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ADL recognition through machine learning
algorithms on IoT air quality sensor dataset

Ennio Gambi, Senior Member, IEEE , Giulia Temperini, Rossana Galassi, Linda Senigagliesi, Member,
IEEE , and Adelmo De Santis

Abstract— The Human Activity Recognition is a focal point for Ambient Assisted
Living, and may be implemented in several ways usually involving the use of different
technologies, as wearable, video, environmental or radio frequency sensors, which
can be used alone or in combination among them. Recently, the approaches based
on machine learning have attracted a lot of interest, especially in order to create
recognition systems that do not require a high detection capacity by the single
sensor, as they base their decision on the processing of the information acquired
from multiple sensors simultaneously. The aim of the present work is to derive
information about the activities that are carried out inside the house on the basis
of the data acquired by a set of sensors analyzing the air components. The Human
Activity Recognition is then the result of a machine learning classification of the
output of an array of low cost “commercial off-the-shelf” air quality sensors. The
considered recognition system exploits electrochemical sensing, Wi-Fi technology,
cloud computing, machine learning and application services. The obtained results
evidence that a good accuracy in the recognition of “activities of daily living” is
reached, even if a not calibrated sensing was performed.

Index Terms— ADL, air quality sensor, HAR, machine learning.

I. INTRODUCTION

Ambient Assisted Living (AAL) paradigm was born in the
early years of 2000. It pushes the use of ICT technologies
in everyday life activities both at home or at work, in order
to let people remain active for a longer time, without losing
social connections and independence [1], [2]. In the last ten
years the interest toward AAL has increased, and it was
driven by the awareness of ageing population and the wide
availability of cheap yet accurate sensors. Recent studies [3]
show an increase of elder people (aged over 60) on a global
scale: from 382 million in 1980 up to 962 million in 2017.
This number is going to double by 2050, thus reaching 2.1
billion. It has been foreseen that in 2030 the number of elder
people will be greater than that of youngster (age between 10
and 24 years): 1.41 billion versus 1.35 billion. Life quality
is a parameter which reflects the number of elder people
who are living autonomously with a partner or alone. Data
from 143 countries show that only 2.3% of elder people are
self-sufficient in Afghanistan, while the percentage is 93.4%
in the Netherlands. Independent people number has great
consequences on a country health expenditure and population
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needs. Ensuring an easy access to home care and rehabilitation
can be challenging for governments and pushes toward a new
care model, which can decrease costs by using technologies
and devices to build smart environments. One of the most
interesting challenges in AAL is Human Activity Recognition
(HAR). HAR aims to detect what kind of activity is performed
by a single or a group of people, by analysing data from
sensors or observations, as a function of the context in which
they are collected [4]. This kind of approach is of great help
to improve care actions toward elder, disabled or chronically
sick people and to respond quickly to incidents or emergency
situations. Day by day activity monitoring is meant to evaluate
changes in monitored people capabilities. For this purpose, two
specific sets of activities have been defined [5]: activities of
daily living (ADL) and instrumental activities of daily living
(or IADL). Actions belonging to the first group can be used to
assess person’s ability to take care to himself: eating, dressing,
cleansing etc. The interaction level of a person with its
physical and social environment falls in the IADL monitored
group of actions. In order to gather data for ADL recognition,
a wide range of technological aids have been developed.
Among them wearable and video monitoring devices assume
a particular relevance for the assessment of ADL, together
with the analysis of data collected by Radio Frequency and
environmental sensors [6], [7]. Wearable sensors, comprising
temperature, light and SFR sensors, are usually lightweight to
fit users without causing discomfort, but are limited by the
coarseness of sampled data. For this reason, video monitoring
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is often used, even if it requires a higher computational cost.
The developed system here presented encompasses different

technologies: sensor network, Wi-Fi technology, cloud com-
puting, machine learning and application services. The novelty
in this paper relies on the use of cheap gas sensors to gather
environmental data, that makes possible the recognition of
different ADLs correlated with the presence in the air of
particular components, without the need of any calibration,
only on the basis of the chemical compounds delivered on the
air as a consequence of the performed actions. The analysis
of historical and current data, gathered from indoors by a
hardware device realized by the authors, and processed with a
suitable machine learning algorithm, allows to assert the type
of performed activity. In order to cover most of domestic ADL,
the paper focuses on 4 main situations: everyday room life
(living room), meals preparation, room cleaning, presence of
smoke. The work is organized as follows: Section II describes
state-of-the-art in ADL recognition. Section III describes the
developed system and application tools and focuses on system
and prototype implementation. Section IV reports on system
tests and results analysis. Section V draws a summary of this
work.

II. STATE OF THE ART

Activity recognition in AAL is a well explored research
field, and this reflects on the amount of scientific literature.
Sensors are used to gather information about user in order to
monitor his activities and improve remote care. As stated in
[8] a common approach to ADL uses a 4 layers framework:

• Sensing Layer: gathering information about the environ-
ment and its inhabitants;

• Network Layer: wireless communication technologies
to gather, exchange and transmit data with the highest
possible efficiency;

• Data Processing Layer: data knowledge extraction by
means of aggregation, processing and analysis. The
biggest role in this layer is played by machine learning.
The most widely used classification algorithms [9] are:
Support-Vector Machine (SVM), k-Nearest Neighbour
(KNN), Random Forest (RF), Hidden Markov Model
(HMM), Naı̈ve Bayes (NB) and Decision Tree (DT);

• Application layer: services to the end-users.
At the sensing level we can identify two main categories
[10]: vision-based systems and sensors-based systems. The
first one relies on the use of video and photo cameras which
gather information on human activities. Video streams and
vision data are digitized and processed using artificial vision
algorithms. In spite of the ease of this approach, there are some
questions about user privacy and computational workload that
need to be addressed. In a sensor-based system we can monitor
users by mean of a wearable device, or using objects that
are in the user’s environment. Data gathered are time-value
series which describe state changes or sensors collected data.
Such a big dataset is usually processed using data fusion and
statistic. Wearable sensors (magnetometers, gyro, temperature,
pressure etc.) can gather a lot of data very close to the user
but their effectiveness relies on the user accepting the sensor

and remembering to wear it or to charge its batteries. All
these aspects lead to dimensional constraints which may limit
battery and memory size and processing power. Moreover,
sensor position change during the day can lead to difficulties in
data analysis. On the other side, sensors that are distributed in
the habitation are focused on environmental data acquisition,
RFID [5] or gas. In [11] the results of an interesting work
are presented. ADL were monitored in a house by using more
than 900 sensors: reed switches on drawers and wardrobe,
AC current, temperature, humidity, light and gas sensors.
Interaction with objects was monitored using wireless systems,
and many RFIDs were integrated in the environment as well.
The study focused on the impact of type of sensor used on
ADL. The outcome from the work shows that infrared sensors
are the best choice to monitor the great amount of activities,
the actions of “reading” and “using smartphone” were poorly
detected regardless from the type of sensor used. The action
“eating” was very well detected by wearable accelerometers.
The great result obtained using IR detectors, can be explained
by noticing that a dedicated sensor is used to track a single
activity: “watching TV” is an action triggered by an IR sensors
detecting a person sited on the sofa. Results from this paper
allow us to state that there is a strong correlation between the
“action” and the place in the house where it is performed.

In the following the state of the art of IoT architectures for
ADL is analysed, which incorporate sensors for data acquisi-
tion and technologies for data transmission and classification.
Processed data can sometimes be accessed using web and
mobile applications. In [12] an ADL approach for AAL is
analysed which relies on the use of accelerometers and gyro
in a smartphone, thus being cheap and easy to be implemented.
Six activities are monitored: walking, ascending and descend-
ing the stairs, sitting, standing and laying. The user wears the
smartphone on its belt, data are processed and classified using
SVM, ANN and SVM-HMM algorithms. [13] proposes a little,
lightweight and cheap prototype in which air pressure sensors
and an IMU are integrated. Data collected are sent by wireless
network connection. 11 classes of daily activity are monitored:
sitting, standing, lying, walking, running, going upstairs, going
downstairs, from sitting to standing, from standing to sitting,
from sitting to lying and from lying to sitting. Data processing
is performed using five different classification algorithms: k-
NN, DT, NB, SVM and RF. In [14] a BioHarness 3 module is
used, to monitor vital signs by means of heart, breathing and
accelerometer sensors. Two different classification algorithms
are tested: C4.5 and Naı̈ve Bayes. Activities are classified
into four main categories: laying, sitting, walking, running.
From a software point of view there are two main realms:
Android mobile apps are used to collect data from hardware
device via Bluetooth, pre-process information and send the
results to a cloud using MQTT o HTTP protocols. Cloud
service is a core element to display data using graphical
elements and to configure warnings. The platform chosen for
implementation in [14] is Ubidots. None of the mentioned
works, however, considers the use of gas sensors for ADL, thus
affecting the type of activities that can be monitored. Strongly
related to our current work is the contribution in [15], where
authors propose a smart monitoring system which exploits



E. GAMBI et al.: ADL RECOGNITION THROUGH MACHINE LEARNING ALGORITHMS ON IOT AIR QUALITY SENSOR DATASET 3

indoor air quality sensors. In this way it is possible to detect
factors affecting air quality and classify them in five different
categories: ambient air, chemical presence, fragrance presence,
foods and beverages presence and human activity. Gathered
data are analysed using artificial neural networks, and the user
can access real-time data using a GUI. The use of gas, particle
and thermal sensors is considered. Differently from [15], the
system proposed in our work is specifically designed for ADL
and it is implemented using an IoT platform supporting a large
number of protocols. Moreover, only gas sensors are consid-
ered, and our system proves to achieve an excellent precision
even without an accurate sensors calibration, especially when
data coming from different sensors are combined together; we
are in fact interested in sensors detection over time, as will be
specified in the following.

III. SYSTEM ARCHITECTURE

Fig. 1. System Description.

The present work aims to monitor real-time people activity
on the basis of the chemical composition of the air, related
to the home activities, in order to let a care giver have an
easy access to data, to better tailor assistance and allow quick
response to critical situations. The main blocks of the system,
shown in Fig. 1, are:

• Anthropic Atmosphere;
• Hardware device;
• IoT platform;
• Classification services.

The working principle is as follows. Due to the home activities,
a variation of the chemical composition of the air is evidenced,
that is called Anthropic Atmosphere. The core of hardware
device is a microcontroller, connected to a series of different
gas sensors able to detect carbon monoxide, formaldehyde,
alcohol, ammonia and carbon dioxide. Data are collected
by the microcontroller, processed and sent to IoT platform
ThingSpeak using MQTT protocol and WiFi connection for
data storage. Classification is performed using a k-NN ap-
proach, a non-parametric, instance driven algorithm. End users
can monitor events by using an Android app and, in case of
a critical situation, a warning can be raised with an email.

A. Hardware device
Hardware is composed of two main sections: gas sen-

sors and controller module (Adafruit Feather M0 Wi-Fi with

TABLE I
LIST OF AIR SENSORS

Sensor Gas

MQ2 Molecular hydrogen, LPG, natural gas, carbon monoxide
alcohol, propane

MQ9 Natural gas, LPG, carbon monoxide
MQ135 Ammonia, carbon mono- and dioxide, ethanol, toluene, acetone
MQ137 Ammonia, carbon monoxide, ethanol, dimethyl ether

MQ138 n-hexane, benzene, natural gas, carbon monoxide
alcohol, propane

MG-811 CO2

ATWINC1500). The MCU plays an important role as it
gathers data from sensors using GPIO interfaces, pre-processes
and sends information to ThingSpeak platform. Powering the
prototype requires a 12V power supply. Further switching
voltage regulators are used to get 3.3V and 5V to power the
MCU and sensors boards. The Controller Module is based on
Adafruit Feather M0 module, and is the core of the system. It
performs many tasks:

• WiFi network connection;
• Sensor data acquisition;
• Data processing;
• Data storage on ThingSpeak platform.

The module is based on ATSAMD21G18 ARM cortex M0
processor, which is tailored for embedded applications. Its
main features are 20 GPIO pins, 3.3V operating voltage,
48MHz lock, one ADC and one DAC both with 10-bit resolu-
tion. The board on which the processor lies, is equipped with
other I/O connectors, to make the integration of this device
easier: I2C, UART, USB and SPI. The added value of this
MCU implementation lies in the presence of an integrated
Wi-Fi module based on ATWINC1500 and able to support
802.11b,g,n standards. The entire MCU board is not energy
hungry as the max current consumption is 22mA. Arduino
IDE can be used to program the processor, thus giving access
to the big number of libraries that have been developed so far
for this platform. Moreover the IDE is really easy to use and
allows for a very fast start-up.

The aim of the work was to use cheap and “easy to use”
sensors. According to this principle we selected some elec-
trochemical gas sensors among the plethora of commercially
available modules. The rational has been to select a relatively
small finite number of sensors, fixed as six, featured by the
same sensing material, SnO2, but with the ability to detect a
wide range of volatiles and with a declared high sensitivity to
classes of compounds, that may be roughly classified as polar
or not polar gases. The underpinnings of this sorting is based
on the fact that the first step in the electrochemical detection
process is a surface chemical phenomenon, hence, the polarity
of the molecule determines the nature of the intermolecular
interactions between the gas and the surface of the sensing
material [16]. According to these foundations, the different
detection’s abilities of these sensors are described in data
sheets and summarized in Tab. I.

The CO2 gas sensor, MG-811, is the only one having a
different sensing material consisting of a NASICON/carbonate
redox active couple; it exhibits a very good sensitivity to



4 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

carbon dioxide being poorly influenced by air temperature and
humidity. Leaving apart this latter, the detection of gas by these
sensors is based on the redox reaction between the gas and the
oxygen of the SnO2 surface but, as indicated in the technical
sheets, they show different responses to gases. In fact, the gas
detection is significantly affected by the phase and the particle
size of the nanometer-scale thickness of the electron depletion
SnO2 layer and, therefore, sensors apparently of the same type
result in quite different outputs [17].

In general, the choice of this kind of sensors was made on
the basis of their main features: fast response, high sensitivity,
overall robustness and relative longevity, small size and lower
power consumption.

As concern the pool of compounds present in the air, taking
in consideration the actions we want to discriminate, it is
noteworthy that thousands of volatiles may be formed during
complex reactions such as the Maillard’s in the cooking action
[18] or the oxidation reactions in the combustion of organic
materials [19]. Remarkably, during the activities polar and not
polar compounds are produced, differently detected by single
sensors and, overall, from the set of sensors. The optimal
sensor temperature is guaranteed by a heater, while a signal
conditioning device is implemented too on the sensor modules.
The presence of a gas results to an output voltage, ranging
from 0 to 3.3 Volts: the bigger is the gas concentration, the
lower is the output voltage.

In the present work we aim to track gas concentration
variation over time and to use this information to assess
the type of activity that is performed in the room. For this
reason, we are not interested in a quantitative approach, which
would require an accurate calibration of the sensors, but their
detection over time. Raw data gathered from sensors are not
even processed by the MCU: they are packed and sent on the
IoT platform for further processing.

B. IoT platform
Hardware device and mobile app, both transfer data with

cloud platform by using Wi-Fi or mobile data connection.
The sensor node uses MQTT while the app HTTP protocol.
In order to chose the IoT platform for data storage and
processing, the evaluation criteria have been:

• Support for a wide number of protocols (MQTT, HTTP,
HTTPs);

• Type of supported devices;
• Application libraries (i.e. Javascript, PHP, Python, Java);
• Device libraries (i.e. Matlab, Python, C, Java);
• Cost;
• Offered Services;
• Features (data storage, data extraction, data processing).

After analysing the features of different platforms, ThingSpeak
[20] was selected as reference platform for this project, since
it’s an open source platform able to collect, display and
process data in real time, and processed data can even trigger
an action that will be performed on the platform or using
external software applications. ThingSpeak was created by
ioBridge in 2010 and supports both HTTP and MQTT, thus
allowing a great flexibility in the device implementation.

A dedicated MQTT broker can be reached at the address
mqtt.thingspeak.com and it allows only QoS 0. Three main
features are available on the platform:

• Data collection is performed in real-time by using “chan-
nels” and “fields”, where data are stored. Each channel
can store up to eight fields (or feeds), each with a different
parameter. In a practical scenario, we can use a channel
to store data coming from a single room, by storing
temperature, humidity, light and air quality.

• Data analysis and visualization tools can integrate MAT-
LAB code. In this way we can write a code that will be
executed in real-time during data acquisition, or we can
time-trigger the software execution;

• Application services are the real added-value from this
platform: TimeControl, React, ThingTweet etc. allow the
user to implement data triggered application behaviour,
i.e. social network interaction on a particular sensor data.

C. Anthropic Atmosphere
With the aim to monitor the daily activities, 4 target

situations have been identified:
• Normal situation - Activity 1: clean air, one person

sleeping or studying or resting; Samples: 595.
• Meals preparation - Activity 2: cooking meat or pasta,

fried vegs. One or two people in the room, forced air
circulation; Samples: 515.

• Smoke presence - Activity 3: burning paper and wood
for a short period of time in a room with windows and
door closed; Sample: 195.

• Cleaning - Activity 4: using spray and liquid detergents
with ammonia and/or alcohol. Forced air circulation can
be switched on or off; Samples: 540.

We associated to the four different situations a quite dif-
ferent composition of the air, taking in consideration that any
activity produces chemicals due, i.e., to human breathing, to
metabolic processes exhalations, to the delivery of volatiles by
combustion and / or oxidation, and to the evaporation of house-
ware cleaners. To a “normal situation” a genuine composition
of the indoor air is normally referred to a mixture of nitrogen,
oxygen, CO2 and water vapor as major components [21].
Moreover, in addition to these compounds, some contaminants
named as VOCs or particulate (PM) are normally present in
ppm or ppb range of concentrations depending on the kind
of building and on its geographic location [22], [23]. These
latter, although represent a problem for human health [24],
are generally present in very low concentrations and during a
period of measurement without anthropic activity they remain
unchanged. Therefore, the “normal situation” represents the set
equal to zero of our sensors. Any of the other activity taken
in exam results in an overall change of the composition of the
air in a range that, once detected by the set of sensors, affords
to the harvesting of the activity. Noteworthy, the technical
specifications of the sensors describe the detection of a wide
range of volatiles; in example, the MG-811 sensor reveals
almost exclusively CO2, attributable to burning paper and
wood and cooking, MQ9 detects mainly alkanes and CO, while
the other sensors MQ137, 138 and 139 are more sensitive to
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polar both inorganic and organic volatile compounds mainly
produced in the cleaning and in the cooking activities.

D. Classification services

During data collection, a set of data to train our system
was created. Each record consists of seven numerical values:
six of them represent gas concentration as detected from the
sensor, the last one is a label for the action performed in the
room (current situation). System training was performed in
an apartment by taking 5 different rooms into consideration:
kitchen, bathroom, living room and two bedrooms. In this
approach ADLs are recognised by environmental analysis
monitoring the activities carried out by a single person who
lives alone at home. The monitoring of the ADL is in fact
of interest in order to allow people to live independently at
home, but ensuring a certain level of assistance. Collection
phase lasted 15 days and data were acquired at different times
of the day. Before and after data collection, windows were
opened to let fresh air in. Sensors where placed in a room
where a specific activity is performed. MCU gathered sensors
values and transferred them to the IoT platform with the
label identifying the current situation. Data were stored on
the “training-set” channel. At the end of the collection phase,
1845 samples were gathered describing the 4 target situations
we want the system to be able to recognize.

The machine learning algorithm k-NN has been used to
classify the “target situation” from sampled data. With a small
training set dimension, in fact, k-NN is able to guarantee
high level performance with a limited computational cost.
Moreover, in the scenario examined in this paper, it allows to
achieve a better accuracy than other widespread classification
algorithms, such as SVMs. The parameter k has to be chosen in
order to get the best fit to dataset. In fact, the system is subject
to overfitting when the model over-adapts to a particular set
of data, while underfitting occurs when the model is unable to
interpret the structure underlying a data set. In addition, high
values of k reduce the variance due to the noise present in
the dataset, but lead to a loss of accuracy in the classification
of minor patterns. Small values of k define more complex
decision limits, but are more sensitive to noise. In our work
k value was chosen, that minimizes validation errors. Many
validation tests were performed by varying k value. Each
time the leave-one-out cross-validation algorithm was used. In
general, the g-fold cross-validation works as follows. Original
dataset is randomly divided in g equinumerous parts. At each
step the g-th part of the dataset acts as a validation set, whilst
the remaining part is the training set. The g-th group will be
predicted by using the remaining g − 1 groups, thus avoiding
overfitting and asymmetric sampling problems. Leave-one-out
cross validation here considered represents an extreme case of
g-fold cross-validation, where g is chosen equal to the training
set dimension N . In this way all samples are used only one
time both for training, both for validation.

Let us denote by xi the test sample and by yi its membership
class, with i ∈ [1, N ]. The following procedure has therefore
been implemented:

• One single instance x1 is used for validation, while

the training set is composed by the remaining
(x2, y2), · · · , (xN , yN ) samples;

• Class ŷ1 is predicted on the basis of N − 1 observations.
Validation error is evaluated by comparing the predicted
class ŷ1 with the true class y1 as Err1 = I(y1 6= yi),
where I(·) is an indicator function;

• The process is iterated over every observation
(xi, yi), thus obtaining a series of N errors:
Err1, Err2, · · · , ErrN ;

• Validation error is computed as

CVN =
1

N

N∑
i=1

Erri.

The algorithm is repeated for values of k between 1 and
49, using only odd numbers to avoid obtaining parity cases
in classification phase. At the end of the process we choose
k which minimizes the Validation Error. This algorithm is
implemented in Matlab. According to Fig. 2, the best value
for k is 3, which leads to a validation error of about 3%.
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Fig. 2. Results of the leave-one-out cross validation.

The application of the classification algorithm to a generic
observation xi to obtain the relative predicted class ŷi involves
the use of some features of the IoT platform, in particular
MATLAB analysis and React App. The considered methodol-
ogy works as follows:

• Hardware device sends dataset from sensor at a regular
time interval on the Back-end classification channel of
ThingSpeak platform;

• React comes into help when wanting to apply the classi-
fication algorithm to each new observation. IoT platform
“reacts” to new data, by executing machine learning
algorithm called Classification k-NN;

• Classification k-NN algorithm reads the last dataset, the
classifier output and publishes results on the Home ac-
tivity channel. Seven values are shown: six coming from
sensors, the seventh is the output from the classifier.

IV. RESULTS AND DISCUSSION

A. Experimental results
Test were executed in order to evaluate system performance

in situation recognition. During this phase the whole dataset
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TABLE II
MEAN VALUES OF THE SENSOR’S OUTPUTS (IN VOLTS) FOR EACH

ACTIVITY

Activity
Sensor MQ2 MQ9 MQ135 MQ137 MQ138 CO2

Normal situation 0,32 0,39 0,75 1,19 0,81 1,86
Meals preparation 0,44 0,50 0,95 1,30 1,00 1,80

Smoke presence 0,67 0,72 1,18 1,41 1,31 1,56
Cleaning 0,60 0,63 1,05 1,37 1,27 1,85

TABLE III
STANDARD DEVIATION VALUES OF THE SENSOR’S OUTPUTS (IN VOLTS)

FOR EACH ACTIVITY

Activity
Sensor MQ2 MQ9 MQ135 MQ137 MQ138 CO2

Normal situation 0,050 0,045 0,066 0,047 0,101 0,095
Meals preparation 0,055 0,042 0,064 0,035 0,087 0,110

Smoke presence 0,119 0,088 0,085 0,037 0,108 0,078
Cleaning 0,117 0,122 0,121 0,067 0,113 0,145

is divided into a training set of 1410 samples, and a test set of
435 samples. Each sample is a couple (xi, yi) of the observed
data and its corresponding class. A MATLAB algorithm was
developed to classify each xi and compare the predicted class
ŷi with the real class yi. Data were analysed using a confusion
matrix, that is the table layout which helps to assess an
algorithm performance in the field of artificial intelligence
and machine learning. This approach is used to represent the
accuracy of a statistical classification. Each matrix column
represents predicted values, while each row represents real
values. Element on i-th row and j-th column is the number
of times the classifier has been able to detect “real” event
i as j. By using this matrix, the “confusion” among classes
prediction is evidenced. Total accuracy is then evaluated as
the number of samples correctly classified (those on the main
diagonal) over the total number of samples in the training set.

Three different situations are classified:
• “Normal situation classification”, identification of the

Normal situation vs all the other activities;
• “Smoke presence classification”, identification of the dan-

gerous Smoke presence;
• “Single activity classification”, identification of each sin-

gle activity.
The location of the sensors was chosen arbitrarily inside the
rooms where the activities were performed. During the data
collection phase the sensors have assumed different positions
within the rooms. Sensor modules were assembled inside a
box located in the middle height in a flat plane; a flux of air
was continuously forced to enter inside the box by an electrical
fan to ensure a constant circulation of air during the events.

In order to assess the overall performance, 100 classification
results are averaged, where training and test samples are
randomly chosen each time.

Tables II and III show the mean values and the standard
deviation values of the six sensors’ outputs (in Volts) for all
the considered activities. By observing both tables it is possible
to infer that, although mean values for the four activities are
quite different, the high values of the standard deviation make
difficult to recognize activities by resorting to a single sensor.
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Fig. 3. Confusion matrix related to the “Single activity classification”,
using only data derived from MQ9 sensor. Total accuracy 68.7%.

TABLE IV
ACCURACY ACHIEVED BY SINGLE SENSORS IN THE “SINGLE ACTIVITY

CLASSIFICATION”.

Sensor Accuracy
MQ9 68.74%

MQ135 66.21%
CO2 56.6%

TABLE V
ACCURACY ACHIEVED BY DIFFERENT COUPLES OF SENSORS IN THE

“SINGLE ACTIVITY CLASSIFICATION”.

Sensors Accuracy
MQ9-MQ135 86.9%

MQ9-CO2 83.4%
MQ135-CO2 84.1%

This is easily proved by the confusion matrix depicted in Fig.
3, where the best accuracy, achieved using the MQ9 sensor, is
only 68.7%. Similar and even worse results are obtained with
the MQ135 and CO2 sensors, as shown in Tab. IV.

By combining the data acquired by couples of sensors, the
higher precision was obtained with the couple MQ9-MQ135
(see Fig. 4 and Tab. V), especially when we consider the
“Normal situation classification” (Fig. 5) and the “Smoke
presence classification” (Fig. 6). As expected, best results are
obtained considering the assembly of all the sensors. Fig. 7
displays the confusion matrix related to the “Normal situation
classification”. Average accuracy obtained is equal to 98.85%.
The presence of activity is detected almost perfectly, with
more than 99.4% of accuracy. Excellent results are achieved
also for the “Smoke presence classification”, as shown by
the confusion matrix in Fig. 8. Results testified that the
classifier can detect a critical and dangerous situation (the
smoke presence) and raise the alarm with a high certainty,
of more than 91%. Confusion matrix on Fig. 9 describes the
results of the “Single activity classification”, with an accuracy
of 96.32%, while the model in general achieves an average
accuracy of 96.73%. Best results are obtained, as expected, for
the class “normal situation”, while the worst results concern
the detection of “smoke presence” (90.9%), although this is
still detected with great precision, more than 9 times over
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using data derived from MQ9 and MQ135 sensors. Total accuracy
86.9%.
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Fig. 5. Confusion matrix related to the “Normal situation classification”,
using data derived from MQ9 and MQ135 sensors. Total accuracy 97%.

10. Classes “cleaning” and “meal preparation” are also well
distinguished from the others.

B. Discussion

The sensors used in this work are described to be sensitive
to classes of compounds, but their discriminating ability is
generally poor. The low specificity of the sensors’ detection
is confirmed by the results of the analysis. The data highlight
that only the assembly of all the sensors allow the takeover
of all the activities with an averaged accuracy of about 99%
but when we group two of them and we process the data,
a lowering of the reliability is observed. Actually, if we
analyze the activity from the point of view of the air chemical
composition, we can distinguish between activity producing
polar (humidity, alcohols, amines, ketons, esters etc.) or not
polar volatiles (alkanes, CO2). The air composition derived
from the activities taken in consideration in this paper may be
classified as:

• normal situation, that corresponds to an almost constant
composition of polar/nonpolar components;

1 3

Predicted Class

1

3

T
ru

e
 C

la
s
s

8

5

38

384 1.3%

17.4%

98.7%

82.6%

2.0% 11.6%

98.0% 88.4%

Fig. 6. Confusion matrix related to the “Smoke presence classification”,
using data derived from MQ9 and MQ135 sensors. Total accuracy 97%.

• cleaning activity, corresponding to a large increase of
humidity and of detergent perfumers (generally amines,
alcohols, esters or ethers);

• cooking, corresponding to an increase of CO2 (in normal
cooking burners), of humidity and of many volatile com-
pounds such amines, amides, ketones (due for example
to Maillard reaction) [18];

• burning, representing the most complex situation since in
addition to CO2 and humidity, due to complete oxida-
tion of the carbonic structures, also particulate matter is
formed (smoke).

For an accurate discussion, a detailed description of the air
composition for each activity should be performed through
an elaborated chemical analysis or by using a set of ex-
pensive and specific sensors; however, the qualitative and
quantitative determination of the atmosphere composition is
beyond the scope of this work. The data output of this set
of sensors show that MQ137 and MQ138 are described to
be sensitive to hydrophilic compounds and to other similar
small polar hydrophilic molecules without or with very low
discrimination. Therefore, these sensors detect these activities,
such as cleaning and cooking, affording to an increase of
humidity and of volatile polar molecules concentrations, such
as ketones, esters, alcohols, amines, etc., as resulted from
the entries “meals preparation” and “cleaning” compared to
“normal situation” of Tabs. II and III. The burning activity,
according to the technical specifications, should be better
detected by both MQ9 and MG-811 sensors, but if we compare
their data on tables II and III at the entry “smoke presence”
with respect to the entry “normal situation”, we observe a
better fit of data for the former than for the latter, whose
measurements record a decay of the values of CO2 upon
burning; simultaneously, the other MQ sensors, MQ135 and
138, detect all the polar volatiles which are normally produced
by a combustion confirming the activity. As a consequence,
considering this preface and the confusion matrix plots, it is
straightforward that one sensor is not able to discriminate with
good accuracy the purposed activities (see Fig. 3), and not even
a selection of two of them (Fig. 4 and Tab. V) with the best
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Fig. 7. Confusion matrix related to the “Normal situation classification”.
Total accuracy 98.85%.

performance for the match MQ9 and MQ135 (Fig. 6) whose
accuracy approaches 97% for the “smoke presence” situation.
The assembly of all the set of sensors allows a quite good
discernment of the activities as shown in Figures 7, 8 and 9,
with the worst performance in the entry “smoke presence”;
however, the detection of this situation might be overcome by
setting the alarm on the output of MQ9 and MQ135 sensors.

As regards an analysis of the risks associated with the use of
the system proposed here, the sensors we adopted are with the
lowest environmental chemical impact, as they do not deliver
any substance in the air during their action or emit dangerous
radiations. All of them are electrochemical sensors mainly
based on sensitive material composed by metal oxides such as
SnO2, and just in a case we have a different sensing material
the NASICON. They need a heater to activate sensing, but
the working temperature is relatively low and electronically
controlled. As concern the risk of the sensor’s damage, in
the domestic contexts we evaluated activities which are not
producing corrosive gases in a concentration which might be
dangerous for the sensors. Moreover, the set of sensors are
placed in order to avoid direct droplets or even splashing of
water particularly harmful for these sensitive devices.

On conclusion, assemblies of an electrochemical sensors set,
whose total cost is about 100,00 Euros, can be successfully
applied in AAL systems for the detection of anthropic ac-
tivities by approaching the method of implementation herein
discussed.

V. CONCLUSION

This paper demonstrates the feasibility of the recognition of
daily life activities in AAL, carried out through a system based
on the classification process of the data generated by a set of
economic gas sensors. The prototype allows for recognition
of 4 different scenarios: normal situation, meal preparation,
smoke presence, cleaning. A k-NN machine learning algorithm
is applied to real-time dataset to predict current situation on
the basis of historical data (classificatory knowledge). System
accuracy is more than 96%, thus allowing to detect with high
precision all the considered activities, including a possible
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Fig. 8. Confusion matrix related to the “Smoke presence classification”.
Total accuracy 98.85%.
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Fig. 9. Confusion matrix related to the “Single activity classification”.
Total accuracy 96.32%.

dangerous situation. The proposed system is versatile and,
after having properly trained the classifier, it can be applied
to any environment, thanks to the combined use of air sensors
and machine learning algorithms. Future work should improve
system ability to detect the same activity even if it is performed
in a different way or in a different room, but this implies the
use of a larger training set. A further effort can be done to try
to predict two or more situation that are performed in the same
room at the same time. Activity recognition should guarantee
people privacy by design, by using authentication and secure
communication between sensors, IoT platform and end user
device.
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