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Dynamics of an evolution equation with sin-
gular potential

Renato Colucci

Abstract. We consider a fourth order non linear evolution equation with
a logarithmic potential. We study the asymptotic behaviour of the so-
lutions and their regularity. Moreover, we provide an analysis of the set
of stationary and travelling wave solutions.

Mathematics Subject Classification (2010). Primary 35B36; Secondary
35B40.

Keywords. Pattern formation, traveling waves solutions, Stationary so-
lutions, Asymptotic behaviour.

1. Introduction

We consider the following fourth order nonlinear evolution equation:
ut + uxxxx = [F ′(ux)]x , x ∈ I, t > 0,

u = uxx = 0, x ∈ ∂I,

u(x, 0) = u0(x), x ∈ I,

(1)

where I =
(
−L

2 ,
L
2

)
is a bounded interval with |I| ≤ 1 and F : (−1, 1) → R

is given by

F (z) = −θ0z
2 + θ1 [(1 + z) log(1 + z) + (1− z) log(1− z)] ,

F ′(z) = −2θ0z + θ1 log

(
1 + z

1− z

)
,

F ′′(z) = −2θ0 + 2θ1
1

1− z2
,

where 0 < θ1 < θ0 are given real numbers (see figure 1 below).
The choice of a logarithmic potential is physically relevant from thermody-
namical motivations (see [6]). Moreover, models involving non convex poten-
tials arise in a large variety of scientific fields like image processing, population
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Figure 1. The potential F (u), with θ0 = 3
4 and θ1 = 1

2 .

dynamics, thin films and many others (see [4] and references cited therein).
Equation (1) describes the L2-gradient flows of the energy functional

E(u) =
1

2

∫
I

u2
xxdx+

∫
I

F (ux)dx,

which is a Lyapunov function, in fact multiplying the equation by ut and
integrating in I produces:

d

dt

[
1

2

∫
I

u2
xxdx+

∫
I

F (ux)dx

]
= −

∫
I

u2
tdx ≤ 0.

In order to prove the existence of solutions of (1) we can follow several ap-
proaches available in the literature for the Cahn-Hilliard equation ( see [10],
[12]) : 

vt = − [vxx − F ′(v)]xx , x ∈ I, t > 0,

vx = vxxx = 0, x ∈ ∂I,

v(x, 0) = v0(x), x ∈ I,

(2)

We note in fact that if v(x, t) is the solution of (2) then u(x, t) =
∫ x

0
v(y, t)dy

is the solution of (1).
For example in [7] the solution is obtained as the limit of the solution of a
regularized equation in which the singular potential is replaced by an approx-
imating polynomial while in [11] the authors introduce a viscous term and
prove convergence. Moreover, Miranville and Zelik prove that the solution is
separated from the singular points of the potential. It is worth noting that
it is possible to prove existence of solutions without considering the conver-
gence of a regularized equation as is done in [8].
We refer to the above papers and to the references cited therein for the de-
tailed proofs of the following results:

Theorem 1.1. Let u0 ∈ D, then equation (1) admits a unique solutions in the
class u ∈ L∞([0, T ], D) ∩ C([0, T ], L2(I)) for all T > 0 where

D = {u ∈ H2(I) : u = uxx = 0 in ∂I, ∥ux∥L∞(I) ≤ 1, F ′(ux) ∈ L2(I)}.
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The following result is the so called separation property which will play a
crucial role for the estimates provided in the next section (see also [9] for
recent developments):

Theorem 1.2. Let u(t) be a solution of equation (1) with initial datum satis-
fying

|u0
x| < 1− δ0, with δ0 ∈ (0, 1).

Then, for every T > 0, there exists a positive constant δ = δ(T, δ0) such that

∥ux(t)∥L∞(I) ≤ 1− δ, ∀t ≥ T.

The rest of the paper is organized as follows: in section 2 we investigate the
asymptotic behaviour of solutions while in Section 3 we analyse the set of
stationary solutions. Section 4 is concerned with the study of travelling waves
while section 5 contains some conclusive remarks.

2. Energy estimates

In this section we study the asymptotic behaviour of the solutions together
with their regularity. For simplicity we denote the norms of L2(I) and L∞(I)
by ∥ · ∥ and ∥ · ∥∞ respectively. The estimates of this section are based on the
strict separation property that is given by the next theorem.

Theorem 2.1. Let u0 ∈ C1(I) such that |u0
x| < 1 − δ0, with δ0 > 0 then the

derivative ux of the solution of (1) satisfies the strict separation property,
that is, there exists δ = δ(u0, θ0, θ1) > 0 such that

|ux(t)| < 1− δ, ∀t > 0.

Proof. Since u ∈ H2(I) then u ∈ C1 from the continuous embedding ofH1(I)
in C(I). Then the thesis is a consequence of theorem 1.2 (for more details
see also [10], Remark 4.25). □

Theorem 2.2. Let u be a solution of (1) which satisfies the hypotheses of
Theorem 2.1 and with θ0 − θ1 < 1

2 . Then

lim
t→+∞

∥u(t)∥ = 0.

Proof. Multiplying the equation (1) by u and integrating in I we obtain

1

2

d

dt
∥u∥2 + ∥uxx∥2 =

∫
I

[F ′(ux)]x udx,

from which
1

2

d

dt
∥u∥2 + ∥uxx∥2 +

∫
I

F ′(ux)uxdx = 0. (3)

For simplicity we rewrite (3) in the following way

1

2

d

dt
∥u∥2 + ∥uxx∥2 =

∫
I

h(ux)dx, (4)
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where h(p) = −pF ′(p). Thanks to Lemma 2.3 below we have:

1

2

d

dt
∥u∥2 + ∥uxx∥2 ≤ 2(θ0 − θ1)∥ux∥2

≤ (θ0 − θ1)
{
∥u∥2 + ∥uxx∥2

}
,

(5)

that is
1

2

d

dt
∥u∥2 + [1− (θ0 − θ1)]∥uxx∥2 ≤ (θ0 − θ1)∥u∥2, (6)

where we have used the interpolation inequality

∥ux∥2 ≤ 1

2

{
∥u∥2 + ∥uxx∥2

}
.

From the boundary condition we have

∥u∥ ≤ ∥ux∥ ≤ ∥uxx∥, (7)

from which we can write
1

2

d

dt
∥u∥2 + [1− 2(θ0 − θ1)]∥u∥2 ≤ 0. (8)

Then from Gronwall’s lemma we have

∥u∥2 ≤ ∥u0∥2e−2γt,

where we have set
γ := 1− 2(θ0 − θ1) > 0.

From the previous inequality we obtain the thesis. □

The following Lemma has been used in the proof of the previous theorem.

Lemma 2.3. Let h(p) = −pF ′(p) then there exists k ∈ (0, 1) such that

h(p) ≤ kp2, ∀p ∈ (−1, 1).

Proof. In details we need to prove that there exists k ∈ (0, 1) such that

(k − 2θ0)p
2 + θ1p log

(
1 + p

1− p

)
≥ 0, ∀p ∈ (−1, 1). (9)

It is easy to see that

p log

(
1 + p

1− p

)
≥ 0, ∀p ∈ (−1, 1),

and we should conclude that the choice k ≥ 2θ0 is sufficient to obtain the
thesis. However, this choice implies a restriction on the values of the param-
eters, that is θ1 < θ0 < 1

2 . In order to obtain a more general result we prove
the following equality

p log

(
1 + p

1− p

)
= qp2 +R(p), ∀p ∈ (−1, 1), (10)

where R(p) ≥ 0 in (−1, 1) and q ∈ (0, 2]. We prove (10) for p ∈ (0, 1) since
the other case is similar. From p > 0 we have

p log

(
1 + p

1− p

)
− qp2 ≥ 0 ⇐⇒ log

(
1 + p

1− p

)
− qp ≥ 0.
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We observe that α(p) = log
(

1+p
1−p

)
− qp is zero for p = 0 and α′(p) = 2

1−p2 −
q > 0 if and only if p2 > 1 − 2

q which is true for any p ∈ (0, 1) if q ≤ 2.

This proves (10). Thanks to the above discussion we can rewrite (9) in the
following way

(k + θ1q − 2θ0)p
2 + θ1R(p) ≥ 0, ∀p ∈ (−1, 1). (11)

Then, in order to obtain the thesis it is sufficient that k satisfies

k > 2θ0 − qθ1.

This choice of k produces the following restriction on the parameters :

θ1 < θ0 <
q

2
θ1 +

1

2
.

We observe that the optimal choice is q = 2 and as a consequence k =
2(θ0 − θ1) ∈ (0, 1). □

As a trivial consequence of theorem 2.2 we have the existence of an absorbing
set in L2(I).

Proposition 2.4. Under the hypotheses of Theorems 2.1 and 2.2 there exists
T1 := 1

γ log ∥u0∥ and R1 > 0 such that

∥u(t)∥ ≤ R1 := 1, ∀t ≥ T1.

In the following lines we provide some estimates that will be useful for the
study of regularity of the solutions. We start by recalling an important clas-
sical result:

Lemma 2.5. (The Uniform Gronwall’s Lemma). Let f, g, h be three positive
locally integrable functions on (t0,+∞) which satisfy

f ′ ≤ fg + h, ∀t ≥ t0,

and for s > 0∫ t+s

t

f(τ)dτ ≤ a1,

∫ t+s

t

g(τ)dτ ≤ a2,

∫ t+s

t

h(τ)dτ ≤ a3, ∀t ≥ t0,

where a1, a2, a3 are positive constants. Then

f(t+ s) ≤
(a1
s

+ a3

)
ea2 , ∀t ≥ t0.

Proposition 2.6. Under the hypotheses of Theorems 2.1 and 2.2 there exists
T2 := T1 +

1
2γ > 0 and R2 > 0 such that

∥ux(t)∥ ≤ R2 := R1e
θ20
2γ , ∀t ≥ T2.

Proof. We start the proof showing an estimate that will be useful for proving
the thesis. By using (6) and (7) we can write

1

2

d

dt
∥u∥2 + γ∥uxx∥2 ≤ 0. (12)



6 Renato Colucci

We integrate (12) in (t, t+ ρ), with ρ > 0, obtaining∫ t+ρ

t

∥ux(s)∥2ds ≤
∫ t+ρ

t

∥uxx(s)∥2ds ≤
1

2γ
∥u(t)∥2 ≤ 1

2γ
R2

1, ∀t > T1.

(13)

We multiply the equation (1) by uxx and integrate over I:

1

2

d

dt
∥ux∥2 + ∥uxxx∥2 +

∫
I

F ′′(ux)u
2
xxdx = 0, (14)

from which

1

2

d

dt
∥ux∥2 + ∥uxxx∥2 + 2θ1

∫
I

u2
xx

1− u2
x

dx = 2θ0∥uxx∥2. (15)

Using and interpolating inequality we obtain:

1

2

d

dt
∥ux∥2 + ∥uxxx∥2 + 2θ1

∫
I

u2
xx

1− u2
x

dx ≤ θ0

{
1

β
∥ux∥2 + β∥uxxx∥2

}
, (16)

where β ∈
(
0, 1

θ0

]
. Thanks to Lemma 2.3 we can write

1

2

d

dt
∥ux∥2 + (1− βθ0)∥uxxx∥2 ≤ θ0

β
∥ux∥2. (17)

For simplicity we set β = 1
θ0
, then we can apply Uniform Gronwall’s lemma

to the following inequality

d

dt
∥ux∥2 ≤ 2θ20∥ux∥2, (18)

with f = ∥ux∥2, g = 2θ20, h = 0 and∫ t+ρ

t

2θ20dτ = 2θ20ρ := a1, a2 := 0,

∫ t+ρ

t

∥ux∥2dτ ≤ 1

2γ
R2

1 := a3.

Then we obtain

∥ux(t+ ρ)∥2 ≤ a3
ρ
ea1 =

1

ρ

1

2γ
R2

1e
2θ2

0ρ, ∀t ≥ T1,

and setting ρ = 1
2γ we conclude

∥ux(t)∥ ≤ R1e
θ20
2γ := R2, ∀t ≥ T1 +

1

2γ
:= T2. (19)

□

Proposition 2.7. Under the hypotheses of Theorems 2.1 and 2.2 there exists
T2 := T1 +

1
2γ and R3 > 0 such that

∥uxx(t)∥ ≤ R3 := (
√
1 + 4θ1)R1e

θ̄
4γ , ∀t ≥ T2.
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Proof. We integrate inequality (17) in (t, t+ ρ) with β = 1
2θ0

and obtain∫ t+ρ

t

∥uxxx(s)∥2ds ≤ 4θ20

∫ t+ρ

t

∥ux(s)∥2ds+ ∥ux(t)∥2

≤ R2
1

[
e

θ20
γ + 2

θ20
γ

]
, ∀t ≥ T2,

(20)

where we have used (13) and Proposition (2.6).
Multiplying the equation (1) by ut and integrating over I produces

∥ut∥2 +
1

2

d

dt
∥uxx∥2 + θ1

∫
I

log

(
1 + ux

1− ux

)
uxtdx = θ0

d

dt
∥ux∥2. (21)

For simplicity we introduce the function

Γ(z) = F (z) + 2θ0z
2, z ∈ (−1, 1).

We observe that Γ(0) = 0 while Γ′(z) is positive in (0, 1) and negative in
(−1, 0). This means that Γ(z) ≥ 0 in (−1, 1), then we can write:

∥ut∥2 +
1

2

d

dt
∥uxx∥2 +

d

dt

∫
I

Γ(ux)dx ≤ θ0
d

dt
∥ux∥2 +

∫
I

Γ(ux)dx,

using (7) and (17) we have

d

dt
∥uxx∥2 + 2

d

dt

∫
I

Γ(ux)dx ≤ 2

∫
I

Γ(ux)dx+ 4
θ20
β
∥uxx∥2.

If we set θ̄ := max
{
1,

4θ2
0

β

}
, we obtain the inequality

d

dt

{
∥uxx∥2 + 2

∫
I

Γ(ux)dx

}
≤ θ̄

{
∥uxx∥2 + 2

∫
I

Γ(ux)dx

}
.

We introduce for simplicity the following function

S(z) = Γ(z)− 2θ1z
2.

It is easy to see that S(z) ≤ 0 in (−1, 1) in fact we have S′′(z) ≤ 0 in (−1, 1)
with S′′(0) = 0 which means that S′(z) is decreasing. Since S′(0) = 0 we
have that S′(0) < 0 in (0, 1) and as a consequence S(z) is decreasing in (0, 1)
with S(0) = 0. In the same manner we deal with the case z ∈ (0, 1).
From the previous reasoning we obtain∫

I

Γ(ux)dx ≤ 2θ1∥ux∥2. (22)

Then, using also (7), we have

∥uxx∥2 + 2

∫
I

Γ(ux)dx ≤ ∥uxx∥2 + 4θ1∥ux∥2 ≤ (1 + 4θ1)∥uxx∥2.
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Integrating the previous inequality in (t, t+ ρ) and using (13) we obtain∫ t+ρ

t

∥uxx(s)∥2ds+ 2

∫ t+ρ

t

∫
I

Γ(ux(x, s))dx ≤ (1 + 4θ1)

∫ t+ρ

t

∥uxx(s)∥2ds

≤ (1 + 4θ1)
1

2γ
R2

1, ∀t ≥ T1.

(23)

Now we are able to apply uniform Gronwall’s lemma with f(t) = ∥uxx∥2 +
2
∫
I
Γ(ux)dx, g = θ̄ and h = 0, with

a1 = (1 + 4θ1)
1

2γ
R2

1, a2 = θ̄ρ, a3 = 0.

Then:

∥uxx(t+ ρ)∥2 + 2

∫
I

Γ(ux(t+ ρ))dx ≤
[
(1 + 4θ1)

1

2γρ
R2

1

]
eθ̄ρ, ∀t ≥ T1,

from which, setting ρ = 1
2γ , we conclude

∥uxx(t)∥ ≤ (
√

1 + 4θ1)R1e
θ̄
4γ := R3, ∀t ≥ T1 +

1

2γ
:= T2. (24)

□

Theorem 2.8. Under Hypothesis of theorem (2.2) the solution of (1) is in
L∞([T2,+∞), H4(I)), where T2 > 0 is as in (24).

Proof. We first estimate the norm L2((0, t), L2(I)) of ut. By integrating (21)
on (0, t) and using that Γ(z) ≥ 0 for z ∈ (−1, 2) we obtain∫ t

0

∥ut(s)∥2ds ≤
1

2
∥u0

xx∥2 +
∫
I

Γ(u0
x)dx+ θ0∥ux(t)∥2

≤ 1

2
∥u0

xx∥2 +
∫
I

Γ(u0
x)dx+ θ0R

2
2 := R4, ∀t ≥ T2,

(25)

where we have also used Proposition 2.6.
We differentiate equation (1) with respect to t, multiply by t2ut and integrate
in I: ∫

I

t2uttutdx+

∫
I

t2uxxxxtutdx =

∫
I

[F ′(ux)]xt t
2utdx,

that is

1

2

d

dt
∥tut∥2 − t∥ut∥2 + t2∥uxxt∥2 = −t2

∫
I

F ′′(ux)u
2
txdx

= 2θ0t
2∥utx∥2 − 2θ1t

2

∫
I

u2
tx

1− u2
x

dx ≤ 2(θ0 − θ1)t
2∥utx∥2

≤ t2∥utxx∥2 + t2(θ0 − θ1)
2∥ut∥2,

which gives
1

2

d

dt
∥tut∥2 ≤ t2(θ0 − θ1)

2∥ut∥2 + t∥ut∥2.
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Integrating the previous inequality with respect to time in (0, t) we have

1

2
∥tut∥2 ≤

∫ t

0

{
s2(θ0 − θ1)

2 + s
}
∥ut(s)∥2ds,

then setting t = 1 produces

∥ut(1)∥2 ≤ 2
{
(θ0 − θ1)

2 + 1
}∫ 1

0

∥ut(s)∥2ds ≤ 2
{
(θ0 − θ1)

2 + 1
}
R4,

where we have used (25). We observe that if we set ũ(t, x) := u(s+ t− 1, x),
with s > 0, then ũt(t, x) := ut(s + t − 1, x) and ũt(1, x) := ut(s, x). By
rescaling time we conclude that

∥ut(s)∥2 ≤ 2
{
(θ0 − θ1)

2 + 1
}
R4, s > 0,

that is ut ∈ L∞(R, L2(I)).
Now we pass to estimate the L2 norm of F ′′(ux)uxx:∫

I

[F ′′(ux)]
2
u2
xxdx =

∫
I

[
2θ1

1− u2
x

− 2θ0

]2
u2
xxdx ≤ 8

∫
I

[
θ21

(1− u2
x)

2
+ θ20

]
u2
xxdx

≤ 8

[
θ21
δ4

+ θ20

]
∥uxx∥2 ≤ 8

[
θ21
δ4

+ θ20

]
R2

3 := R5, ∀t > T2,

where we have used proposition (2.7) and the hypothesis of theorem (2.1)
from which

1− u2
x > δ2, and u2

x < (1− δ)2.

We recall that the real number δ depends on u0
x.

From the expression of the equation (1) we have that

uxxxx = −ut + F ′′(ux)uxx,

from which we obtain that uxxxx ∈ L∞(R, L2(I)), in particular

∥uxxxx∥ ≤ 2
{
(θ0 − θ1)

2 + 1
} 1

2 R4 +R
1
2
5 := R6, ∀t ≥ T2.

Moreover, using an interpolating inequality we obtain

∥uxxx∥ ≤ ∥uxx∥
1
2 ∥uxxxx∥

1
2 ≤ (R3R6)

1
2 , ∀t ≥ T2,

and this concludes the proof. □

We end this section providing the uniform bound for the H4(I) norm of u
with a different method.

Proposition 2.9. Under the hypotheses of Theorems 2.1 and 2.2 there exists
T3 > 0 and R7 > 0 such that

∥uxxxx(t)∥ ≤ R7, ∀t ≥ T3.
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Proof. We differentiate the equation four times with respect to x, multiply
by uxxxx and integrate over I:

1

2

d

dt
∥uxxxx∥2 + ∥uxxxxxx∥2 =

∫
I

[F ′(ux)]xxxuxxxxxxdx

:=

∫
I

G(u)uxxxxxxdx ≤ ∥G(u)∥∥uxxxxxx∥ ≤ 1

2

{
∥G(u)∥2 + ∥uxxxxxx∥2

}
,

that is
d

dt
∥uxxxx∥2 ≤ ∥G(u)∥2.

Then we need to estimate ∥G(u)∥2, in details we have:∫
I

G(u)2dx =

∫
I

{
F iv(ux)u

3
xx + 2F ′′(ux)uxxuxxx + F ′′′(ux)uxxuxxx

+F ′′(ux)uxxxx}
2
dx

≤
∫
I

{
4[F iv(ux)]

2u6
xx + 4[2F ′′(ux) + F ′′′(ux)]

2u2
xxu

2
xxx

+4[F ′′(ux)]
2u2

xxxx

}
dx := A1 +A2 +A3.

We estimate the three terms separately. We start with the first:

A1 =

∫
I

4[F iv(ux)]
2u6

xxdx = 16θ1

∫
I

1 + 3u2
x

(1− u2
x)

3
u6
xxdx ≤ 16θ1

1 + 3(1− δ)2

δ6
∥uxx∥66

≤ 16θ1
1 + 3(1− δ)2

δ6
∥uxx∥2∥uxx∥4∞ ≤ 16θ1

1 + 3(1− δ)2

δ6
∥uxx∥4∥uxxx∥2

≤ 16θ1
1 + 3(1− δ)2

δ6
R5

3R6, ∀t ≥ T2.

where we have used an interpolation inequality (see [3]), the inequality ∥v∥2∞ ≤
∥v∥∥vx∥ and the previous results.
For the second term we have:

A2 :=

∫
I

4[2F ′′(ux) + F ′′′(ux)]
2u2

xxu
2
xxxdx

= 64

∫
I

[
−θ0 +

θ1
1− u2

x

+
θ1ux

(1− u2
x)

2

]2
u2
xxu

2
xxxdx

≤ 256

∫
I

[
θ20 +

θ21
(1− u2

x)
2
+

θ21u
2
x

(1− u2
x)

4

]
u2
xxu

2
xxxdx

≤ 256

[
θ20 +

θ21
δ4

+
θ21(1− δ)2

δ8

] ∫
I

u2
xxu

2
xxxdx

≤ 256

[
θ20 +

θ21
δ4

+
θ21(1− δ)2

δ8

]
∥uxx∥2∞∥uxxx∥2

≤ 256

[
θ20 +

θ21
δ4

+
θ21(1− δ)2

δ8

]
∥uxx∥∥uxxx∥3

≤ 256

[
θ20 +

θ21
δ4

+
θ21(1− δ)2

δ8

]
R3(R3R6)

3
2 , ∀t ≥ T2.
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For the third term we have:

A3 =

∫
I

4[F ′′(ux)]
2u2

xxxxdx = 4

∫
I

[
−2θ0 +

2θ1
1− u2

x

]2
u2
xxxx

≤ 8

∫
I

[
4θ20 +

4θ21
(1− u2

x)
2

]
u2
xxxxdx ≤ 32

[
θ20 +

θ21
δ4

]
∥uxxxx∥2.

Then, putting all together, we obtain the inequality

d

dt
∥uxxxx∥2 ≤ C1∥uxxxx∥2 + C2, ∀t ≥ T2,

where

C1 = C1(δ, θ0, θ1) = 32

[
θ20 +

θ21
δ4

]
,

C2 = C2(δ, θ0, θ1) = 16θ1
1 + 3(1− δ)2

δ6
R5

3R6 + 256

[
θ20 +

θ21
δ4

+
θ21(1− δ)2

δ8

]
R3(R3R6)

3
2 .

In order to apply Uniform Gronwall’s lemma we need that uxxxx ∈ L1
Loc(R+, L2(I)),

for this purpose we multiply the equation by uxxxx and integrate over I:

1

2

d

dt
∥uxx∥2 + ∥uxxxx∥2 =

∫
I

[F ′(ux)]xuxxxxdx ≤ 1

2
∥uxxxx∥2 +

1

2

∫
I

[F ′′(ux)]
2u2

xxdx

≤ 1

2
∥uxxxx∥2 +

1

2

∫
I

[
2θ1

1− u2
x

− 2θ0

]2
u2
xxdx

≤ 1

2
∥uxxxx∥2 + 4

∫
I

[
θ21

(1− u2
x)

2
+ θ20

]
u2
xxdx ≤ 1

2
∥uxxxx∥2 + 4

[
θ21
δ4

+ θ20

]
∥uxx∥2

from which we have

d

dt
∥uxx∥2 + ∥uxxxx∥2 ≤ 8

[
θ21
δ4

+ θ20

]
∥uxx∥2.

We integrate the previous inequality with respect to time in (t, t + ρ), with
ρ > 0, obtaining∫ t+ρ

t

∥uxxxx(s)∥2ds ≤ ∥uxx(t)∥2 + 8

[
θ21
δ4

+ θ20

] ∫ t+ρ

t

∥uxx(s)∥2ds

≤ 8

[
θ21
δ4

+ θ20

]
(1 + 4θ1)

1

2γ
R2

1 +R2
3 = a1, ∀t ≥ T2,

where we have used (23) and Proposition (2.7). We are now able to apply
uniform Gronwall’s lemma with a1 as above and

a2 = C1ρ, a3 = C2ρ,

from which we obtain

∥uxxxx(t+ ρ)∥2 ≤
(a1
s

+ C2s
)
eC1ρ, ∀t ≥ T2.
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By setting ρ = 1 we conclude the proof:

∥uxxxx(t)∥ ≤
{
8

[
θ21
δ4

+ θ20

]
(1 + 4θ1)

1

2γ
R2

1 +R2
3 + C2

} 1
2

e
C1
2 := R7,

∀t ≥ T3 := T2 + 1.

□
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3. Stationary solutions

In this section we study the set of stationary solutions, that is, the solutions
of the following ODE:

uxxxx = [F ′(ux)]x,

that is

uxxx = F ′(ux) +K. (26)

For simplicity we set K = 0 (so we have the constant solution u = 0),
moreover, if we introduce the function v = ux, we can write

vxx = F ′(v),

that is

vxx = −2θ0v + θ1 log

(
1 + v

1− v

)
, v ∈ (−1, 1).

We can rewrite the previous equation in hamiltonian form:{
vx = h = ∂H

∂h ,
hx = F ′(v) = −∂H

∂v ,
(27)

where v ∈ (−1, 1) and with hamiltonian

H(v, h) =
1

2
h2 + θ0v

2 − θ1 [(1 + v) log(1 + v) + (1− v) log(1− v)] .

The trajectories are given by the level curves of the hamiltonian, while the
fixed points are solutions of the following system{

h = 0,
F ′(v) = 0,

that is the points of the set:{
v ∈ (−1, 1) : ρv = log

(
1 + v

1− v

)}
,

where for simplicity we have introduced ρ = 2θ0
θ1

> 2. In order to study the
previous set we can rewrite the above equality in the following way

1 + v

1− v
= eρv. (28)

We observe that for any ρ > 0, v = 0 is a solution of (28). We set

h(v) :=
1 + v

1− v
− eρv,

and look for v ∈ (−1, 1) such that h(v) = 0. Its derivative is

h′(v) =
2

(1− v)2
− ρeρv,

then we pass to study the equation h′(v) = 0. If ρ = 2, the condition h′(v) = 0
becomes

1

(1− v)2
= e2v,
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that is
1

(1− v)
= ev.

We check that
1

(1− v)
> ev, ∀v ∈ (0, 1),

that is
(1− v) < e−v, ∀v ∈ (0, 1).

For v = 0 we have the equality while[
(1− v)− e−v

]′
= e−v − 1 < 0, v ∈ (0, 1).

Moreover, by a similar reasoning it is easy to show that:

1

(1− v)
< ev, v ∈ (−1, 0).

From the above discussion we have obtained that h′(v) ≥ 0 in (−1, 1) and it
is zero only for v = 0. This means that h(v) is strictly increasing in (−1, 1)
and it is negative in (-1,0), positive in (0,1) with

h(−1) = −e−2, and lim
v→1−

h(v) = +∞.

We conclude that for ρ = 2 we have a unique fixed point, that is, (v, h) =
(0, 0).

Case ρ > 2.
For any ρ > 0 we have

h(−1) = −e−ρ, and lim
v→1−

h(v) = +∞.

The study of h′(v) will clarify the number of fixed points of system (27).
At first we show that the equation h′(v) = 0 has exactly two solutions. We
observe that

h′(−1) =
1

2
− ρe−ρ > 0 ⇐⇒ eρ > 2ρ, (29)

and since
(eρ − 2ρ)′ = eρ − 2 > 0, ∀ρ > 2,

we conclude that (29) is true for ρ > 2. We study the zeroes of h′(v) that is
solutions of the equation

2

(1− v)2
= ρeρv. (30)

The function on the r.h.s. of (30) and that on l.h.s are strictly increasing
since [

2

(1− v)2

]′
=

4

(1− v)3
> 0.

In the interval (−1, 0) the function on the r.h.s. takes values in [ρe−ρ, ρ] while
the other in [ 12 , 2]. We observe that

ρ

eρ
<

2

e2
<

1

2
, and ρ > 2,
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there is a unique intersection that we called xM .
For v ∈ (0, 1) since

lim
v→1−

2

(1− v)2
= +∞, (31)

thanks to the intermediate value theorem there is only one intersection in
(0, 1), that we call xm. Then for ρ > 2 the function h′(v) has two zeros, that
is xM,m which are a local maximum and minimum for h(v) respectively. Since
h(0) = 0 and xM < 0 < xm, from the above analysis we have h(xM ) > 0 and
h(xm) < 0 and as a consequence the function h(v) has three zeroes:

x− ∈ (−1, xM ), x = 0, x+ ∈ (xm, 1),

which correspond to three fixed points for system (27)

O = (0, 0), P± = (x±, 0).

The functional Jacobian is:

J(v, h) =

(
0 1

−2θ0 +
2θ1
1−v2 0

)
,

whose trace and determinant are respectively:

Tr(J) = 0, det(J) = 2

[
θ0 −

θ1
1− v2

]
.

The fixed point O = (0, 0) has two complex conjugate pure imaginary eigen-
values

λ1,2 = ±i
√
2
√
θ0 − θ1,

and it is always a centre surrounded by periodic orbits.
The fixed points P± have two real eigenvalues with opposite sign:

λ1,2 = ±
√
2

√[
θ1

1− x2
±

− θ0

]
,

and they are saddles. This follows from the following computation:

x+ > xm > 0 ⇒ 1− x2
+ < 1− x2

m,

then using that h′(xm) = 0 and that xm > 0 we have

2

1− x2
+

>
2

1− x2
m

= ρeρxm > ρ =
2θ0
θ1

,

that is
θ1

1− x2
+

> θ0.

The same computations can be performed for x−.

Remark 3.1. We observe that , for any value of the Hamiltonian, the orbits
of (27) are symmetric with respect both horizontal and vertical axis:

h±(v) = ±
√
2
√

H − θ0v2 + θ1 [(1 + v) log(1 + v) + (1− v) log(1− v)].

In fact, using that

(1+v) log(1+v)+(1−v) log(1−v) = [(1− v) log(1− v) + (1 + v) log(1 + v)] ,
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we obtain h±(v) = h±(−v).

Theorem 3.2. Let ρ > 4 log(2), then system (27) admits a family of periodic
orbits for H ∈ (0, H̄) where H̄ := θ1

[
ρ
2 − 2 log(2)

]
.

Proof. The existence of closed orbits can be shown by proving that the func-
tions h±(v) have two intersections with the horizontal axis. Then, we must
solve the equation:

θ1 [(1 + v) log(1 + v) + (1− v) log(1− v)] = θ0v
2 −H,

for simplicity we divide by θ1, set H̃ := H
θ1

and rewrite the previous equality
in the following form:

(1 + v) log(1 + v) + (1− v) log(1− v) =
ρ

2
v2 − H̃.

We call the left and right hand side of the previous equality L(v) and R(v)
respectively. The existence of solutions of the equation

L(v) = R(v), v ∈ (−1, 1), (32)

depends on the parameters ρ > 2 and H̃ > 0. We observe that L(0) = 0,

R(0) = −H̃ < 0 while L(±1) = 2 log(2) and R(±1) = ρ
2 − H̃. Then if

ρ

2
− H̃ > 2 log(2),

from continuity, there should be at least one intersection between R(v) and
L(v) for v ∈ (0, 1). By the symmetry of the curves h±(v) we obtain the
symmetric intersections in (-1,0) and this concludes the proof. □

Remark 3.3. We observe that the hypotheses of the previous theorem are not
sharp.
In fact, we can obtain periodic orbits, that is, solutions of the equation L(v) =
R(v) for higher values of H. The critical value of H, that we call Hc, corre-
sponds to the case in which the solution of (32) correspond to the fixed points
P±. Then, the critical value can be computed by solving the following system
for any fixed value of ρ > 2: {

L(v) = R(v),
F ′(v) = 0.

(33)

We note that the second equation can be rewritten as L′(v) = R′(v) that is
the limit value of H correspond to the case in which the curve L(v) and R(v)
are tangent.
Since for H = Hc the intersections of h±(v) with the horizontal axis are the
fixed points P±, then the corresponding solutions are P± and their stable and
unstable curves. In particular we have two heteroclinic connections between
fixed points.
The system (33) can be solved numerically for any fixed value of the param-
eters. For example for θ1 = 1

2 , θ0 = 3
4 , that is ρ = 3 > 2 log(2), we obtain

the critical value Hc ≈ 0.23038 while the fixed points are P± = (x±, 0) with
x± ≈ ±0.85856 (see figure 2 below).



Dynamics of an evolution equation with singular potential 17

Remark 3.4. We note that an upper bound for the critical value Hc is given
by the quantity θ1

ρ
2 = θ0. In fact for H ≥ θ0 we have that R(±1) ≤ 0 and

as a consequence R(v) ≤ 0 for all v ∈ [−1, 1]. Since L(v) ≥ 0 and it is zero
only for z = 0 there are no intersections between L(v) and R(v) (and as a
consequence no possibility to be tangent at some point).

O
P+P-

Figure 2. We have set θ1 = 1
2 , θ0 = 3

4 , that is ρ = 3 >
2 log(2) . For H = Hc the curves L(v) and R(v) are tangent
(left panel), solutions are the fixed points P± and their stable
and unstable curves (right panel).

Theorem 3.5. Let ρ > 2 then there exists a value H = Hc(ρ) for the Hamilton-
ian which corresponds to heteroclinic solutions and fixed points P± of system
(27). If H > Hc solutions are unbounded.

Proof. The thesis follows form the previous arguments and observing that
for H > Hc solutions do not intersect the horizontal axis in the plane (v, h).
In fact, since h = v′, if h(t) > δ > 0 (or h(t) < −δ < 0) for all t > 0 then
v(t) is unbounded. □

In the last result we come back to consider the original equation (26):

Theorem 3.6. The set of stationary solutions of equation (1) consists in the
following classes:

1. constant solutions u(x) = c, c ∈ R;
2. linear solutions of the form ℓ±(x) = d± + x± · x where d± ∈ R.
3. periodic solutions;
4. solutions connecting two linear functions of the form ℓ±(x);
5. unbounded solutions.

Proof.

1. The constant solutions u(x) = c, c ∈ R correspond to the value H = 0
of the hamiltonian system.
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2. Linear solutions ℓ±(x) = d± + x± · x correspond to to the fixed points
P± = (x±, 0) of the hamiltonian system.

3. Since periodic solutions h(v) of the hamiltonian systems (corresponding
to the valuesH ∈ (0, Hc)) are symmetric with respect to both horizontal
and vertical axis also the function u(x) =

∫
v(x)dx is periodic.

4. For H = Hc the heteroclinic connection satisfy v → x± for x → ±∞
that is ux → x± and as a consequence u(x) connects at ±∞ two linear
solutions of the form ℓ±(x) = d±+x± ·x where d± are proper constants.

5. For H > Hc, since v(x) = ux(x) is unbounded also u(x) is too.

□

4. Travelling waves

In this section we study another important class of special solutions, that is,
travelling wave solutions of equation:

ut + uxxxx − [F ′(ux)]x = 0. (34)

We observe that every constant function u ≡ a with a ∈ R is a solution of
(34). In order to obtain travelling waves solutions we make the usual ansatz

u(x, t) = v(x− ct) = v(ξ),

from which we find the equation

cv′ + viv − [F ′(v′)]′ = 0.

Integrating the equation on (0, ξ) we obtain

v′′′ − [F ′(v′)] + cv = v′′′(0)− [F ′(v′(0))] + cv(0) := K.

For simplicity we set K = 0 without affecting the subsequent analysis. Then,
we study the following equation

v′′′ − F ′(v′) + cv = 0, (35)

which has a unique constant solution v ≡ 0. We observe that if v is solution
of (35), also −v solves the same equation while v(−ξ) and -v(−ξ) are not
solutions of the same equations. For this reason we expect that solutions are
neither odd nor even.

Theorem 4.1. Equation (34) does not admit solitary waves solutions.

Proof. We consider the following functional:

E(ξ) = H(ξ) + cvv′, (36)

where H(ξ) = 1
2 [v

′′(ξ)]2 − F (v′) is the Hamiltonian of the system (27) (ob-
tained from (35) with c = 0). We observe that

d

dξ
E(ξ) = v′′v′′′ − F ′(v′)v′′ + c(v′)2 + cvv′′ = c(v′)2, (37)
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from which we obtain that the function E(ξ) is increasing for c > 0 and
decreasing for c < 0 along the solutions of equation (35). We recall that a
solitary wave solution of equation (34) corresponds to a homoclinic solution
of equation (35). If v is a homoclinic orbit, we should have

lim
ξ→±∞

E(ξ) = 0,

since E ≡ 0 on v ≡ 0. However, since the function E is monotone we conclude
that on such orbits we should have that E(ξ) is constant, that is, using (37)
v′ ≡ 0, that means v ≡ 0. Then we conclude that there are no non trivial
homoclinic solutions. □

Since for c = 0 equation (35) admits a family of periodic solutions one could
ask if in a neighbourhood of c = 0 periodic orbits persist. However, using
again monotonicity of E(ξ) we have the following result.

Theorem 4.2. Equation (35) does not admit periodic solutions for c ̸= 0.

We observe that from (36) and (37) that if v is unbounded then

lim
ξ→+∞

E(ξ) = ±∞,

where the sign of the limit depends on the sign of c. In particular we have

Lemma 4.3. E(ξ) is unbounded if and only if v(ξ) is unbounded.

Proof. We prove the result for c > 0 since the other case is similar.
(i) If v → ∞ as ξ → +∞ then v′ > 0 for ξ large and from the expression (36)
of E(ξ) we obtain

lim
ξ→+∞

E(ξ) = +∞.

We have the same situation for ξ → −∞. If v → −∞ as ξ → +∞ then v′ < 0
for ξ large and using (36) we have again

lim
ξ→+∞

E(ξ) = +∞. (38)

(ii) If (38) is true we have that for ξ large v′ > 0 and as a consequence v is
unbounded. □

Then if we look for bounded solutions we need that E(ξ) is bounded and this
happens if and only if

lim
ξ→+∞

d

dξ
E(ξ) = 0,

that is if and only if

lim
ξ→+∞

v′(ξ) = 0. (39)

In particular we have:

Proposition 4.4. Let c ̸= 0 and let v(ξ) be a solution of (35) that satisfies
(39) then v(ξ) → 0 as ξ → ∞.
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Proof. We suppose that (39) is satisfied, then

lim
ξ→+∞

v(ξ) = d,

while from the equation (35) we obtain

lim
ξ→+∞

v′′′(ξ) = −dc,

and since v′ → 0 we must have d = 0. □

From the above discussion we obtain the following result that characterises
the set of bounded solutions.

Theorem 4.5. Let c ̸= 0. All bounded solutions of equation (35) satisfy

lim
ξ→+∞

v(ξ) = 0.

Proof. From the above discussion we have that if v′ → 0 then v(ξ) is bounded
for ξ > 0. On the contrary, if v(ξ) is bounded for ξ > 0 then E(ξ) is bounded
for ξ > 0 and, as a consequence, v′ → 0. Then v(ξ) is bounded for ξ > 0 if
and only if v′ → 0 is satisfied. We obtain the thesis using Proposition 4.4. □

Before we conclude the analysis of bounded and unbounded solutions we need
some considerations on the linearised equation around v = 0:

V ′′′ − F ′′(0)V − cV = 0, (40)

whose characteristic polynomial is

λ3 + 2(θ0 − θ1)λ− c = 0.

We observe that we have

∆ :=
c2

4
+

8

27
(θ0 − θ1)

2 > 0,

for any choice of the parameters c and θ0 > θ1 > 0. As a consequence the
roots of the polynomial are given by

λ1 = A1 +A2,

λ2 = − 1
2 (A1 +A2) + i

√
3
2 (A1 −A2),

λ2 = − 1
2 (A1 +A2)− i

√
3
2 (A1 −A2),

where

A1 =
3

√
c
2 +

√
∆, A2 =

3

√
c
2 −

√
∆.

We note that

A1 +A2 > 0 ⇐⇒ c > 0.

In this case, if we consider the system of three first order equations associated
to (35) we obtain the following results on the dimension of the local stable
and unstable manifolds of O:

dim(W s
Loc(0)) = 2, dim(Wu

Loc(0)) = 1.
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From the above results we obtain that, for c > 0 the only bounded solutions
are the solutions converging to 0 on the stable manifold. For c < 0, we have
the following characterisation of bounded and unbounded solutions.

Theorem 4.6. For c < 0, equation (35) admits only one bounded solution
which converges to 0 as ξ → +∞.

Proof. Since all the bounded solutions approach 0 as ξ → +∞ and since
we have a 1−dimensional stable manifold we conclude that there is only one
solution which converges to 0, that is the 1−dimensional stable manifold of
the origin O. □

5. Conclusion

In this work we have studied a fourth order nonlinear evolution with loga-
rithmic nonlinearity. Existence and uniqueness of solutions are obtained with
similar arguments used in [11] while we concentrate on the regularity and as-
ymptotic behaviour of solutions. The analysis of stationary solutions reveals
the existence of periodic solutions with different amplitude and period. As for
other pattern-formation (see also [2], [5]) equation they represent metastable
patterns and are an indication of the presence of coarsening phenomena (see
for example [14], [13]). Finally, travelling waves analysis produces the non
existence of solitons.
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