhx

x

x

ot

ft

ct

Figure 3: The LSTM hidden unit. The memory cell decides
about what to store and when to allow the reading and updating
of the information via three (input, forget and output) gates.

is regulated by (1),

it = �(Wxixt +Wℎiℎt−1 +Wc ict−1 + bi)

ft = �(Wxfxt +Wℎfℎt−1 +Wcf ct−1 + bf )

ct = ftct−1 + ittanℎ(Wxcxt +Wℎcℎt−1 + bc)

ot = �(Wxoxt +Wℎoℎt−1 +Wcoct + bo)

ℎt = ottanℎ(ct) (1)

where it, ft, ot and ct are respectively the activation vectors

of the gates and of the memory cell at time point t, � is the

sigmoid activation function, tanℎ is the hyperbolic tangent

activation function, xt denotes the current input, b denotes

the bias of the memory cell and of each gate, and W are

the weight matrices. ConvLSTM was selected because both

spatial and temporal AD features take part in the classification

[12]. The second layer is a Dropout layer. Thanks to dropout,

which is a regularization technique, a few units are randomly

removed from the model during the training phase, reducing

the overall complexity of the neural network [1]. The dropout

rate was initially set to 0.5 to smooth out overfitting. The

third layer is a Flatten layer, which flattens all the extracted

features into a big mono-dimensional tensor. The fourth layer

is a Dense layer. It has 256 neurons and Rectified Linear

Unit (ReLU) as activation function. ReLU helps the model

consider non-linear effects and interactions, demonstrating

faster training and better results than sigmoid [37]. The

fifth layer is also a Dropout layer. The dropout rate was

initially set to 0.7 to further reduce overfitting. The sixth

layer is also a Dense layer. It has 2 neurons and Softmax

as activation function. Softmax assigns probabilities to each

class by outputting real values between 0 and 1 with a sum

of 1 [1].

The Pro version of Google Colab cloud service was

utilized to run the experiments, selecting the high RAM (34

GB) and GPU hardware acceleration setups. The Keras library

built on a TensorFlow backend version 2.6.0 was used to

train the model from scratch for 50 epochs, fixing initially the

learning rate to 0.001 and the batch size to 10. The stochastic

gradient descent was chosen as optimizer because, during

training, the optimization based on a stochastic gradient is

crucial to minimize the loss function while assuring higher

S. Tomassini et al.: Preprint submitted to Elsevier Page 5 of 11
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efficiency [1, 37]. The binary cross entropy was set as loss

function. The early stopping callback with a patience of 5 was

also used to further smooth out overfitting, as early stopping

stops the training at the point where the validation loss,

which captures exactly the divergence between the predicted

output and the desired one, is minimal [6]. The training of

the model took approximately 20 min for each experiment.

Specifically, in the first branch of Brain-on-Cloud, a stratified

shuffle-split cross validation was used in order to obtain a

better approximation of the classification performance. In

this regard, a randomized split of the OASIS-3 dataset into

train (80%) and test (20%) sets was repeated five times, and

20% of the train set served as validation set in each data split.

In the second branch, the model weights of the best split

among the carried-out experiments were utilized to evaluate

the performance of Brain-on-Cloud on all data (100%) of the

ADNI-2 dataset, used as independent test set.

3.3. Experiments
For an in-depth investigation of the impact of data han-

dling on the performance of Brain-on-Cloud, the following

four experiments were conducted (Figure 1).

3.3.1. First experiment

In the first experiment, intensity normalization and auto-

mated cropping were added to the pipeline.

Since intensity normalization reduces the intensity vari-

ation caused by the use of different scanners or parameters

for scanning different subjects [26], all raw sMRI data were

normalized by subtracting the mean intensity and dividing

the standard deviation. Next, each scan was automatically

cropped by removing all black, non-informative voxels,

ending up with different scan shapes. To have a dimensionally-

uniform dataset, all scans were reshaped to 147 pixels × 192

pixels per slice, as it was the mean resolution of the cropped

scans.

3.3.2. Second experiment

In the second experiment, the scan registration step was

added to the pipeline.

This step is crucial for the alignment of multiple structures

in order to verify their spatial correlation in anatomical

terms [1, 26] by removing global differences and also

resampling all scans to have 1-mm spatial resolution [10]. A

common technique to perform scan registration is affine linear

transformation [26]. For this, the linear image registration tool

module of FMRIB Software Library (FSL)8 was exploited.

First, a dataset-specific template was generated by merging

all AD and CN samples, respectively, and calculating their

average. Then, all sMRI scans were registered using the aver-

age template, so that the spatial location of each anatomical

structure of a sMRI scan perfectly matched with the one of

another scan.

3.3.3. Third experiment

In the third experiment, the brain extraction step was

added to the pipeline.

8https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL

This step is fundamental to extract only brain voxels [26],

which include the brain stem, cerebrospinal fluid, gray matter,

white matter, sub-cortical structures and cerebellum [12]. For

this, the brain extraction tool module of FSL was exploited,

setting the fractional intensity threshold to 0.3 to reduce the

bias without discarding any brain voxel [1].

3.3.4. Fourth experiment

In the fourth experiment, train data augmentation was

added to the pipeline.

As AD affects both sides of the brain, augmentation via

horizontal flipping was implemented only on the train set

to exchange left and right symmetrical brain hemispheres

[1, 24].

3.4. Classification and selection criteria
To evaluate the model performance, the following clas-

sification metrics were taken into account: ACC, SP, SE,

F1-Score (F1-S), Receiver Operating Characteristic (ROC)

curve and AUC. Specifically, a 0.5 discrimination threshold

was chosen to compute ACC (2), SP (3), SE (4) and F1-S (5),

regulated by:

ACC =
TP + TN

TP + TN + FP + FN
(2)

SP =
TN

TN + FP
(3)

SE =
TP

TP + FN
(4)

F1 − S =
TP

TP +
1

2
(FP + FN)

(5)

where TP stands for True Positive and it is the case where

AD subjects are correctly classified as subjects affected by

AD, TN stands for True Negative and it is the case where

CN subjects are correctly classified as healthy subjects, FP

stands for False Positive and it is the case where CN subjects

are wrongly classified as subjects affected by AD, and FN

stands for False Negative and it is the case where AD subjects

are wrongly classified as healthy subjects.

To select the best experiment among the four experiments,

all classification metrics were taken into account but more

attention was paid to AUC and F1-S, as the first highlights

the ability to discriminate between AD and CN without

depending on the chosen discrimination threshold, whereas

the second is the harmonic mean between precision and SE.

It reflects how many AD cases were correctly identified.

Specifically, FN must be as small as possible in medical

tests, as a miss-classified pathology is the most dangerous

problem in the clinical diagnosis [1, 20].
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3.5. Hyper-parameter tuning
Since hyper-parameter selection has an high influence on

the model performance, it needs to be carefully investigated.

In this regard, a meticulous tuning of the hyper-parameters

was performed for the best experiment in order to reach the

best-performing configuration.

The dropout rate, learning rate and batch size are the

hyper-parameters that impact the model performance most

strongly [31]. Thus, all the possible combinations between

the following values, chosen as they proved to guarantee

both computational lightness and good speed of training in a

preliminary experimental evaluation, were investigated:

• Dropout rate: [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8];

• Learning rate: [0.0001, 0.0005, 0.001, 0.005, 0.01,

0.05];

• Batch size: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

To do so, the grid search algorithm was employed.

3.6. Diagnostic performance
To prove the robustness and generalization capability of

Brain-on-Cloud, its diagnostic performance was evaluated on

a cohort of 66 T1w 3D sMRI scans of 66 subjects belonging

to an independent test set (ADNI-2) in relation to age, sex

and MMSE. Specifically, subjects’ prediction scores were

categorized into:

• Four age groups, namely subjects < 65 years of age,

65 ≤ subjects < 75 years of age, 75 ≤ subjects < 85

years of age and subjects ≥ 85 years of age;

• Two sex groups, namely Female (F) and Male (M);

• Four MMSE groups, namely MMSE ≤ 18 (severe AD),

19 ≤ MMSE ≤ 24 (from moderate to mild AD), MMSE

= 25 (borderline) and 26 ≤ MMSE ≤ 30 (CN).

Prediction score distributions were described in terms of

50tℎ[25tℎ;75tℎ] percentiles for each group and compared with

ground truth score distributions (1[1;1]) by means of the

Wilcoxon Rank-Sum test [38], setting the statistical level of

significance (P) to 0.05.

4. Results

Table 1 reports the performance in classifying AD of the

four experiments and of the tuned best experiment, across

the five splits of the stratified shuffle-split cross validation

scheme, on OASIS-3 test data. Performance is given in terms

of average ACC, SP, SE, F1-S and AUC, together with the

respective standard deviation. Figure 4 focuses on the ROC

curve and AUC values of the four experiments and of the

tuned best experiment, across the five splits of the stratified

shuffle-split cross validation scheme, on OASIS-3 test data.

The best experiment among the four experiments resulted

to be the fourth. Regarding the best experiment hyper-

parameter tuning, the best-performing combination for Brain-

on-Cloud turned out to be the following:

Table 1
Performance in classifying AD of the four (1st, 2nd , 3rd and 4tℎ)
experiments and of the Tuned Best (TB) experiment, across the
five splits of the stratified shuffle-split cross validation scheme,
on OASIS-3 test data. Mean values of ACC, SP, SE, F1-S and
AUC ± the respective standard deviation are reported.

ACC
(%)

SP
(%)

SE
(%)

F1-S
(%)

AUC
(%)

1st 75.27±6.15 68.46±11.77 81.38±8.04 77.64±5.07 80.63±7.80
2nd 77.09±9.54 75.38±16.25 78.62±6.69 78.68±7.89 88.08±10.26
3rd 85.45±7.54 84.62±12.64 86.21±3.78 86.46±6.34 92.09±8.33
4tℎ 86.18±7.42 86.15±6.70 86.21±8.45 86.71±6.71 92.76±5.05
TB 91.64±6.57 89.23±14.06 93.79±4.02 92.48±5.34 96.22±5.06

• Best dropout rate value of the first Dropout layer: 0.6;

• Best dropout rate value of the second Dropout layer:

0.6;

• Best learning rate value: 0.005;

• Best batch size value: 6.

Table 2 reports the diagnostic performance of Brain-on-

Cloud on independent ADNI-2 test data in relation to age, sex

and MMSE, where AD and CN prediction score distributions

are reported in terms of 50tℎ[25tℎ;75tℎ] percentiles. It also

reports the performance in classifying AD of Brain-on-Cloud

in relation to age, sex and MMSE as well as its overall

performance on independent ADNI-2 test data, both in terms

of ACC, SP, SE, F1-S and AUC.

5. Discussion

This study proposed a robust yet lightweight 3D frame-

work, Brain-on-Cloud, for automatically classifying AD from

3D sMRI whole-brain scans using a scalable GPU cloud

service to ensure its public availability under copyright and,

as consequence, a complete reproducibility of the entire algo-

rithm. This outcome was obtained by improving our end-to-

end ConvLSTM-based model dedicated to efficient learning

of AD features by integration with a set of data handling

techniques in addition to the tuning of the model hyper-

parameters and the evaluation of its diagnostic performance

on independent test data (Figure 1). In practice, four data

handling pipelines were implemented for in-depth analysis

of the impact of each step. In parallel, two branches were

designed to investigate the diagnostic performance of Brain-

on-Cloud. The feature extraction and classification tasks were

pursued by performing end-to-end training, five-split cross

validation and test on cloud, exploiting a fast, minutely-tuned

neural network whose core layer is a ConvLSTM layer.

Results show how data handling techniques significantly

affect the performance of Brain-on-Cloud, as reported in

Table 1 and Figure 4. In particular, it was found that the

addition of the brain extraction step affects the classification

metrics more than all the other data-handling steps, increasing

the average ACC of 9%, SP of 10%, SE of 7%, F1-S of 8%
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(a) (b) (c)

(d) (e)

Figure 4: ROC and AUC values of the first experiment (a), second experiment (b), third experiment (c), fourth experiment (d)
and tuned best experiment (e), across the five splits of the stratified shuffle-split cross validation scheme, on OASIS-3 test data.
Mean ROC and AUC values of each experiment are reported in blue.

and AUC of 4%. The main reason behind this outcome is

that brain extraction allowed the removal of all non-brain

voxels (i.e., noisy voxels), thus significantly reducing the

confounders for the neural network in both feature extraction

and classification tasks. Results highlight also the importance

of hyper-parameter tuning, as reported in the last raw of

Table 1 and in the panel (e) of Figure 4. With the grid

search to find the best hyper-parameter combination for the

best experiment among the carried-out experiments, Brain-

on-Cloud registered a further increase of the average ACC

by 6%, SP by 3%, SE by 8%, F1-S by 6% and AUC by

3%. Indeed, in its best guise, Brain-on-Cloud achieves an

average ACC of 92%, SP of 89%, SE of 94%, F1-S of 93%

and AUC of 96% on OASIS-3 test data. The diagnostic

performance of Brain-on-Cloud was also investigated on an

independent test set (ADNI-2). Using a more challenging

evaluation protocol (i.e., OASIS-3 as train and validation set,

ADNI-2 as independent test set), Brain-on-Cloud obtained

promising results. Indeed, it achieves an overall ACC of

76%, SP of 70%, SE of 82%, F1-S of 77% and AUC of

92% on independent ADNI-2 test data. Regarding the age

groups, no statistically significant difference was observed

between AD prediction score distributions and ground truth

score distributions for ADNI-2 subjects younger than 65 and

between both AD and CN prediction score distributions and

ground truth score distributions for ADNI-2 subjects older

than 75. Regarding the sex groups, no statistically significant

difference was observed between both AD and CN prediction

score distributions and ground truth score distributions for

both females and males. Regarding the MMSE groups, no

statistically significant difference was observed between

CN prediction score distributions and ground truth score

distributions for ADNI-2 subjects with a MMSE score higher

than 26 as well as between AD prediction score distributions

and ground truth score distributions for ADNI-2 subjects

with a MMSE score lower than 24, whereas AD prediction

score distributions were statistically different from ground

truth score distributions for borderline subjects (MMSE =

25). These outcomes prove the robustness and generalization

capability of Brain-on-Cloud in classifying severe AD and

from moderate to mild AD, whereas it is still challenging to

discriminate borderline AD cases from CN ones. Moreover,

Brain-on-Cloud is robust enough to classify AD from both

females and males as well as from subjects younger and older

than respectively 65 and 75 years in age.

The strengths of Brain-on-Cloud with respect to the state-

of-the-art frameworks are multiple, as reported in Table 3.

Specifically, it summarizes the classification performance of

Brain-on-Cloud and of the state-of-the-art methods cited in

section 2 in terms of ACC, SE and AUC. It also reports the

database(s) from which the datasets employed for training

and testing belong to, the number of AD and CN subjects
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Table 2
Diagnostic performance of Brain-on-Cloud on independent
ADNI-2 test data in relation to age, sex and MMSE. Number
of AD and CN subjects is given in percentage (%), whereas
AD and CN prediction score distributions are reported in terms
of 50tℎ[25tℎ;75tℎ] percentiles. Performance in classifying AD is
also reported in terms of ACC, SP, SE, F1-S and AUC.

AD
(%)

CN
(%)

AD prediction
(50tℎ[25tℎ;75tℎ])

CN prediction
(50tℎ[25tℎ;75tℎ])

Age

< 65
65-75
75-85
≥ 85

18
27
46
9

3
73
24
0

1[0.95;1]
0.77[0.50;0.94]*
1[0.93;1]
1[0.99;1]

0.64[0.64;0.64]*
0.88[0.60;0.99]
0.87[0.61;0.99]
n.a.

Sex
F
M

24
76

70
30

0.97[0.75;1]
1[0.70;1]

0.94[0.61;0.99]
0.81[0.54;0.91]

MMSE

≤ 18
19-24
= 25
26-30

21
49
30
0

0
0
0
100

1[1;1]
1[0.94;1]
0.64[0.42;0.95]*
n.a.

n.a.
n.a.
n.a.
0.93[0.66;0.99]

ACC
(%)

SP
(%)

SE
(%)

F1-S
(%)

AUC
(%)

Age

< 65
65-75
75-85
≥ 85

83
78
86
100

100
79
75
n.a.

80
75
93
100

89
63
90
n.a.

100
92
98
n.a.

Sex
F
M

80
88

78
80

86
92

67
92

97
95

MMSE

≤ 18
19-24
= 25
26-30

100
93
67
75

n.a.
n.a.
n.a.
75

100
93
67
n.a.

n.a.
n.a.
n.a.
n.a.

n.a.
n.a.
n.a.
n.a.

ACC
(%)

SP
(%)

SE
(%)

F1-S
(%)

AUC
(%)

Overall 76 70 82 77 92

*: P < 0.05, when comparing prediction vs. ground truth score distributions
n.a.: not applicable, if can not be computed

involved in the study, the learning algorithm, the input shape,

the training type and the computing mode. The standard

choice was to exploit a 3D CNN to automatically diagnose

AD from sMRI scans. Although 3D CNN has the ability to

preserve inter-slice context information, it comes with a high

computational cost due to the high number of parameters [26].

Thus, it is not so clear how much performance is gained by

using a 3D CNN to process volumetric data. Conversely,

by using a ConvLSTM-based model like the one hereby

proposed, it is possible to simultaneously process multiple

slices of the same scan, preserving their spatial correlation

in terms of anatomy, while ensuring high performance and

low computational cost due to the reduced number of total

parameters. Since ConvLSTM does not require an input

tensor of a fixed shape, it is also possible to earn in scan

resolution. Indeed, the resolution of 3D sMRI whole-brain

scans used in this study is higher than the scan resolution

of the other frameworks. In contrast to the state-of-the-art

methods, which employed sMRI data selected from the same

database, Brain-on-Cloud was also tested on subjects from

two datasets of two different openly-available databases,

which is more challenging but also more fair as it allows

understanding the generalization capability of the proposed

framework. Furthermore, the methods in Table 3 were

designed without giving details on the sample IDentification

numbers (IDs), whereas the complete list of the sample IDs

used to feed Brain-on-Cloud will be provided on GitHub,

together with the full source code of the implementation,

in order to give the scientific community the possibility to

exploit the same sMRI data and make objective comparisons

with our framework. Another important difference from

the state-of-the-art methods is that Brain-on-Cloud was

developed with cloud computing, allowing a fast, easy and

machine-independent reproducibility of the entire algorithm.

Brain-on-Cloud achieved competitive results in automatic

diagnosis of AD, but its performance could be further

improved. One limitation relies on the fact that only two

classes were taken into account in this study, because the

OASIS-3 dataset lacks labelled samples of all AD prodromal

stages. Another limitation is that only one imaging modality

was processed in this study. So, as part of future work, it is

planned to extend the analysis to a multi-class/multi-modality

classification, including from early-onset lo late-onset MCI

and coupling sMRI with positron emission tomography. It

is also planned to make the results interpretable for visually

proving whether anterior hippocampal regions influenced the

most the automatic decision-making process.

6. Conclusion

This study demonstrated that Brain-on-Cloud represents a

reliable, efficient, lightweight and easily-reproducible method

for automatic diagnosis of AD from 3D sMRI whole-brain

scans. As Brain-on-Cloud performs well without segmenting

the brain into its portions, it can also be applied to other

neurological disorders using volumetric whole-brain data, as

proven by Tomassini et al. [39]. There, the applicability of

Brain-on-Cloud was extended to another neurodegenerative

disorder (i.e., Parkinson’s disease) and to a psychiatric

one (i.e., schizophrenia), and its efficiency was confirmed.

Furthermore, Brain-on-Cloud could find applicability on real-

time diagnostic scenarios providing prompt clinical decision

support, thanks to its cloud nature, computational lightness

and fast execution.
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Table 3
Performance in classifying AD of Brain-on-Cloud and of the state-of-the-art methods doing a scan-based classification on 3D
T1w sMRI whole-brain data. Values of ACC, SE and AUC are given in percentage (%). Database(s), AD and CN subjects, neural
network, input shape, training type (scratch/transfer learning) and computing mode (cloud/remote) are also reported.

Framework Database(s) AD+CN Model Input shape Training Computing
ACC
(%)

SE
(%)

AUC
(%)

Luo et al. [20]
Train: ADNI
Test: ADNI

47+34 3D CNN 5×54×54 Scratch Remote - 100 -

Korolev et al. [30]
Train: ADNI
Test: ADNI

50+61 3D CNN 110×110×110 Scratch Remote 79 - 88

Bäckström et al. [31]
Train: ADNI
Test: ADNI

- 3D CNN 110×110×110 Scratch Remote 99 - -

Basaia et al. [13]
Train: ADNI
Test: ADNI

294+352 3D CNN -
Transfer
learning

Remote 99 99 -

Jabason et al. [17]
Train: OASIS
Test: OASIS

- Ensemble of CNNs -
Transfer
learning

Remote 95 - -

Xia et al. [24]
Train: ADNI
Test: ADNI

198+229 3D CNN+ConvLSTM 143×119×119 Scratch Remote 94 94 96

Saratxaga et al. [32]
Train: OASIS
Test: OASIS

128+177 3D CNN 176×176×176 Scratch Remote 84 - -

Brain-on-Cloud 1st branch
Train: OASIS
Test: OASIS

145+130 ConvLSTM 50×147×192 Scratch Cloud 92 94 96

Brain-on-Cloud 2nd branch
Train: OASIS
Test: ADNI

149+137 ConvLSTM 50×147×192 Scratch Cloud 76 82 92
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