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Abstract: The series of technological advances that occurred over the past two decades allowed
photogrammetry-based approaches to achieve their actual potential, giving birth to one of the most
popular and applied procedures: structure from motion (SfM). The technique expanded rapidly to
different environments, from the early ground-based and aerial applications in terrestrial scenarios,
to underground and underwater surveys. Nevertheless, the transfer through different media required
a period of adaptation that could take anything from years to decades. Only recently, thanks to the
emergence of low-cost versatile imaging systems, have airborne and underwater photogrammetry
became approachable to a wide range of research budgets, resulting in a popular cost-effective
solution for many disciplines. Although numerous review efforts have already been made to resume
the current knowledge on photogrammetry, this review summarizes the evolution of the technique in
both terrestrial and underwater environments, paying special attention to the transfer of methods
and techniques between the two environments. The acquired information helped to identify trends
during its development and to highlight the urgency to widen the range of its applications in aquatic
habitats in order to fill the current gap of knowledge on their structure and species distribution,
delaying the design of proper conservation strategies.

Keywords: optical methods; structure from motion; three-dimensional approaches;
multidisciplinary; survey

1. Introduction

The description of habitat complexity is the method we use to define the surrounding
environment and to quantify the structural key elements of an ecosystem [1,2]. From the
traditional bi-dimensional (2D) survey techniques to the relatively recent three-dimensional
(3D) approaches, every method has accomplished its objective in its own historical and
technological context. Among the pool of techniques available is photogrammetry, defined
as “the art, science, and technology of obtaining reliable information about physical objects
and the environment through processes of recording, measuring, and interpreting images
and patterns of electromagnetic radiant energy and other phenomena” [3]. Although it has
more than 170 years of history, various technological and methodological advancements
have allowed for photogrammetry “Renaissance” over the past decades [4]. In fact, since
its first documented cartographical applications by Laussedat in 1949, a series of turns
of events pushed photogrammetry from its highly parameterized origins towards more
optimized procedures, transforming it into the versatile tool it is today [5]. At its start, the
rise of stereoscopy and the development of the airplane popularised the technique defining
what is now called analogue photogrammetry [6]. In the 1940s, thanks to the arrival of
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computers and their increasingly widespread availability, fully analytical procedures were
developed, leaving graphical solutions outdated and establishing the basis of modern
photogrammetry. However, it was not until the appearance of digital imagery, together
with the design of state-of-the-art algorithms (e.g., scale-invariant feature transform), that
photogrammetry became such a powerful tool [7–11]. The subsequent optimization of
pattern recognition algorithms and the exponential increase in computing power since the
late 1990s finally allowed the methodology to achieve its actual potential, giving birth to one
of the most popular and applied procedures: structure from motion (SfM) photogrammetry.
With the appearance of SfM workflow, photogrammetric sampling and processing were
facilitated considerably. Even though this procedure is based on stereoscopic principles, its
main asset is its highly automated nature: the whole 3D geometry of the scene, including
the camera orientation and positions, is solved through the implementation of a series of
algorithms over a dataset of overlapping images [12].

The advent of more powerful workstations favoured the development of tailored
commercial and open-source software, leading to easier access to the technique. With its
increased potential and accessibility, it was only a matter of time before photogrammetry
caught the attention of different disciplines, such as paleosciences [13–15], geological
sciences [16–18], architecture [19–21], civil and industrial engineering [22–24], cultural
heritage [25–27], and life sciences [1,28,29]. Photogrammetry’s main purpose was no
longer cartography and topography, but instead to record and explore the world from a
3D perspective. Consequently, the technique expanded rapidly to different environments,
from the early ground-based and aerial applications in terrestrial habitats [30–32], to
underground [33,34] or underwater surveys [35,36], and even outer space [37]. Generally,
this transfer through different media required a period of adaptation that could take years
to decades, firstly to adapt the existing apparatus to these new environments, and secondly
to develop equipment affordable to the different discipline’s budget [38,39].

In the case of submerged environments, the first underwater photographs were taken
in the 1850s [40], but we had to wait until 1978 for the first major photogrammetric un-
derwater survey [41]. This delay corresponded to the development of tools that allowed
for a reliable underwater implementation of the technique, such as the appearance of the
diving apparatus and the rise in compact water-proof housing. However, only recently
underwater imaging systems became economically affordable to the broad public, mak-
ing underwater photogrammetry approachable to a wide range of research budgets and
resulting in a popular cost-effective solution for many disciplines (e.g., archaeology, marine
biology, oceanography, or engineering) [42–44].

Nowadays, similar patterns as the ones described below can be observed in the cou-
pling of photogrammetry with various emerging technologies developed in the first place
for terrestrial applications. One clear example is the merging of photogrammetry and
laser-scanning data, which, through its combination, allow for overcoming some of the
techniques’ individual limitations (e.g., increase in accuracy for photogrammetry and
include colour information in the case of laser-scanning) [18,26,27]. Although numerous
review efforts have already been made to resume the current knowledge on photogramme-
try [45–53], the main aim of this work is to summarise the evolution of the technique in both
terrestrial and underwater environments, paying special attention to the transfer of meth-
ods and techniques between the two environments. The acquired information will help to
identify trends during its development and to highlight the urgency needed to widen the
range of applications in the aquatic habitats to fill the still current gap of knowledge on their
structure and species distribution, delaying the design of proper conservation strategies.

2. Materials and Methods

The review effort was conducted using the search procedure present in Table 1, follow-
ing the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)
statement as a guide [54], and limiting it to the cut-off date of 31 January 2022. Documents
complying with the inclusion criteria and containing the search term combination in the
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title, keywords, or abstract were included in the screening. Only publications written
in English, Italian, French, or Spanish were considered for eligibility. Publications not
containing any information on photogrammetric surveys were excluded. This strategy
resulted in 2546 documents being found. To select which papers to include in the analysis,
a three-step process was implemented, as follows: (i) duplicates were excluded, (ii) abstract
screening was performed to identify potentially relevant manuscripts (Figure 1), and (iii) a
full-text screening was conducted. Finally, a total of 1923 publications were retained for the
quantitative analysis (Table S1).

Table 1. Research procedure and inclusion and exclusion criteria.

Years 1950–2021

Search terms
“Photogrammetry”

AND (“mapping” OR “survey”) AND (“terrestrial” OR”
underwater”)

Database Scopus

Inclusion criteria
Peer reviewed studies, conference papers and books

Studies including photogrammetric applications.
Published in English, Italian, French, or Spanish

Exclusion criteria Duplicated manuscripts
Studies not including photogrammetric surveys
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From each of the included manuscripts, different information was obtained (Table 2A)
and is presented as Supplementary Material Table S1. Regarding the specific details
from each of the photogrammetric surveys types, the following details were extracted:
(i) the branch of science in which the survey was framed; (ii) the environment in which the
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technique was applied; (iii) the specific habitat, structure, or object addressed; (iv) the nature
of the surveyed item; (v) the type of implemented photogrammetry; (vi) if underwater, the
maximum surveyed depth; (vii) the coupled methodology; and (vii) the location system
(Table 2B; see Table S1 for categories). In all the analyses conducted on the literature, each
publication could be included in one or more categories.

Table 2. Parameters used to classify photogrammetric surveys during the data extraction.

Category Definition

(A) General features of the manuscript
Year Year of publication

Authors Authors of the publication

Title Title of the publication

DOI DOI of the publication

Country Country who funded the study

(B) Features extracted from each survey
Branch of science Discipline in which it is applied the survey

Environment in which the survey has been performed:
Environment (i) terrestrial; (ii) marine;

(iii) freshwater; (iv) terrestrial–aquatic; (v) underground

Specific
environment Specific type of environment/structure/object surveyed

Nature scenario Nature of the surveyed scenario: (i) natural; (ii) artificial

Type of photogrammetry implemented:
Sampling
approach (i) airborne; (ii) ground-based;

(iii) underwater; (iv) space-borne

Depth If underwater, maximum depth at which the survey was performed

If applicable, complementary approach with which have been coupled the photogrammetry:
Coupled

techniques (i) laser-scan; (ii) multi-spectral imaging;

(iii) thermal imaging; (iv) acoustic techniques;
(v) tomography; (vi) radiation; (vii) machine learning

If applicable, location system with which have been coupled the photogrammetry:

Coupled location system
(i) global positioning system (GPS) and global navigation satellite system (GNSS);

(ii) mobile mapping system (MMS); (iii) post-processing kinetics (PPK); (v) real time
kinetics (RTK); (vi) simultaneous location and mapping (SLAM)

If applicable, vehicle used for the photogrammetry survey:
Vehicles

(i) remote operated vehicle; (ROV); (ii) unmanned aerial vehicle (UAV); (iii) satellite

3. Results and Discussion
3.1. Photogrammetric Surveys through Time

The history of photogrammetry can be seen as a constant process of development and
optimization [10], with a continuous widening of its application through time (Figure 2).
Before 1960, only three articles were recorded, mainly for cartographical purposes [54–56];
however, since the 1960s the number of publications started to fluctuate until 2000, repre-
senting a breakpoint. From this year on, the growth of computing power and the emergence
of new technologies [57] allowed for the spread of the technique. Among all types of pho-
togrammetry, ground-based and airborne implementations were the ones that prevailed in
the reviewed literature. Conversely, underwater applications started to be noticed just after
2010, with a peak in publications in 2019 (n = 35), likely thanks to the increasingly available
low-cost waterproof compact cameras [58]. The general drop observed after this year
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(Figure 2) can probably be traced to two main reasons: (i) not all published manuscripts
were already added to SCOPUS when the online research took place and (ii) the effects of
the 2020 COVID-19 emergency in terms of field-work and mobility restrictions [59].
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3.2. Worldwide Application of Photogrammetry

In the past, the application of photogrammetry was polarised towards developed
countries; however, since 2010, the accessibility and thus use of this technique became
increasingly frequent [11]. Considering the total number of publications and the types
of photogrammetry considered here, Italy was the country with more research groups
focused on photogrammetric approaches (with 454, 296, 231, and 47 publications in general,
ground-based, airborne, and underwater applications, respectively) (Figure 3a–d). Other
countries highly involved in photogrammetric surveys were the USA, the UK, China,
France, Spain, and Germany (Figure 3a–d). While airborne and ground-based studies
showed a similar distribution worldwide, underwater implementations still seem to be
mainly focused on Europe and the USA (Figure 3d). The almost complete lack of studies in
developing countries regarding underwater approaches could be related to the relatively
high implementation costs until recent years [58]. However, it may also be explained as
an artefact of this analysis, as only the first author’s affiliation was recorded to define the
geographical distribution of the publications [60]. With the current commercialization of
low-budget solutions [58,61], the number of publications in all three photogrammetry types
is expected to increase, especially in developing countries.
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3.3. Photogrammetric Surveys among Disciplines

In agreement with Figures 2 and 4, some of the disciplines have a longer history
applying photogrammetry. Taking a close look to the heatmaps, it is possible to identify
some of the “pioneer-disciplines”, such as photogrammetry/geomatics, geosciences, and
cartography/topography, which were already implementing all three photogrammetry
types in the 1970s (Figure 4a–c). These early applications are clearly marked by the testing of
the technique’s accuracy or its potential uses, especially for mapping purposes e.g., [62,63].

Even though it is evident how all three technique typologies benefited from an increase
in the number of studies after 2010, airborne approaches showed the most marked growth
in this latest period, reaching a wider range of disciplines (Figure 4b). This is directly re-
lated with the development and popularisation of small unmanned aerial vehicles (UAVs),
which drastically decreased the cost of aerial surveys, previously performed by manned
aircrafts [64]. The other two typologies, on the other hand, seemed to have been applied in
more specific contexts so far, with a few areas of science monopolising their implementation
(Figure 4a,c). In fact, the disciplines showing a predilection for ground-based approaches
are cultural heritage/archaeology (164), geosciences (87), and architecture/civil engineer-
ing (78) (Figure 4a), which benefited from the opportunity to monitor scenarios from a 3D
perspective, a useful approach in terms of structure integrity assessments [65–67]. Concern-
ing cultural heritage, photogrammetry also allowed for the possibility for the development
of virtual repositories, an emerging tool in constant evolution thanks to its huge potential
in terms of science transfer and education [68,69]. In the matter of underwater applications,
Biology/Ecology (46) and Cultural Heritage/Archaeology (28) were the disciplines mostly
exploiting the technique (Figure 4c). This fact reflects the increasing interest of Life Sciences
in the study and monitoring of underwater habitats’ structural complexity and organisms’
distributions [1,35,70,71]. Additionally, in terms of underwater cultural heritage, as well as
land-based approaches, the popularisation of image-based techniques for the digitalization
of historical sites also occurred. In fact, the number of 3D reconstructions and immersive
experiences of archaeological sites skyrocketed over the past years [42,72], with a special
emphasis on wreck scenarios [73–76].



J. Mar. Sci. Eng. 2023, 11, 759 7 of 17J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 7 of 19 
 

 

 

Figure 4. Number of publications per year and the discipline in which the study was framed. (a) 

Ground-based applications, (b) airborne-photogrammetry applications, and (c) underwater. 
Figure 4. Number of publications per year and the discipline in which the study was framed.
(a) Ground-based applications, (b) airborne-photogrammetry applications, and (c) underwater.



J. Mar. Sci. Eng. 2023, 11, 759 8 of 17

3.4. Environments Surveyed by Photogrammetry

As photogrammetry allows for cost-effectively evaluating a wide range of scenarios
at different scales, it has rapidly expanded through different environments along his-
tory [1,77,78]. To analyse the scenarios covered by photogrammetric surveys, we focussed
our analysis during the period containing most of the publications (2000–2021). A clear
general dominance on terrestrial environments’ surveys have been recorded (Figure 5a).
Although after 2012 a promising increase occurred in the number of studies covering
aquatic environments, the total number of works is still quite small (n = 209) (Figure 5a).
Coupled and underground approaches are instead still marginal, a fact possibly linked
to the purposes of these studies, which mainly focussed on coastal areas [79,80] and cave
systems [81,82], respectively.
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A deeper analysis was also performed considering the two decades separately, in order
to understand which scenarios were assessed (Figure 5b,c). Construction surveys prevailed
in terrestrial environments for both decades, driven by its rising application in cultural
heritage and architectural studies (Figure 5b,c). Even though the ratio terrestrial–aquatic
did not change significantly among the decades, a higher representation of natural scenarios
could be detected (Figure 5b,c), with the emergence of forests monitoring activities in land,
of ice dynamic research in fresh-water media, and coral reefs in marine habitats (Figure 5c).

Environmental sciences have always acknowledged the importance of 3D complexity
as a main driver of ecosystem functionality, but it is only now that we have the tools to
properly quantify it [83–85]. The current decade (2021–2030) has been defined by the United
Nations as the Decade for Ecosystem Restoration, during which landscape approaches will
be promoted to prevent and reverse ecosystem degradation in terrestrial, freshwater, and
marine environments [86]. Huge monitoring efforts will be necessary to properly assess
their status and the effectiveness of the restoration actions [86].

The marked increase in the number and diversity of photogrammetric approaches
in life and environmental sciences suggests the technique as a suitable candidate to cost-
effectively survey wide natural areas, monitoring changes from both a 2D and a 3D per-
spective and assessing features previously oversighted, such as structural complexity.

3.5. Bathymetric Distribution of Underwater Surveys

Most of the studies assessing aquatic systems mainly address depths accessible by
recreational diving [87], leaving our oceans largely unexplored, with only a few sparse
pieces of information collected about the deep sea [88]. Although huge international efforts
are being made to cover these gaps [89], there is still much work to do before we have a
complete map of our oceans’ floors. Indeed, we observed how most of the underwater sur-
veys were performed between the surface and 40 m depth (78), leaving deeper areas highly
underrepresented (Figure 6), with the deepest survey reaching 3659 m [78]. Biological
studies (36) were the most abundant from the surface down to 40 m depth, mainly tackling
coral reef ecology (see Table S1 for references). Below this bathymetry, archaeological
surveys were the ones prevailing in the literature, mostly addressing wreck remains (see
Table S1 for references). However, up to 45% of the total documents assessing underwater
scenarios could not be considered for the creation of Figure 6 as they did not provide any
specific information about the depth range covered by the survey’s activities (Table S1).
Nonetheless, the highlighted gaps of knowledge are expected to be gradually filled by a
combination of: (i) the continuous reduction in the operational costs of remote operated
vehicles (ROVs) [90,91]; (ii) the increased frequent involvement of the technical diving
community through citizen science projects [87,91–94]; (iii) the international legislations
(e.g., Marine Life 2030 and other various Ocean Decade programs) aiming to increase the
number of monitoring plans worldwide to create a global network and community of
practice for the observation and forecasting of marine life [95]; and (iv) the international
effort being performed in the framework of the GEBCO Seabed 2030 project, which aims to
map the whole oceans by 2030 [89].

3.6. The Revolution of Unmanned Vehicles

Thanks to the development of powerful micro-computers along with the downsizing
of remote sensing devices, the survey costs of remotely control systems have dropped
continuously in the past years, persuading more and more disciplines towards the every-
day use of these robotic systems [60,90,96]. To analyse this phenomenon, we decided to
focus on the period from 2010 to 2021, as our research strategy only included six studies
before 2010 (see Table S1 for references). The growing interest in the use of unmanned
vehicles is reflected in Figure 7. Unmanned aerial vehicles (UAVs) found rapid popular-
ization and implementation, substituting the more traditional airborne approaches and
considerably reducing the sampling costs [97]. The drastic increase after 2015 of aerial
drone-based surveys (Figure 7) was related to the relatively rapid commercialization of
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low-cost systems [63,97], while their underwater equivalent (i.e., ROVs) was still struggling
with the development of more accessible systems due to the intrinsic challenges and logistic
constraints of underwater robotics [91,98]. For this reason, the total number of ROV surveys
found by our review strategy was quite low (n = 59), even though a slight growth in their
use was observed in the last few years (Figure 7). In fact, ROVs are mainly used by offshore
oil and gas companies for inspection, maintenance, and repair of their infrastructures [98].
Nonetheless, the release of more approachable priced apparatus allowed for predicting a
rise in the application of ROVs by the scientific community, and with it, an opportunity
to increase the knowledge on deep environments, helping with the implementation of
nature-based management and conservation strategies.
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In terms of the type of surveyed scenarios in the last decade, an increase in the
number of studies addressing natural environments was observed compared with artificial
scenarios, especially when UAVs were used (Figure 7). Nowadays, the coupling of cutting-
edge technologies (e.g., multi-spectral imagery, laser-scan, and thermal imagery) with
UAVs, have opened new possibilities, becoming the tool of choice for small and medium
scale surveys for many different user groups [51,99,100].

Autonomous underwater vehicles (AUVs) were not considered for plotting Figure 7
due to the small number of studies included in this review (5), even though they are now a
hot topic in research [46,101], especially for monitoring purposes. It is expected that the
same technological advances contributing to the appearance of low-cost ROVs will price
down these high-budget pieces of equipment as well [91]. In fact, these systems, together
with machine learning approaches and real time photogrammetry, will be a promising
research line for the forthcoming years.
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3.7. Coupling of Photogrammetry with Other Techniques

Another interesting aspect of photogrammetry is its versatility to be coupled with a
wide range of complementary approaches (Figure 8). By analysing the literature, a repeated
pattern could be identified (Figure 8), in which the first trials on technique-coupling were
often performed to control the accuracy of photogrammetry or to test a possible data
merging among techniques [102,103]. Over the years, these combinations raised some
interesting approaches, occasionally ending up in the following:

(i) The development of new methodologies, such as multispectral photogramme-
try [100,104] or thermal photogrammetry [105];

(ii) The increase in the accuracy and resolution of the technique (such as laser-scanner
or real time kinetics) [106–109];

(iii) The approach to new environments through the use of ROVs or AUVs [27,34,110,111].
After 2016, a great increase in the number of surveys using coupled approaches could

be identified, with laser-scanning being the most paired technique (Figure 8), reaching
great results through merging the textures obtained from the RGB imagery with the depth
maps produced by the laser-scanning [112]. Its coupling with location systems (e.g., real
time kinetics, simultaneous localization, mapping, and Global Navigation Satellite Systems)
also gained some adaptions over time (Figure 8), representing a great improvement in
the georeferencing process of digital reconstructions [21,113–116]. Conversely, coupling
with other techniques, such as acoustic systems and multispectral or thermal imagery,
still nowadays remains low (Figure 8), mainly due to their specificity, thus reducing their
application to a few disciplines [99,115].

Regarding the transfer of these coupled approaches to the underwater domain, while
some of them are already widely applied (e.g., multibeam, radar, and sonar) [76,117], others
are still poorly implemented due to the high costs of the required equipment (e.g., multi-
spectral imagery or underwater location systems) or the limitations of specific techniques
(e.g., the fast extinction of near-IR wavelengths in underwater environments for thermal
imagery) [118,119]. There are still some challenges to overcome before they can become
suitable candidates for low-budget underwater survey plans. Nonetheless, the rapid de-
velopment of new technologies and the growing interest in aquatic environments create
the perfect framework to keep investing in the implementation of non-invasive, low-cost,
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multi-sensor approaches, thus contributing to the establishment of standardised monitoring
techniques in a multidisciplinary scenario.
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4. Conclusions and Future Perspectives

This study summarises past and current trends in photogrammetry applications in
both terrestrial and aquatic environments. Over the past decades, this technique has pro-
vided a cost-effective solution for different disciplines to approach a wide range of scenarios
that are more and more frequently represented by natural environments. In this context,
the inclusion of SfM photogrammetry in monitoring programs should be considered to ac-
curately describe habitats’ structural complexity, creating temporal baselines fundamental
to understanding and measuring possible changes over time, and thus possibly helping
lawmakers in designing ad hoc nature-based conservation and protection plans. The contin-
uous development of new technologies has allowed for couple photogrammetry with other
techniques, capturing global complexity as never before. Given the current tendencies,
an exponential increase in its application both in terrestrial and aquatic environments can
be expected. Advances in the field of machine learning classifiers, cloud computing, and
unmanned vehicles will play a key role in upscaling and automatization of the technique.

Underwater photogrammetric approaches still have a long road to go before reaching
their full potential. The appearance of more economic underwater location systems and
ROVs will contribute to the popularization of photogrammetric surveys for medium
and large-scale assessments. Nonetheless, at local scale, the wide-spread use of low-cost
compact cameras allows photogrammetry to be included in marine citizen science programs
(e.g., protocol 11 of the Interreg MED MPA Engage project, [120]), highlighting the high
versatility of the technique and its huge potential in public engagement.

To conclude, there is an urgent need for the implementation of non-invasive, cost-
effective techniques, and SfM photogrammetry represents a valuable example that could
allow us to look at marine ecosystems from a multiscale integrative perspective, which
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is fundamental for the exploration of seascapes and the design of effective and tailored
conservation measures.
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