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Abstract: In this study, the authors present the latest developments on the measurements for the shielding effectiveness (SE)
of gaskets and materials in reverberation chambers (RCs). A variant method, where the insertion loss of the fixture is achieved
from the SE of the fixture with no sample in the aperture is found; it is appropriate for gaskets and for any flat material having a
sufficiently high reflectivity at least on one side. A simple and usable condition under which the simplest method for the SE
measurements of gaskets and materials in RCs can be used is also given, as well as particular cases where it can be directly
applied are shown. This method, whose applicability is enhanced in this study, can be used for gaskets and any flat sample.
Such developments simplify measurement setup and associated procedures. Comparisons of results support the methods for

the SE measurements of gaskets and material in RCs shown in this study.

1 Introduction

Reverberation chambers (RCs) are used for shielding effectiveness
(SE) measurements [1-9]. In particular, SE of gaskets and
materials are made by using nested RCs (NRCs) [1, 2, 4, 8, 9];
contiguous reverberation chambers (CRCs) can also be used [8, 9].
It is meant that materials and gaskets include any flat electronic
system such as printed circuit board (PCB), PCB assembly (PCBA)
etc. According to a recent study, the standard procedure for the SE
measurements of gaskets and materials in RCs, which is shown in
IEC 64000-4-21 [1], can be improved [10]. In this paper, some
developments of the improved measurement method shown in [10],
are shown in order to simplify the measurement setup and
associated procedures. A variant of the improved method [10]
using a single antenna in the fixture is found. For such a variant
procedure, insertion loss (IL) of the fixture is achieved from the SE
of the fixture with no sample in the aperture; therefore, the
mechanical stirring in the fixture is not strictly required. The single
antenna in the fixture works only as a receiving antenna. This
variant procedure is appropriate for gaskets and for any flat
material having a sufficiently high reflectivity at least on the side
where the field impinges from the fixture. Below, the expression
‘sufficiently high reflectivity” will be quantitatively made clear.
This case generally includes complex PCBs and complex PCBAs.
The SE for this variant procedure is denoted by SEj5 in this paper.
We also show and discuss a simple and usable condition under
which the simplest model for SE measurements of gaskets and
materials can be used. This procedure was formally introduced in
[4, (14)], where it is denoted by SEy; it is denoted in the same way
in this paper. When the condition for its validity is met, it can be
applied for any type of flat sample. It uses only two antennas and
two transmission measurements; it is rapid and accurate. The only
drawback is a possible moderate reduction of the measurement
dynamic range (MDR). However, the applicability of SE4 is
strongly enhanced by this paper.

It is specified that a single antenna is also used in the fixture in
[10]; but, the method of measurement is different as it uses
reflection measurements and an enhanced backscatter constant e,
[11-13], and it assumes that e, =2 in the fixture itself. However,
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reflection measurements are critical with respect to transmission
measurements, especially when the calibration plane has to be
taken at end of a long cable and when values to be measured are
very low, as it is frequently the case for SE measurements by
NRCs. In fact, movements of cables and stress to cable and
connector considerably affect reflection measurements. The
validity of the method SE5 and of the simple and usable condition
for the applicability of SE4, as well as the validity of an
intermediate method, which is seen below, is shown by
measurements. Note that the symbols SE,4, SEs, as well as other
similar symbols are used to denote the concerning measurement
methods.

The paper is organised as follows: in Section 2, background is
shown; in Section 3, the theory and an in-depth analysis are shown;
in Section 4, results are shown; finally, in Section 5, the
conclusions are drawn.

2 Background

In [4], a systematic method for SE measurements of gasket and
materials was introduced, which is valid under a specified
condition of isolation between the chambers [9]. It is denoted by
SEj. It clarifies the differences in the results from the two previous
and incomplete methods [2, 3], which are denoted by SE| and SE,.
Note that the methods SE,, SE,, and SE; are denoted in the same
way both in [4] and in [10], as well as in this paper [In this
connection, we specify that in the formula expressing SE; after
(7b) in [10], an equals sign have to be put after the symbol SEgy,
its lack was clearly due to a clerical error.]. A sketch of NRCs and
CRCs, where all four antennas are present, is shown in Figs. 1 and
2, respectively, in order to improve the readability of the necessary
detailed background.

In the standard IEC 64000-4-21, the procedure and concerning
formula [1, eq. (G.5)] is not supported by the theory [4, 10]. The
improvement of the procedure for SE includes two cases [10,
Sections 2 and 4]: case 4, where the condition on the isolation
between the chambers, that is formally expressed in [10, (6)], has
to be met with the sample in the aperture and where the aperture
size could also be of the order of a full side of the fixture; case B,
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Fig. 1 NRC when all four antennas are present: two outer antennas
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Fig. 2 Contiguous RC when all four antennas are present: two left
antennas (A;,1, Ar2) and two right antennas (A, 1, Ar.2)

where the condition on the isolation has to be met with no sample
in the aperture. In the latter case, the aperture size is limited by the
condition of isolation itself even though the aperture has to
however be electrically large.

Considering the above, it is recalled that the method in [10, (1)]
can be applied for both cases 4 and B according to the isolation
conditions to be met [Note that in [10, (1)], TFVF1 was wrongly
written as “TFVN1’. It was clearly a clerical error.]. Note that the
condition on the isolation for the case 4 in [10] is the same as that
in [4] (with the sample in the aperture), and that for the case B in
[10], it is the same as that in [4] (with no sample in the aperture). In
any case, the average transmission cross section (TCS) of the
aperture is well-approximated by the geometrical optics as it is
electrically large. It is equal to A,/4, where A, is the geometrical
area of the aperture. The isolation between the chambers is
required to be greater than or equal to 10 dB both with the sample
in the aperture and with no sample in the aperture, [1, 9]. Such a
condition, which is shown in detail in [9], is certainly met when the
sufficient condition is met. The sufficient condition is formally
expressed in [10, (5)] for the sample in the aperture. The
corresponding condition for no sample in the aperture is overall
similar. The latter depends on the aperture dimensions and on the
volume of the fixture, as well as on its load. When the isolation
with no sample in the aperture is not met and the method to be used
requires it, the error in the SE measurements, which depends both
on the isolation with no sample and on the isolation with sample,
can be read in [9, Fig. 2].

For better readability of this paper, the conditions on the
isolation between the chambers are shown below, as well as the
corresponding sufficient conditions. They are written also in terms
of ILs. We can write [9] [Note that some authors use a definition of
IL such that its value in dB is negative [10], as is the case here.]:

Ins =

ILo.o.ns ILi.i.ns )
ILo.i. ns ILi.o. ns (1 )

0 1
rx,0.ns rx,1,ns

P P
—lOlog(ﬂ r.x'o'ns) = 1010g(

| P
= 1010g(SEfixens) + 101og(M) > 10dB,

I i.0.ns

SEﬁxt.ns = lOIOg(SEﬁxl.ns) >5dB

2
(sufficient condition for (1)), 2)
I, =
Ppis P Lo o ILi i
—IOIOg IrxisTrxos| lOlOg( 0,08 1.1.5)
( reo.s Preis Lo i Mo 3)
ILfixl.s
= 1010g(SEjy ) + 10log|——"| > 10 dB,
ILi.o.s
SEfixt.s = 1010g(SEfx.s) = 5 dB @

(sufficient condition for (3)).

The subscripts s and ns mean ‘with sample’ and ‘with no sample’
in the aperture, respectively; therefore, the interpretation of the
corresponding parameters is consequential.

It is specified that Py, , . is the average power received by an
antenna in the outer chamber when the nested system is fed by the
outer chamber; Py ; o is the average power received by an antenna
in the inner chamber when the nested system is fed by the outer
chamber; Pirx_ilns is the average power received by an antenna in the
inner chamber when the nested system is fed by the inner chamber;
Pi,x_o_nS is the average power received by an antenna in the outer
chamber when the nested system is fed by the inner chamber;
IL, o ns is the IL of the outer chamber with no sample in the
aperture; IL, ; s is the IL measured between the outer and inner
chambers with no sample in the aperture; ILgy ns = IL; 4 is the IL
of the fixture; SEg ns = Ly o ns/ Lo i us 1S the SE of the fixture with
no sample in the aperture. The notation for all parameters with
sample in the aperture is obvious; for example, we have
SEfixe s = ILy o s/IL, i s» Where IL, , ¢ is the IL of the outer chamber
with sample in the aperture and IL, ; ; is the IL measured between
the outer and inner chambers with the sample in the aperture. It is
important to note that the ratios of received powers can be read as
ratios of ILs, as the corresponding transmitting powers can on
average be considered constant. For sake of simplicity, hereinafter,
the ratios of power are written in terms of ILs only. Note also that
IL, i o = IL; o us and IL, ; ¢ = IL; , ¢ from reciprocity.

2.1 Background for SEs using a single aperture

Two essential conditions have to be met to apply the method SEs:
(a) a fixture having an electrically large aperture (ELA) that meets
the condition (1); (b) a sample for which it turns out that
I s & ILixq pecs Where ILgy pec is the IL of the fixture when the
aperture is totally covered by a metallic plate. The condition
ILgix s & Igixgpec  clarifies the meant of ‘sufficiently high
reflectivity’ for a sample. Such a condition is considered met from
the choice of the samples; this rationale is supported by the fact
that ILgy ¢ is not very sensitive for small absorptions of the sample
in the aperture and/or for the leakage from its edge. For
symmetrical samples from the point of view of the reflectivity, the
implication ILg ¢ 2 ILg o pec = ILfixes = ILfixcpec could be used
even though it becomes practically weak for apertures physically
very small and very large outer chamber. Finally, a preliminary
absorption measurement [1, 14-20] or a preliminary reflectivity
measurement could be made [21]. The condition (1) is necessary
only to achieve ILfix pec by the SE of the fixture (enclosure) with
no sample in the aperture, which in turns allows the SE of the
sample to be obtained by using a single antenna in the fixture when
the condition (b) is also met, as further specified in the next
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section. Measurements to verify the necessary condition (1) are
included in those necessary to obtain the SE of the sample. It is
specified that the ELA is arranged with a sample holder which
depends on the sample type; it minimises the leakage from the edge
of the sample and consequently the MDR increases.

2.2 Background for SE 5 using an ‘Auxiliary ELA’

In the previous subsection, since the condition (1) is necessary only
to achieve Tl pec s mentioned above, in the procedure for SEs,
the size of the aperture with no sample can also be less than that of
the aperture with sample. In fact, when the aperture with a sample
holder, i.e. the aperture where the sample is mounted, does not
meet the condition (1), then it can appropriately be reduced by
covering it by an aluminium tape or an aluminium sheet. Such a
reduced aperture is called the ‘auxiliary ELA (AELA)’ in this
paper. Clearly, the AELA, which is always an aperture with no
sample, has to meet the condition (1). In this case, the aperture with
sample, which has different size than the aperture with no sample
(AELA), has to meet the condition (3). The condition (b)
ILfix s & ILfix pec has to however be met. Measurements to verify
the necessary conditions (1) and (3) are included in those necessary
to obtain the SE of the sample also in this case. In particular, it is
specified that when the sufficient condition (4) is not met, then
ILgiy s is replaced with ILgy pec in (3), which can be obtained by
SErixc.ns» @S shown below.

In the standard, it is expected that the smallest dimension of the
fixture aperture should be at least A/2 at the lowest usable
frequency (LUF) in order to minimise the cutoff effect; A is the
wavelength of the electromagnetic radiation. Note that the blocking
effect depends also on the thickness of the sample holder, which in
turn depends on the specific sample: the greater the thickness (in
terms of A), the greater is the blocking effect. Normally, the
thickness of a sample holder is much less of the maximum 4 value.
However, we note that no sample holder is necessary for an AELA.
In Section 4, we will show by measurements that a square aperture,
whose side is a little less than A/2 long, could be used as a large
aperture.

In [22] a square aperture of the side length of about 0.3 4, is
used. Analytical model for of transmission coefficients of aperture
for a specific polarisation and incident direction are available in the
literature [23, 24]. Finally, note that the frequency range (FR) is
determined by the AELA. However, samples greater than the
AELA can be used according to the size of the aperture with
sample.

2.3 Brief considerations for both methods SEs

The fixture is always randomly fed from the outer chamber for
both versions of the method SEs; therefore, the mechanical stirring
in the fixture is not strictly necessary, i.e. only frequency stirring
(FS) can be used. It is stressed that for both versions of the method
SEs, a single antenna is necessary in the fixture. If a load is added
in the fixture, in order to achieve the requested isolation conditions,
it has to remain throughout the whole measurement procedure.
Moreover, it has to be carefully chosen in order to avoid
unacceptable non-uniformity of the field inside the fixture itself.
Clearly, the SE of any ELA with no sample (clearly, including any
AELA) considered in this paper is assumed to be equal to 0 dB.

2.4 Background for the methods SE4 and SEg

Measurements of SE of gaskets and materials can be made by
using only two antennas when the quality factors Q, and Q; of the
two chambers (outer and inner chambers, respectively) remain
practically constant with no sample and with sample in the
aperture. In this case, the simplest method SE4 can be used. From

theory in [4, 9], we find a simple and usable condition for the
applicability of SE4. For such a derivation, an intermediate method
is also found for SE measurements; this method is denoted by SEq
in this paper. It is appropriate in cases where the ILg of the outer
chamber with sample and with no sample in the aperture are
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practically equal and the IL of the fixture with sample in the
aperture is practically equal to that of the fixture with a metallic
slab in the aperture. We will see that SEg is less useful than SEj
and SEjy.

3 Theory

In this section, the theory for the method SEs and for the simple
and usable condition for the applicability of SE4 is shown. The
theory for SEg is also included. Since the theory for SEs is the
same both when the AELA is used and when it is not used, as
shown above, no difference is highlighted in the nomenclature
between the two cases. However, the cases where the AELA is
necessary and those where it is not necessary are well specified
according to the considerations in the previous section.

3.1 Theory for the method SEs

In this section, we show that when the condition (3) and (b) are
met, ILfy pec can be achieved by SEgy qe If the condition (3) is
met, then we can write [10]:

A,/4
SE,, = 101og

t.ns

)

_ ILo 005 A4
= lOlog( ILo_i_ns) + 101log A + 10 log(ILgix( ps) -

Note that the first term in (5) is equal to SEgy ns. The average TCS,
i.e. A,/4, is equal to a perfectly absorption cross-section (ACS)
[14-20]; A, = A° 8z is the average effective area of an antenna in
an RC [14, 15, 19]. Note also that in this paper, the parameters are
shown both in dB and in absolute value; the context makes clear if
a parameter is in dB or in absolute value. Under the
abovementioned hypotheses, the SE of the aperture with no
sample, which is denoted by SE,,, can be assumed equal to one. By
(5), we can write [25, 26]:

ILo. ins Ae 1 Ae

ILﬁXL“S - ILo.o. ns Aa/4 = SEﬁxt. ns Aa/4 ' (6)

By using (6), the total ACS of the fixture can be calculated. We can
write

ACS oA 7

fixt,ns = m» ( )
where ACSgix s 1S the total ACS of the fixture with no sample in
the aperture [16, 23]. By using (6) and (7), we can achieve ILgiy pec-
We can write:

A A
Thtree = ACS — A8 = A8 S -1 ®

It is specified that when (5)«(8) are referred to an AELA, the
symbol A, is meant as A, ,; the subscript ‘aux’ denotes the
AELA. Note that (8) can be substituted with ILg, s in (3), as
specified above. The reflecting samples, which can be tested by the
method SEs, include gaskets, complex PCBs, fabric shield [8],
graphene shields [27], band-stop frequency selective surface [28,
29] etc. In such cases, (8) can be replaced in (5) when it is written
for a sample in the aperture; that is, we can write [10]:

IL
SE;s = IOlog( IL°'?'S)
0.1.8 9

A4 @

+ IOIOg( A ) + 1010g(ILﬁxt.pec)-

It is highlighted that A, in (9) is always referred to as the aperture
with the sample. By using (6)—(8), (9) can be written as follows:



SEs = 1010g(SEiy(s)
(10)

A
+1010g(A 2 )— 10 10g(SEfixns — 1) -

where SEjy e, Which [under condition (1)] is always greater than
one, is referred to the AELA when it is used. Clearly, SEgy  is
always referred to the aperture with sample. When an AELA is not
necessary, then A, = A, ..« and (10) simplifies. The ratio A,/A, aux
is practically always greater than 1. Equation (10) is simple to
implement as it does not require directly the application of (6)—(8),
even though (9) has the same form of (1) in [10], which is similar
to the form of the SE of gaskets and material in [1]. The form (10)
highlights the fact that the procedure for SE5 requires only three
antennas. Considering the necessary conditions for the applicability
of the method SE;, we note that cases where the AELA is not
necessary correspond to the case B in [10, Sections 2 and 4],
whereas cases where the AELA is necessary correspond to the case
A4in[10, Sections 2 and 4] once ILyix pec is achieved.

3.2 Theory for a simple and usable condition for the
applicability of the method SE4

When the condition (1) is met, the model SE5 for the SE of gaskets
and materials is [4, 9]:

SEfixl ns Itht ns
1L, T
+ 1010 °““)+101o (—‘“‘5).
) g(ILo o,ns g ILﬁxt. ns
Note that the ratio of the net power supply can be considered equal

to one. We achieve the required usable condition for the
applicability of SE4 by an intermediate step, which results in the

method SEg. If the conditions

SE, = 1010g( Eﬁxt.s) +1010 g( Lﬁx!s)
(an
1010g(

ILo 0.5 = oo (12a)
ILfixl.s = ILfixL pec (12b)

are met, then we can write as follows:

L
SE, = 101og(IL°“‘S)+101 (—IL“:‘tP“) . (13)
‘0.1.§ 1X(, ns

The condition (12a) always holds when the total ACS of the outer
chamber including the fixture with no sample in the aperture,
which is denoted by ACSgc s, is much greater than the ACS of the
sample obtained when the field impinges from the outer chamber,
whose maximum value is A,/4; namely, (12a) always holds when
ACSgc ns > A,/4. Tt also holds when the ACS of the sample
obtained when the field impinges by the outer chamber is about the
same as that of the aperture with no sample.

The ILs IL, ¢ s, ILo i s> and IL, ; i, which are required to apply
(13), could be measured by using only two antennas; such ILg
determine the SE of the fixture [13]. However, such a procedure
requires reflection coefficient measurements, which could become
critical, as mentioned above. Similar considerations can be made
for the method SEs. We are interested in a simple usable condition
under which ILyig ns & ILfix( pec- Note that ILg ¢ ns & IL, s does not
necessarily imply ILgy o 2 gy s a5 mentioned above, whereas

ILﬁxt.ns = ILfixl.s = ILO.O.ns = ILo.o.s . (]4)

In fact, if ACSfix ns > Aa/4, then ILgiy ng = Tlfix pec and a fortiori
ACSgc ns > A,/4; it follows that the condition on the left side of
(14) is met. In this case, (11), as well as (13), results in

ILo i o
SE, = lOlog( ) (15)

ILo.i.s

It is reaffirmed that SE4 can be applied for any flat sample. By
considering the condition on the left side of (14), one notes that
(15), i.e. the method SE4, can certainly be applied to samples
having low reflectivity. For such a class of samples, the ACS of
both sides is about the same as that of the aperture with no sample;
such samples can also have a considerable SE value. Note that the
condition of isolation expressed in (1), or that expressed in (2), is a
necessary condition to apply SE4 as it comes from SEj;.

The implication (14) is true also for two equal CRCs. By (6)
and (7), we can write

% = SEfixts (16)
The Ty  ranges from ILgiq g 10 Thfixg pec. We are interested in a
simple and usable condition that approximates the ratio
L i ns/ Il fix pec t0 1, i.€. Tlgixq ns & ILfixq pec- Note that the condition
ILfix¢ ns = ILfixe pec; Which is requested in the procedure for SE4, is
more stringent than the ILgy & TLyix pec, Which is requested in the
procedure for SEs. In fact, the former includes the latter. By using
(16), (6), and (8), we can write

ILfixL ns Aa/ 4 1
=1- =1- . 17
ACSfixL ns SEfixl. ns ( )

ILﬁxt. pec

If the ELA of the fixture, the volume, and the total losses are such
that the SE of the enclosure (SEjy, ) is greater than or equal to 4
(6 dB), then the conditions expressed by (14) are met and the ratio
IL i ns/ILixe pec 1S less than or equal to 0.75 (—1.2 dB). Therefore,
the model (15) can be applied under the condition as follows:

SEfixins = 4 =6dB. (18)

We can write

ILfixL ns

SEfixtns 2 4 = 6dB = ILfix pec

>0.75= —12dB. (19)

We note that under the condition (18), or equivalently (19), SE4
can be applied with a maximum error of about 1 dB. It is noted that
this error is a systematic error which is only a component of the
measurement uncertainty (MU) [30], as it will be discussed in
Section 3.4. Note that when the sufficient condition on the isolation
is met with no sample in the aperture, (18) is roughly met. It is
specified that the method SE4 was used in [22] but there it was not
adequately justified; however, we have found a simple and usable
condition to check its applicability.

It is specified that the abovementioned considerations on a
possible load added inside the fixture are valid also in this case. All
measurements made with no sample can be considered calibration
measurements for the fixture; therefore, they are made only once in
a series of measurements where the configuration of the chambers
changes only for the different sample types in the aperture.

3.3 Further in-depth analysis on the proposed methods and
their measurement dynamic range

When (18) is met, we have an isolation with no sample of at least
12 dB; this occurs when the chambers are equal in volume, see (1)
and (2). It is the minimum value of isolation (worst case) under the
condition (18). Therefore, for the NRC, the isolation is normally
>12 dB. Such an isolation causes just an error of some tenth of dB
in the SE measurements [9, Fig. 2]. When (18) is met, (15) is
equivalent to (11) and to [10, (1)]. Hence, when (18) is met and no
AELA is used for SEs, the methods SEs5 and SE¢ are also
applicable apart from the sample absorption and reflectivity, and
they give the same SE value as that given by SE4 excepting for the
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approximation in (17) due to the SEgy s value in (19). As a
consequence, the comparison of results from SEs, SE4, and SE4 is
an intrinsic validation for the three models. In Section 4.2, this
criterion is used to validate the three methods. However, it is
highlighted that in such cases it is convenient apply SE4 for its
greater simplicity. The method SE¢ is applicable to samples for
which (12a) and (12b) are met. Both methods for SEs and SEq
require three antennas, one of which is transmitting and two are
receiving. One receiving antenna is placed inside the fixture; the
transmitting antenna and the other receiving antenna are placed
inside the outer chamber. The method SE4 requires only two
antennas and two IL measurements. The method SE¢ requires one
fewer measurement with respect to SEs, which is the measurement
of IL, , ;. However, the method SE5 has no reduction in MDR with
respect to the corresponding methods improved in [10] and SE4 has
no reduction in MDR with respect to SEj.

When the method SE¢ can be applied for a given sample and
measurement setup, then the method SEs can certainly be applied
to the same sample and measurement setup. It is specified that
measurements for SEq and SE4 are self-calibrating, whereas
measurements for SEs (9) or equivalently (10) are not strictly self-
calibrating, except for cases where the two receiving antennas are
equal, as well as the total length of the cables connecting them to
the instrumentation, as further specified in Section 4.2. In any case,
SE¢ and SE4 do not require corrections for antenna efficiency, as
well as SEs5 when the two receiving antennas (in the outer and
inner chambers) are equal.

It is important to note that for a given NRC system and under
the condition SEjy s > 6dB, the simplest model for SE4 has a
reduction of 6 dB in MDR with respect to the cases where the
SEfixns i about 0dB. These can be the procedures where
IL 5 ns/IL; o s 1S @bout 10 dB, see (1), or those where the condition
of isolation between the chambers has to be met with sample in the
aperture. If the SEgy ns>6 dB, the MDR is reduced accordingly.
We stress that the MDR can be increased by a reduction of the
volume of the greater chamber.

One notes that SE measurements of an effective gasket
represent reference measurements for SE of flat shields (materials).
They represent the maximum SE measurable including the leakage
of the fixture, which is meanly due to the sample holder, gasket,
and closing system of the aperture (intensity and uniformity of the
pressure for the electric contact) being the sample a metallic slab.
SE measurements where the antenna inside the fixture is replaced
with a well-shielded termination represent the maximum SE values
that are potentially measurable, where no leakage from the fixture
is present. Such maximum SE values represent the MDR when the
minimum SE measurable is about 0dB. Note that the
measurements of the real potential MDR require a narrow
intermediate frequency bandwidth (IFBW) of the vector network
analyser (VNA).

The reference measurements from the gasket are obtained by
applying the appropriate measurement methods; therefore, no other
theoretical consideration is necessary. We show the MDR of SE
measurements of the different methods where the receiving antenna
inside the fixture is replaced with a well-shielded termination. The
MDR of the improved method proposed in [10] and that of the
method SE5 have the same mathematical model; such an MDR is
here denoted simply by MDR-SE. Measurements of IL, o pec,
IL, ; 1, and ILgy, o are respectively considered, where the first two
terms are the IL of the outer chamber when a metallic plate is in
the aperture and the IL between the outer and inner chambers when
a termination is connected to the reference plane of the antenna in
the fixture. MDR-SE can be achieved as follows:

IL
MDR — SE = 1010g(%)
0.1. T

(20)

A4
+1010g( i )+ 10 log(ILgix pec) -
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where T, pec is the maximum value of IL,,; IL,;r is the
minimum value of IL, ;; ILgiy pec, is the maximum value of TLgy,.

Note that (20) is equivalent to the MDR achieved by considering
(10), which is as follows:

IL
MDR - SE = 101og(%)
0,1, T

20

Ay
+1010g(A )— 10log(TLyix ps — 1)

a, aux
It is reaffirmed that SEgy . is referred to the AELA when it is
used. Similarly, for gasket measurements, the geometric area of the

aperture is still considered to obtain the MDR [10, Section 2,
subsection C]. For MDR-SE,4, we can write:

(22)

ILoin
MDR - SE, = IOlog( L S) .

ILO. iT

It is important to note that MDR-SE,4 and MDR-SE are equal when
the method SE4 is applicable, as expected. In fact, when (18) is
met, it can be shown that

ILo.i.ns = ILo.o.ns : ((Aa/4)/Ae) : ILfixl.ns
= ILO.O.pec (A DIA) - ILix, pec

according to the SEgy ns value in (19).

3.4 On the MU of the proposed models

The MU includes both systematic and random errors [30]. The MU
for SE can be calculated from each measurement model, by
considering the MU of the single parameters in it included, as
shown in [21, 31-34] for quantities different than SE. In [35, 36],
the MU of the IL including FS and statistical non-uniformity is also
shown. The effects of non-uniformity are also addressed in [37]. In
proposed models for SE, are included both ILs of single chambers
and ILs between two chambers. The MU for the IL was generalised
in [36]. That is, it can be obtained without the knowledge of the
statistical distribution of the acquired samples for the transmission
coefficient of the chamber or between the two chambers [36]. Such
an MU can be obtained both with FS and with no FS. Moreover,
the distribution of ILs between two chambers can be easily
achieved in our case as the RCs are coupled by a large aperture
[38—41]; when the sample is present in the aperture, it can be
considered equivalent to a case of many apertures as shown in [38].
In this paper, the uncertainty for proposed models of SE is not
calculated for brevity.

4 Measurements and results

In this section, the results of SE from measurements acquired in
different RCs and using different material samples are shown.
Results from measurements made in RCs at Universita Politecnica
Delle Marche, Ancona, Italy, at the University of Nottingham,
Nottingham, England, as well as results on a gasket from
measurements at Universita Parthenope, Napoli, Italy are shown.
Results shown in this section include the verification of the LUF
for an AELA. For this verification, measurements from RC in
Ancona are used.

4.1 SE results from measurements made by using RC at
Universita Politecnica delle Marche, Ancona, Italy

The outer RC has dimensions of 6x4x2.5m’ and the inner
chamber has dimensions of 1.2 x 0.9 x 0.8 m’ [42, 43]. Inside the
outer chamber, the input electromagnetic field is randomised by
means of hybrid stirring using two metallic stirrers, which work in
step mode for measurements used in this paper, and FS, whereas
inside the inner chamber only FS is used. The measurement setup
includes a four-port VNA, model Agilent 5071B, two antennas
inside the outer chamber, model Schwarzbeck Mess-Elektronik
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Fig. 4 1, and I, Coefficients of isolation between the chambers for two
apertures with no sample and with sample in the aperture. Only 1,5 is shown
for a third aperture of size 23.3cm X 13.3 cm

USLP 9143, whose usable FR ranges from 250 MHz to 8 GHz for
EMC tests, and two antennas inside the inner chamber. The latter
two antennas are a double-ridged horn antenna from AH Systems,
model SAS-571, whose usable FR ranges from 700 MHz to 18
GHz for EMC tests, and a homemade discone antenna, which
works well in the FR from 1 to 10 GHz. Measurements are
acquired in the FR from 0.8 to 8.2 GHz; by automation, 16,000
samples are acquired for each position of the stirrers; the step
frequency (SF) is 250 kHz. The IFBW and source power are set to
3 kHz (unless otherwise specified in the captions of the figures)
and 0 dBm, respectively.

The total number of stirrer positions, which corresponds to the
total number of (frequency) sweeps (M) is 64. In this section, SE
results from methods SE5 and SE4 are compared to SE3, in order to
validate the procedures for the former methods. Since SEj is also
applied, the measurement system is fully calibrated at the reference
planes of the four antennas and samples of the necessary reflection
and transmission coefficients are acquired both when the system is
fed by the outer chamber and by the inner one [4, 5, 9]. In short,
the two antennas in the two chambers can be both transmitting and
receiving antennas. All measurements are appropriately corrected
for total antenna efficiencies. To that end, it is specified that the
radiation efficiencies used for such corrections are 0.7 for the two
Log Periodic antennas and 0.9 for both the horn and the discone
antenna. The radiation efficiencies are roughly considered constant
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in the measurement FR [1]. It is specified that results from method
SE¢ are omitted in this section as results from SEj are shown and
used to validate results from SE5 and SE,.

Results for the verification of the LUF of an AELA are shown
first. For such purpose, we consider two apertures of size
S5cm X 5cm and 10cm X 10cm, respectively. These apertures are
situated at the centre of an aluminium slab that covers a larger
aperture provided with a sample holder, which is formed by a
metallic frame [42, 43]. The thickness of the side where the
aperture is present is less than 1 mm. Moreover, measurements
using the aperture of 10cm X 10cm are also accomplished with a
load in the inner chamber, which is one pyramidal absorber
(Eccosorb VHP-8-NRL by Emerson & Cuming), in order to
achieve the necessary conditions to test the method SE,4 by such an
aperture as well. Two examples of SE of apertures with no sample
are shown in [4] and in [10]; in the latter case, the aperture has no
sample holder. The SE,, is obtained by (5); clearly, for the
verification of the LUF of an AELA, which is not necessary to
repeat for ordinary measurements of SE, ILg. . has to be
measured by using two antennas in the fixture. It is specified that
the FS bandwidth (FSB) used for data processing is 400 frequency
points, which corresponds to 100 MHz.

Fig. 3 shows the SE of the abovementioned AELAs for the
verification of the corresponding LUFs. Results show that a square
AELA of the side length of about 0.354,., can be used for SE
measurements. In other words, the cutoff effect is present for
frequencies less than about 2 GHz for the aperture 5 x 5cm’ and
for frequencies less than about 1 GHz for the aperture 10 x 10cm’
even though the latter is not represented in a visible way in Fig. 3.

The apertures of 5cm X 5cm and 10 cm X 10 cm are used to test
the method SEs, both when an AELA is used and not used, and
SE4 under the obtained condition (18) or equivalently (19). To test
the method SE4 both the apertures of size ScmXx5cm and
10cm X 10 cm are arranged with an aluminium mesh grid, which is
one of the samples tested in these measurements. The mesh of the
sample is diamond-shaped and has all four sides equal, of length is
2.4 mm; the thickness of the aluminium wire is 0.5 mm. The
sample overlaps the aperture on all sides reaching the
abovementioned metallic frame where the sample is appropriately
clamped in place by some screws; such an arrangement works as a
sample holder. Moreover, two cement samples having a low
reflectivity are also measured to show the applicability of the
method SE,4 under such conditions. SE measurements from method
SEs shown in this section use an AELA when they are referred to
the aperture of size 5cm X 5 cm whereas they do not use an AELA
when they are referred to the aperture of size 10 cm X 10 cm. When
the AELA is used, it is the same aperture 5 X 5cm’ whereas the
aperture with sample is the aperture 10 x 10cm’. Clearly, for the
latter aperture, the fixture is unloaded to test the method SEs
whereas it is loaded to test the method SE, according to the
required conditions for the applicability of the method concerned.
According to the results on SE,, the FR starts from 2 GHz for the
former aperture whereas it starts from 1 GHz for the latter one.

Fig. 4 shows the coefficient of isolation I,; given in (1) for the
apertures of sizes ScmXScm, 10cm x 10cm,  and
23.3 cm X 13.3 cm. Note that ILg,, ., is obtained by (6) when SEj5 is
applied as only three antennas are used. For such two apertures,
Fig. 4 also shows the coefficient of isolation Ig given in (3). Note
that ILyiy s is replaced with ILyig pec, Which is obtained by (8). The
conditions (1) and (3) are both met; moreover, the sufficient
condition (4) is also met. Fig. 5 shows SEjy,, s for the apertures of
size¢ SemXxXS5cm and 10cm X 10cm. For the latter aperture,
SEfix ns 18 also shown with fixture loaded.

From the results in Figs. 4 and 5, one notes that the conditions
are met for the applicability of the methods used below. Fig. 6
shows the SE obtained by the methods SE5 and SE4. For the latter

method, the apertures 5 x 5cm’ are used. For the method SEs an

AELA is used in order to validate such a method in cases where an
AELA is used as described above. Note that the cut off effect is
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Fig. 6 Blue and unmarked trace is the reference measurement that is the
SE of an aluminium plate obtained by the method SEs5 when an IFBW of
100 Hz is used; it includes the leakage of the fixture. SE obtained by SE3,

SEy, and SE5 of the metallic mesh grid used as a sample. The mesh of the
sample is diamond-shape and has all four sides equal, whose length is 2.4

mm. For the method SE5 and SE 4 the aperture has size of 5 cm X 5 cm. For
the method SEs5 an AELA is used in order to validate such a method in
cases where an AELA is used. The AELA is the same aperture 5X 5 cm’
whereas the aperture with sample is the aperture 10 x 10 cm>. Cutoff effect
is visible for frequencies less than about 2 GHz for all three cases

visible for frequencies less than about 2 GHz for all three methods.
Fig. 7 shows the SE obtained by methods SE; and SE4 for the
aperture 10 X 10cm’. Both in Figs. 6 and 7, the SE from SE; [4]
for the same sample is also shown, as well as the reference
measurement, which is the SE of a metallic plate obtained by the
method SEs; it essentially depends on the sample holder as it
includes the leakage of the fixture. It is specified that the reference
measurements is the same for Figs. 6-9 as shown in the
corresponding captions. It is also specified that the MDR-SE given
by (20) or equivalently (21), which does not include the leakage of
the fixture, is not shown in such figures; it is always greater than or
equal to the reference measurement from a metallic plate, as it will
be also seen in Fig. 10 below.

In Figs. 6 and 7, results expected from SEs and SE,4 agree well
with those from SEj, which are here considered as validation
results. Therefore, the method SEs and the condition (18) for the
applicability of SE4 are validated. In order to show the applicability
of method SE4 for sample having low reflectivity, Figs. 8 and 9
show the comparison of the SE from the SE4 and SE3 methods for
cement samples. The aperture used for both figures is of
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Fig. 7 SE obtained by SE3, SE4, and SE5 of the metallic mesh grid used as
a sample. The mesh of the sample is diamond-shape and has all four sides
equal, whose length is 2.4 mm. The aperture has size of 10 cm X 10 cm. The
Sfixture is loaded by one pyramidal absorber (Eccosorb VHP-8-NRL by
Emerson & Cuming). Cutoff effect is visible for frequencies less than about
1 GHz. The reference measurement is the same as in Fig. 6

23.3 x 13.3cm’ and the sample holder is the same as that in [42,
43]. The applicability of SE; for such an aperture is guaranteed by
the value of the isolation coefficient with no sample I, shown in
Fig. 4. It should be noted that such a condition is only a necessary
condition to apply SEy4. In particular, Fig. 8 shows the SE obtained
by SE; and SE4 for a sample formed only of commercial Portland-
limestone blended cement type CEM 1 52.5 R according to the
European Standard EN-197/1. Fig. 9 shows the SE obtained by
methods SE3 and SE, for a sample formed of commercial cement,
the mixture is made by the addition of graphene oxide (GO)
particle. The size of the samples is the same as that of the aperture;
its thickness is 3 cm.

From the results in Figs. 8 and 9, we note that SE4 can be
applied for samples having low reflectivity also when they have a
non-marginal SE (see Fig. 9 in particular) as expected. In fact,
samples having low reflectivity imply ILfiyis=IL fixns and ILgo
=1Lgops in (11).

4.2 SE results from measurements made by using RC at
University of Nottingham, Nottingham, England

The outer RC is a Siepel EOLE 200; it has dimensions of
4.84x372%3.11m" and the inner chamber has dimensions of
036 x0.45%x0.54m’. The sample holder aperture is
0.05m x 0.05m and is situated in a thick brass plate. The sample
overlaps the aperture on all sides and it is clamped in place by a
brass frame with 16 screws. Inside the outer chamber, the input
electromagnetic field is randomised by means of hybrid stirring
using one big metallic stirrer, which works in step mode for
measurements used in this paper, and FS; inside the inner chamber,
only FS is used. The measurement setup includes a two-port VNA,
model Agilent PNA E8362B and three antennas. The two receiving
antennas, whose one is inside the outer chamber (R, ,) and the
other one inside the inner chamber (R, ;), are two equal double-
ridge horn antennas, model AH systems SAS-571. The third
antenna is an ETS Lindgren double-ridged horn antenna, model
3115, which is used as a transmitting antenna (7,) in the outer
chamber. The NRCs is shown in Fig. 11.

The VNA used for measurements has two ports. The
transmitting antenna was permanently connected to the port 1 by
appropriate cables and connectors, whereas the two receiving
antennas were alternatively connected to the port 2 by appropriate
cables and connectors. It is specified that the two receiving
antennas are connected to the port 2 by the same overall cable,
excepting for a short cable (75 cm long) that connects the antenna
inside the fixture to the bulkhead connector, which passes through
a wall of the fixture. Considering that SE5 is not rigorously self-

7



—SE, |
—SE, h
6 Il .
as]
=z
3
<4
I
2
o
g
&
2

4 5
Frequency (GHz)

Fig. 8 SE evaluated by SE3 and SE4 methods for a commercial sample of
Portland-limestone blended cement type CEM I 52.5 R. The aperture has
size of 23.3cm X 13.3cm. The reference measurement is the same as in
Fig 6

15 " ‘
—SE3
— SE,
10 ! W
g
m
H*
[*]
)
g5
7]
i T B 73

4 5 6
Frequency (GHz)

Fig. 9 SE evaluated by SE3 and SE4 methods for a commercial sample of
Portland-limestone blended cement type CEM I 52.5 R with GO. The
aperture has size of 23.3cm X 13.3 cm. The reference measurement is the
same as in Fig. 6
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Fig. 10 SE of the copper mesh. Black and square-marked trace is the
MDR obtained by a matched load when an IFBW of 3 kHz is used; violet
and cross-marked trace is the reference measurement, which includes the
leakage of the fixture. Blue and unmarked, red and circle-marked, and
green and cross-marked traces are the SE of the copper mesh, achieved by
SEs, SEg, and SE4 methods. Cutoff effect is visible for frequencies less than
about 2 GHz

calibrating, the measurement system is calibrated by two separate
‘Thru’ calibrations, which are made between the references plane
of T, and R,, and between the references plane of T, and R,;,
respectively.

Measurements are made for 120 positions of the stirrer, which
are evenly spaced in angle. For each stirrer position 16,001 point in

Fig. 11 Inside of the RC at University of Nottingham. The fixture is well
visible in the chamber
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Fig. 12 Geometrical details on the tested copper mesh

frequency is acquired by the VNA. The FR was set from 1 to 20
GHz; the IFBW is set to 3 kHz; the port power is set to 0 dBm. The
SF is 1.1875 MHz. The transmission coefficients inside the outer
chamber and that between outer and inner chambers are measured
both with no sample and with the sample in the aperture.
Measurements on a metallic plate and for MDR were also made.

The sample tested is referred to as ‘copper mesh’. It is
described as follows: expanded copper foil (110 copper); diamond-
shaped unit cell; copper thickness: 0.076 mm; copper strand width:
0.178 mm; diamond long dimension 3.2 mm; diamond short
dimension 2.1 mm. Fig. 12 shows geometrical details on the copper
mesh.

Even though results are shown across the whole FR of
acquisition (from 1 to 20 GHz), it is important to note that the
cutoff is visibly present for frequencies less than about 2 GHz,
whereas the specifics of the antennas are not known for frequencies
>18 GHz. The latter issue is not very important when the
impedance matching holds and tests are made in an RC as in our
case. It is specified that the FSB used for data processing is 200
frequency points; it corresponds to (199 x 1.1875) = 236.3 MHz.

Fig. 13 shows that the condition (18) or equivalently (19) is
met. The condition (19) implies an error of 0.75 dB on SE,, if we
consider a value of 8 dB for SEg . Hence the conditions for the
applicability of SE5 and SEg are also met. In Fig. 10 are shown five
traces. The black-coloured trace represents MDR-SE given by (20)
or equivalently (21), which are equivalent to (22) in this case; it
does not include the leakage of the fixture. The violet-coloured
trace represents the reference measurement of the measurement
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Fig. 15 MDR obtained by a matched load when an IFBW of 5 Hz is used
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Fig. 16 ILj;y pec comparison. ILsiy pec achieved by (6)—(8) and that by
measurements of the reflection coefficient. IFBW is 3 kHz in these
measurements

setup. It essentially depends on the sample holder that reduces the
edge leakage of the sample. The latter also determines the
behaviour of the trace between 4 and 7 GHz. The blue-coloured,
red-coloured, and green-coloured traces represent the SE of the
copper mesh achieved by using the three different methods SEs,
SEg, and SE4, which are given by (10), (13), and (15), respectively,
as mentioned above.

Fig. 14 shows the ratio ILgiy ns/ILfix; pec, Which is the same as
the ratio SE4/SEq. Finally, Fig. 15 shows the reference
measurements using the matching load where the IFBW is 5 Hz. It
can be noted the increase of such a reference with respect to that
shown in Fig. 15 where IFBW is 3 kHz.

We note that results from SEs and SEg are practically
overlapped whereas results from SE,4 are slightly below the first
two. The slight difference between SEs, SE¢ and SE4, which is
generally <1 dB, is consistent with that expected (—0.75 dB). We
note also that when SEg;, ,>10 dB, as it is for frequencies <2 GHz,
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the error on SE4 reduces and the traces concerning SEs, SE¢, and
SE4 are practically all overlapped even though a considerable
cutoff effect is present for such frequencies.

From results, the cutoff effect of the aperture with sample
holder is well visible for frequencies less than about 2 GHz as
expected. Results from traces SEs, SE¢, and SE, implicitly show
the validity of the corresponding methods.

4.3 SE of a gasket from measurements made by using the
RC at University ‘Parthenope’, Napoli, Italy

In this section, results of SE of a gasket is shown. The gasket is a
non-woven fabric. Also, MDR is determined; it is obtained by (20)
or equivalently (21). The SE of the gasket is obtained both by SEs
(9) and [10, (1)]. Results from the two methods are also compared.
For the application of SEs, ILix pec is achieved by using the same
measurements acquired for SEg, ¢ in [10], where de facto an
AELA of 10 cm by 10 cm is used, whereas SEg,, ; is achieved by
using the measurements acquired for results in [44]. For the
application of [10, (1)], the same measurements for SEg, ¢ in [44]
are used whereas ILg,, ¢ is achieved by using measurements in [10].

Note that all requested conditions to apply the method SE5 and
[10, (1)] are met. It is specified that the IFBW is 2 Hz for the
measurements of IL; ¢ and IL, ; t in order to adequately increase
the MDR as a high MDR is necessary for such measurements.
Measurements made by an IFBW of 2 Hz and 16,000 samples take
2 h about for a FR from 1 to 18 GHz. It is also specified that the
two receiving antennas, which are positioned inside the fixture and
the RC, are equal. To be more precise, they are two double-ridge
waveguide horn antennas for measurements of SEgy o [10] and
two monopole antenna for measurements of SEg, ¢ [44]. Tt is also
recalled that the fixture has a removable side, so that the aperture is
one full side of the fixture; the window is equipped with a flange
that in turn is covered by the gasket; finally, the removable wall is
positioned on the gasket. The gasket is fixed to the flange, whose
width is 0.04 m, by adhesive aluminium, which is applied both on
the internal walls and on the underside of the flange itself, in order
to optimise the performance of the gasket. The leakage of the
fixture is minimised as it is configured for the SE measurement of
gaskets. No mechanical stirrer is present inside the fixture; only FS
is used inside the fixture. The single antenna inside the fixture is
fed through a coaxial cable and an N-female—female bulkhead
connector. The bulkhead connector, which has a circular flange, is
appropriately fixed in a wall by a nut and the gasket; the latter is
the same as that positioned on the flange and it is accurately put on
both internal and external sides. Therefore, the aluminium cover
slab is appropriately positioned to close the fixture by a robust
frame and some clamps [10, 44]. The frame uniformly distributes
the pressure made by twelve tightened clamps. For the application
of [10, (1)], reflection measurements, which require a single
antenna in the fixture, were used to obtain ILyix pec [10]. The use of
a single antenna inside the fixture has generally the critical issues
in the measurements of the reflection coefficients, as mentioned
above, and in the use of the ‘2’ to calculate Ly pec [10]. However,
these specific measurements of Iy pec Were acquired outside the
RC in order that the minimum length of the cables was used, even
though it is not expressly specified in [10]. Fig. 16 shows ILyix pec
achieved by the application of (6)—(8) and the corresponding result
obtained by measurements of the reflection coefficient and
application of [10, (10)].

Fig. 17 shows SE,, which denotes the SE of the gasket,
achieved by the application of SE5 (9) and the corresponding result
obtained by application of [10, (1)]. In the same figure the SE
obtained by replacing the receiving antenna in the fixture with a
matched load is also shown. It represents the MDR of the
measurement system without including the leakage of the fixture as
specified above. It is specified that the measurements using the
termination are made without the cover. These results suggest
repeating the measurements by using the termination with the
fixture closed by the metallic cover; that is, the same measurement
configuration for the gasket should be used except that the antenna
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Fig. 17 Comparison between SEg and MDR. Procedures for [10, (1)] (red
trace) and for SE5 (blue trace) are used. Black and square-marked trace
represents SEg from [10, (1)] where ILyiy pec is achieved by measurements
of the reflection coefficient; blue and cross-marked trace represents SEg
Jfrom SEs where ILgiy pec is achieved by (6)—(8). Red and circle-marked
trace represents MDR-SE. IFBW is 2 Hz in these measurements

inside the fixture is replaced with a matching load. It is important
to note that the term IL,; , increases and SEy, ¢ decrease for SE
measurements of gaskets at the same fixture volume with the
increase of the aperture size. This decrease tends to be
compensated by the increase of the aperture size as (9), or
equivalently (10), shows, so that SE, is forced to be constant
regardless of the aperture size. Nevertheless, the SE of gaskets may
depend on the aperture size as the geometrical area to be
considered it is not normally determinable [10]. Therefore, for SE
of gaskets only, it is suggested that the aperture size and the
perimeter concerned be shown in the technical report of
measurements. The problem certainly exists and it is greater when
the method in [1, eq. G.5] is used as no compensation is present in
it. On the other hand, to the best of our knowledge, no theory has
been published in support of such a method [10, 45]. We note that
results from method SE5 and general method [10, (1)] match very
well again. According to [1, Section G.5.1], the SE can also be
measured in terms of average TCS with sample only, where the
TCS is denoted by o, instead of o, ¢ [4]. It is important to note that
the SE values expressed by [1, eq. G.7] are not normalised; so, they
depend inevitably on the size of the aperture. One also notes that
[10, (1)] divided by A,/4 m’ is equal to the inverse of [1, eq. (G.7)].
In the latter case, the corrections for the efficiencies of the antennas
are clarified. Therefore, [1, eq. G.7] gives SE values quantitatively
greater than those given by [10, (1)], SEs, (9) and (10), and SE4
(15);  the  difference is  —10log(A,/4), which s
—10log(0.5°/4) = 12.04dB in our case. However, the difference
depends inevitably on the geometrical area of the aperture as [1, eq.
G.7] has no normalisation. It is reaffirmed that in order to avoid
any leakage unconnected to the gasket, only the FS is used to stir
the field inside the fixture. The results show that the non-woven
fabric can be advantageously used as gasket, including being
applied to achieve fixtures for SE measurements in an RC, as it is
very effective and easy to apply.

5 Discussion and conclusions

In this paper, some developments on the SE measurements of
gaskets and materials in RCs are shown in order to contribute to
the improvement the annex G in the Standard IEC 64000-4-21. A
variant method, which is denoted by SEs, where only three
antennas are requested, is shown. It is shown in two versions: one
requires an AELA and the other not. This procedure is appropriate
for gaskets and for any flat material having a sufficiently high
reflectivity at least on one side. The applicability of the simplest
method SE4 is enhanced by a simple and usable condition, as well
as by particular cases where it can be directly applied for samples
having low reflectivity and absorption as shown by results in
Figs. 8 and 9. This method can be used for gaskets and any flat
sample and requires only two antennas. Comparisons of results
support the methods for the SE measurements of gaskets and
material in RCs shown in this paper. It is specified that the
verification of the condition under which the simplest method SE4
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is applicable, which is made only once for a given measurement
setup including the chambers, requires three antennas. However,
for two equal CRCs, such a condition can be verified by using only
two antennas. Moreover, for such a chamber system, by using the
methods SEs5 and SE,, a powerful facility can be obtained for SE
measurement using only two antennas. This has not been
developed here both for lack of such a chamber system at this time
and for brevity. Finally, we note that by using chambers with
volumes and apertures appropriately reduced, the measurement FR
could be extended to some tens of GHz including frequencies for
5G communication system, where the simplest model is the most
appropriate to be used. By considering these last two points, the
applications of the SMART™ 800 Dual Reverberation Test Cell
from ETS-LINDGREN [46] could be increased and improved.
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