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Classification of waste wood categories according to the best reuse using 
FT-NIR spectroscopy and chemometrics 
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H I G H L I G H T S  

• Waste wood composition is the key-point for deciding the best suited applications. 
• Waste wood were divided into three categories according to the best-suited reuse. 
• Classification models were developed to separate the material in the three classes. 
• Results suggest that Near Infrared Spectroscopy can be used for real-time sorting.  
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A B S T R A C T   

In Europe, the volume of waste wood is increasing. Waste wood can be reused, promoting circular economy and 
avoiding landfills. It can be used as a bioenergy feedstock reducing the use of fossil fuels, or be reused for 
producing new composite wood material. Only wood with hazardous substances needs to be disposed. To this 
aim waste wood samples were collected from a panel board company and several recycling centres in Italy and 
Denmark. The samples were assigned to waste wood categories and analysed by Near Infrared Spectroscopy. 
Principal Component Analysis was used to investigate sample variability and Soft Independent Modelling of Class 
Analogies (SIMCA) for classifying the samples according to the appropriate reuse: energy production, panel 
board production or landfill. The results are good, with a classification rate of 90% for virgin wood material and 
86.7% for treated wood material. The classification of waste wood is key for turning it into a secondary resource.   

1. Introduction 

Wood represents a valuable, and is one of the oldest, resource and it 
is used for a wide range of applications, e.g. paper, building, energy 
production [1]. The utilized wood ends up in waste streams and gen-
erates post-consumer waste, better known as waste wood. A recent study 
has estimated that in the European Union 50 million m3 of waste wood 
are generated [2]. By 2030, waste wood is expected to contribute with 
59–67 million m3 to annual European Union wood demand [3]. 

Because of its relatively high calorific value most of this material is 
incinerated with energy recovery [2, 4]. However, waste wood may 
equally meet the requirements for other recycling options, as 
wood-based panel production. In 2019, the total wood-based panel 
production was 74.0 million m3 and the consumption 76.4 million m3 

[5]. One of the most prominent recycling options for waste wood is 
particleboard, with a European production of 34.8 million m3 in 2015 

[6]. Because of the increasing attention on recycling and the European 
policy targets encouraging circular economy, waste wood could repre-
sent a valuable resource for recycled materials instead of being incin-
erated or disposed. 

In general, most waste wood could be used for energy recovery or 
recycled for the production of wood engineered products, such as 
building material [7, 8]. The recycling potential of waste wood is still 
low because of the presence of contaminants in wood products, which 
limits considerably its recycling or reuse [9]. In fact, wood is subjected 
to different treatments, i.e. heat, chemical or mechanical treatments, 
that involve preservatives containing organic and inorganic contami-
nants [10, 11]. Those contaminants may represent an issue in the waste 
wood management, because they can lead to contamination of soil, 
water or air. In Europe, some preservatives have been banned because 
they are hazardous (e.g. Chromated Copper Arsenate - CCA, Penta-
chlorophenol - PCP and creosote), while others are considered 
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hazardous only when exceeding specific limits [12]. As a result, in order 
to be reused for producing wood-based panels waste wood should 
contain a low level of those contaminants [8]. In general, the end-point 
for these waste wood materials is the landfill, but it is neither a sus-
tainable nor a cost-efficient option compared to reuse [8]. 

As a consequence, it is evident that the recycling or reuse of the 
material could be maximized if the waste wood is properly sorted and 
handled based on the quality and characteristics of the material itself. 
Waste wood composition is the key-point for deciding the best suited 
applications. It is a very heterogeneous material because of the different 
sources and applications it can come from [13], and a proper sorting 
based on the quality grade of the material is essential to ensure a 
high-quality, clean and safe recycling loop. 

It is important to consider that also the definition of waste wood 
categories is not the same across the European countries. For instance, 
wood with preservatives, paintings or other chemical substances can be 
used to produce and add value to products such as composites, but not 
for energy production on the basis of categories and laws of the different 
European countries [14]. Countries such as Finland, Italy, Germany and 
United Kingdom have defined the quality indicators for the classification 
of waste wood in several categories on the basis of their quality and 
related applications [14]. As an example, glued and painted wood can be 
used as biofuel in Germany and United Kingdom but it is not allowed in 
Italy. Finnish classification is similar to the British one, but with some 
limitations for the energy use of these materials [14]. Regarding 
Denmark the classification is similar to the German one. The 
post-consumer waste wood is divided into four quality classes (A1 to 
A4). The two upper classes are suitable for recycling, the third class 
(treated wood and wood-based panels) may also be used for particle-
board production as long as not exceeding thresholds for selected 
chemical elements and the last (A4) for disposal of because of hazardous 
material, due to being impregnated with preservatives or painted. On 
the contrary, in Germany the third class is sent for incineration [9]. 

Some studies have already been carried out on the characterization 
of waste wood composition to determine the suitability for combustion 
[15-17], and also to check the product quality and safety associated with 
recycled products [13, 18, 4]. These studies could form the basis for 
discriminating waste wood according to its quality and deciding the best 
recycling options. However, the weak point is the use of the traditional 
lab analysis that employ complex, expensive and long procedures, which 
make the real-time sorting impossible. In addition, traditional lab 
analysis requires a sampling of the waste wood material directly along 
the sorting process or in the waste wood pile and a subsequent transfer of 
the sample to the lab. Only a few grams of material are used for the lab 
analysis compared to the tons of waste wood handled, leading to 
well-known problems of reliability of the results due to the huge vari-
ability in material composition [19, 20]. As a consequence, a technique 
that is rapid, economic, simple, and that can classify directly in the 
process line is necessary. A good candidate is near infrared spectroscopy 
(NIRS) [21] which is already widely used in other recycling processes, 
but with a limited number of studies [22, 23]. However, no studies have 
been carried out on the discrimination between the different categories 
of waste wood using spectroscopy, which has huge benefits in terms of 
real-time quality sorting directly in industrial applications. 

The overall aim of this study is to characterize the waste wood ma-
terial based on its quality and consequently determine its most suited 
applications. According to the possible applications and recycling op-
tions, waste wood has been divided in three main categories: virgin 
wood, treated wood and disposal wood. Virgin wood can be used either 
for wood-based panel production or energy applications, treated wood 
for wood-based panel production or energy applications in big com-
bustion plants provided with gas cleaning filters, and disposal wood 
should be sent to disposal as the contaminants could persist in sequential 
recycling loops. A second aim is to investigate the performance of class- 
and discriminant modelling when applied for sorting problems. In fact, it 
is well known that these classification tools have similar aims [24], but 

their application may depend both on the problems studied and the type 
of material analysed. In the class-modelling approach a set of samples 
belonging to a specific class (the target class) is modelled. This indi-
vidual class-model is then used to assign an unknown sample to the 
target class or not, based on the similarities of the new sample with the 
target class samples. On the other hand, in discriminant modelling 
approach, all the possible classes are well known and the model space is 
divided in different regions based on the differences among the analysed 
samples. As a consequence, a new and unknown sample is always 
assigned to one of the classes even if it belongs to none of them. 

To reach this aim more than one hundred samples have been 
collected and analysed by means of Near Infrared Spectroscopy. Prin-
cipal Component Analysis (PCA) has been used to investigate the vari-
ability of the spectral data and Partial Least Squares - Discriminant 
Analysis (PLS-DA) and Soft Independent Modelling of Class Analogies 
(SIMCA) for separating the samples in the different waste wood cate-
gories. Variable selection has also been applied for improving the clas-
sification performance and investigating the most relevant wavelengths 
responsible for the discrimination among the three waste wood cate-
gories. In addition, variable selections emulate the use of an NIR in-
strument with fewer wavelengths, showcasing how a simpler system, 
more suitable for industrial processes, could handle such data. 

2. Materials and methods 

2.1. Collection of waste wood samples 

Waste wood samples were collected in different locations in Italy and 
Denmark during September and October 2020. The sampling involved 
three recycling centres in Danish municipalities: Hvidovre (HVI), 
Audebo Miljøcenter - ARGO (AUD) and Vestamager (VES) and two in 
Italian municipalities: Ostra (OST) and Pollenza (POL). In addition, 
samples were collected in a panel board company (Gruppo Mauro Sav-
iola s.r.l. – SAV) and a company producing blocks for pallets (EcoBlocks 
s.r.l. – ECO). In all the sampling sites waste wood consisted mainly of 
large pieces of woody material such as items of furniture, fiber board 
and pallet. The sampling was carried out from static lots, focusing on 
collecting as many different qualities as possible, with several samples of 
each waste wood quality. We are well aware that this is far from how a 
classification could be implemented in the industry, as the whole sam-
pling procedure in itself is an important issue. We have, though, earlier 
published a study focusing on this important aspect [20], and will 
therefore not go into that aspect in the current work. 

In order to choose the proper reuse of the material according to its 
characteristics, the collected waste wood was sorted into 12 sub- 
categories as reported in Table S1 (supplementary material). The iden-
tification of waste wood category is relevant before deciding the best- 
suited application and defines possible end-users. Because of this, the 
12 sub-categories can be merged into three main waste wood categories 
according to the possible reuse of the material: i) virgin wood (VW), i.e. 
clean wood, that can be used both for panel board production and en-
ergy applications; ii) treated wood (TW), consisting in wood mixed with 
glue/resins (panel board, plywood, oriented-strand board, etc.) that can 
be reused for panel board production or energy applications in big 
combustion plants provided with gas cleaning filters; and iii) disposal 
wood (DW), consisting of impregnated and painted wood that needs to 
be sent to the disposal and cannot be reused. 

2.2. Sample preparation 

The sample preparation consists in a combination of sample division 
(reduction of the sample mass) and particle size reduction paying 
attention to maintain the representativeness of the material, as will be 
explained in detail below. Since the samples were collected in their 
original form, ensuring an accurate waste wood characterization, and 
mainly consist of large pieces, they need to be reduced prior to the NIR 
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analysis to simulate the size of the material during a regular industrial 
sorting process (around 5 cm). 

The size of the material was reduced using a log splitter, as it in this 
way was possible to obtain the desired particle size of around 5 cm. 
Unfortunately, we could neither use an industrial/professional shredder 
(because of the small quantity of material to grind) nor a portable 
shredder (because of the too small particle size it generates). 

As a final step, the sample size was reduced through a quartering 
process. It consists in piling the sample, dividing it into four, and 
combining the two opposite fractions. This process is repeated until the 
wanted sample size is achieved. At the end a total of 117 samples were 
obtained. 

2.3. Near-infrared data 

All the waste wood samples were analysed by means of a Foss 
DS2500 spectrophotometer (Foss A/S, Hillerød, Denmark) equipped 
with a silicon detector. The Vis-NIR spectrophotometer used an open 
ring cup cell (large sample cup, 12 cm diameter; FOSS cup) and absor-
bance was recorded every 2.0 nm from 400 to 2500 nm for a total of 
1050 data points. The samples were acquired in diffuse reflectance mode 
using an integrating sphere and were kept in rotation during the 
acquisition by means of the spinning cup. During the automatic rotation 
of the cup 32 spectra were recorded for each replicate. Instead of 
automatically averaging across these 32 scans, we decided to keep all 32 
sub-scans in order to have an improved representativeness of the het-
erogeneous samples. Each sample was scanned three times, by mixing 
the analysed aliquot of material with the rest of the sample and picking 
up another aliquot. 

A blank spectrum was collected at the beginning of each sample 
analysis to remove the random effects associated to the instrument and 
environment by using a spectralon standard with 100% reflectance as 
background. All the spectra were collected at room temperature. The 
resulting dataset consists of 11232 observations (32 spectra × three 
subsamples × 117 samples) and 1050 wavelengths. 

The dataset presented in this study can be found in an online re-
pository. The dataset is uploaded to Zenodo repository with data DOI’s 
assignment (http://doi.org/10.5281/zenodo.7057777). 

2.4. Multivariate data analysis 

Principal Component Analysis (PCA) was computed to investigate 
the spectral data and search for groupings and similarities among the 
different waste wood categories and sub-categories. Any clustering can 
be helpful for the development of the classification models. For 
improving the visualization, confidence ellipses were calculated for each 
waste wood sub-categories using a local PCA on the scores. The loading 
plot of the two first Principal Component (PCs) was investigated to 
identify the compounds associated to the distribution of the samples in 
the score plot. Before any model computation, different standard pre- 
processing methods were tested, i.e. Standard Normal Variate (SNV), 
Multiplicative Scatter Correction (MSC), first and second derivative 
(Savitzky-Golay with 9 or 13 smoothing points and 2nd order poly-
nomial) [25]. In addition, a simple offset correction has been tested 
(only removing the spectral average). 

The data set was split into training and test sets using a constrained 
random selection. The training set (n = 87 samples) was used to develop 
the classification model and the test set (n = 30 samples) to validate the 
model and check its classification performance with unknown samples. 
The selection was constrained to ensure that all waste wood categories 
and sub-categories are well distributed both in the training and test sets. 
The test set remained fixed for all the computations. SIMCA and Partial 
Least Squares-Discriminant Analysis (PLS-DA) models have been used as 
supervised classification techniques for separating the samples in the 
different waste wood categories. 

SIMCA models have been developed individually taking into account 

the three different categories as target class. The position of a new 
sample was calculated by projecting them on the loadings of the created 
PCA model. For determining the boundaries around the samples 
belonging to one particular class Hotelling T2 and the residual values 
were considered. Confidence limits were set at α = 0.05. If the projected 
sample is situated within the boundaries of the target class, then it is 
assigned to that particular class. The classification boundaries/limits 
have been computed using the formulas: 

limres ≥
(m − 1)res2

X2
1− α/2  

limT2 ≥
(m − 1)T2

X2
1− α/2  

where m is the number of samples, res are the residual values, T2 are 
Hotelling T2 values and X2

1− α/2 is the chi-squared distribution [26]. 
Several SIMCA models have been developed using these boundaries and 
taking into account different number of PCs (up to 8); all the classifi-
cation results have been stored and the best model has been selected 
based on the misclassification error in the calibration set. 

In order to investigate how the sensitivity of the classification per-
formed according to the set boundary limits, we decided to test different 
boundary limits by adding an offset to the two limits. This offset is based 
on the mean Hotelling T2-value or mean residuals multiplied by a 
number, n, going from 0.1 to 1.9 in steps of 0.1. The formulas are: 

new limres = limres + n*mean(res)

new limT2 = limT2 + n*mean
(
T2)

The accuracy of the classification models was determined using the 
Receiver Operating Characteristic (ROC) curve. Sensitivity or True- 
Positive Rate (TPR) and specificity or True-Negative Rate (TNR) 
values as well as accuracy and misclassification rate were computed to 
measure the ability of the model to recognize the samples belonging to a 
given class or reject samples not belonging to that class. The classifica-
tion results have been stored both considering all the scans individually 
(as though each scan is a different sample) and counting the number of 
the correctly classified scans for each sample replicate and, based on 
that, assigning the sample to a specific class. We have decided to set a 
classification threshold of 16 or 10 correctly classified scans (out of 32), 
i.e. 50% and around 30% of the total number of scans. It is imperative 
for the success of the classification that we allow for a lower threshold 
than 100%, as there is a high variability in the material [15, 16]. Finally, 
in order to validate the classification results, and ensure consistency and 
robustness, 10 different SIMCA models were computed for each category 
reducing the training set by around 30% and using the same samples as 
before as a test set. 

PLS-DA models were also developed for classifying the samples in the 
three different waste wood categories considered in this study. The 
models were validated both using venetian blind-cross validation (5 
segments, keeping scans of the same replicate together in the same 
segment) and the external test set. A sample is assigned to a category 
when it scored close to one, using a binary system. 

Finally, ad-hoc variable selection has been applied to the best SIMCA 
classification models in order to increase the prediction accuracy and 
reduce the model complexity. 

All the multivariate data analysis was computed using Matlab soft-
ware (ver. MATLAB R2019b, The MathWorks) with in-house functions 
based on existing algorithms. 

3. Results and discussion 

3.1. Spectra 

The recorded spectra were visually inspected in order to detect the 
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differences among the three waste wood categories. The spectra were 
pre-processed with a second derivative (Savitzky-Golay with 9 
smoothing points and 2nd order polynomial). The average spectra of 
virgin wood (VW), treated wood (TW) and disposal wood (DW) were 
investigated, see Fig. 1. Please note that we have decided to focus on the 
NIR range of the spectra (1100 to 2500 nm), as the visible part does not 
contain significant information with regards to the classification task. It 
is evident that the largest differences occur between the group of virgin/ 
disposal wood and that of treated wood. In order to get a clearer picture 
of the important differences between the waste wood categories, plots 
showing the overlap of the variability of pairs of waste wood categories 
were made, see Fig. 2. This gives a nice overview of the variability of the 
spectra, and is helpful for highlighting the spectral regions where a 
higher difference occurs. Some useful spectral dissimilarities between 
virgin/disposal and treated wood can be noticed in the region between 
1450 and 1500 nm, 1950–1980 nm and 2300–2390 nm (Fig. 2A and Fig. 
2B). The disposal and virgin wood curves are to a large extent over-
lapping, but with some differences in the disposal wood curve located at 
2140 nm, 2314 and 2352 nm (Fig. 2C). This is probably because the 
painted or impregnated part consists only of a thin layer on the top of the 
sample and the core is made of virgin wood. To get an estimate of the 
similarities/dissimilarities between the categories the percentage of the 
non-overlapping part of the spectra (area marked in yellow in Fig. 2) was 
computed and reported in the figure. The percentage of non-overlapping 
area is the highest between virgin and treated wood (52.2%) and similar 
between disposal and virgin (38.3%) and disposal and treated wood 
(34.7%). A higher percentage of non-overlapping area indicates a 
simpler classification task. Once again it was demonstrated that the most 
important differences in the curves are related to dissimilarities in 
chemical composition between treated and virgin wood. 

Some of the most important differences in the variability of the waste 
wood categories, and consequently the most important wavelengths for 
the discrimination of the three waste wood categories, are reported with 
grey areas in Fig. 1 and they are:  

- Area I between 1450 and 1500 nm: at 1458 nm it is possible to 
observe a higher peak of the treated wood samples with respect to 
the others. In addition, it can be noted that DW and VW lines have a 
minimum at 1470 nm, while in the TW line this minimum is moved 
forward to 1488 nm.  

- Area II between 1950 and 2020 nm: there is a deviation in the TW 
curve from the DW and VW curves at 1956 and 1972 nm and a shift 
in TW for the peak at 2010 nm.  

- Area III between 2300 and 2390 nm: this is probably the most 
interesting area with respect to the differences among the three 
waste wood categories. A minimum and a maximum can be observed 
in the TW and DW lines at 2314 and 2322 nm, while the VW line is 
smooth. In addition, the VW curve has two narrow peaks at 2352 and 
2362 nm, whereas DW presents just one peak at 2362 nm and TW the 
same peak at 2362 nm and a smaller at 2350 nm. Furthermore, DW 
and VW curves have a broader minimum at around 2380 nm, while 
TW has a sharper minimum at 2388 nm. 

Finally, another useful difference is the shoulder in the VW spectrum 
at 2248 nm, not detected in the other two spectra. The bands associated 
with virgin waste wood are normally linked to C-bonds, since the lignin 
and hemicellulose have a higher concentration in the virgin wood, 
compared to treated wood. Whereas for treated wood we can find N- 
bonds related to the glue [27]. 

The assignment of the most important wavelengths reported in Fig. 1 
are listed in Table 1. Please consider that for interpretation purposes a 
negative peak in the 2nd derivative equals a (positive) peak in the raw 
spectra. 

3.2. Principal Component Analysis 

A PCA was calculated to investigate the variability of the spectral 
data. It was of special interest to explore if there are any groupings 
among the three waste wood categories according to the possible reuse 
of the material. Spectra were pre-processed with the second derivative, 
as described in Section 3.1, and were averaged across the 32 NIR mea-
surements to reduce the spectral variation before the model computa-
tion. Fig. 3B reports the score plot of the two first PCs. To have a better 
view of the spectral variability of the samples and their distribution 
according to the waste wood sub-categories we have also reported the 
PCA score plot of the pre-processed NIR dataset without averaging the 
32 NIR measurements (Fig. 3A). 

At a first glance the samples seem to spread across the whole score 
space without any clear groupings. However, a closer inspection shows 
some trends in the distribution of the samples, i.e. the treated wood 

Fig. 1. Mean spectra of virgin, treated and disposal wood samples pre-processed with second derivatives (virgin wood samples: black line; treated wood samples: red 
line; disposal wood samples: blue line). The numbers refer to the main spectral differences also reported in Table 1. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web version of this article.) 
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samples are mostly located in the negative part of PC1 while the virgin 
wood samples are to the positive direction. To make a clearer picture of 
the differences among the waste wood categories considered in this 
study, confidence ellipses were computed using the standard error for 
each waste wood sub-category. Fig. 3C reports the same plot as Fig. 3B, 
but now with confidence ellipses instead of each individual subsample 
being plotted. The plot clearly shows some groupings among the waste 
wood categories. The virgin wood samples are located in the upper right 
corner of the score plot, while the treated wood samples are located in 
the lower left corner of PC1 and PC2. The samples with negative values 
for PC1 have a higher degree of glue (they are mainly composite wood), 
while the ones placed in the bottom right part of the score plot (positive 
PC1 and negative PC2 values) present a lower degree of contamination/ 
higher presence of virgin wood. These latter samples belong to the 
categories of fruit boxes (PB – type 12), floor (FL – type 7) and solid 
wood furniture (FT – type 2), in other words, the moderate treated 
wood. Finally, the disposal wood samples are spread in the PCA score 
space. Impregnated wood (IW) is placed in the area of the virgin wood, 
while the painted wood (PW) is almost at the centre of the PCA score 
plot. This nicely confirms the findings of the small differences between 
DW and VW found in section 3.1. We will discuss further about the 
similarities of the waste wood sub-categories in section 3.4. 

As a note, it can be mentioned that we also have computed the PCA 
testing different pre-processing methods, where both Multiplicative 
Scatter Correction (MSC) and offset correction gave similar results (re-
sults not shown). 

The loadings are inspected to understand which variables 

characterize the different waste wood categories and identify the com-
pounds associated to the discrimination between the three categories. 
The first two loadings were considered as they cover 62.67% of the 
explained variance and they are able to detect most of the characteristic 
spectral bands, as marked in Fig. 1. In fact, in Fig. 3D it is possible to 
observe that the first loading shows the main bands at 1422, 1468, 1906, 
1922, 2274 and 2326 nm, and the second loading at 1706, 1742, 1886, 
2226 and 2292 nm. The first loading is mostly related to differences 
between virgin and treated wood samples, while the second loading 
shows differences between the treated wood and disposal wood samples. 
The third component describes further differences between the virgin 
and treated wood (Fig. S1 of supplementary material). 

3.3. Classification models 

Both SIMCA and PLS-DA models have been used as supervised 
classification techniques for separating the samples in the different 
waste wood categories. Several PLS-DA models were developed testing 
different pre-processing methods, but without obtaining any satisfactory 
results. This is in-line with the findings of Malyjurek et al. [41], who also 
found that PLS-DA was insufficient in a case where the classes were not 
linearly separated. The best model was developed using 5 LVs and sec-
ond derivative as pre-processing, achieving a misclassification error of 
19.66%. The NIR scans have been averaged across the replicate before 
model computation. Due to this result, this manuscript will focus on the 
SIMCA classification models. 

SIMCA classification models were developed using offset correction 

Fig. 2. Comparing the confidence intervals at each wavelength of the pair-wise comparison of the three different waste wood categories: A) treated vs virgin wood; 
B) disposal vs virgin wood and C) disposal vs treated wood. Non-overlapping areas are highlighted in light yellow, and the sum of this area compared to the total area 
between the highest and lowest confidence limits are given in the legend of each individual figure. Larger numbers indicate simpler classification task. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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as pre-processing. Other pre-processing gave good results for TW-SIMCA 
and/or VW-SIMCA models, but we decided to use the offset correction as 
it simplifies the model complexity, and to keep the same pre-processing 
for both SIMCA models. The samples have been split in training and test 
sets by constrained random selection as explained in section 2.4, 
ensuring the representativeness of the collected samples in both 
datasets. 

SIMCA was applied to discriminate between the three waste wood 
categories. Treated wood and virgin wood classes were modelled sepa-
rately by selecting the best performing confidence limits (n between 0.1 
and 1.9) and the appropriate number of PCs necessary to describe each 
class (up to 8 PCs). We also tried to develop a SIMCA model with 
disposal wood as target class, but without obtaining any good results. 
This is probably because of the similarity of these samples with both VW 
and TW classes as also reported in the previous sections. However, the 
disposal wood samples can be recognized as the samples not belonging 

to either the virgin wood nor the treated wood target classes. 
As a first approach in the SIMCA models, they were made based on 

averaging the spectra across each sample replicate and across each 
sample. However, this gave inferior results (results not shown), and as 
such was omitted from further investigation. This could be related to the 
similarity between some waste wood subcategories. In fact, averaging 
the NIR scans diminishes the differences between the classes, as the 
chemical differences between the samples are not observed homoge-
nously across a sample, but rather in specific areas, and thus the 
chemical details are found in the specific scans, and not at the average 
level. 

Table 2A summarizes the classification parameters for the SIMCA 
model on VW samples as target class, at scan, replicate and sample levels 
(VW-SIMCA). The model was developed on a total of 8352 spectra (2688 
in the target class), corresponding to 87 samples (28 in the target class), 
and has been validated on a total of 2880 spectra (960 in the target 

Table 1 
Absorption band assignment associated with the main spectral differences between the three waste wood categories. The rows marked with ‘*’ refer to the wavelengths 
located in the three grey areas reported in Fig. 1. (str.: stretching; bend.: bending; OT: overtone; L: lignin; H: hemicellulose; C: cellulose; E: extractives). The bibli-
ography wavenumbers (cm− 1) have been converted into wavelengths (nm) (reported in italic in the table) for a better comparison with the measured wavelengths.   

Measured nm Bibliography Assignment Compound Reference 

nm cm− 1 

1 1388 1386  1st OT OH str. 
1st OT CH str. + CH def. 

– [28] 

2 1426 1428  1st OT OH str. + H2O C/H2O [28] 
1428 7008 1st OT OH stretching (amorphous region in cellulose) C [29,30] 

3* 1458 1455 6874 1st OT OH str. (phenolic groups) L [31] 
4* 1472 1470 6802 2nd OT and combinations modes of NH stretches glue [32] 

1470  1st OT NH asymmetric stretching resin [30] 
5* 1488 1489 

1490  
1st OT OH str. C [28] 

[30] 
1489 
1488 

6718 
6720 

1st OT OH str. C [33] 
[29] 

1485 
1488 

6720 1st OT NH symmetric stretching resin glue [30,34] 

1485 6736 Second overtone of NH stretching from urea, amine, or amide resin [35] 
1484 6737 2nd OT and combinations modes of NH stretches glue [32] 

6 1764 1765  1st OT CH str.  [28] 
1767 5660 1st OT CH str. glue [29] 

7 1910 1910  2nd OT C––O str. H [28] 
1902 5257 (?) 1st OT CN functional groups glue [27,36] 
1908  OT NH str. of urea glue [37] 

8* 1956 1960  NH combination bands  [38] 
9* 1972 1967 5084 NH stretching and bending of OH combination band glue [35] 

1978 5055 NH asymm. + NH amide II glue [34] 
10* 2010 2016 4960 Associated with C––ONH2 groups glue [35] 

1989–2020 4950–5028 combination modes between the N–H 
stretches and rocking and bending modes of the NH2 groups 

glue [32] 

11 2140 2134  Car-H str. + C––C str. L/E [28] 
2134  CH str. + C––O str. H [28] 
2134 4685 Combination CH str. and C––O str. in acetyl groups H [39] 

12 2248 2253 4439 CH str. and CH bending combination band Resin [35] 
2248 4449 Stretching-bending combination urea [32] 
2247 4450 CH2 combination of methylol 

Group 
glue [27,40] 

2247  CH2 combination band of the methylol group glue [30] 
13 2270 2270  OH str. + CO str. C [28] 

2267  OH str. + CO str. L [28] 
2271 4404 CH2 stretching + CH2 deformation C [33] 

14* 2314 2314 4322 Urea glue [37] 
2313 4324  C [39] 

15* 2324 2328  CH str. + CH def. H [28] 
16* 2336 2336  CH str. + CH2 def. L [28] 

2336 4280 CH str. + CH def. C [33] 
2336 4281 Xylans C/H [39] 
2335  CH str. + CH2 def. combination band C [30] 

17* 2350 2343  CH str. + CH def. and/or 2nd OT C–H def. C [28] 
2347  CH (1st OT CH2 symmetric stretching and δ CH2) combination C [30] 

18* 2380 2380  2nd OT OH def Holo [28] 
2384 4195 OH stretching and CO stretching, as well as CH str and CC str  [31] 

19* 2388 2384  Not assigned L [28] 
2382 4198 2nd OT CH def. C/H [33]  
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class), corresponding to 30 samples (10 in the target class). For the 
model calibration a total of 8 PCs (99.83% explained variance) and a 
confidence limit n = 1.4 was found to be the optimal based on the 
calibration set (which includes 59 samples not used for making the PCA 
model). 

The results clearly show how the classification performs better by 
moving from the scan level to the sample level. This is expected because 
of the high variability of the material. In fact, a scan of the same sample 
could be classified in one class rather than another simply by changing 
the spot of the sample surface analysed with NIRS (confirming the high 
variability of the material). Instead, at the replicate and sample levels a 
sample is classified in a class considering the majority voting of scans/ 
replicates belonging to that specific class. The best model has been 
developed at the sample level with a misclassification error of 4.6% and 
10.0% in the calibration and validation phase, respectively. At the 
replicate and scan levels the VW-SIMCA model recognizes the TW 
samples easier than the DW samples, and this could be related to the 
similarities of the IW samples with the virgin wood samples (see section 
3.2). 

Table 2B summarizes the classification parameters for the SIMCA 
model on TW samples as target class at scan, replicate and sample levels 

(TW-SIMCA). The model has been developed on a total of 8342 spectra 
(4598 in the target class), corresponding to 87 samples (48 in the target 
class), and has been validated on a total of 2880 spectra (960 in the 
target class), corresponding to 30 samples (10 in the target class). Ten 
outlying spectral scans have been removed from the training set of the 
TW-SIMCA before model computation because they have high residuals. 
For the calibration of the model only 1 PC (74.66% explained variance) 
and a confidence limit n = 0.6 have been used. (Fig. S2 reports the ROC 
curve for the first 8 PCs and the different classification limits for TW- 
SIMCA model showing how PC 1 is describing how treated wood is 
unique, while the higher PCs start describing wood in general). Also in 
this case, the classification results improve by moving from the scan 
level to the sample level. The best model has been developed at the 
sample level with a misclassification error of 8.0% and 13.3% in the 
calibration and validation phase, respectively. In general, at the repli-
cate and scan levels TW-SIMCA model recognizes the DW samples better 
than the VW samples. The spectra of the moderate treated wood samples 
are close to the virgin wood spectra, meaning that the model detects 
some spectral similarities between treated and virgin wood classes (see 
section 3.2). 

At the end, based on the obtained results it was also possible to 

Fig. 3. A) PCA score plot of the two first PCs on the pre-processed spectra (without averaging the 32 NIR measurements) colored according to waste wood sub- 
categories. B) PCA score plot of the two first PCs on the pre-processed spectra (averaging the 32 NIR measurements) colored according to waste wood sub- 
categories. C) PCA score plot of waste wood sample with standard error ellipses for each waste wood sub-categories. (IW: impregnated wood; OW: old wood; 
PW: painted wood). D) The two first PCA loadings. Important wavelengths for the discrimination among the waste wood categories are marked with arrows in 
the plot. 
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estimate the percentage of correctly classified disposal wood, as the 
samples never classified in the virgin wood nor treated wood classes of 
the two SIMCA models. We obtained a misclassification rate of 0% and 
10% in the calibration and validation phases, respectively. 

A total of 10 repeated SIMCA classification models were computed 
with reduced training sets and using the same fixed test set. The results 
clearly demonstrate the consistency and robustness of the developed 
models and suggest that the good classification performance is not 
related to random effects. Table S2 (supplementary material) reports the 
mean and standard deviation values of the 10 developed TW-SIMCA and 
VW-SIMCA models for each class performance parameter at the sample 
level. In general, the standard deviation is slightly smaller in the vali-
dation step with respect to the calibration step for the VW-SIMCA model 
and has an opposite trend for the TW-SIMCA model. It can be observed 
that for the VW-SIMCA model the highest standard deviation values are 
associated with the True Positive Rate (TPR) (DW) parameter (std = 6.0 
in the calibration phase and std = 4.8 in the validation phase), while for 
TW-SIMCA model the highest standard deviation values are associated 
with TPR (VW) parameter (std = 6.3 in the calibration phase and std =
10.5 in the validation phase). This probably indicates the similarity of 
some waste wood sub-categories; VW with some DW samples (mainly 
impregnated wood), and the moderate treated wood with virgin wood 
(see section 3.4). 

3.4. The challenging samples 

As noted in the previous sections some waste wood sub-categories 
are more difficult to classify than others. This is due to their similar-
ities in the chemical composition (also indicated by the large overlap in 
the PCA score plot) and in this section we will try to understand how the 
classification models could be improved and which are the most prob-
lematic samples to be classified. The main challenges for the waste wood 
classification are i) the partial overlap between DW (more specifically 
impregnated wood) and VW categories and ii) the high variability 
among the different treated wood sub-categories, with the moderate 
treated wood closer to the virgin wood category. 

As already mentioned, DW spectra are very heterogeneous because 
the painted or impregnated part of the wood are located only in the 
external portion of the sample while the core part is made of virgin 
wood. This can be seen in Fig. 3B, showing the PCA score plot colored 
according to the waste wood sub-categories. Some DW scans are similar 
to VW scans in the PCA space, while others are more spread in the scores 

space. To better investigate this issue, we decided to colour the PCA 
according to the waste wood categories and the two subcategories of 
DW: impregnated wood (IW) and painted wood (PW) (see Fig. S3 in the 
supplementary material). We found that the impregnated wood is 
located close to the virgin wood category while the painted wood is 
more spread. This is nicely confirmed by Fig. 4A showing the mean 
spectrum of the VW, TW, IW and PW. It can be observed that IW and 
virgin wood samples are very similar, while PW and treated wood 
samples have a similar trend. The main differences can be observed in 
the three absorbance areas marked in grey in the figure where the 
characteristic absorbance bands of TW differ from the PW samples. In 
addition, a peak at 2140 nm can be observed in the PW curve, while IW 
is close to VW. This is also evident by looking at Fig. 4B, C & D, reporting 
a zoom of the specific wavelength regions marked in Fig. 4A where the 
main differences among the different types of wood occur. Fig. 4A ex-
plains the position of the impregnated and painted wood samples in the 
PCA score plot and why they are difficult to be classified in the SIMCA 
models. 

Another subset of samples difficult to classify are the moderated 
treated wood samples. The treated wood samples present a high vari-
ability among the different waste wood sub-categories as also shown in 
Fig. 3. It can be observed that the main differences are related to the 
degree of glue and presence of virgin wood. To explore this, Fig. 4E 
reports the mean spectra of the moderate treated wood samples, the rest 
of the treated wood samples and the virgin wood samples. Fig. 4F, G & H 
report a zoom of the specific wavelength regions marked in Fig. 4E 
where the main differences among the different types of wood occur. It 
can be observed how the moderate treated wood samples have a mean 
spectrum more similar to virgin wood than to the treated wood samples 
confirming the outcomes of the previous sections. To investigate this 
even further, we have reported the results of the VW-SIMCA and TW- 
SIMCA models developed removing the moderate treated wood sub- 
categories. Both models improve; in the validation phase the misclas-
sification error of VW-SIMCA model (sample level) decreased from 
10.00% to 6.67% and for TW-SIMCA model (sample level) the 
misclassification error decreased from 13.33% to 3.33%. 

3.5. Variable selection 

As shown in Fig. 2 some parts of the spectra show higher chemical 
differences among the three waste wood categories. We used this 
knowledge to perform variables selection to remove areas in the spectra 

Table 2 
A) Class performance parameters for the SIMCA model considering virgin wood as target class. (TNR: True Negative Rate; TPR: True Positive Rate; TW: treated wood; 
DW: disposal wood). B) Class performance parameters for the SIMCA model considering treated wood as target class. (TNR: True Negative Rate; TPR: True Positive 
Rate; VW: virgin wood; DW: disposal wood).  

A) Calibration Validation  

Scans Replicate (16 scans) Replicate (10 scans) Sample (10 scans) Scans Replicate (16 scans) Replicate (10 scans) Sample (10 scans) 

TNR 80.9 91.7 97.6 100.0 77.4 83.3 90.0 90.0 
TPR (Total) 82.1 84.7 91.0 93.2 72.9 80.0 91.7 90.0 
TPR (TW) 85.1 88.2 90.3 91.7 77.5 80.0 90.0 90.0 
TPR (DW) 69.0 69.7 93.9 100.0 68.3 80.0 93.3 90.0 
Accuracy 81.7 87.0 93.1 95.4 74.4 81.1 91.1 90.0 
Misclassification error 18.3 13.0 6.9 4.6 25.6 18.9 8.9 10.0  

B) Calibration Validation  

Scans Replicate (16 scans) Replicate (10 scans) Sample (10 scans) Scans Replicate (16 scans) Replicate (10 scans) Sample (10 scans) 

TNR 63.6 64.6 84.7 87.5 67.5 66.7 83.3 90.0 
TPR (Total) 70.0 75.2 94.9 97.4 48.5 41.7 80.0 85.0 
TPR (VW) 73.8 81.0 97.6 96.4 49.7 46.7 76.7 80.0 
TPR (DW) 60.3 60.6 87.9 100.0 47.3 36.7 83.3 90.0 
Accuracy 66.4 69.3 89.3 92.0 54.8 50.0 81.1 86.7 
Misclassification error 33.5 30.7 10.7 8.0 45.2 50.0 18.9 13.3  
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Fig. 4. A) Mean spectra of virgin, treated, impregnated and painted wood pre-processed with second derivatives (virgin wood samples: black line; treated wood 
samples: red line; impregnated wood samples: blue line; painted wood samples: green line). B), C) & D) plot of specific wavelength regions marked in A) where the 
main differences among the different types of wood occur. E) Mean spectra of virgin, moderate treated and treated wood samples pre-processed with second de-
rivatives (virgin wood samples: black line; treated wood samples: red line; moderate treated wood samples: blue line). F), G) & H) plot of specific wavelength regions 
marked in E) where the main differences among the three types of wood occur. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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where there are only minor differences between the classes, thus 
increasing the model accuracy. Furthermore, variable selection enables 
a model based on a smaller number of wavelengths, making the inter-
pretation of the relationship between the chemical structure of the waste 
wood categories and the spectral information easier. 

TW-SIMCA and VW-SIMCA models have been computed again using 
offset correction as pre-processing and different combinations of 
wavelengths range selected by looking at the spectral regions where a 
higher difference in the variability of the three waste wood categories 
occur (see Fig. 2). The best VW-SIMCA model was developed consid-
ering the wavelengths range 1356–1502 nm and 1850–2498 nm. The 
model improved by applying the variable selection demonstrating that 
the removed variables are not containing useful information for the 
discrimination of the three waste wood categories. In the validation, the 
misclassification error of the model decreases from 10.00% to 3.33%. A 
good VW-SIMCA model could also be obtained considering less vari-
ables, i.e. 1356-1502 nm, 1652–1782 nm and 1932–2382 nm. In this 
case the misclassification error of the model decreases from 10.00% to 
6.67%, but we are reducing the number of variables to 366 instead of the 
700 for the total model and 399 of the previous one. 

On the other hand, the TW-SIMCA model is a tad worse compared to 
the full-model, demonstrating that some of the deleted variables are 
somehow important for the discrimination (once again this could be 
explained by the higher variability of the treated wood samples). The 
best TW-SIMCA model has been developed considering the wavelengths 
range 1442–1492 nm, 1942–1972 nm and 2292–2382 nm. The model 
does not improve; in the validation, the misclassification error of the 
model increases from 13.33% to 16.67%. Other spectral ranges have 
been tested and with some of them we have obtained similar results, i.e. 
i) 1100–1360 nm, 1400–1900 nm and 2000–2498 nm; ii) 1100–1900 
nm and 2000–2498 nm; iii) 1442–1492 nm, 1942–1972 nm and 
2240–2390 nm. In any case the first TW-SIMCA has been chosen because 
of the lower number of variables (only 88) in comparison to the others 
(632, 651 and 118 respectively). (Table S3 reported in the supplemen-
tary material reports all the class performance parameters for the TW 
and VW SIMCA models using variables selection). 

3.6. Discussion 

The current separation of waste wood, i.e. clean wood from treated 
wood and other contaminants, is mainly based on visual, mechanical, 
magnetic or gravity sifting techniques. The application of spectroscopic 
techniques combined with chemometrics is highly innovative and 
already applied in other sorting facilities [22, 23]. Online NIR sorting 
techniques have the potential benefit of ‘scanning’ all the material in a 
rapid and low-cost way, thus improving the wood separation perfor-
mance. This innovative sorting approach could be the solution for 
removing impurities and divide waste wood according to the appro-
priate reuse. In addition, the sector operators could benefit of greater 
efficiencies and better product quality. 

Nowadays, the recycling potential of wood-based material could be 
expanded and one of the main obstacle is the lack of an efficient sorting 
of the material. Other studies have investigated the characterization of 
waste wood composition but mainly using conventional lab analysis 
instead of NIR spectroscopy. 

In their study Huron et al. confirmed the heterogeneity of treated 
wood material, with properties quite different among the different 
classes of the waste wood characterized. The difference can be found in 
the chemical elements present in the different samples and depending on 
the treatments undergone by the samples [15]. Edo et al. assessed the 
chemical and physical characteristics of 500 waste wood samples 
collected at a co-combustion facility in Sweden. The knowledge of the 
chemical composition of such material is essential for ensuring a fuel 
with higher quality and lower potential for the formation of pollutants 
when combusted [16]. Similarly, Gehrmann et al. aimed at testing the 
suitability of waste wood as feedstock in an industrial combustion unit. 

An extensive characterization of properties relevant for combustion was 
performed on two samples of waste wood and one sample of natural 
wood for comparison revealing the differences in the combustion reactor 
[17]. Other authors demonstrated that contaminant and concentration 
levels vary significantly according to wood waste type and source, 
confirming the high variability of the material and the necessity of its 
characterization before material sorting [9]. Recently some authors 
examined the possibility to use NIR spectroscopy for sorting waste wood 
material from Amazonian species to improve the efficiency of the 
carbonization process and consequently charcoal production [42]. 

In general, the presence of contaminants in wood products limits 
considerably its recycling or reuse because of environmental contami-
nations. Given the current European (and global) ambition for more 
circularity, greater resource productivity, and the high demand from 
panel board companies, it is essential to recover as many recyclable 
materials from waste wood as possible and NIR spectroscopy is able to 
increase the waste wood separation performance. In addition, this study 
demonstrates how class modelling approach can be used not only for 
authentication and detection purposes but also for sorting problems. In 
fact it is well known that waste wood presents a high inherent variability 
[20] and materials other than wood could be part of the waste wood 
material and need to be properly handled in the sorting facilities. For 
this reason, the classical discriminant approach cannot be applied for 
this purpose, since a non-wood sample would be incorrectly assigned to 
one of the three classes considered in this study. On the other hand, 
class-modelling identifies non-wood sample as belonging to none of the 
waste wood classes. 

4. Conclusions 

More than one hundred waste wood samples were collected in 
different locations in Denmark and Italy and were analysed with NIR 
spectroscopy with the aim to study the sample variability and develop 
classification models based on modelling approach for deciding the best 
suited reuse of the material. Two SIMCA models were developed to 
recognize the virgin wood samples and the treated wood samples 
resulting in a validated misclassification error of 10.0% and 13.3% 
respectively. The disposal wood samples can be recognized as the 
samples neither belonging to the virgin wood or the treated wood 
classes, and gave a misclassification error of 10.0%. Variable selection 
was applied for improving the classification performance and decreasing 
the model complexity with good results for VW-SIMCA model, 
decreasing the misclassification from 10.00% to 3.33%, while no 
improvement was seen for the TW-SIMCA model. 

A natural next step would be to move this application closer to the 
sorting line. This can be achieved by hyperspectral imaging including 
the near-infrared range. Such an approach can be used for the sorting of 
high volumes of waste wood. 

Classification of waste wood samples is a key-point for improving the 
reuse of the material and avoiding expensive landfill. The recycling 
potential could be expanded with an adequate sorting of the material 
based on their quality and characteristics. The definition of the waste 
wood properties could also help in deciding the best recycling option 
and, in case of energy use, the best suited combustion process in order to 
avoid environmental problems related to such biofuel. 
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