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Abstract: Posttransplant diabetes mellitus (PTDM) is a common complication after kidney trans-
plantation. Pathophysiologically, whether beta-cell dysfunction rather than insulin resistance may
be the predominant defect in PTDM has been a matter of debate. The aim of the present analysis
was to compare glucometabolism in kidney transplant recipients with and without PTDM. To this
aim, we included 191 patients from a randomized controlled trial who underwent oral glucose
tolerance tests (OGTTs) 6 months after transplantation. We derived several basic indices of beta-
cell function and insulin resistance as well as variables from mathematical modeling for a more
robust beta-cell function assessment. Mean ± standard deviation of the insulin sensitivity param-
eter PREDIM was 3.65 ± 1.68 in PTDM versus 5.46 ± 2.57 in NON-PTDM. Model-based glucose
sensitivity (indicator of beta-cell function) was 68.44 ± 57.82 pmol·min−1·m−2·mM−1 in PTDM
versus 143.73 ± 112.91 pmol·min−1·m−2·mM−1 in NON-PTDM, respectively. Both basic indices and
model-based parameters of beta-cell function were more than 50% lower in patients with PTDM,
indicating severe beta-cell impairment. Nonetheless, some defects in insulin sensitivity were also
present, although less marked. We conclude that in PTDM, the prominent defect appears to be
beta-cell dysfunction. From a pathophysiological point of view, patients at high risk for developing
PTDM may benefit from intensive treatment of hyperglycemia over the insulin secretion axis.

Keywords: PTDM; NODAT; beta-cell function; insulin resistance; pancreatic alpha-cell; kidney
transplantation; endocrine pancreas

1. Introduction

Posttransplant diabetes mellitus (PTDM) is a common complication affecting a re-
markable proportion of kidney transplant recipients, with a high risk for cardiovascular
events and mortality [1–5]. Immediately after kidney transplantation, up to 90% of all
patients experience hyperglycemic episodes, mainly as a consequence of high steroid and
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calcineurin inhibitor doses [6]. This vulnerable early phase may play a pivotal role in the
later development of PTDM [7]. The incidence of PTDM has been reported to vary from
approximately 10% to 40% in the first year after transplantation [8,9]. Clinical risk factors
such as central obesity, lack of physical activity, sedentary lifestyle, and viral infections
(e.g., hepatitis C virus and cytomegalovirus) have been reported, in addition to the diabeto-
genic effects of the immunosuppressive agents used in posttransplant therapy [8,10–14].
The mechanisms leading to PTDM also include early postoperative stress and increased
insulin demand due to restoration of kidney function and, hence, augmentation of insulin
clearance [15].

PTDM may display some pathophysiological differences compared to type 2 diabetes
(T2DM). In T2DM, two main processes typically contribute to the development of the
disease, i.e., impairment in insulin sensitivity and in beta-cell function, the former being
the ability of insulin to promote glucose disposal, and the latter being the ability of the
beta cells to release insulin in response to changes in plasma glucose concentration. In
PTDM, controversy about the pathophysiologic mechanisms persists [16,17]. Earlier studies
have found that beta-cell dysfunction appears to be the predominant defect rather than an
impairment in insulin sensitivity (insulin resistance) [18,19]. In our own previous analysis,
we found that insulin sensitivity at similar 2 h glucose concentration values during an
oral glucose tolerance test (OGTT) was even higher in kidney transplant recipients than
in nontransplant control subjects from the general population, whereas insulin release
was lower [20]. Based on these premises, it sounds conceivable that early treatment of
kidney transplant recipients with insulin administration may have beneficial effects in
terms of PTDM prevention. Using the framework of randomized controlled clinical trials,
we assessed whether postoperative hyperglycemia in kidney transplant recipients without
previous diabetes diagnosis could be controlled using basal insulin therapy. Our strategy
in the intervention group was to treat with basal insulin according to afternoon glucose
levels, which are generally higher than fasting if glucocorticoids are administered in the
morning [21]. Our findings showed that the described intervention based on early basal
insulin therapy following kidney transplantation reduced the odds for PTDM at 12 and
24 months posttransplant in subjects that adhered to the treatment protocol [22,23].

Despite this treatment approach, however, some kidney transplant recipients develop
PTDM. In view of the argument surrounding the pathophysiology of PTDM, we aimed to
use OGTT-derived data to compare the glucometabolism of kidney transplant recipients
who develop PTDM in comparison to that of patients who remained diabetes-free. Specifi-
cally, we compared kidney transplant recipients with and without PTDM at 6 months after
transplantation, placing the focus on beta-cell function and insulin sensitivity, as assessed
by both basic indices and model-based parameters.

2. Materials and Methods
2.1. Patients and Experimental Procedure

The present analysis was predefined in the protocol of our multicenter randomized
controlled trial “Insulin Therapy for the Prevention of New Onset Diabetes After Trans-
plantation” (ITP-NODAT, ClinicalTrials.gov NCT03507829). The ITP-NODAT study was
undertaken from November 2012 through May 2018 at four European transplant centers
(Medical University of Vienna, Austria; Medical University of Graz, Austria; Hospital
del Mar Barcelona, Spain; Charité Universitätsmedizin Berlin, Germany). The study was
conducted with independent external monitoring in accordance with ICH-GCP principles
and the Declaration of Helsinki. Written informed consent was obtained from all patients
following approval from the institutional review board at each participating center.

The ITP-NODAT study included 263 adult kidney transplant recipients without a
history of pretransplant diabetes and receiving glucocorticoids, mycophenolate acid, and
tacrolimus. They were randomized 1:1 to daily postoperative four-point capillary glucose
measurements and Neutral-Protamin-Hagedorn (NPH) insulin intervention for afternoon
glucose ≥140 mg/dL versus standard-of-care for the prevention of PTDM. For more
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detailed information, please refer to our previous articles on our earlier proof-of-principle
study [22], on the clinical outcome (including primary endpoint) of ITP-NODAT [23] and on
the diagnostic criteria for PTDM and prediabetes [24]. After the baseline visit immediately
pre-transplantation, follow-up included an OGTT at 6 months (double-blinded), 12 months
and 24 months posttransplant. Participants exited the study either by completion at
24 months or before due to death, graft loss or withdrawal of consent.

For the OGTT, participants ingested 75 g of glucose dissolved in water after an 8 h
overnight fast. Plasma and serum samples were collected at fasting state (0 min) and after
30, 60, 90 and 120 min for measurement of glucose, insulin and C-peptide. PTDM was
defined according to the American Diabetes Association criteria for diabetes mellitus [25].
In line with the ITP-NODAT study, participants were classified as having PTDM based on
OGTT-derived 2 h plasma glucose or by use of glucose-lowering medication. The focus
of the current analysis was on participants diagnosed at 6 months posttransplant. In the
present analysis, we selected those patients having at least 4 out of the 5 samples at the
6 months OGTT (4 samples for every OGTT variable, i.e., glucose, insulin and C-peptide).
In addition to the OGTT data, several other anthropometric, sociodemographic and clinical
variables were measured or collected. Variables relevant to the present study were the
body mass index, BMI, and the markers of kidney function/dysfunction, namely serum
creatinine and the estimated glomerular filtration rate, eGFR [26,27].

2.2. Data Analysis

Beta-cell function was assessed by the OGTT through both serum insulin and C-
peptide-based indices, as well as through parameters derived by mathematical modeling.
From insulin, we calculated the insulinogenic index, IGI, equal to the 30 min to fasting
insulin difference divided by the same difference in glucose, and the corresponding index
using C-peptide rather than insulin, IGICP [28,29]. We also calculated other “insulinogenic-
like” indices, again with both insulin and C-peptide: the area-under-the-curve (AUC) of in-
sulin during the whole OGTT duration divided by the same AUC of glucose, and the similar
index with C-peptide, i.e., AUCINS/AUCGLU and AUCCP/AUCGLU, respectively, as well
as the corresponding suprabasal components of those indices, i.e., ∆AUCINS/∆AUCGLU
and ∆AUCCP/∆AUCGLU [29]. For a more complete analysis, we also considered indices of
beta-cell function at fasting, i.e., the ratio of fasting insulin to glucose. INSf/GLUf, and that
of fasting C-peptide to glucose, CPf/GLUf.

Beta-cell function was also assessed by a mathematical modeling approach [30,31],
which has proven to be effective and reliable [32]. Briefly, in our model approach, insulin
secretion is represented as the sum of two components, i.e., Sg(t) and Sd(t), where t is time.
The first component designates the dependence of insulin secretion on absolute glucose
concentration (GLU), and it is characterized by a nonlinear dose-response function, f(GLU).
The mean value of the dose-response slope is denoted as glucose sensitivity (GLUSENS)
and represents the sensitivity to glucose of the beta-cell insulin secretion; GLUSENS is
the most relevant beta-cell function parameter provided by the model. The dose response
is modulated by a time-dependent potentiation factor, P(t); thus, Sg(t) = P(t)·f(GLU). The
ratio of the potentiation factor at the end of the OGTT to that at zero minutes is denoted as
PFR (potentiation factor ratio). The second insulin secretion component, Sd(t), represents a
dynamic dependence of insulin secretion on the rate of change of glucose concentration
and it is termed derivative component. Sd(t) is proportional to the glucose time derivative
(when the glucose derivative is positive, otherwise Sd(t) = 0); the proportionality constant
is denoted as rate sensitivity (RSENS). In addition to GLUSENS, RSENS and PFR, other
parameters of interest are the insulin secretion rates at prescribed glucose values. Typical
values that are considered are 5, 6, 7 mmol/L of glucose, the parameters being named as
ISR5, ISR6, ISR7, respectively.

We also assessed insulin resistance and sensitivity indices. We calculated insulin
resistance at fasting through HOMA-IR [33,34] and insulin sensitivity during the OGTT
through PREDIM [35,36].
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Furthermore, we introduced a new index in this study that we named COSUGI (Com-
bined Suprabasal Glucose and Insulin) with the intended use as an alpha-cell function sur-
rogate marker. Insulin and glucose are the main drivers in the suppression of glucagon after
glucose administration, and COSUGI was defined as (∆AUCGLUnorm + ∆AUCINSnorm)/2.
∆AUCGLUnorm is defined as the ∆AUCGLU value in a single patient normalized to the
average ∆AUCGLU calculated over all patients. A similar definition holds for ∆AUCINSnorm.
We calculated a similar index using C-peptide rather than insulin. Thus, to distinguish
the two index versions, we named them COSUGIINS and COSUGICP, which were based
on insulin and on C-peptide, respectively. Such indices may be surrogate markers of
alpha-cell function.

Both indices and model-based parameters were calculated with MATLAB version
R2020a (The MathWorks®, Natick, MA, USA).

2.3. Statistical Analysis

Differences between patient groups were tested by analysis of variance (ANOVA), with
adjustment for possibly confounding variables by general linear models. Specifically, we
tested for possible differences in the analyzed variables between the group of patients who
developed PTDM and that of those patients who remained diabetes-free (NON-PTDM).
In addition, for a subset of the variables, we tested for possible differences between obese
and nonobese (OB, NON-OB), elderly and nonelderly (ELDER, NON-ELDER), and male
and female (M, F) patient groups. Obesity was defined as BMI > 27 kg/m2, whereas the
definition of elderly was based on the calculation of the median age in the whole study
population. We considered HOMA-IR, PREDIM, BMI, age and treatment arm (basal insulin
intervention or standard-of-care) as variables for adjustments.

A possible relationship between variables was assessed by linear regression analysis.
In order to perform verifications on the reliability of our modeling approach for beta-
cell function assessment, regression analysis was performed among GLUSENS (the most
relevant model-based parameter) and ∆AUCCP/∆AUCGLU (the non-model-based index
more similar to GLUSENS, as known from previous analyses in other patient’s populations).
Since C-peptide clearance is influenced by kidney function and the calculation of GLUSENS
relies on the assumption of C-peptide kinetics, we assessed if the model-based approach
would introduce bias, on top of a possible increase of overall C-peptide during the OGTT
with declining kidney function.

Therefore, we considered the residuals of the regression analysis between GLUSENS
and ∆AUCCP/∆AUCGLU (residuals being a measure of the case-by-case difference between
the two variables), and hence, we performed a second regression analysis: those residuals
vs. an index of kidney function (we tested both creatinine and eGFR). Indeed, a significant
relationship between those residuals and either creatinine or eGFR would indicate that
the difference between GLUSENS and ∆AUCCP/∆AUCGLU depends upon the degree of
kidney function/dysfunction. In contrast, the absence of that relationship would indicate
no such dependence, and this information is of relevance to conclude whether our modeling
approach can be reliably applied to the particular patients (kidney transplant recipients) of
the present study.

Before performing the above indicated statistical tests, we analyzed the variable distri-
butions and performed natural logarithm transformation in case of skewed distributions.
Two-sided p-values less than 0.05 were considered statistically significant. This was an
exploratory analysis, and therefore, no adjustment for multiple testing was performed.
Data are reported as mean ± standard deviation (SD) unless otherwise specified. The
indicated statistical analyses were performed in R (The R Foundation, version 3.6.3) and
contributing packages.
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3. Results
3.1. Basic Characteristics in Patients with PTDM and without PTDM

Among 263 participants included in the ITP-NODAT study, 20 patients discontinued
the study before month 6. A group of 191 patients with sufficient data at the 6 months
OGTT were studied in the present investigation, of which 26 had PTDM. The basic patient
characteristics at baseline (i.e., immediately before transplantation) are reported in Table 1.
Men and women proportions were comparable between PTDM and NON-PTDM. Patients
with PTDM were older and had higher BMI than patients without PTDM. As expected,
fasting glycemia and HbA1c were both higher in PTDM. In contrast, there were no differ-
ences between the two groups in the markers of kidney function (i.e., creatinine and eGFR).
Table 1 also reports the basic patient characteristics at 6 months. BMI, fasting glycemia and
HbA1c were again higher in PTDM than in NON-PTDM, whereas the other variables were
not significantly different between the two groups.

Table 1. Patients’ characteristics.

PTDM NON-PTDM

Baseline

Sex (Male/Female) 15/11 107/58

Age (years) 59.88 ± 11.22 48.24 ± 14.64 *

BMI (kg/m2) 29.79 ± 6.48 25.14 ± 4.75 *

Fasting plasma glucose (mg/dL) 103.52 ± 25.75 91.89 ± 16.31 *

Fasting serum insulin (µU/mL) 23.30 ± 27.23 14.09 ± 16.44

Fasting serum C-peptide (ng/mL) 12.67 ± 9.48 9.19 ± 5.01 *

HbA1c (%) 5.45 ± 0.46 5.10 ± 0.51 *

Creatinine (mg/dL) 7.52 ± 3.72 7.67 ± 2.70

eGFR (mL/min/1.73 m2) 8.23 ± 3.42 8.64 ± 4.11

6-month follow-up

BMI (kg/m2) 28.53 ± 6.32 † 24.87 ± 4.88 *

Fasting plasma glucose (mg/dL) 109.42 ± 21.26 95.85 ± 12.46 *,†

Fasting serum insulin (µU/mL) 13.50 ± 9.84 10.28 ± 7.19 †

Fasting serum C-peptide (ng/mL) 4.47 ± 2.75 † 3.63 ± 1.67 †

HbA1c (%) 6.03 ± 0.76 † 5.45 ± 0.51 *,†

Creatinine (mg/dL) 1.50 ± 0.46 † 1.51 ± 0.64 †

eGFR (mL/min/1.73 m2) 51.86 ± 15.55 † 59.73 ± 21.97 †

Note: Basic characteristics of the patients at baseline (before transplantation) and at 6 months follow-up. Patients are
stratified according to their glucose tolerance at 6 months (PTDM: posttransplant diabetes mellitus; NON-PTDM: no
occurrence of PTDM). Data are mean ± SD. * p < 0.05 in PTDM vs. NON-PTDM; † p < 0.05 baseline vs. 6 months
follow-up; BMI: body mass index; HbA1c: glycated hemoglobin; eGFR: estimated glomerular filtration rate.

As regards the baseline to 6 months changes (Table 1), patients who developed PTDM
slightly decreased their BMI. However, HbA1c was higher at 6 months, whereas fasting
glucose showed only a tendency to increase (statistical significance not reached). In those
who did not develop PTDM, only BMI tended to decrease, whereas both fasting glycemia
and HbA1 increased. C-peptide levels markedly decreased in both groups from baseline to
the 6 months timepoint (Table 1).

3.2. Beta-Cell Function Assessed by Indices Based on Insulin or C-Peptide

Table 2 reports several indices of beta-cell function at 6 months, as derived by serum in-
sulin and C-peptide levels. Beta-cell function at fasting, as represented by both INSf/GLUf
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and CPf/GLUf, showed a tendency to be higher in PTDM than in NON-PTDM, al-
though statistical significance was not reached. However, in the dynamic conditions
of the OGTT, the suprabasal area-under-the-curve of insulin normalized to that of glucose,
∆AUCINS/∆AUCGLU was markedly lower in PTDM, with an average value less than half
of that observed in NON-PTDM (see relative difference in Table 2; p = 2.97 × 10−11). This
observation was also seen in the corresponding index based on C-peptide rather than
insulin, ∆AUCCP/∆AUCGLU (p = 1.95 × 10−10). When considering the first 30 min of the
OGTT (which may be assumed as first-phase insulin secretion), beta-cell function appeared
again impaired, as mirrored by both IGI and its C-peptide-based version, IGICP (Table 2;
p = 2.03 × 10−8 and p = 6.55 × 10−6, respectively). Overall, beta-cell function appeared
markedly impaired in PTDM, as shown by the two “global” indices, AUCINS/AUCGLU
and AUCCP/AUCGLU (Table 2; p = 1.55 × 10−6 and p = 3.45 × 10−7, respectively).

Table 2. Beta-cell function derived by basic indices and by mathematical modeling.

PTDM NON-PTDM PTDM–NON-PTDM
Relative Difference (%)

Beta-cell function indices from insulin

INSf/GLUf (pmol/mmol) 14.18 ± 12.24 11.49 ± 7.45 23.40

IGI (pmol/mmol) 44.78 ± 47.47 118.98 ± 114.07 * −62.37

AUCINS/AUCGLU (pmol/mmol) 27.33 ± 26.06 42.74 ± 25.82 * −36.05

∆AUCINS/∆AUCGLU (pmol/mmol) 55.18 ± 65.98 163.51 ± 200.13 * −66.25

Beta-cell function indices from C-peptide

CPf/GLUf (pmol/mmol) 244.09 ± 139.97 224.87 ± 91.71 8.54

IGICP (pmol/mmol) 288.04 ± 264.49 581.53 ± 468.72 * −50.47

AUCCP/AUCGLU (pmol/mmol) 297.30 ± 159.14 414.98 ± 152.09 * −28.36

∆AUCCP/∆AUCGLU (pmol/mmol) 464.96 ± 547.23 1250.28 ± 1519.59 * −62.81

Beta-cell function parameters from modeling analysis

GLUSENS (pmol·min−1·m−2·mM−1) 68.44 ± 57.82 143.73 ± 112.91 * −52.38

RSENS (pmol·m−2·mM−1) 485.87 ± 881.21 941.02 ± 1664.61 −48.37

PFR (dimensionless) 1.35 ± 0.56 1.57 ± 0.90 −13.96

ISR5 (pmol·min−1·m−2) 165.01 ± 128.14 196.99 ± 103.28 −16.24

ISR6 (pmol·min−1·m−2) 226.51 ± 145.17 331.37 ± 172.25 * −31.64

ISR7 (pmol·min−1·m−2) 293.19 ± 181.12 475.58 ± 273.22 * −38.35

Other glucometabolic indices

HOMA-IR (dimensionless) 3.61 ± 2.70 2.49 ± 1.93 44.66

PREDIM (mg/min/kg) 3.65 ± 1.68 5.46 ± 2.57 * −33.12

COSUGIINS (dimensionless) 1.21 ± 0.56 0.95 ± 0.51 * 27.76

COSUGICP (dimensionless) 1.23 ± 0.41 0.95 ± 0.39 * 29.29

Note: Beta-cell function indices based on insulin or C-peptide measurements and beta-cell function parameters
derived by mathematical modeling. Other glucometabolic indices are also reported. Indices and parameters
are calculated from the measurement of plasma glucose, serum insulin and serum C-peptide derived by the
6 months oral glucose tolerance test. Patients are stratified according to their glucose tolerance at 6 months
(PTDM: posttransplant diabetes mellitus; NON-PTDM: no occurrence of PTDM). Data in PTDM and NON-PTDM
are mean ± SD. The relative difference between PTDM and NON-PTDM was computed as the difference of the
average in PTDM versus NON-PTDM normalized to the NON-PTDM value and multiplied by 100. * p < 0.05 in
PTDM vs. NON-PTDM; GLU: glucose; INS: insulin; CP: C-peptide; f: fasting; IGI: insulinogenic index; IGICP:
insulinogenic index from C-peptide; AUC: area-under-the-curve; ∆AUC: suprabasal AUC; GLUSENS: glucose
sensitivity; RSENS: rate sensitivity; PFR: potentiation factor ratio; ISR5,6,7: insulin secretion rate at 5, 6, 7 mmol/L
glucose, respectively; HOMA-IR: homeostasis model assessment–insulin resistance; PREDIM: predicted M value
(M: insulin sensitivity from the clamp); COSUGIINS,CP: combined suprabasal glucose-insulin index from insulin,
C-peptide, respectively.



Biomedicines 2024, 12, 317 7 of 17

3.3. Reliability of Beta-Cell Function Assessment through Modeling Analysis

We performed regression analysis between the model-based parameter called glucose
sensitivity (GLUSENS, the most relevant parameter in our modeling approach) and a non-
model-based index computed over the whole OGTT duration, ∆AUCCP/∆AUCGLU. The
latter is, in fact, the non-model-based index closest to the model-based GLUSENS. Figure 1
reports the regression plot of the loge transformation of GLUSENS and ∆AUCCP/∆AUCGLU
values in PTDM and NON-PTDM pooled.
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Of note, in agreement with the known relationship between ∆AUCCP/∆AUCGLU
and GLUSENS in the general population, in our population of renal transplant patients,
we also observed a quite high correlation between the two, as mirrored by the highly
significant p-value (p = 2.22 × 10−35). On the other hand, the r2 parameter was not extremely
high (r2 = 0.56), indicating that GLUSENS and ∆AUCCP/∆AUCGLU are correlated but not
extremely similar and, thus, not interchangeable variables.

We then analyzed the relationship between the residuals of the ∆AUCCP/∆AUCGLU
vs. GLUSENS regression and either creatinine or eGFR (both being markers of renal
function/dysfunction). Related plots are reported in Figure 2. For both creatinine and
eGFR, there is clearly no significant relationship with the residuals of the GLUSENS
vs. ∆AUCCP/∆AUCGLU regression analysis (p = 0.36 for creatinine and p = 0.17 for
eGFR). The lack of relationship between such residuals and two renal dysfunction mark-
ers (creatinine and eGFR) allows concluding that the difference between GLUSENS and
AUCCP/∆AUCGLU does not depend on the renal dysfunction degree. This concept will be
discussed later.
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regression line. * indicates multiplication.

In summary, in the studied subjects, our model-based approach appears not to suffer
from possible inaccuracies in C-peptide kinetics assessment. Therefore, the model-based
parameters (especially GLUSENS, which is the most important one) can be deemed as
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reliable. Thus, in the following section, we report the model-based parameter values in the
PTDM and NON-PTDM groups.

3.4. Beta-Cell Function Assessed by the Model-Based Parameters

In addition to the non-model-based indices, Table 2 reports the model-based beta-cell
function parameters. GLUSENS was markedly decreased in PTDM, with the average value
being more than 50% lower in patients with PTDM than in patients remaining diabetes-free
(Table 2; p = 1.46 × 10−5), in agreement with the non-model-based indices described above.
Figure 3 shows the dose-response function in patients with PTDM and without PTDM,
of which the average slope is reported in Table 2 as the GLUSENS parameter. Of note, in
PTDM, the dose-response slope was markedly lower than in NON-PTDM.
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for better figure readability).

Regarding the other model-based parameters (Table 2), the rate sensitivity, RSENS,
showed a tendency to decrease in PTDM, but statistical significance was missing. The
potentiation factor ratio, PFR, was found to be similar in the two groups. Some differences
were observed in the series of beta-cell function parameters indicating the insulin secretion
rate at specific glucose values. Secretion at 5 mmol/L glucose, ISR5, showed only a tendency
to be lower in PTDM, whereas secretion at 6 and 7 mmol/L glucose, ISR6 and ISR7, were
markedly lower in PTDM (p = 5.44 × 10−5 and p = 1.59 × 10−6, respectively), in agreement
with the lower dose-response slope in PTDM (see again Figure 3).

3.5. Adjusting the Model-Based Beta-Cell Glucose Sensitivity Parameter in the Comparison
between Groups

For the best accuracy in the analysis of the GLUSENS difference between the stud-
ied patient groups, it is appropriate to consider adjustment for some possibly relevant
variables. First, one should consider possible adjustments for insulin resistance or its
reciprocal, i.e., insulin sensitivity. Table 2 reports HOMA-IR (index of insulin resistance
at fasting) and PREDIM (index of OGTT-derived insulin sensitivity) in the PTDM and
NON-PTDM groups. HOMA-IR tended to be higher in PTDM, but statistically significant
difference was not reached. In contrast, PREDIM was clearly significantly decreased in
PTDM (p = 6.23 × 10−6), with a reduction of ~30% as compared to NON-PTDM. Thus,
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ANOVA of GLUSENS between the two groups was adjusted for PREDIM, and even af-
ter such adjustment, the GLUSENS difference between the two groups remained clearly
evident (p = 0.0013).

When adjusting for either age or BMI, the difference of GLUSENS between PTDM
and NON-PTDM remained markedly significant (p = 0.0001 for age adjustment, and
p = 7.35 × 10−5 for BMI adjustment). When adjusting simultaneously for PREDIM, age and
BMI, the GLUSENS difference between the two groups remained significant (p = 0.0055).

The proportion of patients undergoing the two treatment arms (standard-of-care
versus basal insulin intervention) was similar in the two groups. When adjusting for
treatment arm, the GLUSENS difference remained statistically significant (p = 1.08 × 10−5).

3.6. Model-Based Beta-Cell Function in Patients Stratified According to Different Criteria

When stratifying the patients into an obese group (OB: BMI > 27 kg/m2, n = 65) and
nonobese group (NON-OB: BMI ≤ 27 kg/m2, n = 126), there was no significant difference
in GLUSENS or in ISR5,6,7. RSENS tended to be higher in NON-OB, but significance was
not reached (Table 3). However, a significant difference was observed in the potentia-
tion parameter, PFR (p = 0.0046). In the comparison between the elderly group (ELDER:
age > 52.5 years, n = 89) and nonelderly group (NON-ELDER: age ≤ 52.5 years, n = 102),
we found that GLUSENS was lower in ELDER than in NON-ELDER (p = 0.0056). ISR7 was
also slightly lower (p = 0.0263). In contrast, the other parameters were similar in the two
groups. When comparing males (M, n = 122) and females (F, n = 69), we did not find any
parameter significantly different between the two groups. RSENS showed a tendency to be
higher in F, but without statistical significance.

Table 3. Beta-cell function parameters stratified according to different criteria.

OB NON-OB ELDER NON-ELDER M F

Beta-cell function parameters from
modeling analysis

GLUSENS (pmol·min−1 ·m−2 ·mM−1) 120.50 ± 116.34 140.18 ± 106.64 109.79 ± 84.72 154.16 ± 125.03 * 138.35 ± 106.04 123.54 ± 117.95

RSENS (pmol·m−2 ·mM−1) 459.92 ± 656.91 1095.29 ± 1862.34 868.25 ± 1779.15 888.50 ± 1406.86 788.89 ± 1568.99 1039.76 ± 1638.98

PFR (dimensionless) 1.31 ± 0.48 1.66 ± 0.90 * 1.60 ± 0.94 1.49 ± 0.71 1.54 ± 0.88 1.54 ± 0.75

ISR5 (pmol·min−1 ·m−2) 195.66 ± 117.63 191.08 ± 101.70 199.04 ± 114.06 187.06 ± 101.00 188.20 ± 110.23 201.50 ± 103.09

ISR6 (pmol·min−1 ·m−2) 303.37 ± 180.92 324.18 ± 167.93 300.02 ± 156.42 332.01 ± 184.52 317.68 ± 169.21 316.77 ± 181.17

ISR7 (pmol·min−1 ·m−2) 420.63 ± 278.31 466.29 ± 264.80 408.78 ± 226.51 487.38 ± 298.54 * 456.83 ± 262.55 439.58 ± 286.66

Note: Beta-cell function parameters derived by mathematical modeling, calculated from the measurement
of plasma glucose, serum insulin and serum C-peptide derived by the 6 months oral glucose tolerance test.
Patients are stratified according to different criteria registered at 6 months OB (obese) and NON-OB (nonobese);
ELDER (elderly) and NON-ELDER (nonelderly); M (male) and F (female). Data are mean ± SD. * p < 0.05 in
each pair of groups comparison (OB vs. NON-OB; ELDER vs. NON-ELDER; M vs. F); GLUSENS: glucose
sensitivity; RSENS: rate sensitivity; PFR: potentiation factor ratio; ISR5,6,7: insulin secretion rate at 5, 6, 7 mmol/L
glucose, respectively.

3.7. The COSUGI Index

We have defined a new index based on the average between the normalized AUC
of insulin (or C-peptide) and glucose. Both COSUGI index versions (COSUGIINS and
COSUGICP) were different between PTDM and NON-PTDM, being higher in the former
(see Table 2; p = 0.0168 for COSUGIINS and p = 0.0019 for COSUGICP). Figure 4 reports the
box plot of the two COSUGI index versions in PTDM and NON-PTDM. When considering
the patients stratified according to the other investigated criteria, we found a significant
difference between OB and NON-OB: 1.18 ± 0.48 vs. 0.88 ± 0.56 (p = 1.26 × 10−5) for
COSUGIINS, 1.11 ± 0.32 vs. 0.93 ± 0.45 (p = 0.0006) for COSUGICP, in OB vs. NON-OB (see
box plots in Figure 4).
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and COSUGICP in PTDM and NON-PTDM groups (upper panels, left to right) and in OB and
NON-OB groups (lower panels, left to right).

4. Discussion

In this study, we analyzed the glucometabolic condition of kidney transplant recipients
with or without PTDM at 6 months after transplantation, with a special focus on beta-cell
function. To our knowledge, this study is the first to compare the glucometabolic condition
based on both traditional indices and model-based analysis between patients with PTDM
and without PTDM.

The most relevant finding of our analysis is that patients with PTDM had remarkably
impaired beta-cell function as compared to patients without PTDM, being more than 50%
lower in PTDM than in NON-PTDM, according to different beta-cell function variables.
Of note, both model-based parameters (the GLUSENS parameter) and non-model-based
indices (∆AUCINS/∆AUCGLU and ∆AUCCP/∆AUCGLU) consistently agreed in showing
such level of difference in beta-cell function between the two groups. With regard to
insulin sensitivity (the other typical main driver of glucose tolerance), we also found a clear
impairment in PTDM, but it appeared somehow less marked than the beta-cell function
impairment (about 30% lower in PTDM).

Beta-cell function at fasting, as represented by both INSf/GLUf and CPf/GLUf,
showed a tendency to be higher in PTDM than in NON-PTDM. This observation sug-
gests an attempt of the beta cell to counteract the hyperglycemic condition. However, in the
dynamic conditions of the OGTT, the failure of the beta cell in counteracting hyperglycemia
clearly emerged. Indeed, patients with PTDM had ∆AUCINS/∆AUCGLU on average half of
the NON-PTDM group. When considering the first 30 min of the OGTT (which may be
assumed as first-phase insulin secretion), the beta-cell function appeared again impaired,
as mirrored by both IGI. This observation appeared consistent with the notion of marked
impairment in first-phase beta-cell function in T2DM when assessed in the first 8–10 min of
an intravenous glucose tolerance test. In agreement with the known relationship between
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∆AUCCP/∆AUCGLU and GLUSENS in the general population, we also observed quite a
strict correlation (r2 = 0.56, p = 2.22 × 10−35) between the two in our population of kidney
transplant recipients, indicating that these variables were closely associated.

Our results suggest, from a mechanistic point of view, that early insulin administration
posttransplant can be helpful in avoiding beta-cell exhaustion and, hence, preserve residual
beta-cell function. Our previous trial [23] showed that protocol adherence could not
always be achieved, and treatment adherence is relevant in patients with T2DM on basal
insulin therapy [37]. As the most promising effect of insulin treatment in kidney transplant
recipients was found in the high-risk population of our previous trial, future studies could
consider the opportunity to develop appropriate methods for identifying patients who
need particularly robust therapy for the beta-cell. Patients progressing to PTDM also had
a clear impairment in insulin sensitivity, compared to patients in the NON-PTDM group,
consistent with the concept of diabetes progression, demanding personalized, precisely
tailored therapies [38].

In this study, we calculated both model-based parameters and non-model-based
indices. Some investigators may wonder whether model-based approaches may disclose
information not provided by the simpler non-model-based approaches. In our experience,
the parameters based on mathematical models are often less prone to the typical limitations
of the simple indices, such as the presence of outliers. Thus, model-based parameters often
show a higher ability to disclose subtle differences among groups, possibly in agreement
with reference parameters obtained by complex experiments [39–42]. However, it has
to be acknowledged that, in the present study, relevant differences in beta-cell function
between the study groups were already clearly shown by some of the non-model-based
indices. Nonetheless, we hypothesized that the calculation of the model-based parameters
may have corroborated the analysis performed with the non-model-based indices, and
this is, in fact, what we have observed since we found good agreement between model
and non-model-based variables, at least for the most relevant ones (specifically, GLUSENS
parameters and ∆AUCINS/∆AUCGLU as well as ∆AUCCP/∆AUCGLU indices).

On the other hand, in this study, the use of our model-based approach for beta-cell
function [30] needed some preliminary verifications. The reason is that our modeling
approach requires the calculation of the individual C-peptide kinetics, and this is obtained
with a widely used method by Van Cauter et al. [43], which allows C-peptide kinetics
assessment from basic variables (sex, age, body weight and height, and knowledge of
diabetic or nondiabetic status). Unfortunately, Van Cauter’s study did not include patients
with kidney dysfunction. Thus, since some degree of kidney dysfunction is often present
following kidney transplantation and C-peptide is mainly cleared by kidneys [44–49], we
wondered whether we could reliably apply our beta-cell function model, based on the
Van Cauter’s approach for C-peptide kinetics, in the context of the present study. To this
purpose, we performed regression analysis between our GLUSENS parameter (model-
based, thus possibly affected by inaccuracies in the C-peptide kinetics assessment) and
the ∆AUCCP/∆AUCGLU index (non-model-based, thus may be influenced by possible
C-peptide kinetics alterations due to renal dysfunction but not affected by model-specific
inaccuracies). In fact, it is known from previous analyses in different populations that
∆AUCCP/∆AUCGLU is typically “similar” to GLUSENS. We then considered the resid-
uals of such regression analysis, because high residuals mean large differences between
GLUSENS and ∆AUCCP/∆AUCGLU. The next step was, therefore, to perform another
regression analysis between those residuals and one variable representing kidney function
(we considered both creatinine and eGFR). In keeping with the hypothesis that our mod-
eling approach (thus, GLUSENS parameter) was affected by the C-peptide kinetics issue,
the problem would have been more evident in patients with a higher degree of kidney
dysfunction. This would translate into a significant relationship between the GLUSENS
and ∆AUCCP/∆AUCGLU residuals (i.e., the degree of difference between them) and the
degree of kidney dysfunction (creatinine and eGFR values). Such a relationship was not
present at all, this being a clue that there was no additional relevant C-peptide kinetics issue
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possibly affecting the model approach reliability. On the other side, this appears consistent
with the fact that kidney function, as evaluated by eGFR, was stable in most patients in our
study cohort.

With our model-based approach, we further examined beta-cell function in our patients
by stratifying them according to criteria different from those of glucose tolerance. It has
to be acknowledged that sometimes the parameter differences between groups were less
frequent than one may expect. However, it must be considered that the parameters of
our model approach represent clearly distinct physiological aspects of beta-cell function
(this being one of the strengths of our approach) [32,50], and it was already observed
in the general population (i.e., nontransplant patients) that only a subset of the various
parameters display differences among the studied groups [51].

In our study, we also defined and computed a new index, which we named COSUGI,
calculated as the average normalized area-under-the curve of insulin (or C-peptide) plus
that of glucose. Interestingly, we found this index to be different (in both the insulin-based
and C-peptide-based versions) between PTDM and NON-PTDM. We proposed this index in
the hypothesis that this may be a surrogate marker of alpha-cell function (another relevant
determinant of glucose homeostasis [52]), although this, of course, cannot be proved with
the present data and hence needs investigation in future studies. It has to be acknowledged
that the formulation of the prosed index resembles that of an insulin resistance index.
However, when performing regression analysis of the index with HOMA-IR or PREDIM,
we found a significant (p < 0.05) but weak relationship, suggesting that such an index
may represent physiological phenomena certainly different from the insulin action. We
hypothesize that the index may be somehow related to the alpha-cell function. This is
due to the reason that, although several factors may affect alpha-cell function (including
environmental ones [53]), the main drivers in the suppression of glucagon (secreted by the
alpha cells), following glucose administration are likely insulin and glucose (the higher
the insulin and glucose levels, the higher the glucagon suppression propensity) [54–57].
From these considerations, we derived our hypothesis of the index as an alpha-cell function
surrogate marker, to be investigated with appropriate data.

Opportunities for comparison of our results on beta-cell function with those of pre-
vious findings are limited. In a pioneering study by Ekstrand et al. [58], reduced insulin
secretion was found in patients with PTDM compared to patients without PTDM with the
hyperglycemic clamp. In the study by Midtvedt et al. [59], insulin release in an OGTT was
reduced in patients with PTDM compared to patients without PTDM. However, actual
beta-cell function indices were not computed since only insulin release data (i.e., without
normalization to the glucose levels) was reported. Similar limitations hold for the study
by Nam et al. [18], as well as for the study by Zelle et al. [19], where C-peptide levels
were assumed as markers of beta-cell function, but again with lack of normalization to
the glucose levels, and in addition, only values at fasting were collected. In the study
by Hagen et al. [60], both indices of insulin secretion and actual beta-cell function were
computed from an OGTT. At baseline, no difference was found between the patients with
and without PTDM, whereas at follow-up, the difference between groups was not reported
(the study focused on the follow-up to basal differences in each of the two groups). At
any rate, we can claim that the findings of the previous studies, though limited and with
remarkable methodological and clinical differences from our study, essentially do not show
disagreement with our results.

While the COSUGI index needs further investigation in appropriate patient groups,
it has been suggested that hyperglucagonemia may be another contributor to PTDM by
Halden et al. [61]. The performed clamp study showed that patients with PTDM had lower
insulin secretion and a smaller drop of glucagon release versus patients without PTDM.
The maximal suppression from baseline was 43% in PTDM vs. 65% in diabetes-free patients.
Therefore, reduced glucose-induced insulin secretion and reduced glucagon suppression
may contribute to PTDM in kidney transplant recipients.



Biomedicines 2024, 12, 317 14 of 17

In conclusion, in the present study, we have performed a deep appraisal of the beta-cell
function, as well as of other glucometabolic variables, in kidney transplant recipients with
and without PTDM at 6 months following transplantation. We have found that beta-cell
function is markedly impaired in PTDM, although defects in insulin sensitivity are present
as well. These findings suggest that early treatment of the beta-cell may be even more
robust in those patients with a particularly high risk for PTDM, although also the aspect of
insulin resistance should not be totally neglected.
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