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Abstract: Thin-film piezoelectric materials are advantageous in microelectromechanical systems
(MEMS), due to large motion generation, high available energy and low power requirements. In
this kind of application, thin piezoelectric films are subject to mechanical and electric cyclic loading,
during which damage can accumulate and eventually lead to fracture. In the present study, continuum
damage mechanics and asymptotic theory are adopted to model damage evolution in piezoelectric
thin films. Our purpose is to develop a new interface model for thin piezoelectric films accounting
for micro-cracking damage of the material. The methods used are matched asymptotic expansions, to
develop an interface law, and the classic thermodynamic framework of continuum damage mechanics
combined with Kachanov and Sevostianov’s theory of homogenization of micro-cracked media, to
characterize the damaging behavior of the interface. The main finding of the paper is a soft imperfect
interface model able to simulate the elastic and piezoelectric behavior of thin piezoelectric film in the
presence of micro-cracking and damage evolution. The obtained interface model is expected to be
a useful tool for damage evaluation in MEMS applications. As an example, an electromechanically
active stack incorporating a damaging piezoelectric layer is studied. The numerical results indicate a
non-linear evolution of the macroscopic response and a damage accumulation qualitatively consistent
with experimental observations.

Keywords: piezoelectric material; adhesive; imperfect interface; damage

1. Introduction

Piezoelectric materials exhibit electromechanical coupling either with the formation
of electric charge under an applied mechanical stress (direct piezoelectric effect) or the
development of mechanical strain caused by the application of an electric field (inverse
piezoelectric effect). The direct piezoelectric effect makes these materials suitable for
sensors, transducers and energy harvesters, the applied stress being used to generate
surface charges. The inverse piezoelectric effect is used to convert electric energy into
mechanical energy and it is applied, for example, to generate sound waves.

Over the last decades, the scientific advancement of deposition techniques has made
possible the fabrication of improved thin film piezoelectric materials to realize high-
sensitivity sensors, large displacement, low-voltage actuators and, more recently, piezo-
electric beam harvesters. The effect of technological advances on the realization of lead
zirconate titanate (PZT) with superior piezoelectric properties is described in [1]. Piezoelec-
tric ceramics can be used in conjunction with polymeric materials to take advantage of both
types of materials for energy harvesting applications, such as the polyurethane–50 vol%
lead zirconate titanate composites studied in [2]. The review [3] discusses several aspects
of piezoelectric ceramics, as fabrication and implementation in transduction mechanisms
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and vibratory energy harvesters, performance, damage, and fatigue. Another recent review
on the advances of energy harvesting using piezoelectric materials can be found in [4].

Incorporation of piezoelectric films in micro-electro-mechanical systems (MEMS),
offers a number of advantages, including the possibility of performing actuation and sensor
functions in smaller systems operating at lower voltages and powers. The design of thin
film devices realized with piezoelectric thin films is discussed in [5], together with proposals
for the evaluation of their piezoelectric properties, which are more difficult to measure with
respect to the bulk material. The application of perovskite oxide ferroelectrics thin films to
realize flexible ferroelectric memories, sensors and generators are reviewed in [6].

A suitable modeling approach for a thin film bonded to two adherents is replacing it
with a material surface, across which some of the physical fields undergo appropriately
designed jump conditions simulating the effect of the thin film. Many different interface
models have been developed throughout the years, based on various mathematical tech-
niques such as Γ−convergence and variational methods, as in [7], Taylor expansion, as
in [8], and matched asymptotic analysis, as in [9,10].

In thermal conduction, imperfect interface models allow for a jump of the tempera-
ture as well as for a jump of the normal heat flux across the interface. Interface models
of this kind have been proposed by Benveniste and applied to derive the effective con-
ductivity of composites [11,12]. Javili et al. [13,14] have developed a thermodynamically
consistent theory of imperfect interfaces that allows the possibility of highly-conducting
behavior (temperature continuous across the interface, jump of the normal heat flux),
lowly-conducting behavior (normal heat flux continuous across the interface, jump of
the temperature) or general behavior (both the temperature and the normal heat flux are
discontinuous). Interfaces showing a coupled thermoelastic behavior are treated in [15].

In linear elasticity, thin layers can be modeled as soft or hard interfaces. Across soft
interfaces, the traction vector is continuous while the displacement vector is discontinuous
and the jump is proportional to the traction vector through an interface stiffness tensor.
Hard interface models are characterized by the continuity of both traction and displacement
vectors at the lower order of the expansions in the thickness (perfect elastic interfaces),
and by the discontinuity of these quantities at higher order (imperfect elastic interfaces).
This has motivated studies aimed at identifying the specific form of the interface law given
the initial material symmetry of the thin layer [16], a general imperfect interface model
condensing soft and hard behavior in a unique formulation [17] and possible implementa-
tion procedures [18]. Imperfect elastic interface models have been also developed in the
framework of structural theories for beams [19] and plates [20,21], or for nonlinear material
behavior, as in the works [14,22]. On the side of constitutive behavior, imperfect interface
models have very recently been proposed for materials showing asymmetric behavior in
tension and compression [23] and for continua with microstructure [24], as well as for
poroelastic behavior [25], piezoelectric behavior [18,26,27], thermo-electro-magneto-elastic
behavior [28], flexoelectric behavior [29], and other general multiphysics and multifield
couplings [30,31].

In applications, piezoelectric materials are subjected to both cyclic mechanical and
electric loads that can cause damage nucleation and evolution until fracture. The prediction
of damage evolution is crucial for the design and reliability assessment of piezoelectric
structures and devices, in particular for those applications requiring precise control and
accurate measurements.

Within the framework of the continuum damage mechanics, internal damage can be in-
directly evaluated by the variation of material properties, such as elastic coefficients [32,33].
A recent review on the subject is given in [34], starting from the pioneering papers of
Kachanov [35] and Rabotnov [36] to the most recent works, with emphasis on continuum
concrete damage and plasticity modeling. Fundamental and basic aspects of damage me-
chanics with novel derivations and remarks have been recently presented in the review [37].
Numerical aspects of continuum damage mechanics with a focus on mesh sensitivity are
reviewed in [38]. A recent continuum approach to damage, based on the continuous-time
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fatigue model of Ottosen et al. [39], is proposed in [40], where an analytical solution for
the damage development due to proportional cyclic stress is also given. The proposed ap-
proach has also been implemented in continuous-time constrained topology optimization
fatigue problems [41].

Following a continuum damage mechanics approach, Mizuno has presented a con-
stitutive equation of piezoelectric ceramics into which a damage variable is incorporated
via the modified cubes model [42,43] and fatigue damage accumulates with respect to the
number of cycles according to a phenomenological evolution equation. A different static
damage constitutive model for piezoelectric materials has been proposed by Yang et al. [44],
based on an energy equivalence hypothesis. Assuming that damage does not change the
symmetry of the piezoelectric material, only four scalar quantities are needed to describe
mechanical and electric damage.

In the present paper, we propose a new approach for damage description in thin
piezoelectric films, in which damage evolution is micro-mechanically related to the macro-
scopic kinematics variables. The novelty of the work is the description of the damaging
behavior of a thin piezoelectric layer by a model obtained from the combination of tools of
asymptotic theory and results of homogenization of micro-cracked media. In particular, the
thin piezoelectric layer is modeled as an imperfect interface, as in [30], but the new aspect
is that the material parameters of the interface are not phenomenologically linked to the
damage variable but are prescribed on the basis of the Kachanov–Sevostianov homogeniza-
tion scheme [45–48]. This scheme gives the (effective) material parameters as a function
of the generalized microcracks density, which is assumed to coincide with the damage
parameter. The result of our approach is a model of damaging piezoelectric interfaces
extending further works [49,50], which were developed for damaging elastic interfaces.

For electromechanically active stacks incorporating damaging piezoelectric layers,
the resulting imperfect model predicts a non-linear evolution of the macroscopic response
of the stack. As an illustrative example, we analyze the behavior of a piezoelectric three-
layered composite subject to soft loading, in which the intermediate thin layer is constituted
by a damaging material. The evolution of internal damage is numerically calculated and
the macroscopic response of the composite is evaluated during single and multiple loading–
unloading cycles.

2. Basic Equations and Notation

In the sequel, Greek indices range in the set {1, 2}, Latin indices range in the set
{1, 2, 3}, and Einstein’s summation convention with respect to repeated indices is adopted.
The following notations for the scalar and dyadic products are also introduced: a · b := aibi,
(a⊗ b)ij := (aibj), (a� b)ij := 1

2 (aibj + ajbi), for all vectors a = (ai) and b = (bi), and
A.B := AijBij, for all tensors A = (Aij) and B = (Bij).

We consider an assemblage made of three linear elastic solids, two adherents and a
thin interphase, occupying a smooth bounded domain Ωε ⊂ R3, as depicted in Figure 1.
The domain Ωε depends on the parameter ε in a sense which will be made precise later. An
orthonormal Cartesian frame (O, i1, i2, i3) is introduced and the triplet (x1, x2, x3) is taken to
denote the three coordinates of a particle. The frame origin lies at the center of the adhesive
mid plane and the x3−axis is perpendicular to the bounded set S = {(x1, x2, x3) ∈ Ωε :
x3 = 0}modeling the interface in the limit problem. The interphase occupies the domain
Bε, defined as Bε =

{
(x1, x2, x3) ∈ Ωε : |x3| < ε

2
}

, with ε > 0 the thickness. The adherents
occupy the domains Ωε

± =
{
(x1, x2, x3) ∈ Ωε : ±x3 > ε

2
}

. The interfaces between the
adhesive and the adherents are taken to be denoted as Sε

± =
{
(x1, x2, x3) ∈ Ωε : x3 = ± ε

2
}

.
Two parts of strictly positive measure of the boundary ∂Ωε are introduced: a part Sg, on
which an external load g is applied and onto which a charge density w is distributed, and a
part Su, on which the displacement u and the electric potential φ are imposed to vanish.
The boundary sets Sg and Su are assumed to be located far from the interphase. Body forces
are negligible in Ωε

± and Bε. The fields of the external forces are endowed with sufficient
regularity to ensure the existence of equilibrium configuration.
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Figure 1. Geometry of the bonded assembly composed of two adherent bodies and an adhesive thin
layer: reference configuration (a), rescaled configuration (b) and limit configuration (c).

In the following, uε, eε and σε are taken to denote the displacement field, the strain
tensor and the Cauchy stress tensor, respectively. Under the small strain hypothesis, we

have eε =
1
2
(∇uε + (∇uε)T). In addition, Eε, φε, and Dε are taken to denote the electric

field, the electric potential and the electric displacement field, respectively, with Eε = −∇φε.
The two adherents are supposed to be linear piezoelectric with constitutive law as follows:{

σε = C±eε − P±Eε,
Dε = (P±)Teε + H±Eε,

(1)

where C±, P± and H± denote, respectively, the elasticity tensor, the piezoelectric coupling
tensor and the dielectric tensor. These tensors are assumed to not depend on ε.

The material of the adhesive is assumed to be linear piezoelectric with behavior
depending on a damage parameter λ ∈ [0, 1]. In particular, we follow the general theory
proposed in [51] and consider the following free energy:

Φε(eε, Eε, λ) =
1
2

Cε(λ)eε.eε +
1
2

Hε(λ)Eε · Eε

−Pε(λ)Eε.eε −ωελ + I[0,1](λ), (2)

where Cε(λ), Hε(λ) and Pε(λ) denote, respectively, the elasticity tensor, the dielectric tensor
and the piezoelectric coupling tensor. The quantity ωε is a negative material parameter
similar to the Dupré’s energy, cf. [51–53]. Its physical meaning is a damage initiation
threshold expressed as a volumetric energy, as formulated by [50]. The dependence of
Cε(λ), Pε(λ) and Hε(λ) on λ can be phenomenological or micromechanical. In the present
paper, we adopt a micromechanical approach via an homogenization scheme that will be
described in Section 4. The constitutive equations obtained from (2) are

σε =
∂Φε

∂eε
= Cε(λ)eε − Pε(λ)Eε, (3)

Dε =
∂Φε

∂Eε
= (Pε)T(λ)eε + Hε(λ)Eε. (4)
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Following [51,53], a pseudopotential of dissipation is introduced, assumed to be given by
the sum of a rate-dependent contribution and a rate-independent term:

Ψε(λ̇) = 1/2 ηε λ̇2 + I[0,+∞[(λ̇), (5)

where ηε is a positive viscosity parameter, controlling the velocity of damage [50]. Large
values of ηε correspond to slow damage evolution and vice versa. An estimate of ηε can be
obtained through experiments performed at different loading-rate. The term IA is taken
to denote the indicator function of the set A, i.e., IA(x) = 0 if x ∈ A and IA(x) = +∞
otherwise. The presence of the indicator function forces the damage parameter λ to assume
non-negative values, accounting for the irreversible character of the damaging process of
the adhesive. The chosen form of the pseudo-potential of dissipation, together with the
positiveness of ηε, leads to following evolution equation for the damage parameter λ :

ηελ̇ = −1/2 Cε
,λ(λ)e

ε.eε − 1/2 Hε
,λ(λ)E

ε · Eε + Pε
,λ(λ)E

ε.eε + ωε, (6)

where the comma (·), denotes the partial differentiation with respect to λ. In the absence
of body forces and free charge, the governing equations of the equilibrium problem are
written as follows:

divσε = 0 in Ωε

divDε = 0 in Ωε

σεn = g on Sg
Dε · n = −w on Sg
[[σεi3]]ε± = 0 on Sε

±
[[Dε · i3]]ε± = 0 on Sε

±
[[uε]]ε± = 0 on Sε

±
[[φε]]ε± = 0 on Sε

±
uε = 0 on Su
φε = 0 on Su

ηελ̇ =
(

ωε − 1/2 Cε
,λ(λ)e

ε.eε − 1/2 Hε
,λ(λ)E

ε · Eε + Pε
,λ(λ)E

ε.eε
)
+

in Bε

(7)

where, without ambiguity, the symbol div represents the vector and tensor divergence
operator, (·)+ is taken to denote the positive part of a function, and [[ f ]]ε± is taken to
denote the jump of the quantity f across the interfaces Sε

±. Quantities g and w are the loads
and charge surface densities, respectively. The system of Equation (7) is augmented by the
constitutive Equations (3) and (4) introduced above.

3. Asymptotic Analysis

Given the small thickness of the interphase (i.e., adhesive), the solution of the equilib-
rium problem is sought by using asymptotic expansions with respect to the small parameter
ε. The first step of the asymptotic analysis is a rescaling of the thin domain in order to
introduce a domain of fixed unitary thickness, see Figure 1. This can be achieved via the
following classical procedure [54]. The following changes of variables are introduced:

• in the adhesive:

(x1, x2, x3) ∈ Bε → (z1, z2, z3) ∈ B, with (z1, z2, z3) = (x1, x2,
x3

ε
)

with B = {(x1, x2, x3) ∈ Ω : |x3| < 1
2}. In addition, given any (scalar or vector) field

v defined on Bε, it is set v̂(z1, z2, z3) = v(x1, x2, x3);
• in the adherents:

(x1, x2, x3) ∈ Ωε
± → (z1, z2, z3) ∈ Ω±, with (z1, z2, z3) = (x1, x2, x3 ± 1/2∓ ε/2)
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with Ω± = {(x1, x2, x3) ∈ Ω : ±x3 > 1
2}. In addition, given any (scalar or vector)

field v defined on Ωε
±, it is set v̄(z1, z2, z3) = v(x1, x2, x3).

The loads and charge surface densities are assumed to be independent of ε, so that
ḡ(z1, z2, z3) = g(x1, x2, x3) and w̄(z1, z2, z3) = w(x1, x2, x3). Tensors Cε(λ), Pε(λ) and
Hε(λ) are assumed to be independent of z3. Using the change of variables in the adhesive,
we have

∂

∂z1
=

∂

∂x1
,

∂

∂z2
=

∂

∂x2
,

∂

∂z3
= ε

∂

∂x3
. (8)

The governing equations of the rescaled problem read as follows:

divσ̄ε = 0 in Ω±
divD̄ε = 0 in Ω±
divσ̂ε = 0 in B
divD̂ε = 0 in B
σ̄εn = ḡ on S̄g
D̄ε · n = −w̄ on S̄g
σ̄εi3 = σ̂εi3 on S±
D̄ε · i3 = D̂ε · i3 on S±
ūε = ûε on S±
φ̄ε = φ̂ε on S±
ūε = 0 on S̄u
φ̄ε = 0 on S̄u

η̂ελ̇ =
(

ω̂ε − 1/2 Cε
,λ(λ)e

ε(ûε).eε(ûε)− 1/2 Hε
,λ(λ)E

ε(φ̂ε) · Eε(φ̂ε)

+Pε
,λ(λ)E

ε(φ̂ε).eε(ûε)
)
+

in B

(9)

with the associated rescaled constitutive laws. In the above equations, S± = {(x1, x2, x3) ∈
Ω : x3 = ± 1

2}, and the superscripts (·̄), (·̂) denote the restriction of the rescaled operators
in the adherents and in the adhesive, respectively.

Now, we assume the existence of asymptotic expansions for the stress, electric dis-
placement, displacement and electric potential fields:

σε = σ0 + ε σ1 + o(ε),
Dε = D0 + ε D1 + o(ε),
uε = u0 + ε u1 + o(ε),
φε = φ0 + ε φ1 + o(ε).

(10)

Thus, the rescaled stress, electric displacement, displacement and the electric potential in
the rescaled adhesive and adherents can also be written as asymptotic expansions:

σ̂ε = σ̂0 + ε σ̂1 + o(ε),
D̂ε = D̂0 + ε D̂1 + o(ε),
ûε = û0 + ε û1 + o(ε),
φ̂ε = φ̂0 + ε φ̂1 + o(ε),
σ̄ε = σ̄0 + ε σ̄1 + o(ε),
D̄ε = D̄0 + ε D̄1 + o(ε),
ūε = ū0 + ε ū1 + o(ε),
φ̄ε = φ̄0 + ε φ̄1 + o(ε).

(11)
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3.1. Strain and Electric Field in the Rescaled Adhesive

In the electro-mechanical coupling, the displacement u and electric potential φ are
both primary variables. The displacement gradient in the rescaled interphase, ûε, is

∇ûε = ε−1
[

0 û0
α,3

0 û0
3,3

]
+

[
û0

α,β û1
α,3

û0
3,β û1

3,3

]
+ o(ε). (12)

Its symmetrical part, the strain tensor, is

e(ûε) = ε−1ê−1 + ê0 + o(ε), (13)

with:
ê−1 = û0

,3 � i3, (14)

ê0 = û0
,α � iα + û1

,3 � i3. (15)

The electric field can be computed as

E(φ̂ε) = ε−1Ê−1 + Ê0 + o(ε), (16)

with:
Ê−1 = −φ̂0

,3i3, (17)

Ê0 = −φ̂0
,αiα − φ̂1

,3i3. (18)

3.2. Strain and Electric Field in the Adherents

The displacement gradient in the adherents, ūε, is

∇ūε =

[
ū0

α,β ū0
α,3

ū0
3,β ū0

3,3

]
+ o(ε). (19)

Its symmetrical part, the strain tensor, is

e(ūε) = ε−1ē−1 + ē0 + o(ε), (20)

with:

ē−1 = 0, (21)

ē0 = ū0
,α � iα + ū0

,3 � i3. (22)

The electric field can be computed as

E(φ̄ε) = ε−1Ē−1 + Ē0 + o(ε), (23)

with:

Ē−1 = 0, (24)

Ē0 = −φ̄0
,αiα − φ̄0

,3i3. (25)

3.3. Governing Equations in the Adhesive

To obtain the governing equations in the adhesive, as a function of the stress and
electric displacement fields, first and second equations of system (11), are first replaced in
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the third and fourth equations of system (9). Next, the change of variable (8) is applied
to obtain:

0 = σ̂ε
iα,α + ε−1σ̂ε

i3,3

= ε−1σ̂0
i3,3 + σ̂0

iα,α + σ̂1
i3,3 + o(ε), (26)

0 = D̂ε
α,α + ε−1D̂ε

3,3

= ε−1D̂0
3,3 + D̂0

α,α + D̂1
3,3 + o(ε). (27)

Equations (26) and (27) have to be satisfied for any value of ε, leading at the lowest order to
the following conditions:

σ̂0
i3,3 = 0, (28)

D̂0
3,3 = 0. (29)

The latter results imply that σ̂0
i3 and D̂0

3 are independent of z3 in the adhesive, leading to
the conditions

[[σ̂0i3]] = 0, (30)

[[D̂0 · i3]] = 0, (31)

where [[.]] denotes the jump between z3 = 1
2 and z3 = − 1

2 .

3.4. Governing Equations in the Adherents

The governing equations in the adhesive are obtained by replacing the representation
forms of the stress and electric displacement in the adherents (fifth and sixth equations of
system (11)) into the equilibrium equation of the adherents (first and second equations of
system (9)). At the lowest order, we obtain the following conditions:

divσ̄0 = 0 in Ω± (32)

divD̄0 = 0 in Ω±. (33)

In a similar way, one arrives at

σ̄0n = ḡ on S̄g (34)

D̄0 · n = −w̄ on S̄g. (35)

3.5. Matching External and Internal Expansions

Adhesive and adherents are assumed to be in perfect contact (see Equations (7)–(10)
of system (9)). Thus, the displacement and stress vector are continuous across the surfaces
Sε
± and S±, in the reference and rescaled configuration respectively. From the continuity of

the displacements, it follows that

uε(x̄,± ε

2
) = ûε(z̄,±1

2
) = ūε(z̄,±1

2
), (36)

where x̄ := (x1, x2), z̄ := (z1, z2) ∈ S. Expanding the displacement field uε in Taylor series
along the x3−direction and taking into account the asymptotic expansion for uε in (11),
it results:

uε(x̄,± ε

2
) = uε(x̄, 0±) + o(ε) = u0(x̄, 0±) + o(ε). (37)

Substituting the expansions of the rescaled displacement field given in (11) together with
formula (37) into the continuity condition (36), we find:

u0(x̄, 0±) + o(ε) = û0(z̄,±1
2
) + o(ε) = ū0(z̄,±1

2
) + o(ε),
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that gives:

u0(x̄, 0±) = û0(z̄,±1
2
) = ū0(z̄,±1

2
). (38)

Analogous results can be obtained for the electric potential, the stress and the electric
displacement. In view of these results, it is thus possible to rewrite Equations (30) and (31)
in the following forms:

[[σ̄0i0
3]] = 0, (39)

[[D̄0 · i3]] = 0, (40)

[σ0i0
3] = 0, (41)

[D0 · i3] = 0, (42)

where [ f ] := f (x̄, 0+)− f (x̄, 0−) is taken to denote the jump across the surface S of a generic
function f defined on the limit configuration obtained as ε→ 0, see Figure 1.

3.6. Constitutive Equations of the Adherents

The results obtained in previous sections are general, because they are independent
of the particular constitutive behavior of the materials composing the bonded assembly.
Substituting the expansions of the rescaled displacement, electric potential, stress and
electric displacement fields (11) into the constitutive equations of the adherents (3) and (4),
we obtain the following relations:{

σ̄0 = C±ē0 − P±Ē0,
D̄0 = (P±)T ē0 + H±Ē0,

(43)

providing a link between rescaled stress and electric displacement fields and the rescaled
strain and electric fields at order zero.

3.7. Constitutive Equations of the Adhesive

The material of the interphase is assumed to be soft, i.e., mechanically compliant
and electrically lowly-conducting, the constitutive tensors Cε(λ), Pε(λ), and Hε(λ) rescale
linearly with ε:

Cε(λ) = εĈ(λ), (44)

Pε(λ) = εP̂(λ), (45)

Hε(λ) = εĤ(λ), (46)

with Ĉ(λ), P̂(λ) and Ĥ(λ) independent of ε. The damage variable λ is assumed to be
independent of ε and also of the z3-coordinate. After substituting (44)–(46) together with
the expansions of the stress and electric displacement and the relations (20) and (23) into
the constitutive equations of the adhesive (3) and (4), we obtain{

σ̂0 = Ĉ(λ)(û0
,3 � i3) + φ̂0

,3P̂(λ)i3,
D̂0 = (P̂(λ))T(û0

,3 � i3)− φ̂0
,3Ĥ(λ)i3.

(47)

Introducing the following notation (in indicial form):

Ĉjl(λ) = (Ĉijrl(λ)), (48)

P̂jl(λ) = (P̂jlr(λ)), (49)

Ĥ jl(λ) = Ĥjl(λ), (50)
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integrating along z3, using the results (30) and (31) and the matching conditions, one arrives
at the following piezoelectric spring-type transmission conditions:{

σ̄0i3 = Ĉ33(λ)[[ū0]] + P̂33(λ) [[φ̄0]],
D̄0 · i3 = P̂33(λ) · [[ū0]]− Ĥ33(λ) [[φ̄0]].

(51)

The matching conditions obtained in Section 3.5 allow to rewrite these transmission con-
ditions in the limit configuration of the thin interphase as its thickness goes to zero. The
following conditions are finally obtained:{

σ0i3 = Ĉ33(λ)[u0] + P̂33(λ) [φ0],
D0 · i3 = P̂33(λ) · [u0]− Ĥ33(λ) [φ0].

(52)

3.8. Damage Evolution Equation

In this section, the asymptotic behavior of the damage evolution equation, the last
equation in (9), is studied. The material parameters η̂ε and ω̂ε are assumed to rescale with
ε−1 as follows:

η̂ε = η̂ ε−1, ω̂ε = ω̂ ε−1, (53)

with η̂ > 0 and ω̂ < 0 independent of z3. Substituting the expansions (11) into the
last equation in (9), using the results (30) and (31) and the rescalings (44) and (46) and
integrating with respect to z3, one arrives at the following damage evolution equation:

η̂λ̇ =
(

ω̂− 1
2

Ĉ33
,λ (λ)[[û

0]] · [[û0]]− 1
2

Ĥ33
,λ (λ)[[φ̂

0]]2 + P̂33
,λ (λ) · [[û

0]][[φ̂0]]
)
+

. (54)

Introducing the matching conditions (cf. Equation (38) for the displacement field and
consider analogous relations for the electric potential field), the final form of the damage
evolution law for the soft thin interface is obtained:

η̂λ̇ =
(

ω̂− 1
2

Ĉ33
,λ (λ)[u

0] · [u0]− 1
2

Ĥ33
,λ (λ)[φ

0]2 + P̂33
,λ (λ) · [u

0][φ0]
)
+

. (55)

3.9. Summary of Results

To summarize, the asymptotic analysis of the governing equations in the rescaled
configuration has led to the following equations at the lowest order:

divσ̄0 = 0 in Ω±
divD̄0 = 0 in Ω±
σ̄0 = C±ē0 − P±Ē0 in Ω±
D̄0 = (P±)T ē0 + H±Ē0 in Ω±
σ̄0n = ḡ on S̄g
D̄0 · n = −w̄ on S̄g
[[σ̄0i3]] = 0
[[D̄0 · i3]] = 0
σ̄0i3 = Ĉ33(λ)[[ū0]] + P̂33(λ) [[φ̄0]]
D̄0 · i3 = P̂33(λ) · [[ū0]]− Ĥ33(λ) [[φ̄0]]

η̂λ̇ =
(

ω̂− 1
2

Ĉ33
,λ (λ)[[ū

0]] · [[ū0]]− 1
2

Ĥ33
,λ (λ)[[φ̄

0]]2 + P̂33
,λ (λ) · [[ū

0]][[φ̄0]]
)
+

.

(56)

This set of equations is defined on the rescaled configuration, where the thin interphase has
disappeared and is substituted by the piezoelectric spring-type transmission conditions.
The damaging behavior of the interphase is described by the damage parameter λ evolving
with the evolution equation given by the last equation in (56). The latter has to be comple-
mented with an initial condition on λ. Using the matching conditions, the above governing
equations can be reformulated in the limit configuration. Taken Ω0

± and S0
g to denote the

domains corresponding to Ω± and Sg in the limit configuration, respectively, and taken
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g and w to denote the applied surface force and charge densities, respectively, one finally
obtains:

divσ0 = 0 in Ω0
±

divD0 = 0 in Ω0
±

σ0 = C±e0 − P±E0 in Ω0
±

D0 = (P±)Te0 + H±E0 in Ω0
±

σ0n = g on S0
g

D0 · n = −w on S0
g

[σ0i3] = 0
[D0 · i3] = 0

σ0i3 = Ĉε,33(λ)
[u0]

ε
+ P̂ε,33(λ)

[φ0]

ε

D0 · i3 = P̂ε,33(λ) · [u
0]

ε
− Ĥε,33(λ)

[φ0]

ε

η̂ελ̇ =

(
ω̂ε − 1

2
Ĉε,33

,λ (λ)
[u0]

ε
· [u

0]

ε
− 1

2
Ĥε,33

,λ (λ)

(
[φ0]

ε

)2

+ P̂ε,33
,λ (λ) · [u

0]

ε

[φ0]

ε

)
+

,

(57)

where the original, unrescaled, material parameters of the thin adhesive have been reintro-
duced, i.e.,

Ĉε,jl(λ) = (Ĉε
ijrl(λ)), (58)

P̂ε,jl(λ) = (P̂ε
jlr(λ)), (59)

Ĥε,jl(λ) = Ĥε
jl(λ). (60)

4. An Academic Example

Let us consider an assembly composed of two piezoelectric adherent parallelepipeds,
Ω0
− and Ω0

+, with identical lateral dimensions but possible different heights, h− and h+
respectively. The two adherents are joined by a very thin piezoelectric damaging adhesive,
so the governing equations of the composite are assumed to be given by (57). The whole
body is subjected to a soft loading device, i.e., a tensile load q = q n, with q > 0, acting
on the top and bottom surfaces, whose union is denoted S0

g, as represented in Figure 2.
The lateral boundaries of Ω0

− and Ω0
+ are free from surface forces and the surface charge

density w is negligible everywhere on the boundary.

Figure 2. A piezoelectric three-layered composite body subject to soft loading. The intermediate thin
layer is made of a damaging material.
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The adherents are assumed to be made of orthotropic piezoelectric materials with
poling axis i3, whose constitutive tensors take, in Voigt’s notation, the following form:

C± =



c±11 c±12 c±13 0 0 0
c±12 c±22 c±23 0 0 0
c±13 c±23 c±33 0 0 0
0 0 0 c±44 0 0
0 0 0 0 c±55 0
0 0 0 0 0 c±66

, (61)

P± =



0 0 p±31
0 0 p±32
0 0 p±33
0 p±24 0

p±25 0 0
0 0 0

, (62)

H± =

 h±11 0 0
0 h±22 0
0 0 h±33

. (63)

The adhesive is made of a transversely isotropic material with poling axis i3. The matri-
ces Ĉε,33 and P̂ε,33 appearing in the transmission conditions of the system of governing
Equation (57) take the form

Ĉε,33 =

 ĉε
55(λ) 0 0

0 ĉε
55(λ) 0

0 0 ĉε
33(λ)

, (64)

P̂ε,33 =

 0
0

p̂ε
33(λ)

, (65)

respectively, and one has
Ĥε,33 = ĥε

33(λ). (66)

The dependence on the damage parameter λ will be specified later.
The following choice:

u0
± = q ∑3

i=1 C±i xiii + u±3 i3 in Ω0
±,

φ0
± = −qC±4 x3 + φ± in Ω0

±,
σ0 = q(i3 ⊗ i3) in Ω0

+ ∪Ω0
−,

D0 = 0 in Ω0
+ ∪Ω0

−,

(67)

satisfies the first eight equations of (57). The expressions of the constants C±K , K = 1, 2, 3, 4,
are given in the Appendix A. The choice (67) corresponds to a piezoelectric state (u0, φ0)
homogeneous in the adherents and superimposed to jump discontinuities [u0

3] = (u+
3 − u−3 )

and [φ0] = (φ+ − φ−) concentrated at the adhesive interface S.
Substituting (64)–(67) into the ninth and tenth equations of the system (57), the follow-

ing values for the jumps [u0
3] and [φ0] are obtained:

[u0
3]

ε
=

q hε
33(λ)

cε
33(λ)h

ε
33(λ) + (pε

33(λ))
2 , (68)

[φ0]

ε
=

q pε
33(λ)

cε
33(λ)h

ε
33(λ) + (pε

33(λ))
2 . (69)
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In view of (68) and (69), it is now possible to calculate the macroscopic strain of the
composite along the thickness direction (i.e., i3)

ε :=
u0

3(x1, x2, h+)− u0
3(x1, x2,−h−)

h+ + h−

= qζ+C+
3 + qζ−C−3 + qζ

hε
33(λ)

cε
33(λ)h

ε
33(λ) + (pε

33(λ))
2 , (70)

with
ζ± :=

h±
h+ + h−

, ζ :=
ε

h+ + h−
, (71)

the volume fractions of the three layers. The voltage per unit height between the top and
bottom bases of the composite is

∆φ

h+ + h−
:=

φ0(x1, x2, h+)− φ0(x1, x2,−h−)
h+ + h−

= qζ+C+
4 + qζ−C−4 + qζ

pε
33(λ)

cε
33(λ)h

ε
33(λ) + (pε

33(λ))
2 . (72)

The inverse piezoelectric coefficient, defined by

d :=
ε

∆φ

h+ + h−

, (73)

can be computed from the expressions (70) and (72). Parameter d measures the ability of
the structure to develop the inverse piezoelectric effect, converting electrical energy to
mechanical energy.

The macroscopic quantities ε, ∆φ/(h+ + h−) and d depend upon the damage param-
eter λ and its evolution, described by the last equation of the system (57). Substituting
(64)–(67) into the last equation of the system (57), the following differential equation in λ
is obtained:

η̂ελ̇ =

ω̂ε − 1
2

ĉε
33,λ(λ)

(
[u0

3]

ε

)2

− 1
2

ĥε
33,λ(λ)

(
[φ0]

ε

)2

+ p̂ε
33,λ(λ)

[u0
3]

ε

[φ0]

ε


+

, (74)

that, in view of (68) and (69), becomes

η̂ελ̇ =

(
ω̂ε − q2 (ĥ

ε
33(λ))

2ĥε
33,λ(λ) + ĉε

33,λ(λ)( p̂ε
33(λ))

2 − 2ĥε
33(λ) p̂33(λ) p̂ε

33,λ(λ)

ĉε
33(λ)ĥ

ε
33(λ) + ( p̂ε

33(λ))
2

)
+

, (75)

to be completed with an initial condition for λ :

λ(0) = λ0. (76)

As for the dependence of the material parameters of the adhesive on λ, we follow
the Kachanov–Sevostianov homogenization scheme [45–48], where the parameters of the
adhesive, ĉε

33, p̂ε
33, and ĥε

33 depend on λ as follows:

ĉε,KS
33 =

ĉ0
33

1 + 2 π λ
,

p̂ε,KS
33 =

p̂0
33

1 + 2 π λ
,

ĥε,KS
33 =

ĥ0
33

1 + 2 π λ
, (77)
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with ĉ0
33, p̂0

33, and ĥ0
33 corresponding to the values of the undamaged material parameters.

Substituting the relations (77) into the evolution Equation (75), we obtain the simple
linear differential equation

ηλ̇ =
(

ω + cq2
)
+

(78)

with

c =
πĥ0

33(ĉ
0
33ĥ0

33 − ( p̂0
33)

2)

(ĉ0
33ĥ0

33 + ( p̂0
33)

2)2
. (79)

Now assume that the load q is time dependent, q = q(t) with t ≥ 0, and assume that λ0 = 0.
For times t such that

q2(t) = −ω

c
(80)

damage initiates. Let t0 be the first solution of such equation. For 0 < t < t0, no damage
occurs, i.e., λ(t) = λ0 = 0 and the mechanical and electric responses of the composite are
classical and linear. For t ≥ t0, damage initiates and evolves according to the following
first integral of (78):

λ(t) =
ω

η
t +

ω

c

∫ t

0
q2(s)ds. (81)

The macroscopic response of the composite described by relations (70) and (72) is non linear,
due to Equation (81) describing non linear damage evolution. In the next subsection, we
calculate numerically the macroscopic response of the composite for a typical configuration
under cyclic traction.

Simulation of the Macroscopic Response for a PZT-4/PVDF Composite under Cyclic Traction

For the composite sketched in Figure 2, the adherents are assumed to be constituted
by PZT-4 and the damaging thin layer of PVDF, whose material parameters are listed in
Tables 1 and 2.

Table 1. Constitutive coefficients of the adherents [55].

c±11 c±22 c±33 c±12 c±13 c±23 p±
31 p±

32 p±
33 h±

33

GPa GPa GPa GPa GPa GPa Cm−2 Cm−2 Cm−2 nFm−1

PZT-4 139 139 115 77.8 74.3 74.3 −5.2 −5.2 15.1 11.51

Table 2. Constitutive coefficients of the thin adhesive [55]. The values in the table refer to the material
in undamaged conditions.

ĉ0
33 p̂0

33 ĥ0
33

GPa Cm−2 nFm−1

PVDF 10.64 −0.276 0.106

The load q, is assumed to be piece-wise linear in time, thus simulating cyclic loading
and unloading ramps. Noting q̇ (−q̇), t0 and t f the loading (unloading) rate, the time of
damage initiation and the half period, respectively, from Equation (80) and the linearity of
q(t), it follows that the damage initiation time takes the form

t0 =

√
−ω

q̇
√

c
. (82)

We assume that t f > t0, so damage occurs before the ending of each loading ramp.
In Figures 3–7, the results of simulations are shown, obtained by implementing equa-

tions (61) into (81) for a single loading–unloading cycle and for three loading–unloading
cycles. To perform the calculations, the symbolic software Mathematica was used [56]. The
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numerical values of the loading and material parameters are listed in Tables 1–3. In the
simulations, different values for the parameters η and ω have been considered, to highlight
the different effect of these two parameters on the composite behaviour. Be noted that
the damage initiation time (82) depends upon ω, thus varying the latter corresponds to
consider different loading histories.

Table 3. Loading and damage material parameters used for the simulated macroscopic responses
plotted in Figures 2–4.

q̇ λ0 η ω
Pa/s - N s/m N/m

0.1 −0.1
104 0 1.0 −1.0

10.0

Figure 3 shows the time evolution of the damage parameter λ in a single loading–
unloading cycle (SC) and in three loading–unloading cycles (MC). The case of pure elastic
behavior in absence of damage (E) corresponds to a fixed λ = 0 for all times. Damage
nucleates at t0 = 2.03 s for ω = −0.1 N/m and at t0 = 6.43 s for ω = −1.0 N/m, as it
can be calculated using Equation (82) with the values provided in Table 3. Then, damage
increases until the end of loading ramps, following which it remains constant until the end
of the unloading phases. This behavior gives a wavy appearance to the curves for multiple
cycles. Damage is larger for smaller values of the parameter η, i.e., high viscosity delays
damage evolution, as also found in [50].

The normalized stress versus strain response and normalized stress versus normalized
potential per unit height response are shown in Figures 4 and 5, respectively. Figure 6 shows
the normalized strain versus normalized potential per unit height response. The three
figures highlight the occurrence of an elastic-damaging material behavior with hysteresis.
Higher hysteresis is associated with smaller values of η and larger values of ω, and the
hysteresis is wider for the normalized stress-strain and stress-potential responses. In the
MC case, during the unloading phases, the slope of all response functions decrease with
the number of cycles. This corresponds to elastic damage accumulation in the thin layer
during the loading history.

Figure 7 shows the evolution of the normalized inverse piezoelectric coefficient (73)
with time. The plots show that damage accumulation decreases the coefficient and the
effect is more pronounced for smaller values of η and larger values of ω.

In the literature, damage progression under cyclic loading is usually evaluated via
stiffness degradation. Let EN be taken to denote the ratio between the maximum applied
load at cycle N and the corresponding strain. Stiffness degradation can be defined as EN/E1,
with E1 the ratio between the maximum applied load at the first cycle and the corresponding
strain. Stiffness degradation versus the number of cycle is shown in the plot of the left-
hand side of Figure 8 for the first 30 cycles and material parameters ω = −0.1 N/m
and η = 0.1 Ns/m. The plot on the right-hand side of Figure 8 shows the degradation
of the inverse piezoelectric coefficient versus the cycle number for the same values of
the material parameters ω and η. The two plots indicate that the first loading cycles are
characterized by a rapid degradation of stiffness and inverse piezoelectric effect, followed
by a more gradual reduction. This behavior is qualitatively consistent with experimental
observations of stiffness degradation obtained on cyclic compression of piezoelectric PVDF
foams (p. 191, [57]). This provides a validation of the approach proposed in the present
paper and shows its usefulness.
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Figure 3. Damage evolution in a single loading–unloading cycle (a,c) and in multiple loading–
unloading cycles (b,d) of the layered composite depicted in Figure 2. The different plots show the
effect of varying ω and η in in the damage evolution Equation (75).
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Figure 4. Normalized stress versus strain response in a single loading–unloading cycle (a,c) and in
multiple loading–unloading cycles (b,d) of the layered composite depicted in Figure 2. The different
plots show the effect of varying ω and η in in the damage evolution Equation (75). For comparison,
normalized stress versus strain response in absence of damage (purely elastic case) is represented
with a dotted line.
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Figure 5. Normalized stress versus normalized potential per unit height in a single loading–unloading
cycle (a,c) and in multiple loading–unloading cycles (b,d) of the layered composite depicted in
Figure 2. The different plots show the effect of varying ω and η in in the damage evolution Equation
(75). For comparison, normalized stress versus normalized potential per unit height in the purely
elastic case is represented with a dotted line.
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Figure 6. Strain versus normalized potential per unit height in a single loading–unloading cycle (a,c)
and in multiple loading–unloading cycles (b,d) of the layered composite depicted in Figure 2. The
different plots show the effect of varying ω and η in in the damage evolution Equation (75). For
comparison, strain versus normalized potential per unit height in the purely elastic case is represented
with a dotted line.
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Figure 7. Evolution of the normalized inverse piezoelectric coefficient in a single loading–unloading
cycle (a,c) and in multiple loading–unloading cycles (b,d) of the layered composite depicted in
Figure 2. The different plots show the effect of varying ω and η in in the damage evolution Equa-
tion (75). For comparison, the normalized inverse piezoelectric coefficient in the purely elastic case is
represented with a dotted line.
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Figure 8. Stiffness degradation (a) and inverse piezoelectric coefficient degradation (b) versus number
of cycle for 30 loading cycles of the layered composite in Figure 2 for material parameters ω = −0.1
N/m and η = 0.1 Ns/m.

5. Conclusions

This work proposes an original imperfect interface model for damage description in
thin-film piezoelectric materials. The model is set in the framework of damage continuum
mechanics and it is based on Kachanov and Sevostianov’s results of homogenization of
micro-cracked media and on asymptotic analysis for the derivation of the interface law.
The resulting interface model views the film as a piezoelectric material surface undergoing
micro-cracking and subsequent damage evolution and accumulation.

To illustrate the application of the interface model, an academic example has been
presented based on two piezoelectric PZT-4 adherent layers joined by a damaging thin
PVDF film modeled as a damaging imperfect interface. The stack is subjected to cyclic
loading and unloading ramps and damage evolution is calculated. In the absence of
damage the macroscopic response of the stack would be linear. However, when damage
is accounted for via the interface law, the numerical results show that the macroscopic
response in terms of stress, strain and potential become non-linear and hysteresis occurs.
The numerical analysis shows that the elastic and piezoelectric behavior of the stack tends
to deteriorate as the number of cycles increases.

Interestingly, the interface model presents two free parameters, η and ω, representing
respectively a damage viscosity and a damage energy threshold and both are related to the
damage evolution law. The numerical analysis, performed for different values of η and ω,
has highlighted the specific effect of the two parameters: large values of ω delay damage
initiation, while large values of the viscosity parameter η delay damage evolution.

As an additional result of the numerical analysis, the evolution of the normalized
inverse piezoelectric coefficient of the layered composite in single loading–unloading cycles
and in multiple loading–unloading cycles has been evaluated. The normalized inverse
piezoelectric is determinant for the actuation, so the possibility of evaluating how damage
affects this coefficient suggests that the proposed model could be a viable strategy for
modeling fatigue of piezoelectric thin film materials.

Introducing the concept of stiffness degradation, our numerical results indicate that the
simulated behavior of the PZT-4/PVDF stack is in qualitative agreement with experimental
observations [57]. This important aspect provides a validation of the proposed model.

Finally, since piezoelectric thin films are very suitable for a variety of applications in
MEMS, such as high energy density harvesters and high sensitivity sensors [5], the content
presented in the present paper is expected to be useful for evaluating damage evolution
and correspondingly design safe operational cyclic loading in such applications. Moreover,
taking into account that wet and dry bone composite structures show piezoelectric effect
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(see the pioneering work by E. Fukada and I. Yasuda [58]), the present work can be
considered relevant to shed light on the complex problem of damage-bone remodelling
subjected to electromechanical stimulation, as in e.g., [59,60].
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Appendix A

The constants C±K , K = 1, 2, 3, 4, of the example in Section 4 take the following form:

C±1 = 1
∆± (c

±
13c±22h±33 + c±13(p±32)

2 + c±22 p±31 p±33 − c±12 p±32 p±33),

C±2 = − 1
∆± (c

±
12c±13h±33 + c±13 p±31 p±32 + c±12 p±31 p±33 − c±11 p±32 p±33),

C±3 = 1
∆± ((c

±
12)

2h±33 − c±22(p±31)
2 + 2c±12 p±31 p±32 − c±11(c

±
22h±33 + (p±32)

2)),

C±4 = 1
∆± (−c±13c±22 p±31 + c±12c±13 p±32 − (c±12)

2 p±33 + c±11c±22 p±33),

with

∆± = −c±33

(
c±11c±22h±33 + c±11(p±32)

2 + c±22(p±31)
2
)
− c±11c±22(p±33)

2

+ c±11c±23 p±32 p±33 + (c±12)
2
(

c±33h±33 + (p±33)
2
)

− c±13(c
±
12c±23h±33 + 2c±12 p±32 p±33 − 2c±22 p±31 p±33 + c±23 p±31 p±32)

+ c±12 p±31(2c±33 p±32 − c±23 p±33) + (c±13)
2
(

c±22h±33 + (p±32)
2
)

.
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