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ARTICLEINFO ABSTRACT

Keywords: An accurate evaluation of river water quality could be challenging due to the complex hydrological and
SWAT anthropogenic processes which affect its nature. Reliable water quality data are mandatory to identify long-term
Urba." o trends and regional variability at the watershed scale. In this study, a combined approach using time series,
:r‘::tr:::a Ivsis regression, and multivariate statistical analysis along with SWAT modelling was applied to identify the relevant
Land mvcry hydrogeochemical processes and the nutrients sources within the Aspio watershed (Ancona, Italy). The analysis

detected different processes: i) the geogenic origin of ClI" and SO7, ii) the heavy metals (Cu and Ni) and hy-
drocarbons pollution due to runoff from urban and industrial areas, and iii) the agricultural contribution of
pesticides, nitrogen, and phosphorous. A SWAT model was implemented to quantify the nutrients load in the
Aspio river. A calibration for streamflow, river sediment yield, and for nutrients load was obtained considering
agricultural, urban, and wastewater treatment plant contributions. Agriculture and treated wastewater
contributed to the overall nitrogen load only for 4% and 12% respectively, while the majority was due to leakage
from urban sewage (84%). A scenario with only fertilizers’ load (excluding other sources) highlighted that ni-
trogen and phosphorous export from agricultural lands did not significatively impact the Aspio river. The spatial
representation of runoff susceptibility also showed how the highest susceptibility for nitrogen and phosphorous
loads is due to areas located close to urban settlements.

Pollution sources

1. Introduction

The identification of point and diffuse pollution sources, along with
the assessment of their possible impact upon environmental assets, such
as soil and water ecosystem, is pivotal to ensure a sustainable exploi-
tation of land and water resources on basin, regional, and national scales
(Lam et al., 2010). Although the worldwide implementation of “Best
Management Practices” (BMPs) aimed at reducing non-point pollution
sources especially in farmed watersheds (e.g., buffer strips, fertilizer and
manure reduction, grassland increase, and conservation tillage) (Geng
et al., 2019), agricultural pollution is still the main environmental issue
in several European countries (Malik et al., 2020; De Stefano et al.,
2013). Indeed, pollutant transport from agricultural areas to surface
water and groundwater bodies is one of the critical environmental issues
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currently faced by human societies (Reis et al., 2016).

Nitrogen (N) and phosphorus (P) are essential nutrients to ensure a
sufficient crop yield, however, large-scale input of these nutrients to
aquatic ecosystems was recognized as the primary cause of eutrophi-
cation and water quality depletion in both marine and freshwater sys-
tems (Hoagland et al., 2019).

Several factors are responsible for nutrients export, such as: i) irri-
gation and fertilizer management (McDowell, 2017; Nakamura et al,,
2004), ii) soil characteristics (e.g., texture and organic carbon content)
(Sogbedji et al., 2000), and iii) rainfall events pattern (Wang et al,,
2014). In the last decades, many of these factors have been further
exacerbated due to population growth, industrialization, growing de-
mand of food production, climate variability and land use/management
changes (Moss, 2012). Nitrate (NO3) is recognized as the main
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anthropogenic pollutant worldwide (Ascott et al., 2017) and many
policies have been developed to face this issue, like the European Water
Framework Directive (F.U., 2000) and the Nitrates Directive (E.C.,
1991), aiming to achieve a good ecological status for water bodies and to
keep NO3 concentration below a threshold limit of 50 mg/L (E.U., 2000,
E.C., 1991). An even more restrictive guideline was established by the
World Health Organization (WHO) which fixed a NO3 concentration
limit of 44 mg/L for drinking water (WHO, 2017; Briand et al., 2017).
The same directives also regulate P concentration in surface waters.

The identification of pollution’s sources along with a clear recogni-
tion of their contribution to the overall water quality status may provide
technical support for an accurate formulation of basin management
policies. Due to their temporal and spatial variations at the watershed
scale, in response to hydrological and hydrochemical processes, such
identification is particularly hard to achieve (Zhang and Huang, 2011).
In fact, surface water quality can be simultaneously influenced by land
use, river morphology, climate, and anthropogenic pollution (Lenart-
Boron etal., 2017; Huang et al., 2014). Thus, continuous monitoring and
analysis of surface water quality is a fruitful step to achieve a sustainable
management of surface water resources (IHo et al., 2019; Kumar, 2019).
Despite water quality monitoring and sampling are often costly and
time-consuming, especially if performed continuously and over long
periods, several monitoring networks have been implemented within the
European basins and all over the world (Benfenati et al.,, 2003).
Numerous studies focusing on time series and trend analysis were suc-
cessfully developed in India (Lokhande and Tare, 2021), Malaysia
(VishnuRadhan et al., 2017), China (Kumar, 2019), and Europe (Dia-
mantini et al., 2018; Romero et al., 2016). These studies achieved the
aim to identify and analyze the main water quality drivers along with
their temporal and spatial variability. Other studies focused on fore-
casting surface water quality have been developed to identify possible
future changes due to climate or landscape changes (Elhag et al., 2021,
Bui et al., 2020; Dastorani et al., 2020). Similarly, multivariate statistical
analysis (e.g., factor or principal component analysis) and trend analysis
can produce accurate results in discriminating those hydrochemical
processes responsible for groundwater quality and mineralization
(Mastrocicco et al.,, 2021; Narany et al.,, 2018; Lloyd et al., 2014).
Nevertheless, these methodologies cannot accurately quantify the
contribution to the overall water quality status of each process acting in
the watershed (Machiwal & Jha, 2012). For this purpose, process-based
hydrological models could represent an effective tool to quantify the
pollution loads coming from different sources within the same water-
shed (Liu et al., 2016). For instance, the Soil and Water Assessment Tool
(SWAT) model is a process-based hydrological model widely used to
simulate soil and nutrient losses derived by various management re-
gimes (Zeiger et al., 2021; Noori et al., 2020; Lee et al., 2018; Serpa
etal., 2017). Nevertheless, the use of process-based hydrological models
is limited in those areas where detailed geospatial, climate, and moni-
toring data are not available (Wahren et al., 2016; Ntona et al., 2022).
Recently, the applicability of process-based hydrological models has
increased due to the availability of global and regional datasets con-
taining geomorphological and climate information (Abbaspour et al.,
2019; Shelestov et al., 2017).

Within this scenario, the aim of this research is to identify and
quantify nutrients (N and P) load from point and diffuse pollution
sources in the surface waters of the Aspio basin (Ancona, Italy). This
basin was chosen because of peculiar hydrogeological and socio-
economic characteristics: the presence of high density residential, in-
dustrial, and commercial settlements which contribute to reduce soil
absorbing surfaces, right next to cultivated fields prone to fertilization
with variable quantities of nutrients. The Aspio river water quality
assessment from the Environmental Protection agency of the Marche
Region (ARPAM, 2022) highlighted a persistently poor ecological status
from 1999 to 2020. The major issues are due to elevated nutrients,
Escherichia Coli, and COD, while pesticides and organic micropollutants
are generally not elevated. Thus, the Aspio basin is affected by long-term
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contamination and still needs a clear conceptual model aimed at
pollution sources identification and quantification. The current work
can be divided into two main phases. First, regression, time series and
multivariate statistical analysis were carried out on water quality pa-
rameters from 138 water samples collected bi-monthly from 1999 to
2019 at a single monitoring site located at the confluence of the basin.
The primary objective was to identify the relationships between
observed patterns of biophysical and chemical variables and the un-
derlying natural or anthropogenic factors, including geologic in-
teractions, agricultural practices, flow dynamics and population
impacts. Then a multi-scenario process-based modelling with SWAT was
implemented for the quantification of the main nutrient loads in the
basin. A pre-existing SWAT model, applied in the same watershed for
runoff susceptibility assessment (Busico et al., 2020a), was implemented
with new data specifically collected and digitalized for the new elabo-
ration regarding land use, land cover, agricultural management prac-
tices and information on the anthropogenic pollution sources.

2. Materials and methods
2.1. Study area

The Aspio watershed (Fig. 1), located south of Ancona in the Marche
Region (Italy), spans over 155 kmz, with a minimum and maximum
elevation of 8 m and 540 m above sea level. It is characterized by a
smooth-surface hilly morphology and the Aspio river represents the
main surface water course of the basin. The land use is heterogeneous
(83 % agricultural, 2 % forest, 15 % urban), mainly dominated by urban
settlements, that occupy the central part of the watershed, and agri-
cultural fields located all around. The main crop is represented by
wheat, followed by barley, corn, beet and sunflower. The basin is
characterized by a Mediterranean climate with an average precipitation
of 770 mm/y and a mean monthly temperature ranging between 3 °C in
winter and 28 °C in summer, with an average annual temperature of
15 °C. The drainage basin of the Aspio river is characterized by a fast
hydrological response due to the impermeable nature of the soils, to the
high concentration of urban, commercial, and industrial activities along
its terminal course, and to the existence of important communication
routes, such as the A14 national highway and the national railway
system (Busico et al., 2020a).

The geological setting of the Aspio watershed consists of different
units: i) the Meso-Cenozoic limestone sequence, ii) the Mio-Plio-
Pleistocene sequence made up of marly-clays, marly-clays with sand-
stone layers, and sandstone layers, and iii) the Quaternary continental
deposits made up of silty clay, clayey sand, and eluvial-colluvial deposits
(Tazioli et al., 2015). The main aquifer, hosted in the eluvial-colluvial
deposits, feeds the Aspio river and its tributaries throughout the year
and is responsible for the perennial surface water presence. Ground-
water is characterized as Na-Cl type with high concentration of Mg?*
and SO7, especially close to the coastline where brackish waters seep
from the Lower Pliocene geological formations (Comodi et al., 2011).
The water supplies for drinking, industrial, and agricultural uses for
most municipalities of the area are derived from local shallow aquifers.

2.2. Water quality datasets

For this study, selected physiochemical properties of the Aspio river
at the closure of the basin (see Fig. 1 for location) provided by ARPAM
(Agenzia Regionale per la Protezione Ambientale regione Marche) were
used. A total of 138 samples were collected in wet and dry seasons from
1999 to 2019 to capture the water quality variability (see Supplemen-
tary Information). Among the large ARPAM database, which included a
wide range of organic micropollutants and heavy metals, only selected
parameters were retained: temperature (T), electrical conductivity (EC),
pH, dissolved oxygen (O-), total suspended solids (TSS), Escherichia Coli
(ESR), chloride (CI), bicarbonate (HCO3), nitrate (NO3), nitrite (NO3),
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Fig. 1. Detailed lithological map of the study area. 1. Rainfall/temperature stations, 2. Hydrometric stations, 3. Aspio watershed, 4. Aspio river, 5. Alluvial-colluvial
deposits, 6. Sandy terraced alluvial deposits, 7. Sandy-clays with gravel, 8. Stratified marly-clays, 9. Marly clays with sandstones, 10. Marly clays with sandy lenses,
11. Marly-clays, 12. Alternances of marly —clays and sands, 13. Marly limestones with sandstones, 14. Marls and Clay-marls, 15. Marly limestones, 16. Arenaceous
limestones, 17. Stratified marly-limestones, 18. Sandy lenses with clays, 19. Gypsum, 20. Limestones.

ammonium (NHZ), sulphate (SO%’), total hardness (Hard), biological
oxygen demand (BOD), chemical oxygen demand (COD), total phos-
phorus (Ptot), phosphate (POY), total pesticides (TP), and total hydro-
carbons (TH). Temperature, EC, and pH were measured in situ, while
samples intended for major ions, trace elements, and micropollutants
analyses were collected in HDPE or glass bottles and analysed in a
certified laboratory following the international standards guidelines
(APHA, 2017).

2.3. Regression analysis

The first step of the work was the identification of all drivers

responsible of river water quality through statistical analysis. The pre-
processing consisted in a manual filtering of data to obtain a consis-
tent period of overlapping between time series, excluding missing values
pairwise. In fact, the sampling conducted by ARPAM does not include
the analysis of all the chemical and physical parameters for the same
sampling date (see Supplementary Information). Therefore, the original
dataset was reduced to a 23x19 cells matrix containing 19 physio-
chemical parameters determined in 23 different sampling periods be-
tween May-1999 and March-2019. The matrix obtained has been used to
explore any possible correlation between parameters, by maintaining
the raw data provided by ARPAM with several data for each parameter
> 20 as to have a statistically significant correlation. To assess the
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correlation a “corrcoef” function in MATLAB® was selected. This is a
simple and useful statistical method to calculate the Person’s correlation
coefficient between each pair of columns (A and B), following the
equation (1):

U (A (B —Hy
—2(a) (")

i=]

p(A'B) =

where n is the amount of data for each element, ps and o4 are the mean
and standard deviation of A, and pp and oy are the mean and standard
deviation of B. As a result, the correlation matrix between all the ele-
ments (R) is obtained as follows:

(p(l,,ﬁ) p(lhfm))
R= H : @
p(ln«‘rl) p('rm’nl)

where I is the input matrix, n is the number of data and m is the number
of elements.

For each computation, a p-value matrix to test the hypothesis of no
correlation against the alternative hypothesis of a nonzero correlation
was determined, with significance level of 0.05. After a rigorous eval-
uation, the sources of the elements within the analyzed basin have been
hypothesized. The Spearman’s rank correlation was applied to the water
quality indicators and drivers to highlight those variables which could
better represent the hydrogeochemical behavior of the basin.

2.4. Factor analysis

A multivariate statistical approach utilizing Factor Analysis (FA) has
been employed to discern and characterize all the hydrogeochemical
processes occurring in the Aspio basin. FA has emerged as a robust
methodology, widely applied across various geoscience disciplines,
enabling the elucidation of relationships among observed variables, and
yielding a concise list of significant factors that encapsulate them. The
determination of the number of factors is guided by the Kaiser criterion
(Kaiser, 1960) and the overall validity of the analysis is assessed using
the Kaiser-Meyer-Olkin (KMO) coefficient, which is deemed satisfactory
when exceeding 0.5 (Kumar, 2014). Here 23 cases and 12 variables
(BOD, COD, Pry, POF, NO3, NH3, CI', SO3, Ni, Cu, TH, and ESR) were
used.

2.5. The soil and water assessment tool

The semi-distributed process-based hydrological model known as
SWAT (Arnold et al., 1998; 2012), developed by the United States
Department of Agriculture (USDA), is currently one of the most widely
used watershed and river basin-scale model worldwide (Tan et al.,
2020). SWAT can simulate and predict land management and climate
change effects on hydrological components at basin scale. There are
multiple major steps in developing a SWAT model that accurately sim-
ulates the land surface and transport processes of the watershed: i) the
division of the watershed into multiple sub-watersheds according to its
hydromorphologic characteristics, ii) the creation of the hydrologic
response units (HRUs) which refer to all those portions characterized by
a unique combination of land-use, slope, and soil attributes (Neitsch
et al., 2000), and iii) the model’s output calculation such as runoff,
evapotranspiration (ET), aquifer recharge, sediment and nutrient load-
ings from each HRU and sub-basin. SWAT primary inputs include hy-
drometeorological data (using different timescale of input/output like
daily precipitation, and daily, monthly, and yearly data for streamflow,
or ET), soil and morphological characteristics, and the selection of
biophysical processes (e.g., potential ET and channel routing). The in-
formation regarding plant initial growth (e.g., planting, initial leaf area
index) and agricultural operations (e.g., application of fertilizers, pes-
ticides, and tillage) can be specified in the model setup. The input data
quality and resolution are responsible for output’s reliability and
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uncertainty (Busico et al., 2020a). The output of runoff is calculated
using two equations: i) a modified version of the curve number method
(USDA, 2004), or ii) the Green-Ampt infiltration method. The Modified
Universal Soil Loss Equation (MUSLE) (Williams, 1995) is used for
sediment delivery calculation. The N cycle is simulated in the soil pro-
file, considering five different organic and inorganic pools, with NO3
and NH{ as inorganic forms. P is also simulated by SWAT in the soil by
monitoring six different organic and inorganic pools. More details,
explanation and description of all parameters involved in the SWAT
setup can be found in Neitsch et al. (2010). Observed data of water
quality and sediment/water flow are used to assess the reliability and
the robustness of the methodology through a calibration and validation
procedure. The free-standing software SWAT-CUP and specifically the
Sequential Uncertainty Fitting version 2 (SUFI-2) algorithm (Abbaspour,
2015) is widely utilized for this purpose. SWAT-CUP investigates the
most sensitive parameters that could influence the cbserved outputs
within a fixed range of variation specifically designed by the operator (e.
g.., = 25 % of initial value). The results of the calibration and validation
procedure, specifically the fitting between real and simulated data, are
investigated using three well known statistical indices: i) coefficient of
determination (Rz), ii) Nash-Sutcliffe efficiency (NSE), and iii) percent
of bias (PBIAS), to be compared with the threshold proposed by Moriasi
et al. (2007) (Table S1).

2.5.1. SWAT model setup

The SWAT model to quantify the river’s sediment and nutrients (N
and P) loads for the Aspio basin was realized using the ArcSWAT 2012
interface on ArcGIS 10.2, implementing a pre-existent calibrated SWAT
model created for runoff susceptibility assessment (Busico et al., 2020a).
New data about land use spatial discretization, land management
operation, and pollution point sources has been added. The model de-
lineates the watershed using a digital elevation model (DEM). Five
classes of slope were created to account for morphology heterogeneity
(<5, 5-10, 10-15, 15-20, >20). Soil characteristics were retrieved from
the Digital Soil World Map (FAO, 2007) with a scale of 1:5 million, while
land use/cover was classified according to the updated version of the
Corine Land Cover (CLC, 2018), expressly produced for this study. Since
the majority of watershed’ soils have predominantly clayey character-
istics, according to the results obtained by Busico et al., (2020a) and
Chaplot (2005), it was not necessary to retrieve a more detailed soil
distribution. Instead, a more in-depth definition of land use/cover
classes for the Aspio basin was needed since the generic “agricultural
fields” reported by CLC may include deciduous or evergreen commercial
forests, grassland (herbaceous vegetation), or different crops (e.g., corn
or wheat). These differences could greatly influence the SWAT model-
ling on streamflow, sediment, and especially on nutrients loads. The
combination of slope, soil and land cover contribute to create the HRUs
spatialization which were fixed to a maximum value of 500. The
meteorological data on daily precipitation, maximum and minimum
temperature were obtained from four stations (Osimo, Ancona, Bar-
accola, and Svarchi) of the Sistema Informativo Regionale Meteo-Idro-
Pluviometrico (SIRMIP, 2020) located inside the Aspio basin (Fig. 1).
Potential and actual ET were calculated using the Hargreaves module in
SWAT since only precipitation and temperature data were used
(Aschonitis et al., 2017). Daily streamflow data from two hydrometric
stations (Scaricalasino and Outlet) recording from 2010 to 2019 were
used for the calibration and validation procedure, along with daily
scattered values of sediment transport, and nutrients concentrations
(total N and P) recorded in the Qutlet station.

2.5.2. Land cover/management refinement

The updated land cover map was produced using Google Earth im-
ages to refine the CLC (2018) classification. The CLC map is made of
three progressively more detailed levels but not even the third level
provides the information necessary for this study. For instance, the
agricultural areas (level 1) in the study basin include the arable lands,
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the heterogeneous agricultural areas, and permanent crops (level 2). The
first two comprise “non-irrigated arable land” and “complex cultivation
patterns (level 3). These classifications encompass several different
crops (vegetables, corn, tobacco, aromatic, and more) which often
require specific and incompatible managements. The latter are pivotal
and diriment information to properly model N and P loads within a
watershed and at its outlet, consequently, to fulfill the work’s purpose a
land use refinement was necessary. Starting from the CLC (2018) clas-
sification which identifies three main covers (agricultural, forestry, and
urban areas), the land cover was updated using actual and historical
images based on Landsat TM and ETM + satellites (Fig. 2). For this
purpose, the use of Google Earth offers several advantages such as: i) the
availability of satellite imagery with spatial resolution less than 1 m, ii) a
full integration with GIS software, and iii) the possibility to visualize
images of the same areas taken at different time (Malarvizhi et al,,
2016). First, the CLC shapefile was intersected via spatial analyst tools
with the sub-basins defined in the preliminary SWAT watershed analysis
to obtain the main land cover for each sub-basin. Then, the Google Earth
satellite images were imported in GIS environment as base maps of the
previously produced shapefile. Finally, the shapefile was edited to
reproduce the effective boundary of artificial, natural, and agricultural
areas. The crop recognition was achieved using field images. Agricul-
tural systems were divided into eight new covers identified as: corn,
vineyards, orchards, sugar beet, sunflowers, barley, pasture, and wheat.
Forests were divided into commercial (wood production) and natural
ones, while urban areas were identified as commercial and residential
ones. The management practices for each land cover are shown in
Table S2. N and P requirements for the identified crops were obtained
from “Linee guida nazionali di produzione integrata e relativi allegati”
(Mipaaf, 2021) and from “Disciplinare di tecniche agronomiche di
produzione integrata” (Regione Marche, 2011). These documents define
the crops requirement of N and P aimed at minimizing the use of syn-
thetic chemical compounds following the concept of rational fertiliza-
tion (Table S3).

A point source of continuous input of N and P was identified in the
wastewater treatment plant (WTP) of Camerano, located on the Aspio
riverbank just before the Scaricalasino stream. In the WTP the raw
sewage is subject to screening, sandblasting, and sedimentation treat-
ments with separation of the activated sludge from the water phase,
followed by disinfection and draining processes. The data of Camerano
WTP were input in the SWAT model using the tool “point source™ within
the sub-basin N” 15 (Figure S1). The maximum N and P loads per day
allowed by the Italian legislation for a WTP into surface water are 15
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mg/1 for N and 2 mg/1 for P, which correspond to 97.5 kg-N/day and 13
kg-P/day considering a mean outflow of 6500 m®/day. Other point
sources (sub-basin N° 16, 21, and 33) of continuous input of N and P
were identified in the septic tanks located in the urban settlements not
connected with the WTP (Figure S1). The N and P loss from septic tanks
in each settlement was estimated from the number of inhabitants, the
average per capita daily water usage (215 I; https://www.istat.it), and
the most reported concentration of N and P in raw septic tank effluent of
50 mg/1 for N and 10 mg/1 for P (Beal et al., 2005). The three urban
settlements of Offagna (sub-basin 16), San Biagio (sub-basin 21), and
Osimo (sub-basin 33) were considered since, according to municipality
reports, in the years of simulation all wastewaters coming from these
cities were not subjected to proper treatment and usually discharged in
superficial courses. For Offagna, considering 1,984 habitants, the point
source discharge was responsible for 218 kg-N/day and 4.31 kg-P/day,
while San Biagio (1,651 habitants) was responsible for 181 kg-N/day
and 3.32 kg-P/day. Finally, the city of Osimo, the biggest urban center of
the three considered (34,918 habitants), was responsible for 3480 kg-N/
day and 77 kg-P/day. Given the large uncertainty of the N and P con-
centrations due to the septic tanks, two additional scenarios were run
with doubled and halved concentrations. These assumptions were
imperative to attain a comprehensive understanding of the many pro-
cesses affecting the surface water quality of the Aspio river, especially
considering the absence of an ongoing monitoring infrastructure
encompassing both WTP and municipal wastewater outflows. Conse-
quently, the input source system was favored over the septic tank input
within the SWAT module. This choice was dictated by the unavailability
of data regarding the septic tanks location and geometric characteristics,
as well as the corresponding N and P loads, all of which are vital for an
accurate simulation. In comparison, the point source approach offered a
more feasible and manageable implementation given the data limita-
tions (Schilling and Wolter, 2009).

2.5.3. Model performance evaluation

The SWAT model was used to simulate streamflow, sediment, and
nutrients loads for the period 2010-2018 using four years of warm-up
(2010-2013). Two calibration runs were conducted: the initial run
focused on streamflow utilizing monthly data, while the subsequent run
utilized daily data for sediment, N, and P. Specifically, the second cali-
bration incorporated the already calibrated streamflow parameters into
a new project configured to produce daily output for the simulation. The
parameters responsible for the streamflow simulation and utilized for
the auto-calibration procedure were obtained from a previous SWAT

Legend
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Agricultural systems
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Corn
“ Vineyards
Orchards
Pasture
“ Sugarbeet
Sunflowers
Barley
Forest areas
@4 Commercial forests
O, Natural forests

Urban systems
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Residential areas

Fig. 2. Land use characterization of the Aspio watershed as identified from CLC (2018) (left panel) and according to the updated version (right panel).
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three strong correlations: i) Cl" and SO%', ii) Ni, Cu, and NO>, and iii) TH, AR RS2 A A )
ESR, and COD. The correlation among Cl" and SO%' (0.89) is ascribable to E
deep water upwelling characterized by high salinity (Comodi et al., ~02588E 5808838359 .
2011). This water, circulating in deep Pliocene deposits, can reach the z"' % % S === = ;I' S = ;] SRR = $ S sii,
surface through a deep system of faults which characterize the study E’
area (Gobbi and Nanni, 1978). The correlation between Cu, Ni, and NO3 =
can be a sign of anthropogenic pollution from stormwater runoff in | 2EZ08NT8855858R882|E
urban areas, which usually are sources of these metals and reactive N g(°TF°9°F°~T°°°°99°°9 é
species (Czemiel Berndtsson, 2014; Pitt et al., 1999). The correlation I
between TH, ESR, and COD represents another anthropogenic process fzewggegsNILeaTIgny| 8
linked to the sewage leakage towards surface waters, from residential Zleggegee~SgececSS99SS9 Y
and industrial areas without proper treatment. The correlation among E
NHi, NO3, ESR, COD, and P, could further strengthen this hypothesis. — o o a4 o
FAidentiﬁedSfactors(F)witham00f0.68expglainingmo:;than95 8 §§§§§§§§§2§3§533§§§ E
% of total variance (Table 2): F2 strengthens the correlation among CI° © S o | | %
and SO%' but showing only 12.5 % of variance; F1 which involves nu- . - e D g
trients, .heavy me@ls, and bnologl?al mdncators-, seems to be the main g § SZzZ2 § § § § § f g 22 § 2 g
responsible of Aspio’s water quality; F3 only involves ESR enforcing | ' : : -
anthropogenic contribution already highlighted by F1. ;,%
To account and verify the agricultural contribution, all data on S2288RNRREIJREgdzsa| )
pesticides available in the dataset were merged into a unique parameter B|°C9C-"9999°99TTT°TTT|8
called TP. The time series comparison of TP versus TH (Fig. 2a) helps in ,:-
stating the independence of the agricultural parameter TP from TH. In SRS RTOL NS NRISURESS "3‘
fact, the highest peak of TH corresponds to the lowest TP and vice versa. 5 I|e§S~cSgccSSggSS9g9S3 g
Moreover, to highlight the correlation or no-correlation between the ] B
elements, a data driven interpolating function between the elements was g o 5-
performed. Fig. 3b shows an example of correlation between TP and TH, al g E § § § E g E é § é E 5 P § 5 § E § ’
where the hyperbolic function denoting the inverse relation between AR oo o %
these parameters is supported by an acceptable correlation (R = 0.623 % T
with p-value at 0.0005). &l |8s2gs8g332g22-225243
E|g4|T"FF°T°TTT°°TTec°e°|g
3.1.1. Sensitivity analysis 8 3
The result of the global sensitivity analysis indicating those param- £ S NS 8RL] NSRRI 222y -
eters responsible for the simulated flow, nutrients, and soil losses are g e FPOCCSSSFSSSFTTSST § .
listed in Table S4. Specifically, 14 parameters were chosen as respon- § g g
sible of flow (DEEP_IMP, GW_DELAY, CN2, ESCO, RCHGR_DP), erosion : .‘..“ A e o . g
(SLSUBBN, USLE K, USLE P, SPEXP, SPCON) and nutrient (NPERCO, z £ sz § g g g‘ g 589828 x5
PPERCO, CDN, ERORGP), according to the literature review (Busico e 3 43z
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Table 2
Results of FA for the Aspio river.
FACTORS
F1 F2 F3
Variance 74.2 12.5 9.66
BOD 0.995 0.023 0.011
COoD 0.980 -0.077 0.008
Proe 0.999 -0.029 0.002
POY 0.999 -0.028 0.000
NO3 0.945 -0.058 -0.013
NH4 0.998 -0.016 0.028
cr -0.050 0.845 -0.441
SOF 0.334 0.850 0.223
Ni 0.997 -0.005 -0.011
Cu 0.996 0.004 0.023
TH 0.998 -0.029 0.002
ESR -0.157 0.194 0.944

et al., 2020a; Chen et al., 2019; Khelifa et al., 2017; Serpa et al., 2015).
The significance of the sensitivity test was evaluated using the statistical
index “p-value”, automatically generated through the application of the
SUFI-2 algorithm. The results of the sensitivity analysis for each simu-
lated process highlighted that: i) the streamflow simulation is strongly
dependent from the distance to the impervious layer (DEEP_IMP), the
groundwater delay time (GW_DELAY), and the SCS curve number (CN2),
ii) the USLE parameters (USLE K and USCLE_P) and the slope length
(SLSUBBSN) are the main parameters influencing sediment losses, and
iii) the P and N percolation factors (P_PERCO, N_PERCO) are responsible
for the nutrients loadings.

3.1.2. Streamflow and sediment simulation

SWAT demonstrated to successfully simulate both streamflow and
sediment regimes in the Aspio watershed (Fig. 4a, 4b). For the stream-
flow calibration, the results showed a “very good” agreement between
simulated and measured data, with satisfactory values of R? NSE, and
PBIAS in both hydrometric stations.

Similarly, the statistical indices for validation were within the range
of a “very good” model performance. Moreover, analyzing the two hy-
drometric regimes of Scaricalasino (Fig. 4a) and Outlet stations
(Fig. 4b), the model proved to adequately simulate both low and high
regime of streamflow. Considering the sediment load calibration, where
randomly distributed daily sediment data (2014-2018) were used, the
simulation was again classified as “very good” (Fig. 4c¢).

3.1.3. Nutrients loading simulation

The calibration results for N and P loads at the watershed closure
(Outlet station) are shown in Fig. 5. Despite the “very good” simulation
obtained for discharge and erosion, N and P simulations were considered
“good” given the relatively low number of observed concentrations. The
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results of statistical indices are shown in Table 3. The “good” evaluation
can be justified accordingly with the results proposed by Moriasi et al.
(2007) (Table 51). Specifically, in case of daily scattered data for nu-
trients’ simulation, the evaluation of R? and PBIAS is enough to judge
the simulation efficiency. Fig. 5 shows the comparison among simulated
and observed values of N and P for the Outlet station. Despite showing
big differences in absolute values, the trends highlighted by the grey
area, which summarize the minimum and maximum N and P concen-
trations in septic tanks, are fully comparable (R* > 0.7) with the
observed concentrations. To show the impact of the WPT and the septic
tanks on the overall nutrients export in the Aspio river, a scenario with
only agricultural inputs was run. The results depicted in Fig. 5 (dashed
line) highlight that fertilizer leaching in the simulated period is minimal
(two order of magnitude lower) with respect to the other sources.

3.1.4. Erosion and nutrients export

Susceptibility maps of for sediment, N, and P exports throughout
superficial runoff were generated using the HRUs output and only
considering the agricultural diffuse source of pollution, without
involving punctual anthropogenic source of pollution (Fig. 6). Similarly,
to Busico et al., (2020a), the susceptibility maps were created averaging
the results for the whole simulation period and then classified in five
classes of susceptibility from “very low” to “very high” using the
geometrical interval. The yearly N amount leached in superficial runoff
range from 0 to 41 kg-N/ha/year, P range from 0 to 0.71 kg-P/ha/year,
while sediment yield ranges from 0 to 11 t/ha/year. In the Aspio basin
only the susceptibility classes from medium to very high are repre-
sented. The sediment load perfectly matches with the steeper
morphology and agricultural areas (wheat, corn, and sunflower), while
N and P exports mainly correspond to corn cultivations and to the urban
areas where leaching from septic tanks is particularly conspicuous and
represent the major component of nutrient release at the basin scale.
Anyway, the maximum yearly amounts of nutrient leached from the
surrounding area does not justify the N and P value monitored in the
Aspio river.

4. Discussion

According to the Global Environment Monitoring System database
(Robarts et al., 2002), NO3 concentration in several rivers around the
world could reach values three to seven times higher than the healthy
water quality standard of 10 mg/L suggested by WHO (le et al., 2011).
In the Aspio river, according to the monitoring system of ARPAM, the
value of NO3 and NH{ reached a maximum concentration of 55 mg/L
and 11 mg/L respectively, with an average value of 18 mg/l for NO3 and
2.25 for NH4 During the period of analysis (2004-2019) NO3 exceeded
the suggested threshold limit of 10 mg/L in river water 70 % of time.
Hence, an accurate investigation focusing on nutrients sources identi-
fication and quantification is mandatory. The time series, regression,
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° 2
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Fig. 3. Comparison among Total pesticides and Total hydrocarbons time series (a), and their hyperbolic relation (b).
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and multivariate statistical analysis, allowed to identify the main
hydrochemical processes and to correctly quantify the role of the geo-
genic mineralization while the process-based hydrological models was
useful to identify and quantify pollution sources. Specifically the first
allowed to obtain an accurate hydrochemical characterization of the
Aspio river waters, identifying four main processes: i) geogenic, related
to the upwelling of deep saline water rich in SOF and CI" which are
prevailing during drought periods when the baseflow component is
dominant, ii) heavy metal pollution (Cu and Ni) due to the rainwater
runoff from industrial and urban areas, iii) a probable wastewater
contamination (TH, ESR, NHi, and COD), and iv) agricultural contri-
bution (TP). N species along with P, due to their correlation with bio-
logical indicator and heavy metals might derive from several sources
such as: fertilizers, septic tanks, WTP, and urban runoff (Busico et al.,
2017; Li et al., 2011). The SWAT model was applied to quantify the
different sources (agricultural, WTP, and septic tanks) contribution to
river nutrients input. The methodology proved to adequately simulate
both streamflow and sediment loads and provided satisfactory results
also for N and P loads. Specifically, the simulation considering’ only
agricultural input of N and P, was impossible to calibrate since other

pollution sources beyond the agricultural contribution were present.
Since in the SWAT routine the main sources of N and P are soil organic
matter, fertilizers, WTP, and septic tanks inputs (Abbaspour et al,
2015), the latter represents the only pollution sources which are prob-
ably responsible for the large nutrients loading rate in the Aspio river.
So, to calculate the overall contribution in percentage of each source, an
average value (within calibration and validation points) of real nutrient
concentrations has been calculated and then compared with the various
SWAT output. According to this calculation, the pollutant sources in the
Aspio watershed could be ranked as follow (Table 3): i) N agricultural
load is equivalent to 4 = 1 % of the whole N load of the Aspio river, ii)
WTP contribution is responsible for 12 + 1 % of the N load, considering
a stable discharge and a nutrient outflow never upon the legal limits, and
iii) the remaining 84 + 5 % can be ascribable to leakage from septic
tanks, occurring especially in rural settlements not connected to WTPs
(Gorski et al., 2019; Lu et al., 2008; Wakida and Lerner, 2005). For P
instead, the agricultural load due to fertilizers runoff accounts for only 4
+ 1 %, while WTP and other anthropogenic activities could be equally
responsible for the remaining load.

Moreover, significant P losses could be ascribable to the soil eroded
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Fig. 5. Calibration diagrams for Nitrogen (a) and Phosphorous (b) loads at the Outlet station.

from agricultural land (Schoumans et al., 2014), especially in those
areas with high susceptibility (Fig. 6) which could represent an impor-
tant pathway of P migration. Anyway, is important to highlight that such
application could retrieve better and more reliable results if at least
monthly data of nutrient loads would be available. The uncertainties due

to the inherent impossibility to precisely characterize N and P loading
rates from the septic tanks are highlighted in Fig. 5, where the range of
the doubled and halved N and P concentrations have been used. Despite
the daily concentrations are extremely variable, their mass uncertainties
are relatively limited as highlighted in Table 4. Indeed, this study
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Table 3
Summary of statistical indices for SWAT simulation.
Calibration Validation
R? NSE PBIAS R? NSE PBIAS
Streamflow 0.93 0.79 -2.00 0.93 0.81 -1.00
Sediment 0.86 0.82 2.40 0.91 0.85 1.06
Nitrogen 0.65 0.48 -12.00 0.71 0.51 -6.50
Phosphorous 0.68 0.45 0.10 0.73 0.42 1.30

emphasized the utility of time series, regression, and multivariate
analysis as valuable tools for discerning the various processes respon-
sible for water quality. It also sheds light on the limitations of these
methods when it comes to accurately quantifying the magnitude of each
process, particularly in situations where the same pollutant is associated
with multiple phenomena.

The Water Framework Directive demanded the accomplishment of
good ecological status of rivers throughout the EU by 2015, but this was
seldom achieved except for a few cases (Boets et al., 2021; Romero et al.,
2016). Moreover, it required to invert rising trends in organic and
inorganic contaminants concentrations. In the Aspio watershed, no
significant improvement has been recorded after 2015, with very high
concentrations of ESR still present in 2019 (Supplementary Material), as
well as anionic surfactants which are a clear indication of septic tanks
losses. As highlighted in this study, advanced resolution of different
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nutrients sources and their spatial distribution is required to precisely
evaluate the risk of eutrophication in anthropized watersheds. This aim
can be attained by integrating a preliminary pollution sources analysis
along with watershed solute transport modeling. The combined appli-
cation of these two methods proves particularly advisable in basins
characterized by uncertainties pertaining to pollution sources, espe-
cially in cases where a comprehensive monitoring system is lacking.
From a decision-making point of view, water quality managers of the
Aspio watershed could focus on increasing the number of houses and
buildings connected to WTPs or promote better maintenance of septic
tanks in rural settlements located near the streams, while the agricul-
tural nutrients load seems to be a minor concern.

Table 4
Discrimination of N and P sources in the Aspio watershed: septic tanks, fertilizers
and WTP.

Pollution sources NITROGEN PHOSPHORUS
Septic tanks 84 + 5% 48 + 3%
Fertilizers 44+19% 44+1%

WTP 12+1% 48 + 2 %

The uncertainty is calculated from the scenarios with different N and P con-
centrations in septic tanks.

Legend

Aspio basin
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o

Fig. 6. Susceptibility map for sediment, N, and P exports.
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5. Conclusions

SWAT model application supported by a detailed time series analysis
and regression analysis on a robust database allowed to identify and
quantify the nutrient loads in the Aspio watershed. NO3 showed no
significant correlation with other parameters indicating multiple sour-
ces. The agricultural contribution plays a minor role representing only 4
+ 1 % of the whole river load, despite the occurrence of agricultural
activities in most of the watershed. On the other hand, few areas occu-
pied by civil, commercial, and industrial settlements have a much
greater impact on river’s pollution, mainly due to septic tanks’ effluents.
Also for P, agricultural contribution is minimal and other activities/
processes, like WTP and septic tanks, represent the main sources
contributing to P load in the Aspio river. The proposed approach to
discriminate nutrients sources in the Aspio basin could be easily repli-
cated in similar watersheds where the origin of nutrients loads is un-
known, or the information is fragmentary. The availability of such
studies could promote sound management and policy strategies
designed to protect and/or improve the quality of surface waters, with
targeted measures that primarily focus on the recognition and mitiga-
tion of the most significant nutrient sources at the watershed scale.
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