Information Systems 122 (2024) 102349

Contents lists available at ScienceDirect
Information
Systems

et

Information Systems

journal homepage: www.elsevier.com/locate/is

Check for

Model repair supported by frequent anomalous local instance graphs |t

Laura Genga ®", Fabio Rossi ", Claudia Diamantini *, Emanuele Storti °, Domenico Potena "

a Eindhoven University of Technology, Eindhoven, The Netherlands
b Universita Politecnica delle Marche, Ancona, Italy

ARTICLE INFO ABSTRACT

Keywords: Model repair techniques aim at automatically updating a process model to incorporate behaviors that are
Process mining observed in reality but are not compliant with the original model. Most state-of-the-art techniques focus on
Model repair the fitness of the repaired models, with the goal of including single anomalous behaviors observed in a log in
Subgraph mining

the form of the events. This often hampers the precision of the obtained models, which end up allowing much
more behaviors than intended. In the quest of techniques avoiding this over-generalization pitfall, some notion
of higher-level anomalous structure is taken into account. The type of structure considered is however typically
limited to sequences of low-level events. In this work, we introduce a novel repair approach targeting more
general high-level anomalous structures. To do this, we exploit instance graph representations of anomalous
behaviors, that can be derived from the event log and the original process model. Our experiments show that
considering high-level anomalies allows to generate repaired models that incorporate the behaviors of interest

while maintaining precision and simplicity closer to the original model.

1. Introduction

Today’s organizations increasingly rely on the use of information
systems to support the execution of their business processes. Some well-
known examples are Workflow Management Systems (WMS), Enter-
prise Resource Planning (ERP), and Business Process Management Sys-
tems (BPMS). These systems typically record all past process executions
(also termed cases) in an event log.

Process mining aims at extracting from event logs valuable knowl-
edge about the corresponding processes [1]. There are three main
types of process mining, namely: process discovery, which aims at au-
tomatically distilling a process model from an event log; conformance
checking, whose goal is to compare a process model against an event
log to pinpoint differences between the expected and the actual process
behaviors; and, finally, process enhancement, aimed to improve and/or
to enrich a given process model using information stored in the event
log. The present work belongs to the third type of process mining; in
particular, we focus on model repair, which is a family of techniques
aimed at aligning an existing process model M with actual behaviors.
More precisely, it aims at automatically building a new model M’
able to represent (part of) anomalous behaviors, i.e., process executions
stored in an event log L but not allowed according to the original
model M. Model repair techniques are useful in a number of scenarios.
For example, one might need to update a process model that does not
properly reflect the reality anymore; employees might find out efficient

* Corresponding author.

workarounds that speed up the process; there might exist exceptional
situations not properly modeled; and so on.

An important challenge to address when repairing a process model
is to generate models of a good quality. While different metrics have
been defined to assess quality, the fundamental measure is fitness,
that is a measure of the extent to which the model represents the
stored executions, since it would not make much sense to evaluate
other quality measures on an underfitting process. However, as ob-
served by [2], focusing solely on fitness can easily lead to models
that over-generalize the original ones, including much more behaviors
than intended. A promising strategy to mitigate over-generalization is
considering structured anomalous behaviors.

The following subsection exemplifies the idea discussing a motivat-
ing example.

1.1. Motivating example

Let us consider a simplified version of a loan management process
derived from the BPI2012 challenge [3,4]. Fig. 1 shows the process in
Petri net notation. The parts in black represent the original model. The
process starts with the submission of an application (AS), followed by a
first assessment (FA,, FA,) to verify the requirements on the applicants
and by a fraud check (FC,, FC,). For these activities the start and end
are explicitly modeled, represented by the “s” and “e” subscripts.

E-mail addresses: 1.genga@tue.nl (L. Genga), S1086654@studenti.univpm.it (F. Rossi), c.diamantini@univpm.it (C. Diamantini), e.storti@univpm.it

(E. Storti), d.potena@univpm.it (D. Potena).

https://doi.org/10.1016/j.is.2024.102349

Received 22 March 2023; Received in revised form 22 January 2024; Accepted 23 January 2024

Available online 29 January 2024

0306-4379/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-

nc/4.0/).

https://www.elsevier.com/locate/is
https://www.elsevier.com/locate/is
mailto:l.genga@tue.nl
mailto:S1086654@studenti.univpm.it
mailto:c.diamantini@univpm.it
mailto:e.storti@univpm.it
mailto:d.potena@univpm.it
https://doi.org/10.1016/j.is.2024.102349
https://doi.org/10.1016/j.is.2024.102349
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2024.102349&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

L. Genga et al.

Information Systems 122 (2024) 102349

»Pyq-> CC

Fig. 1. Loan management process model, original (solid black) and updated to include the discussed anomalous behavior (dashed red). (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)

If the application is not eligible, it is denied (AD); otherwise, a
possible offer for the customer is selected (O.5). The application is then
reviewed by the manager (FR), who can decide to reject (AR) or to
approve (AAp) it. If the offer is approved, then the application details
are finalized (AF) and an offer is created and customized for the client
(0C). The offer is then sent (O.Se) and the client is then contacted (CC);
it is possible that some negotiations happen, as represented by the loop.
If the client does not accept the offer, the procedure is canceled (AC);
otherwise, the agreed application is finalized and registered into the
system (F Re).

Let us assume that there exist two commonly accepted practices,
which however are not represented in the model, and are therefore
considered anomalous behaviors. The first one corresponds to a delay
of the fraud checking activity, to allow employees to execute other
tasks while the checking is not finished yet. However, this is accepted
only if the fraud checking step is anyway completed before the man-
ager’s approval. The second anomalous behavior, instead, represents
situations in which an application initially rejected is resumed after
contacting the customer. This might happen, for instance, for customers
who made some minor mistake in the application and for which the
employee wants to proceed without re-starting the process. In this
case, the application has to be reviewed again by the manager before
finalizing it and creating the offer.

These are examples of structured anomalous behaviors, because
they involve a change in the flow relation between two or more
activities. In our example, the delay of the fraud checking activity
implies a different relation between activity FC, and activities O.S and
FR. Similarly, for the resumed application, several flow relations are
changed, for instance the execution of AR no longer implies the ter-
mination of the process. We call them high-level anomalous behaviors,
in contrast with low-level anomalous behaviors which simply involve a
single activity, without taking relations among activities into account.

The daily adoption of these anomalous practices is registered in the
log.

Let 6, = (AS,FA_,FA, FC,,0S,FC,, FR,AAp,OC, AF,0Se, CC,
FRe) and 6, = (AS,FA,, FA,, FC,,FC,,0S, FR, AR, CC,AAp, FR,
OC, AF, OSe, CC, OSe, CC, FRe) be two executions in which respec-
tively the first and the second anomalous behavior occurred.

We hasten to note that structured behaviors have, as a consequence,
an impact on the co-occurrence of anomalies registered in the log: the
delay of the fraud check activity always results both in the lack of the
prescribed FC, before OS in the log (typically called deleted activity)
and in the unexpected presence of FC, before FR (inserted activity).

Looking at single, low-level anomalies in isolation (i.e., deleted
activity and inserted activity), state-of-the-art techniques [5] will return
the model in Fig. 1, with the additional components highlighted in
dashed red.! The red components before and after 7, show the repair

1 The model of the example has been repaired using the ModelRe-
pair plugin implementation available at https://github.com/promworkbench/
ModelRepair.

performed for the first and second anomalous behavior, respectively.
While this repaired model includes the desired behaviors, this solution
is not ideal. FC, can be skipped at every execution, and it is always pos-
sible to execute it before the final review by the manager. Similarly, it
is always possible to skip/execute the activities AR, CC, with/without
executing F R after AAp. These changes introduce more behaviors than
needed, which can pave the way to undesirable situations. The reason
is that state-of-the-art techniques aim at repairing anomalies indepen-
dently on each other, without accounting for possible co-occurrence
among them. As shown by these simple examples, this can significantly
hamper the precision of the updated models, motivating the need for
repair techniques tailored to high-level anomalous behaviors, which
can include different low-level ones. A first step in this direction
has been carried out by [2]. However, this solution is based on the
definition of a-priori change patterns, which define a set of templates
for the anomalies to identify. The behaviors originally represented by
the model are then changed according to a tailored set of repairing
rules for each pattern. High-level anomalous behaviors not fitting any
predefined patterns cannot be detected, with the result that their
low-level components are likely to be assigned to different low-level
templates and repaired independently from each other. On the other
hand, inductive techniques like [5] are able to take into account higher-
level behaviors, but they are limited to the discovery of sequences.
An example of repair of the loan management process based on the
discovering of high-level anomalous behaviors is shown in Fig. 10(b),
as a preview of our contribution.

1.2. Paper contribution and organization

Given the issues discussed on the motivating example, the present
paper aims at answering the following research questions:

RQ1: How to define a general repair methodology to automatically
extract structured anomalous behaviors from an event log and
generate a repaired model including the extracted behaviors, so
to improve fitness while preserving precision and simplicity of
the original model?

RQ2: Which are the advantages and limits of such a structured
approach with respect to taking into account each low-level
anomaly?

To answer RQ1, we propose to model structured anomalies as instance
graphs. The discovery can then be performed by exploiting frequent
graph mining techniques previously proposed by the authors [4,6]. The
issue is then how to process these graphs, in order to incorporate them
in the model correctly and effectively. We here propose a novel method-
ology that comprises the following contributions: (1) a procedure to
determine the relevant candidate traces supporting repairing, and the
core repairing step that (2) aligns the structured anomalous behavior
to the model, (3) individuates the best location where the structured
anomalous behaviors should be placed in the model, and (4) converts
the graph in the given process model notation and properly merges it

https://github.com/promworkbench/ModelRepair
https://github.com/promworkbench/ModelRepair

L. Genga et al.

with the original model. In the paper we will consider process models
in Petri net notation. It is also worth noting that the new behavior is
merged as an alternative branch, thus preserving the behaviors of the
original model.

Global repair of a model, which includes all the anomalies in the log,
may not reflect the requirements of real-world scenarios. Anomalous
behaviors can violate laws and regulations, or some of them may not be
in line with strategic business goal. For instance, if an anomaly related
to a special treatment for few platinum clients leads to a substantial
improvement of return, it can be justifiable to promote it to standard
practice, while at the same time refusing another one which applies to
every client. The discovery of high-level anomalies makes it simple to
define a local repair approach, allowing the user to filter some of them
out.

In order to answer RQ2, we perform a comprehensive set of exper-
iments based on synthetic and real-world data, comparing our results
with those obtained by state-of-the-art technique [5]. The experiments
show that our structured approach leads to repaired models with higher
precision and simplicity, while the fitness values remain comparable.

The rest of this paper is organized as follows. Section 2 provides a
brief overview on the state-of-the-art; in Section 3 we introduce some
definitions used throughout the paper; Section 4 provides the details of
the proposed model repair technique; Section 5 describes experiments
carried out to validate the approach and test its performance; finally,
Section 6 draws some conclusions and delineates future work.

2. Related work

Traditionally, process repairing has mostly been achieved as a man-
ual activity in organizations, often with the support of methodologies
for performance measurement and monitoring. In the following, we will
briefly discuss the automated and semi-automatic approaches that are
more relevant to this work.

The major goal of process repairing is to align the existing, possibly
normative model to the reality of daily work practices, thus many work
focus on the enhancement of the process in terms of its capability
to fit an existing process log. The technique proposed by Fahland
et al. [5] is the first in this direction. According to the approach, all
anomalies (from non-outlier traces) are considered to be incorporated
in the model, although some of them may cause poor performance or
can violate laws and regulations. In [5], authors propose a so called
naive approach, which repairs a model considering each single anomaly
so to maximize fitness, but scoring poorly in terms of precision, i.e. the
capability to allow only behaviors that actually occurs in the event log.
An advanced version that also caters for precision is then proposed,
which takes into account subprocesses, represented by (maximal) se-
quences of log moves. Some post-processing options are also introduced
to improve other quality metrics, in particular the simplicity of the
model. The present paper shares a similar attention to precision and
simplicity, and extends the idea of sequence towards the discovery of
more complex structures in the log.

Similarly to the above mentioned work, in [7] a technique aimed
to repair the model while improving the fitness as much as possible is
proposed. The main differences are that each repair action involves a
cost, a repair procedure must not exceed a predefined total cost, and
an optimal strategy is determined to minimize the costs of the repairs
and maximize the fitness of the repaired model.

Other approaches are more tailored towards precision. In particular,
the work by Dees et al. [8], introduces an approach to assess the impact
of anomalies on process KPIs, to repair only those with a positive
impact and which do not violate a-priori defined constraints. This
idea of a local repair is common to the approach presented in this
paper. The technique, however, applies the repair approach of [5] and
is thus designed for punctual, low-level alignment moves, and does
not take into account high-level anomalous patterns. Furthermore, the

Information Systems 122 (2024) 102349

way low-level anomalies are selected makes it not comparable to our
approach.

High level “change patterns”, representing typical anomalous be-
haviors, are introduced in [2] to drive the repair procedure in an
incremental way, providing suggestions about how to implement the
identified pattern(s) in the current model. However, this solution can
only detect behaviors described by a-priori designed patterns, for which
tailored repairing rules have been developed. Furthermore, some of
the repair rules replace the original behavior, rather than adding the
anomalous one as an alternative. We would like to point out that the
prototype available for this technique presents some scalability issues
which made a thorough comparison with our approach not feasible.

In the same vein, the work of Adriansyah et al. [9] introduces a
technique to guide the users in manually adding high-level anomalous
patterns involving a set of activities of interest to a process model,
in particular swaps and replacements, and introduces an extension of
alignment-based conformance checking approach to detect these high-
level anomalies. The work deals with a very special use case related to
the bypass of security mechanisms in IT systems in case of emergency.

In [10], a pre-processing step is performed to identify the relevant
traces for the repair. By relying on Inductive Logic Programming and
analyzing concept drifts, the model is decomposed by experts in an
unchangeable part, which is assumed to be correct and therefore is
not allowed to change, and a changeable part. Then, traces in the
log are identified as positive (i.e., behavior that is acceptable) and
negative (behavior that is forbidden). Only the positive part is used
to repair the changeable part of the model distinguishing between
adding new activities and removing infrequent ones and taking into
account a minimality criterion. The approach takes into account, as
we do, the fact that a global repair of the model with all the detected
anomalies may not be desirable or acceptable, however in this case
domain experts are in charge of model decomposition, while in our case
we assume the expert can accept or refuse the discovered anomalies.

A more recent set of approaches based on Logic Petri Nets (LPNs)
demonstrates the capability to improve the fitness and the precision of
the repaired model with respect to traditional techniques by referring to
more expressive nets with logic constraints. Different techniques have
been experimented, e.g., based on alignment [11], on token-replay [12]
or others (see [10] for a discussion).

At the best of our knowledge no process repair technique combines
both ideas of local repair and discovery of high-level anomalies to
balance fitness and precision.

Other works face different approaches and of different quality mea-
sure. For instance, the work by by Buijs et al. [13] proposes process
discovery techniques by genetic algorithms which mediate different
model quality criteria besides fitness and precision. In particular, since
the method discovers a new model instead of updating the original one,
model similarity is of tantamount importance. Mitsyuk et al. [14] adopt
a similar idea, but they decompose the event log and the process model
in order to identify process fragments affected by the anomalies and
mine a new model only for that process portion(s). By considering a
collection of models instead of an event log as input, in [15] authors
propose to repair a process model to make it similar to a collection of
process models, trying to minimize the edit distance to all models in
the collection.

Model repair can also be interpreted in different settings. For in-
stance, it can also be seen as simplifying the model while allowing for
the same behavior, as proposed by Fahland et al. [16]. Similarly, the
precision of an existing model w.r.t. the event log can be enhanced by
automatically introducing non-local constraints [17]. Other approaches
focus on ensuring run-time flexibility, allowing to adapt the model
at run-time and thus creating individual models for different process
executions, at the same time ensuring consistency and avoiding run-
time errors [18]. Yet another interpretation of process repair consists
in automatically correct modeling errors, e.g., to remove deadlocks [19,
20].

L. Genga et al.

Some alternative approaches have also been investigated, e.g. di-
rectly focusing on event logs instead of enhancing an existing process
model. Authors in [21] propose a methodology aimed to show improve-
ments at the instance level. This is done by changing the event log, for
instance by reordering activities or changing the resource allocations
to improve the process in terms of some indicators like flow time
or costs, and the derived log is then checked to verify whether it
is still compatible with the original one or not. Similarly, in [22], a
semi-automated approach aims to improve the business performance
of processes by deriving decision criteria from the experience gained
through past process executions.

3. Preliminaries

In this section, we introduce some core definitions used throughout
the paper.

Definition 1 (Labeled Petri Net). A labeled Petri net is a tuple (P, T, F, A,
¢) where P is a set of places, T is a set of transitions, F C (PXT)U(T X P)
is the flow relation connecting places and transitions, A is a set of labels
for transitions, and # : T — A is a function that associates a label with
every transition in T. The notation *x (x*), x € PUT is adopted to denote
input (output) relations among places and transitions: *x = {y|(y,x) €
F} (x* = {yl(x,y) € F].

Labels associated with transitions represent process activities,
namely well-defined tasks that have to be performed within the process.
It is useful to introduce a subset Ty; C T of hidden transitions. Hidden
transitions are used for routing purposes and are not associated with
process activities. In this case, the definition of the labeling function is
modified as follows ¢ : T \ T;; — A. Places represent pre-conditions
(post-conditions) for the execution of activities. Places can contain zero
or more tokens, representing the enabling of a condition. A distribution
of tokens over places is called a state. In classical nets the state can be
expressed as a function m : P — N that assigns to each place the
number of tokens in that place. This function is called a marking of the
net.

The execution semantics of a Petri Net is defined by a firing rule,
that describes the conditions for firing a transition, and the consequent
change of state of the Petri Net. According to the rule, a transition t
is enabled in a given marking m if all its pre-conditions are enabled:
Vx € “t,m(x) > 0. The firing of an enabled transition produces a new
state defined by the marking m’ such that Vx € °1,y € *,m'(x) =
m(x) — 1,m'(y) = m(y) + 1,m'(p) = m(p) Vp & °tu . We denote it as
m—> m'. The subsequent firing of transitions defines the evolution of
the system, typically from an initial marking m,.

Definition 2 (Marking Reachability). Let M = (P,T, F, A, ¢) be a Petri
Net. A marking m’ is one step reachable from a marking m, if there exists
a transition ¢ such that m— m’. A marking m’ is said to be reachable
from m if there is sequence of transitions p = (t,,1,,...,t,) such that
m— m;— m... o, p is also called a firing sequence and we will
denote by m 2w the reachability of m’ from m through the firing
sequence p.

The set of reachable markings of M, denoted by R(M), is the set of
all markings reachable from the initial marking my: R(M) = {m|3p =
(t1,tg, ...ty € T* : mo—p> m}. From the notion of reachable marking,
the reachability graph of a Petri Net can be defined.

Definition 3 (Reachability Graph). Let M = (P,T,F, A, ¢) be a Petri
Net. The reachability graph of M, denoted RG(M) is a graph RG(M) =
(0. 4, R, my) where Q = R(M) is the set of nodes representing the set of
all markings reachable from the initial marking m,, 4 = A, R C Ox4xQ
is the set of arcs connecting two markings labeled with the activity
associated to the transition: R = {(m,2(t),m")|3t €T : m m'}.

Information Systems 122 (2024) 102349

An interesting sub-class of labeled Petri Nets are Workflow Nets
(WE-nets).

Definition 4 (Workflow Net). A labeled Petri Net is a WF-net if and only
if:

« there is a distinguished initial place se P : *s=¢
« there is a distinguished final place fe P: f*=@
« every other place and transition belongs to a path from s to f.

WPF-nets have been introduced to conveniently model the workflow
of business processes. The single initial and final places correspond to
real-life situations in which processes have specific starting points and
specific end points, while the third condition models the fact that any
task can be executed and actually contributes to the completion of at
least some process executions.

Well formed business processes are typically associated with the
notion of soundness. We refer to [23] for details. In this setting, the
starting point of the process is represented by the initial marking mj, :
my(s) = 1,my(p) = 0 Vpe P,p # s, and the end point by the final
marking me(f) = Lmg(p) = 0 Vpe€ P,p # f. Note that, in WF-nets,
markings reduce to indicator functions. The rationale under this is that
the initial marking represents the initial state of a specific execution.

Specific executions of a process are called process instances or cases,
and are typically recorded in logs in the form of traces. More precisely,
the execution of an activity generates an event, which is captured by
a logging system and recorded in the event log at the time of its
occurrence.

Definition 5 (Event, Trace, Log). Let A be the set of all possible activity
names. An event e represents a unique recorded execution of an activity
a € A. For an event e, act(e) € A denotes the activity associated to e.
The set of all possible events is denoted by &£. A trace o = (e, ...,e,)
is a sequence of events ¢; € £,i = 1,...,n where Vi < j, ¢; has been
executed before e;. A log L is a multi-set of traces.

A well-known issue of sequential traces is that they hide possible
concurrency among activities. To address this issue, in the present
paper we propose to take into account process instances directly, repre-
senting them as graphs. Instance graphs [6] are directed acyclic graphs
where nodes represent events, and arcs connect events only if there
exists a strict execution constraint between the associated activities, as
formalized by the notion of causal relation.

Definition 6 (Causal Relation). A Causal Relation (CR) is a relation on
the set of activities, CR C A X A. Given activities a;,a, € A, a; ¢)
denotes (a;,a,) € CR.

Elements of CR represent the order of execution of a pair of activ-
ities of a process. Indeed, a; -y a, states that a, cannot be executed
until g, is terminated; in other words, the execution of a, depends on
the execution of q,.

Causal relations can be determined from existing process models. To
this end, given a WF-net (P, T, F, A, ¢) representing a process model,
we introduce the notion of direct path between transitions ¢, t, € T as
follows: a direct path between ¢, and t,, denoted by dp(t,,1,), exists if
and only if 3p € P s.t. (t;,p) € F A (p,t,) € F. It should be noted that
t;,t, can be either labeled or hidden transitions. In this setting, a; — ¢z
a, if 3ty,1, € TAI(t)) = a; Al(ty) = ay AN3dp(ty,t)V3{ty, ... 1} €Ty A
Eldp(ll,th])/\ Eldp(lhn,tz) AVie{l,...,n—1}, 3 dp(thl,thi+l))).

Informally, this definition considers as a causal relation a direct path
between two labeled transitions, in which at most a sequence of hidden
transitions is allowed.

Definition 7 (Instance Graph). Let ¢ = (e|,...,e,) € L be a trace and
CR be a causal relation on the set of activities {act(e,), ..., act(e,)}. An
Instance Graph (or IG) y, of ¢ is a directed acyclic graph (E, W,) where:

L. Genga et al.

Information Systems 122 (2024) 102349

Fig. 2. The instance graph of o.

+ E = {e € 5} is the set of events in ¢. Each event corresponds to a
node in the graph;

* W ={(e,,e) € EXE | h< kA act(e,) »cpg act(e,)} is the set of
edges, defining a strict partial order?;

* I : E —> A with I(e) = act(e) is a function labeling each node with
the corresponding activity.

Example 1. Let us consider the set CR = {(AS, FA,), (FA,, FA,),
(AS, FC,), (FC,,FC,), (FA,,0S), (FC,,0S), (FA,, AD), (FC,, AD),
(OS,FR), (FR, AR), (FR,AAp), (AAp, AF), (AAp,0C), (OC,0Se),
(AF,0Se), (0Se, CC), (CC,0Se), (CC, AC), (CC, FRe)} derived from
the Petri net in Fig. 1 and the trace ¢ = (AS, FA,, FA,, FC,, FC,,0S,
FR, AAp,OC,AF,0Se,CC, FRe). For the sake of simplicity, hereafter
we use event activities to represent a trace. Fig. 2 shows the IG
corresponding to the trace.

Note that IGs contain only sequential and concurrent relations
among events, and they do not include loops and choices. Indeed,
choices do not exist in a trace, since in each single execution choices
have already been made. Executing a loop in the model gives rise to
different events in the trace with the same labels, leading to an IG with
different nodes corresponding to the same activity.

We can define the set of “legal” process executions according to a
process model as the set of IGs associated with the traces generated by
all possible firing sequences of the WF-Net representing it.

Definition 8 (IG Set of a WF-Net). Let M = (P,T, F, A,) be a WF-Net
with initial marking m, and final marking m e let CR C A x A be the
causal relation defined over M, let p = (¢t,,...,1,) € T* : mo—p> m; be a
firing sequence, let p, = ply\7,° be the projection of p over the set of
labeled transitions . Let also define o), = (e,, ..., e,) as the trace where
each event e; corresponds to the firing of the ith transition in I with
act(e;) = £(t;). The IG set of M, denoted by ITG(M), is the set of Instance
Graphs of all possible 6,, over the causal relation CR.

Given a set of instance graphs, it is possible to derive a set of local
IG (LIG) representing portions of process behaviors.

Definition 9 (Local Instance Graph). Let y = (E,W,l) be an IG. y’ =
(E',W',l") is a Local Instance Graph (LIG) of y if (a) E' C E, (b)

W' Cc W () I is I restricted to domain E’, and (d) y’ is a connected
graph.

Subgraph mining techniques are typically used to extract common
subgraphs from a set of graphs by incrementally generating a set
of candidate subgraphs and then looking for the embedding of these
candidates in the graphs set.

Definition 10 (Subgraph Isomorphism, Embedding). A labeled graph y =
(E, W, 1) is isomorphic to another graph ¢ = (E;, W,,I,) if and only if a
bijection f : E — E, exists such that (i) Ye; € E (e;) = I,(f(e;)), and

2 Given a set @, a strict partial order over @ is a binary relation <C @ x @
that is (i) irreflexive, i.e. ¢ £ ¢, (i) asymmetric, i.e. if ¢ < ¢/, then ¢’ £ ¢, and
(iii) transitive, i.e. if ¢ < ¢’ and ¢’ < ¢, then ¢ < ¢”, for any ¢, ', ¢" € @.

3 The symbol |y stands for the projection over the set X(i.e., only elements
belonging to X are kept).

(i) V(e;e;) € W <= (f(ey), f(e;)) € W. The graph y = (E,,, W,,,1,,)
is subgraph isomorphic to y if there exists y’ such that y’ is a subgraph
of y, and y is isomorphic to y’. y’ is said to be an embedding of y in y.

The approach proposed in this paper aims at repairing a given pro-
cess model by introducing anomalous behaviors represented in terms of
LIGs. To place these behaviors in the model, we first have to detect the
position in the process in which they occur. To this end, given a LIG y’
and a trace ¢ we need to detect one or more trace embedding(s) of y’ in
o. Informally, this means to extract the subsequence(s) of ¢ complying
with the ordering relations shown in y’. A formal definition of trace
embedding is introduced below.

Definition 11 (Trace Embedding, Extended Embedding). Let ¢ € L be a
trace and y, be the IG of ¢. Let y be a graph of which an embedding
y' exists in y,. The trace embedding of y in ¢ w.r.t. y’ is the sequence
s = 6| gr. The extended embedding o, of y in ¢ w.r.t. y’ is the contiguous
subsequence of ¢ whose first and last elements are equal to the first
and last elements of s, respectively.

Example 2. Let us consider the trace ¢ and the CR introduced in Ex-
ample 1. Fig. 3(a) shows a possible LIG extracted from the IG in Fig. 2.
The trace embedding of this LIG in ¢ is s = (AS, FA,, FC, FC,,0S),
while the extended embedding is 6, = (AS, FA,, FA,, FC,, FC,,0S).*
Note that the event FA, does not belong to the trace embedding;
however, it belongs to ¢,, since it occurs in between the events included
in the embedding s.

Hereafter, we will denote by LIG, the graph corresponding to the
extended embedding ¢, of a LIG in ¢ (see Fig. 3(b)). It is straightforward
to show that LIG is a subgraph of LIG, , and o, is the trace embedding
of LIG,, in o.

We refer to the concept of alignment to assess the conformance
of a trace to a process model. An alignment, here indicated with the
symbol 7, shows a possible correspondence between a trace of an
event log and a firing sequence of the WF-net. For example, a possi-
ble alignment between the original Petri net in Fig. 1 and the trace
6, = (AS,FA,, FA,, FC,,0S, FC,, FR, AAp,OC, AF,0Se, CC, FRe) is
shown in Fig. 4. The first two rows refer to the model . In particular,
the first row shows activities corresponding to transitions of the firing
sequence, which are shown in the second row. The third row shows
the sequence of activities associated to events in the trace. We use the
symbol 7 as label for hidden transitions. When the trace perfectly fits
with the process model, each activity in the first row occurs also in the
third row, in the same position; otherwise, a “no-move” symbol > is
inserted. Hereafter, we define a move the pair #[i] = (¢;, a;), where ¢; is
the transition in the second row and g; is the activity in the third row
occurring in the ith position of 5. There can be three possible kinds of
moves: (a) a synchronous move if g; is an event label in the trace and ;
is a transition in the model with the same label, (b) a “move-on-log”,
if t; is > and (c) a “move-on-model”, if g; is >.

Note that a move-on-log represents an inserted activity. Indeed, it
means that an activity has occurred in a position not allowed by the
model. A move-on-model represents a deleted activity; it means that a
certain activity should have occurred according to the model and did

4 Underlined activities represent those added to the trace embedding.

L. Genga et al.

Information Systems 122 (2024) 102349

(b)

Fig. 3. (a) a possible LIG extracted from the IG in Fig. 2, (b) LIG,, .

AS
(t1)

FA,
(t2)

FA.
(t3)

FCs
(ta)

FCe
(ts)

0S
(t7)

T

(ts)

>

m =

FR
(to)

0]@
(t12)

AF
(ti3)

0OSe
(t1s)

CC
(ti6)

FRe
(t1o)

AAp
(t11)

T

(tia)

| AS [FA[FA.[FC;[» | » [OS|FC.|FR|AAp| OC | AF | » |OSe| CC |FRe

Fig. 4. Alignments of o, and the Petri net of the original loan management process shown in Fig. 1.

not occur in reality. Such cases represent low-level anomalous behaviors
of the trace with respect to the process model.

Finally, we can provide the definition of structured, or high-level
anomalous behavior as follows:

Definition 12 (High-level Anomalous Behavior). Let IG(M) be the IG set
of the WF-Net M. Let y,; be the IG of a trace ¢. A high-level anomalous
behavior is defined as a LIG y’ of y such that an embedding of y’ in the
set IG(M) does not exist.

The definition allows for many high-level anomalous behaviors,
also with inclusion relations among them. In the following we will
see how smallest most relevant high-level anomalous behaviors can be
discovered from a process logs.

4. Methodology

In this section, we introduce our model repair methodology based
on anomalous local instance graphs. Given a process model M and
an event log £ tracking the process executions, we will describe the
steps that return a new process model M’ incorporating the behavior
of a single LIG. The reason is two-fold. On the one hand, in line with
existing local repair approaches, in our setting we assume the possible
presence of a user that decides which anomalies should be added. This
makes it possible to both discard those violating laws and regulations
and, in order to keep the model as simple as possible, choose only
those corresponding to some strategic business goal. On the other hand,
not having to carry out a complete repair, it makes sense to devise
a simple procedure, which can be iterated to integrate other selected
anomalies if necessary. In the absence of expert users and other domain-
driven criteria, a notion of relevance can be, and will be, adopted as
the criterion for LIG selection.

The methodology assumes that every inserted activity must corre-
spond to a process activity. This assumption eliminates the possibility of
including noise or errors with the repair, and consequently the necessity
of introducing a final verification of the semantic correctness of the
repaired model, or a preliminary pre-processing and cleaning of the log.

At high level, the methodology is composed of three steps (see
Fig. 5):

» Anomalous LIGs extraction: in this step, a set of anomalous LIGs
is extracted from the event log, among which the user selects
the one to include. The step exploits an anomaly discovery tech-
nique previously proposed by the authors [4], that will be briefly
described here for completeness;

Trace selection: one trace is selected as a guide to repair from
the set £;,; C L, i.e., the set of traces involving the extended
embedding of the LIG. In particular, we select one of the traces
with the shortest extended embedding of the LIG, to mitigate the
influence of other possible anomalies occurred within the trace
but not belonging to the LIG;

LIG integration: the step is devoted to extending the model
with the selected LIG. In detail, this step aligns the structured
anomalous behavior to the model; individuates the best location
where the structured anomalous behaviors should be placed in the
model; and converts the graph in Petri Net notation and properly
merges it with the original model.

In the next subsections, the details for each step are given.
4.1. Anomalous LIGs extraction

The anomaly discovery technique [4] takes as input a process model
representing the expected process behavior, and an event log storing a
set of historic executions of the process. In the following we describe
the two main steps carried out, namely Relevant subgraph mining and
Anomalous subgraph extraction.

4.1.1. Relevant subgraph mining
This step is aimed at (a) converting each sequential trace in an
Instance Graph (IG), and (b) extracting the most relevant subgraphs.

Instance graph building. First, an IG is built for each trace as in Defi-
nition 7. In the presence of non-compliant events, however, this pro-
cedure generates anomalous, low-quality IGs. As an example, let us
consider o, discussed in Section 1. Fig. 6 shows the IG y, built taking
in input the causal relation set CR extracted by the Petri net in
Fig. 1. It is straight to see that these IG provide poor quality model
for the corresponding process execution. In terms of structure, these
anomalies lead to generate either disconnected graphs and/or graphs
whose connections among nodes do not reflect the temporal order of
occurrence of the events. In terms of semantics, these models over-
generalize the process behavior, allowing for much more behaviors
than what is observed in the log. For example, the only execution
constraint for FC,, in Fig. 6, is to be executed after FC,. Indeed,
according to this IG, FC, can be executed in any order with respect
to the remaining activities, thus generating traces also very different
from o,.

To deal with the aforementioned issues, in [6] an IG repairing
procedure is applied to IGs corresponding to anomalous traces, which
transforms them in graphs capable of also representing the anomalous
traces without over-generalizing. To this end, at first, anomalous traces
(and, hence, IGs) are recognized in the event log by means of a
conformance checking technique [24], which returns the positions low-
level anomalies and their kind (i.e., move-on-model and move-on-log).
Then, tailored rules are applied for repairing IGs with deleted and
inserted events. For deleted events, the repair is to identify the nodes
that should have been connected to the deleted activity and connect
them properly. For each inserted event, taking into account the causal
relationships between the predecessors and successors of that event, we

L. Genga et al.

|
“slAnomalous LIGsI

Information Systems 122 (2024) 102349

@D{E\ﬁ.go _:'"P'c'l'/.')er Contribution
Process Model | == — = T T T :————l :J | ——-—=-

I Trace

) —
E] . | extraction [4] ' | %ﬁelemom - JntegratlonI
| i i
------- - LIG

Fig. 7. Repaired IG built for o, (7).

identify the nodes corresponding to the events that occurred before and
after the inserted event. Then, we modify the IG in order to connect the
entered event to the identified nodes. Fig. 7 shows the outcome of the
repairing procedure for the IG corresponding to ¢,. The repairing for y,
involves a combination of a deletion repairing (between FC; and O.)
and an insertion repairing (between O.S and F R). It is worth noting that
the repaired graph does not fulfill anymore Definition 7 with respect to
the original casual relation set C R; however, it still fulfills the definition
according to the new set of causal relation CR’, obtained by extending
CR to include all the pair of activities linked by edges added/modified
during the repairing procedure (e.g., for y; we add to CR the pairs
(FC,,085),(0S,FC,),(FC,, FR)). We refer to [6] for additional details.

Subgraph mining. Once the set of Instance Graphs is built and repaired,
a Frequent Subgraph Mining technique (FSM) is applied to extract the
most relevant LIGs. In our approach, we relate the relevance of a LIG
both to all its occurrences in a graph set and its size. In other words,
given two subgraphs with the same occurrence frequency but different
sizes, we are interested in the largest. This is motivated by the fact
that we expect to derive a larger amount of knowledge from it. The
size of a graph can be represented in terms of its Description Length
(DL), i.e., the number of bits needed to encode its representation,
computed as the sum of the number of bits needed to encode its nodes
and the number of bits needed to encode its edges (further details
on DL are provided in [25]). For this reason, we exploit the SUBDUE
algorithm [26] which is based on DL minimization. We refer to [4]
for a detailed description of LIGs extraction by means of SUBDUE. It is
worth noting, however, that any other FSM algorithm can be exploited
as well.

4.1.2. Anomalous subgraph extraction

The second step of the approach aims to determine among the
subgraphs identified in the previous step those that do not fit the given
process model. To this end, a tailored algorithm is introduced, the
Subgraph Conformance Checking (SCC) algorithm, whose core idea is
that, given a subgraph y and the reachability graph RG(M) of a Petri

net M, it is possible to determine whether y is “compliant” or “non-
compliant” (i.e., anomalous) with respect to RG(M) by replaying y over
RG(M). Interested readers are referred to [4] for additional details.

It is worth noting that usually inclusion relations exist among the
subgraphs returned by subgraph mining techniques. Namely, it is likely
to have one or more subgraphs involved in larger subgraphs. Subgraphs
related by an inclusion relation are highly correlated, thus yielding
redundant information.

In this work, we are interested in non-compliant subgraphs that
are representative of relevant anomalous behaviors, namely all those
subgraphs y; such that (i) y; captures a non-compliant behavior, and
(i) there does not exists any other subgraph y; C y; such that the
Description Length computed for y; is greater than that of ;.

Representative subgraphs are the smallest and most relevant non-
compliant LIGs representing high-level anomalous behaviors. They al-
low us to define patterns representing most relevant anomalies, without
incurring in the redundancy issue previously discussed. These LIGs
are identified by analyzing inclusion relations among non-compliant
subgraphs to extract those subgraphs fulfilling requirement (ii).

As anticipated before, we assume the presence of a user that chooses
among the set of LIGs which have to be added. In particular, the next
steps describe the integration of a single anomaly. The procedure can be
iterated to integrate other selected anomalies. In the rest of the paper,
we will assume that LIG relevance is the criterion guiding the selection.

4.2. Trace selection

In order to determine the candidate trace for repair, we select the
IGs containing the LIG chosen in the previous step, and we compute
the alignment of the corresponding traces with respect to the model to
be repaired using off-the-shelf techniques [24]. Then, IGs are ordered
based on the graph matching cost between the IG of the trace and the
LIG, and the first one is selected. This allows to consider the trace
with the minimum number of additional anomalies. To this end, we
exploit a graph matching algorithm based on the well-known notion of
description length, introduced in the previous step [25]. The algorithm

L. Genga et al.

Fig. 8. LIG extracted for the process in Fig. 1.

computes the cost of transforming the larger of the input graphs into the
smaller, and returns the cost and the mapping of vertices in the larger
graph to vertices in the smaller graph. It should be noted that, while
the subgraph matching problem is known to be NP-complete, here node
labels are considered to mitigate the computational cost.

Example 3. Let us consider the loan management process of Fig. 1.
Let us assume that by applying the LIG detection approach discussed
in Section 4.1 we extracted LIG, shown in Fig. 8. LIG,; shows that the
activity FC, has been delayed, and executed after OS. Let us consider
the traces o, = (AS, FA,, FA,, FC,, OS, FC,, FR,AAp,OC,AF,0OSe,
CC.FRe) and 6, = (AS, FA,, FA,, FC,, AR, OS, FC,, FR, AAp, OC,
AF,0Se,CC, FRe).

Their corresponding extended embeddings for the considered LIG
are o, = (AS,FA,, - FC,,08,FC,, FR,), o e = (AS, FA, FA,,
FC,, AR oS, FC,, FR) Fig. 9 shows the graphs LIG,, and LIG
related to the two extended embeddings. It is straight to see that while
LIG, is identical to the LIG to add, LIG,, differs for the presence
of the path from AS to O.S through AR. Therefore, while both traces
involve an embedding of LIG,, o, is the trace at minimum graph
matching cost, and will be the one returned by the trace selection step.

4.3. LIG integration

This subsection describes the core step of the approach. Given the
selected trace o for the repair, we extract the extended embedding o, of
the LIG to be added to the model in ¢ and we create the corresponding
LIG,, . In case of multiple embeddings, we consider only the first occur-
rence. This choice is driven by simplicity reasons. As a matter of fact,
the integration of the corresponding behavior in more than one point
of the model would make the description of the algorithm significantly
more complex. Hence, we have decided not to deal with this special
case in this paper and to repair only the first occurrence, also in the
light of the fact that, in principle, with the present formulation multiple
integrations are still possible by iterating the procedure. Then, we
compute the alignment # between ¢ and M. Algorithm 1 describes the
methodology to integrate LIG, into the process model M.

To simplify the integration procedure, we ensure that the LIG, has
a unique start event and a unique end event. This type of graph is
obtained by adding a node at the beginning (end) of the graph that
connects to all start (end) nodes of LIG%. This is done by the function
addStartEnd (see Algorithm 2), which, if necessary, creates and adds
a node start,,, and/or a node end,,, to the graph, also adding the
matching event(s) at the beginning and/or at the end of the extended
embedding (line 1). Note that the added nodes are labeled as “hidden”,
since they do not correspond to actual activities in the process. The
function then returns the (modified) graph, the (modified) extended
embedding, and the start and the end nodes of the graph. Then, we
derive o,,, that is the projection of the alignment # on the model M;
namely, it contains all transitions in M which are in # (line 2). Hence,
oy conforms to the model.

Lines from 3 to 11 are devoted to find the places of the process
model M and events of LIG, that will be connected to each other. In
particular, the function fmdLmks (see Algorithm 3) scrolls the alignment
n until it finds the first non-synchronous move occurring in o,. If a

Information Systems 122 (2024) 102349

Algorithm 1: LIG integration
: The graph LIG,, = (E,W, D), the alignment # of the
trace o over the process model M = (P, T, F, A, ¢), the
extended embedding o, = (e},¢}) of LIG in &
Output: Repaired model M’
(E,W.D),0,,start,,, end,,,,) = add Start End(LIG, , 6,);
om =175
(starty G, posStarty ;g, start s, posStart,) = find Links(c,,n);
= inv(c,); /* inv() reverses a sequence */
pos = scan(n, ,);
0 = inv(lef1(n, pos));
(endy ;¢,posEnd’,

Input

-

162 endyg posEnd)) = find Links(c),n');
length(q' |r) — posEnd’, +1 ;
posEnd; ;c = length(c,) —

posEnd, =

o ® N & U s~ W N

posEndLIG

Pg = status(left(cyy, posStart), M); /* status (o, M)
returns places of Mwith a token after the
firing of transitions in ¢ */

11 Py = status(left(cys, posEndy, — 1), M);

12 E’ = {o,li] | posStart; ;g <i < posEndy;g};

13 ={(ej,e)) EW |e, € E' Ae; € E');

14 ((E,W), 0,,starty g, endy ;g) = add Start End(E' , W', 1), 0, g1);

15 Ty =Crig = &5

16 forall e € E do

17 map(e) = create_transition();

18 | Tpg=Tpe Y{map(e)};

19 if l(e) # “hidden” then

20 ‘ Cricg =% rig Y {(map(e),l(e)};

21 Prig=Frig=9;

22 forall (e;,e;) € W do

23 pij = create_place();

24 Prig = Prig VU ip;);

25 Fric = Frig Y {(map(ey), p;j). (p;j, map(e;))};

26 T'=TUT,,6; P' = PUP, g F =FUF, g

27 forall p’ € Pg do

-
=]

28 ‘ F' = F u{(p/,map(start; ;c)};
29 forall p”’ € P do
30 | F'=F'U{(maplend;;).p")};

31 M =P, T'.F',A, £ U%5);

move-on-log is found, then the corresponding event in ¢, is marked
as starty;g; otherwise (i.e., if a move-on-model is found), it scans z
forward until it finds a move corresponding to an event in o, (i.e., ei-
ther a synchronous move or a move-on-log), that is then marked as
start; ;. The position of start; ;; in o, is also returned (posStart; ;¢).
Finally, findLinks returns the transition of M corresponding to the last
synchronous move before start; ;; (start,,) and its position in ¢,,. The
function findLinks is called for finding connection points both at the
beginning and at the end of LIG, (lines 3 and 7, respectively). In the
latter case, o, and a portion of the alignment are reversed and scrolled.
In details, we consider the first part of the alignment through the first
occurrence of o, (lines 5 and 6). This is done to properly find the
end of the first occurrence of the extended embeddings. The function
left(seq, pos) is used to return a subsequence of seq formed by its first
pos elements. Additional steps are needed to determine posEnd,, and
posEnd ; from the indexes obtained calling find Links on the reversed
sequences (lines 8-9).

The places of the model to which to connect LIG, correspond to
the markings reached after executing the transition start m and before
executing end,, respectively. To find these places, the function status is
used. It returns places of M with a token after the execution of the given
sequence of transitions (lines 10 and 11). Specifically, the subsequences
of o), starting from the beginning to posStart,, and posEnd,, —1 (recall
that we want the input places to end,,) respectively.

L. Genga et al.

(a)

Information Systems 122 (2024) 102349

RO
ofclcRos oS ololo

(b)

Fig. 9. (a) LIG, , () LIG,_.

Algorithm 2: Auxiliary function: addStartEnd

Algorithm 3: Auxiliary function: findLinks

Input : The graph LIG,, = (E,W, 1), and the extended
embedding o,
Output: The modified graph LIG’, the modified extended
embedding aé, the start node (start) and the end node
(end) of LIG'
1 Function (L1G’,0!,start,end)=addStartEnd((E,W,D,c,)

2 Snode = {e € E|A¢’ € E.(,e) e W}; /* set of start
nodes */
3 Enode = {e € E|fie’ € E,(e,¢) € W }; /* set of end
nodes */

4 if |Snode| > 1 then

5 E=EU{Hg};

6 I =1U{(Hyg, hidden);

7 Ve, € Snode, W = W U {(Hg,e;)};

8 6, = append({(Hg),0,); /* append two sequences
*/

9 start = Hg;

10 else

1 start = e,e € Snode; /* LIG with unique start
node */

12 if |Enode| > 1 then

13 E=EU{Hg};

14 I =1V {(Hg, hidden};

15 Ve; € Enode, W = W U {(e;, Hp)};

16 o, = append(o,, (Hg));

17 end = Hg;

18 else

19 end = e,e € Enode; /* LIG with unique end node
*/

20 return (E, W, 1), o,, start, end,

Now, in order to keep the model as simple as possible, LIG, is
modified by eliminating all nodes corresponding to transitions not to
add to M. These are all events in o, corresponding to synchronous
moves in n occurring before/after posStart; ;;/posEnd; ;. We use E’
to represent the set of nodes to add to the model, which are the
nodes in E that correspond to one event in ¢, included in the interval
between posStart; ;; and posEnd; ;s (line 12). Consequently, we keep
only the arcs linking nodes in E’ (line 13). If there are multiple start
and/or end nodes after the transformation, then a new start and/or end
node is added invoking again addStartEnd (line 14). Note that if no
modifications are made, then start; ;; and end; ;; remain the same.

The resulting LIG,, is then transformed in a WF-net M, = (Pyq,
Tr16> Frigs A, €116) (lines 15-25). To this end, we define the functions
create_transition and create_place to generate a new transition and a new
place, respectively. Every time that we create a transition, we update
the mapping map between events in the graph and transitions in the set
Ty 16> as well as the set Ty ;s itself (lines 17-18). Furthermore, if the
event does not correspond to a hidden transition (i.e, its label is not
“hidden”), we update the labeling function #; ;; too (line 20). Then,
for each edge (e;, ¢;) in LIG,, a place p and the flows (map(e;), p) and
(p, map(e;)) are added to the Petri net (lines 22-25).

Input : The extended embedding o, of LIG in a trace o, the
alignment 5 of ¢
Output: The event corresponding to the first non-synchronous
move occurring in o, (linky;¢), its position in o,
(posLinky 1), the transition of the model
corresponding to the last synchronous move before

(link), and its postion in o), (posLink)

1 Function
(link [;G,posLink ;g,link vy, pos Link ,)=findLinks(c,,1n)
2 i=j=k=1;
3 done = True; flag = True;
4 while i < length(n) A done do
5 (t.a) = nlil; v; = act™ (a);
6 if t; ==> then /* move-on-log */
7 if v; == 0,[j] then
8 startNode = o,[j];
9 done = False;
10 else
1 if v; #> then /* synchronous move */
12 if flag then
13 posLastSync = k;
14 lastSync =t;;
15 if v; == o,[j] then
16 j=j+1
17 else
18 startNode = o,[j];
19 done = False;
20 else if j > | then /* move-on-model within o,
*/
21 ‘ flag = false;
22 k=k+1; /* synchronous move or
move-on-model */
23 i=i+1;
24 return startNode, j,lastSync, posLastSync;

The places, transitions and flows obtained from the LIG are then
added to the corresponding sets of the original model (line 26). Fur-
thermore, for each place p’ € Py an edge (p’, map(start; ;¢)) is added to
the new flow relation; similarly, a new edge (map(end;), p’’) is added
for each place p” € P (lines 27-30). Finally, the repaired model M’
is created (line 31).

Example 4. Let us consider again LIG,, the trace ¢, and the extended
embedding o,, introduced in Example 3. The alignment between the
original process model and ¢, is shown in Fig. 4. Let us apply Algorithm
1 to this example. The function add Start End does not modify the LIG,
since it already has a single start and a single end. Invoking the function
find Links, we will obtain start;;; = O.S, since it is the first event
in 6, corresponding in # to a synchronous move after the move-on-
model corresponding to 5. Its position in o, is posStart;;; = 5. The
transition corresponding to the last synchronous move before the move-
on-model is starty, = t,; the position of the corresponding event in

L. Genga et al.

Information Systems 122 (2024) 102349

(a) LIG>.

Repair with LIG,

Repair with LIG,

(AR 620 5CC| 6310 A -bo5- > FR

t3 ® v tzsi

*
PPN

(b)

Fig. 10. (a) LIG corresponding to the anomalous behavior identified in ¢,, (b) the loan process model updated to include both LIG, and LIG,.

oy 1S posStarty, = 4. Similarly, by invoking the function again to
find the final connection points (lines 7-9), we obtain end;;; = FC,,
since it is the last event in ¢, corresponding to a move-on-log, with its
position posEnd;;; = 6. Accordingly, end,, = ty and posEnd,, = 8.
Therefore, we have Py = {p;,p;} and P; = {py}. The next step is
determining the elements of the LIG to be added to model. In our
example, E' = {OS, FC,}, since these are the only elements in ¢, in
between posStart; ;; and posEnd; ;. Accordingly, W' = {(OS, FC,)}
(line 13). The function add Start End is called again, but with no effects,
since the LIG already has single start/end nodes. Now we are ready
to convert the LIG in a Petri net (lines 15-25); in particular, we will
have Ty 6 = {ty.121}; Cric = ((ty,08), (121, FON; Prig = {p1ok;
and F;;6 = {(ta0, P19), (P19-121)}. We add the elements of the newly
created Petri net to the corresponding sets of the original model M
(line 26). Finally, we add an arc from p; and from p, to the transition
OS (corresponding to the start;;; event), as well as an arc from FC
(corresponding to the end; ;; event) to py (lines 27-30). Fig. 10 shows
the updated model M’ (note that the model portion repaired according
to LIG, is highlighted in the first dotted rectangle).

For the sake of space, we are not going to discuss the application of
Algorithm 1 in detail for the second anomalous behavior (correspond-
ing to o,) introduced in Section 1. Nevertheless, in Fig. 10 we report
LIG, describing the behavior, together with the process model updated
to include it.

If we compare the model repaired by using our approach with the
one discussed in Section 1, it is straight to see that the model returned
by our approach is able to represent the anomalous behaviors with a
much higher precision than the competitor, even though at the cost of
adding a higher number of duplicated transitions. A more elaborated
discussion on the trade-off achieved by the two approaches will be
presented when discussing the experimental results.

It is worth noting that the approach can deal also with complex
synchronization constructs. As an example, let us suppose to add a
small change to the process in Fig. 1 by introducing place py, which
connects FA, and FC,. In this configuration, the fraud checking can
be completed only if the first assessment of the application is marked
at least as start. The black elements in Fig. 11 show the portion of
the original model affected by the change (the black dashed elements
stand for the remaining part of the model, not drawn here for the
sake of simplicity). Now, let us assume to have a non-compliant trace
o4 = (AS, FC,, FA,, FA,, CC,FR,0S,...). Here, the fraud checking

10

did not end according to the prescribed course; instead, the customer
has been contacted and the manager involved to take a decision on
continuing the application procedure, which was positive. After this,
the procedure comes back on the normal flow with O.S. Let us assume
that we extract a sequential LIG connecting the nodes FC,, CC, FR; the
red, dashed nodes in Fig. 11 show the model repaired to include this
LIG. It should be noted that the starting marking for the LIG involves
the places pjs, py, p;, which guarantee that no dangling tokens are left
even in the presence of this complex synchronization.

It can be easily demonstrated that the proposed repairing algorithm
preserves the soundness of the model, as shown in the following
theorem.

Theorem 1. Let M be a WF-net, L a LIG, and M' the WF-net obtained
by repairing M with L through the LIG integration Algorithm (Alg. 1). If M
is sound, then M’ is sound.

Proof. To demonstrate the theorem, first of all let us observe that the
WF-net M, ;;, generated from L, is integrated into M as an alternative
path. In fact, recall from Alg. 1 that M, ,;; is a WF-net with a unique
(possibly hidden) initial transition 7;. A set of places Py, corresponding
to a reachable marking of M, is connected to ¢; by adding an edge
from each place p € Pg to it (lines 27-28 in Alg. 1). Therefore, from
this marking the execution of 7; disables the execution of any other
transition of M with the same precondition. Note that the marking
is surely reachable since it corresponds to the set of places marked
by firing a sequence of transitions in M. Similarly, the last transition
of M;;c is connected to a reachable marking of M (i.e. the set of
places Pg). To demonstrate the soundness of M’ it is thus sufficient
to demonstrate the soundness of M| ;. This directly comes from the
observation that, since a LIG has only sequences and parallel branches,
and no loops, then M; ;; is an acyclic Marked Graph. It is in fact known
that acyclic Marked Graphs are always sound (a proof is reported
in [27]).

5. Experiments

This section discusses the results of experiments performed to assess
the proposed approach. We compare our results with the state-of-the-
art technique in model repair [5], using the corresponding plug-in

L. Genga et al.

--------------------- > CC

Information Systems 122 (2024) 102349

|
el

t20 t21

Fig. 11. Example of a complex parallelism construct.

available at the ProM github repository,® which is the official repository
for the ProM platform [28]. We decided to compare our approach
against [5] since it is the closest to ours in terms of repairing strategy
among (semi)automatic process repair approaches. Other repairing
techniques, and how they differ from our approach, are discussed in
Section 2. The approach proposed in this work has been implemented
as a Python script, available at the project GitHub repository® along
with the used datasets.

5.1. Experiment settings

We carried out the evaluation in two scenarios, that we call global
and local. The former is aimed at comparing the performance of the
tested approaches while repairing exactly the same anomalies, while
the second is devoted to cover the intended use of our repair approach.
The introduction of a global scenario is because the technique in [5]
does not allow one to select the anomalies to be incorporated in the
model, but it repairs all the not synchronous moves in the alignment. As
a consequence, in order to ensure that differences in the outcomes are
only due to the repair strategy adopted to incorporate the anomalous
behaviors in the model, we consider a synthetic log where an a-priory
known set of anomalous behaviors was injected, without any additional
noise. To ensure our approach realizes a complete repair, we selected
the minimum set of anomalous LIGs covering all the injected behaviors,
and we repair the original net incrementally, one LIG at a time. As
regards the approach in [5], we simply use the entire event log as input.

In the local scenario, we want to assess the effect of incorporating
just one selected LIG. To compare our results with the technique in [5],
we gave as input to their plugin only the traces in the event log
involving the LIG we decided to add, while the performance metrics
(defined below) have been computed for the entire log. We hasten to
note that in this case differences between the approaches will be due
to both the repair strategy of the LIG and handling of noisy behaviors
not belonging to the LIG.

For both scenarios, we tested the approach proposed in [5] by
activating both the with and without loops detection option, which
respectively takes/does not take into account the possible presence of
loops during the repairing process, and with and without the post-
processing options aimed at removing the less frequently used nodes.
Similar post-processing optimizations may be in principle applied to
our approach as well. We plan to introduce these optimizations in
future work.

5.2. Performance metrics

We evaluate the quality of each repaired model along three perfor-
mance metrics, commonly used when assessing process model quality:
fitness, which calculates the amount of behaviors occurring in the event
log that is also allowed by the process model [24]; precision, which

5 https://github.com/promworkbench/ModelRepair.
6 https://github.com/KDMG/process-mining/tree/master/
ProcessRepairing.

11

assesses how much of the behavior allowed by the model actually
occurs in the event log [29]; and the model simplicity, which evaluates
the structural complexity of the model [30]. Each measure has been
computed relying on the standard implementations provided by the
PMA4Py suite [31]. In particular, we used the alignment-based methods
for the computation of fitness and precision, which have been assessed
on the entire event log. As regards simplicity, the metric implemented
in the PM4Py suite does not take into account the amount of duplicated
transitions, while they are expected, in practice, to hamper the overall
understandability of a model. Therefore, to provide a comprehensive
assessment of the structure of the repaired model, we also report the
overall number of places, transitions and arcs added by the repair.
We want to point out that, typically, there is a trade-off between
fitness and precision, similar to the trade-off between precision and
recall in information retrieval or the underfitting problem in classi-
fication. Furthermore, it is not always the case that process models
with perfect fitness or precision properly represent the corresponding
process. Classic examples of this issue are the so-called “flower mod-
els” [1], whose fitness is always equal to 1, since all possible sequences
of activities are allowed; however, precision of such models is really
poor and, furthermore, by allowing any activity execution order the
model says little or nothing on the actual process behaviors. In this
case the model is said to suffer from underfitting or, equivalently, to
over-generalize. Elaborating upon these observations, the goal of the
experiments is to assess the capability of the approaches to determine a
good balance between fitness and precision. To this end, we also report
the F1 measure, which is the harmonic mean of fitness and precision.
We conducted our analysis on two synthetic and three real-world
datasets. The aim of the experiments on synthetic data is to perform
controlled experiments and assess the effectiveness of the approach. We
used real-life case studies to show that the approach provides useful
insights and is robust to logs and models with real-life complexity.

5.3. Global repair experiments

5.3.1. Settings

For the global repair scenario, we used the process used for the
experiments in [4], representing the checking of the profile of a receiver
of a money transfer. We used the first dataset described in their
synthetic experiments, where authors generated the event log by CPN
Tools [32] inserting a number of anomalies, namely swaps, repetitions
and replacements. Each anomaly has a probability of occurrence of 30%.
Also note that it is possible that different anomalies appear in the same
trace.

The first row of Table 1 shows some basic characteristics of the
synthetic event log (note that the acronym “e.p.t.” stands for “events
per trace”). In total eleven LIGs were extracted, to cover all anomalous
behaviors.

5.3.2. Results

Table 2 reports the results obtained in terms of fitness, precision
and simplicity on the models repaired by our approach, referred to as
LIG-based, and by the approach in [5], referred to as Low-level, since
it repairs sequences of low-level anomalies. Whether or not the loop

https://github.com/promworkbench/ModelRepair
https://github.com/KDMG/process-mining/tree/master/ProcessRepairing
https://github.com/KDMG/process-mining/tree/master/ProcessRepairing

L. Genga et al.

Table 1

Event logs used for the synthetic and the real-world experiments.
Dataset Traces Events Avg. e.p.t. Min e.p.t. Max e.p.t.
Synthetic No Noise 1500 30238 20 13 41
Synthetic With Noise 1995 38963 20 12 41
Fine Dataset 146358 551509 4 2 20
BPI2012 7455 85426 11 4 82
BPI2017 3093 124.866 40 12 118

detection option was enabled for the low-level approach is indicated
by the label +L or —L, respectively. Similarly, the label +I or —I
stands for the settings with and without post-processing, respectively.
As regards the fields AArcs, ATrans and APlaces, we report the difference
(both as absolute and percentage values) between the number of those
elements before and after the repair. Percentage values represent the
gain over the number of elements in the original model, where 0%
means than the number of elements does not change, while 100%
means that the repaired model has twice as many elements as the
original model. For reference purposes, we also report the values of
the original net, before the repairing. Note that, in this case, the AArcs,
ATrans and APlaces fields have no meaning (they would correspond to
the difference between the original net and itself, so they would always
be zero), so they are not reported.

Both approaches were able to incorporate all anomalies into the
original model, enhancing the fitness up to 1, as expected. However, the
other metrics, in particular precision, show notable differences. While
all the repaired models show a worsening in precision, the LIG-based
approach returns the highest precision value. In contrast, the low-level
approach decreases precision to 0.32 or 0.31 depending on the different
loop and post-processing settings. We do not report the F1 measure
in the table for formatting reasons, observing that being fitness equal
to 1 for all repaired models the measure is governed by precision.
However, it can be interesting to note that the LIG-based approach
achieves an F1 score which is almost the same of the original model
(0.888 vs. 0.893). These results confirms what was already apparent
when comparing the example in Figs. 1 and 10b. The results also
show that the LIG-based approach returns a simpler model than the
competitor. Indeed, while they score similarly in terms of the simplicity
metric (the difference between the approaches is between 0.03 and
0.05), low-level approaches add more elements to the model: Low-Level
+L added 31.3% more elements (arcs, transitions and places) than the
LIG-based, whilst Low-level —L adds 48.4% more elements. It is worth
noting another characteristic of the approach. The number of LIGs
produced at the end of the anomalous subgraph extraction phase is 191
on this dataset. This is because the LIGs can include parts of the same
anomaly injected in the log combined with other compliant parts of the
behavior. The procedure of LIG integration, discarding these compliant
parts, can be iterated to include all the anomalies without introducing
redundancies, as the values of precision and simplicity demonstrate.

To qualitatively evaluate the effect of the two different repair strate-
gies, let us consider the repair of a single (structured) anomaly. Fig. 12
shows the original process model. The part framed in red describes
a pre-profiling phase. For this phase an anomaly has been injected
in the log, which swaps SRPP and FRPP activities. Figs. 13 and 14
show the repair of this anomaly performed by the LIG-based approach
and by [5] respectively. We can see in Fig. 13 the added alternative
path in red, with the rest of the net unchanged. Similarly, in Fig. 14
in red the corresponding repair. It is apparent the “structuredness” of
the LIG-based approach contrasted with the independent management,
by [5], of asynchronous moves resulting from the SRPP/FRPP swap. As
a result, the anomalous behavior is now allowed: by following hidden
activities we can now skip SRPP, RBPC, REPC, and RIBPC, enabling
FRPP soon after SRP. Then, a loop allows to execute RBPC, REPC, and
RIBPC, and finally SRPP. Of course, many other paths are now allowed,
e.g. skipping SRPP and executing RBPC, REPC, and RIBPC in parallel

12

Information Systems 122 (2024) 102349

soon after SRP, which is not an expected behavior. The example allows
us to also enlighten the differences between the structures used for
repair in the two approaches: (1) from the definition of LIG derives that
it will not contain neither choices nor loops, while these control flow
structures can appear in the models used for repair by [5] since they
are synthesized by process discovery on sublogs. (2) Since sublogs are
composed of maximal sequences of anomalies sharing the same starting
point (called location by the authors) they do not include synchronous
moves, whilst LIGs can. As a consequence, even a single synchronous
move in between two anomalous sequences leads [5] to recognize two
distinct substructures, while our approach can produce a single bigger
anomalous structure. This feature leads LIG-based approach to repair
with greater precision and to the introduction of duplicate transitions.

In Fig. 14 we can also note other changes operated by [5] to the
original model, enlightened in cyan. These are the repair of other
anomalies injected into the log. This enlighten a further difference
between the two repair approaches which demonstrate an inherent
difficulty in comparison, and the consequent motivation behind the
introduction of the global repair scenario: as a matter of fact, by
controlling and repairing all the existing anomalies, differences in
performances are only due to the different repair strategy, and not to
different anomalies repaired. As to the LIG-based approach, we high-
light that by inserting a frequent LIG, representative of the anomalous
behavior in a set of traces instead of the whole traces, we only insert
the desired behavior and control the over-fitting problem appropriately.
Finally, we note that in this particular example where the start and
end nodes of the LIG correspond to the swap nodes (to the anomalous
behavior) the whole LIG is entered as an alternative path. However, in
the general case, where the anomalous behavior is contained in a larger
LIG, the synchronous parts of the LIG are not added to the model thus
limiting the redundancy of the nodes, as shown in Fig. 10(b).

5.4. Local repair experiments

5.4.1. Settings

For this scenario, we used two synthetic and three real-world
datasets. For the synthetic experiments, we used both the log discussed
in the previous section, and a second, larger, synthetic log describing
the same process but with higher percentage of noise. In particular, in
addition to the anomalies previously mentioned, process activities were
randomly added/removed in portions of the process not involved by the
occurrence of the anomalies introduced for the previous experiment.
The amount of noise added to a trace is equal to the 10% of the length
of the trace. This creates quite a challenging scenario, which allows us
to test the robustness of the approach to high levels of noise. The second
line of Table 1 reports basic statistics on this event log (i.e., Synthetic
- With noise). In addition, we used three publicly available event logs.
The first and the second one, hereby referred to as BPI12012 [33] and
BPI2017 [34], both record the loan management process of a Dutch
Financial Institute, made available for the BPI 2012 and 2017 BPI
challenges. These event logs contain detailed information about appli-
cations submitted by clients, loan offers sent by the company, and work
items processed by employees or by the system. It should be noted that
this process went through important changes between 2012 and 2017
(among which, the implementation of a new workflow system), with
the result that the two logs actually describe two different processes.
We applied the same preprocessing (e.g., removing incomplete process
executions) and used the same process models derived for these event
logs in [4], reported in their real-world experiments section. The third
log describes the management of road traffic fines by a local police
force in Italy [35]. The event log contains information about the fine
and different possible handling paths (e.g., the offender could pay as
soon as notified or go through a court to appeal). Since the longest
case we observed in the log took almost one year, we removed cases
that started after the 30th of June 2012 (i.e., with less than one year
left till the end of the logging period) as a heuristic to filter out

L. Genga et al. Information Systems 122 (2024) 102349

Table 2
Results for the global repair experiments. Best results are in boldface.
Dataset Net Fit. Prec. Simp. AArcs ATrans APlaces
Original 0.85 0.94 0.76 - - -
Synthetic No noise LIG-based 1.00 0.80 0.58 41 (70.7%) 14 (58.3%) 9 (34.6%)
yn Low-level +L 1.00 0.32 0.54 55 (94.9%) 23 (95.8%) 6 (23.1%)
Low-level —L 1.00 0.31 0.54 61 (100%) 26 (108.3%) 8 (30.8%)
Low-level +L+I 1.00 0.32 0.53 47 (81%) 19 (79%) 4 (15%)
Low-level —L+I 1.00 0.32 0.55 51 (88%) 21 (88%) 6 (23%)

AHRRPC

FHRRPC

MHRRPC

Fig. 12. Money transfer process model with the position of a synthetic anomaly (framed in red). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

} — COPrfmec>()
(@)

Fig. 13. Repair of the anomaly with the LIG-based approach on the money transfer process (in red). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

O-Crrer > riree)

Fig. 14. Repair of the anomaly performed by [5] on the money transfer process (in red). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

13

L. Genga et al.

Table 3
Results for local repair experiments: fitness, precision and F1 measure. Best results are
in boldface.

Dataset Net Fit. Prec. F1
Original 0.85 0.94 0.89
. . LIG-based 0.89 0.92 0.90
Synthetic No Noise Low-level +L 0.95 0.38 0.54
Low-level —L 0.95 0.34 0.50
Low-level +L+I 0.95 0.39 0.55
Low-level —L+I 0.95 0.39 0.55
Original 0.85 0.96 0.90
. . . LIG-based 0.86 0.96 0.91
Synthetic With Noise Low-level +L 0.96 0.37 0.53
Low-level —L 0.96 0.40 0.56
Low-level +L+I 0.95% 0.39* 0.55
Low-level —L+I 0.95% 0.41* 0.57
Original 0.996 0.88 0.93
Fine LIG-based 0.997 0.88 0.93
Low-level +L 0.999 0.77 0.87
Low-level —L 0.999 0.77 0.87
Low-level +L+I 0.999 0.75 0.86
Low-level —L+I 0.998 0.81 0.89
Original 0.92 0.49 0.64
LIG-based 0.93 0.48 0.63
BPI2012 Low-level +L 0.98 0.28 0.44
Low-level —L 0.98 0.28 0.44
Low-level +L+I 0.98 0.29 0.45
Low-level —L+I 0.98 0.28 0.44
Original 0.81 0.78 0.79
LIG-based 0.83 0.72 0.77

BPI201

017 Low-level +L 0.88 0.50* 0.64
Low-level —L 0.98 0.13 0.23
Low-level +L+I 0.87 0.38 0.53
Low-level —L+I 0.98 0.12% 0.21

2 Denotes averages computed on a subset of LIGs.

incomplete cases. For the process model, we used the one built by
previous research [36]. It has been manually designed taking domain
knowledge and regulations about the management of road traffic into
account. The last three rows of Table 1 show some basic characteristics
of the real-world event logs.

For each dataset, the number of LIGs found after the anomalous
subgraph extraction phase is: 191 (Synthetic No Noise), 485 (Synthetic
With Noise), 181 (Fine), 60 (BPI2012), and 35 (BP12017). We selected
the 10 most relevant LIGs to apply our repair algorithm (i.e., the
LIGs with the highest Description Length), and we assessed the quality
of the repaired model separately for each LIG, averaging the results.
On average, the size of the LIGs in terms of number of nodes is:
11.6 (Synthetic No Noise), 6.6 (Synthetic With Noise), 3.7 (Fine), 6.8
(BP12012), and 9.2 (BP12017).

5.4.2. Results

For the sake of space, the results are split into two tables. Table 3
shows the results related to the fitness and precision metrics, while
Table 4 shows the results related to the simplicity related metrics. For
each approach and metric we report the average of the values over
all LIGs. As regards the fields AArcs, ATrans and APlaces, we report
the average difference between the number of each of those elements
before and after the repair.

In the first synthetic dataset, loop detection and post-processing do
not affect significantly the performance of the low-level repair, which
obtained in all configurations the best results in terms of fitness (0.95
against 0.89 of the LIG-based approach). However, when it comes to the
precision, it is straight to see that the LIG-based approach outperforms
the low-level repair. Indeed, the highest average precision obtained by
low-level repair is 0.39, against the 0.92 returned by the LIG-based
repair. A similar trend can be observed for simplicity: the LIG-approach
scored better than low-level repair techniques (0.72 against values in

14

Information Systems 122 (2024) 102349

[0.58; 0.60]). Another interesting observation is that our approach
added considerably less elements to the repaired net than the low-
level one, as shown by the number of added arcs, transitions and
places.

Differences between the tested approaches are even more evident in
the remaining datasets, likely because of the higher level of noise. Over-
all, we can observe that our approach achieved an almost negligible
improvement of the fitness. This result is in line with the expectations;
we selected datasets with a very high level of noise (with the exception
of the Fine dataset, discussed later in the text), from which we only
repair a portion of the most frequent anomalous behaviors, which
explains why the fitness did not improve that much. Nevertheless,
the low-level approach managed to improve the fitness of the original
models within 6% (for the BPI2012 dataset) and 17% (for the BP12017
dataset)

However it is straight to see that such an improvement of fitness
has been obtained at the expenses of a strong decrease in quality for
the other metrics. Indeed, for all the datasets we observe a drop in
precision, particularly evident for results obtained by the low-level
without loops on the BPI2017 dataset, where we observe a drop from
0.78 to 0.12/0.13. Regarding this dataset, it should be noted that for
the low-level with loops we were able to compute the precision values
only for five of the LIGs; for the others, it was not possible to conclude
the computation because of an out of memory error (on a 64 GB
RAM machine). Therefore, the 0.5 precision value for the low-level +L
configuration is only a partial value. Similarly, it was not possible to
compute metrics of some LIGs with the post-processing option enabled
on the Synthetic and BPI2017 datasets. These case are enlightened in
Table 3 with an asterisk.

Indeed, from the definition, low precision values indicate that more
variants are possible in the model than in the log. Hence very low preci-
sion values are indicative of a model with potential over-generalization
issues. As observed before, the starting experimental conditions have
been made as similar as possible but they are not identical for the
two approaches, since the LIG-based repairs a specific anomaly, while
the low-level is provided with the subset of traces that contain the
same anomaly, possibly together with others. Thus higher fitness and
lower precision is expected. However, as F1 scores demonstrate, fitness
increase is not balanced by the deterioration of precision, and the
LIG-based approach is able to provide an overall better balance. Sim-
ilar observations, advocating for local, curated repairs, are discussed
in [8].

Another interesting trend that emerges from Table 4, is that the
low-level repair approach seems to return more complex models than
the LIG-based approach. The LIG-based approach scores consistently
better in terms of simplicity; furthermore, the low-level approach adds
in general far more arcs and transitions, up to one order of magnitude.

It is worth noting that the Fine dataset shows different initial
conditions; indeed, the original net already presented almost a perfect
fitness, showing that few anomalous behaviors occurred in the dataset.
Therefore, there is not much room for improvement for this metric;
indeed, improvements achieved by both the approaches are only no-
ticeable to the the third decimal, that is the reason why we reported
three decimals for this value in Table 3. However, it is interesting to
observe that the considerations already made on the precision and the
simplicity of the approaches continue to hold; namely, the low-level
repair led to a noticeable worsening of both precision and simplicity
(decreased of 6.2% and 1.7% w.r.t. the original model when only the
post-processing option is enabled, respectively), whilst the LIG-based
approach kept values close to the original model. Furthermore, the low-
level repair added on average much more transitions and arcs than the
LIG-based. These results are interesting, since they highlight that even
in conditions of low noise, low-level repair can lead to imprecise and
complex models.

L. Genga et al.

Information Systems 122 (2024) 102349

Table 4
Results for local repair experiments: simplicity. Best results are in boldface.
Dataset Net Simp. AArcs ATrans APlaces
Original 0.76 - - -
Synthetic No Noise LIG-based 0.72 8.60 (14.8%) 3.00 (12.5%) 2.80 (10.8%)
Low-level +L 0.58 32.00 (55.2%) 13.10 (54.6%) 2.60 (10.0%)
Low-level —L 0.60 35.00 (60.3%) 14.60 (60.8%) 3.70 (14.2%)
Low-level +L+I 0.58 28.80 (49.7%) 11.50 (47.9%) 1.80 (6.9%)
Low-level —L+I 0.59 31.00 (53.4%) 12.60 (52.5%) 2.90 (11.1%)
Original 0.75 - - -
Synthetic With Noise LIG-based 0.72 9.50 (16.4%) 3.40 (14.2%) 2.60 (10.0%)
Low-level +L 0.46 191.40 (330.0%) 87.10 (363.0%) 11.10 (42.7%)
Low-level —L 0.47 228.10 (393.3%) 104.00 (433.3%) 14.80 (56.9%)
Low-level +L+I 0.47 142.00 (244.8%) 65.00 (270.8%) 8.11 (31.2%)
Low-level —L+I 0.44 216.30 (372.9%) 97.60 (406.7%) 14.40 (55.4%)
Original 0.58 - - -
Fine LIG-based 0.58 2.80 (7.0%) 1.40 (7.0%) 0.40 (4.4%)
Low-level +L 0.52 11.00 (28.0%) 5.50 (29.9%) 0.00
Low-level —L 0.54 7.80 (20.5%) 3.90 (20.5%) 0.00
Low-level +L+I 0.54 13.60 (35.8%) 6.80 (35.8%) 1.5 (13.3%)
Low-level —L+I 0.55 10.60 (27.9%) 5.30 (27.9%) 1.2 (13.3%)
Original 0.69 - - -
BPI2012 LIG-based 0.68 8.70 (12.4%) 4.10 (12.4%) 2.20 (1.0%)
Low-level +L 0.62 13.80 (19.7%) 6.90 (21.0%) 0.00
Low-level —L 0.62 13.80 (19.7%) 6.90 (21.0%) 0.00
Low-level +L+I 0.62 13.80 (19.7%) 6.90 (21.0%) 0.00
Low-level —L+I 0.62 13.80 (19.7%) 6.90 (21.0%) 0.00
Original 0.73 - - -
BPI2017 LIG-based 0.71 23.70 (13.0%) 10.80 (12.6%) 6.70 (10%)
Low-level +L 0.59 84.70 (46.5%) 38.70 (45.0%) 3.20 (4%)
Low-level —L 0.61 143.00 (78.6%) 69.90 (81.3%) 21.90 (32.7%)
Low-level +L+I 0.67 37.67 (20.7%) 18.33 (21.3%) 3.56 (5.3%)
Low-level —L+I 0.61 128.00 (70.3%) 62.00 (72.1%) 19.33 (28.9%)

5.5. Discussion

Experimental results show that the LIG-based approach in general
outperforms the low-level repair in terms of precision and simplicity,
at the cost of an often modest improvement of fitness. This trade-off
between fitness and precision can easily be explained by considering
the characteristics of the tested logs, and reflects the main differences in
terms of the adopted repair strategies. In the tested logs, the anomalous
behaviors selected for the repair often co-occur with other low-level
behaviors in the traces. The LIG-based repair is tailored to include
specific structured anomalous behaviors, thus ignoring possible other
anomalous behaviors in a trace. Therefore, we do not expect huge
improvements in terms of fitness, since anomalous behaviors are often
not very frequent in the event log, and we repair one of them at a time.
The low-level approach [5], instead, does not allow the user to select
the behaviors to repair, but it strives to repair all anomalous behaviors
observed in the log. This explains the higher fitness. However, this is
obtained at the expenses of a much lower precision These effects are
more visible in the real-world datasets; in particular, as expected, with
the increasing of the level of noise the drop in precision and simplicity
increases as well, since the repaired models involve much more noisy
behaviors than the synthetic one. Although global and local approaches
respond to different goals and are not easily comparable, the F1 scores
demonstrate the capability of the LIG-based approach to achieve a good
balance between fitness and precision. As a further observation, we
note that in principle a low-level approach can be adopted in a local
setting. Similarly to what has been done in [8] a possible solution
is to repair the event log, removing all anomalous behaviors which
are not instances of the selected one. However, such pre-processing
would not be enough to guarantee significant improvements in terms
of precision: as shown by the example in Section 1.1 and the result of
the experiments reported in Fig. 14, the low-level repair would anyway
introduce more behaviors than intended, since co-occurrences among
low-level anomalies, other than sequences, are not taken into account.
This claim is also supported by the results obtained in the first set of
experiments (Section 5.4), i.e., the global repair scenario, where the

15

two approaches repaired exactly the same set of anomalous behaviors.
In this case, the LIG-based approach performed much better in terms of
precision, while achieving the same fitness of the low-level approach.
In this regards, it is also worth noting that while the precision of the
LIG-repaired model is less than the precision of the original model, the
F1 score of the two turns out to be practically the same.

Similar considerations hold for the simplicity. However, while for
precision we expect to perform in general better than the low-level
approach, as explained above, the better performance of the LIG-based
approach in terms of simplicity when no additional noise occurs are
more dependent on the characteristics of the LIGs. The better perfor-
mance of the LIG-based in the tested synthetic dataset are due to the
fact that many of the LIGs started/ended with compliant behaviors,
which were hence not added to the model; while the low-level repair
added a number of additional nodes, e.g., hidden transitions. The
presence of compliant activities in many LIGs is expected, because of
their higher frequency in the log with respect to anomalous activities.
Anyway, in the worst case of a LIG including only non-compliant activ-
ities, all nodes would be added to the process model, thus worsening
the simplicity. In this respect, it is worth noting that a trade-off exists
between understandability/readability, amount of duplicated transi-
tions and amount of unwanted behavior in the repaired model. When
duplicating transitions, one can hypothetically create a separate branch
for every execution trace that exists in the log. That way, one can
ensure that all behavior is captured and no other non-existing behavior
is allowed. It is clear that such a model quickly becomes impossible
to read and understand. On the other hand, creating a model that
precisely specifies the wanted behavior without duplicating transitions
could lead to very complicated models with many hidden transitions.
The current approach relies on the addition of the minimum amount
of duplicated transitions needed to incorporate the desired LIG. We
observe that the percentages of duplicated transitions with respect to
the size of the LIGs are: 29.9% (Synthetic No Noise), 48.6% (Synthetic
With Noise), 83.6% (Fine), 42.5% (BPI2012), and 70.3% (BPI12017).
This leads to a percentage of duplicated transitions in the repaired
model ranging from 6.1% for BPI12017, to 13.2% for Fine. Other values

L. Genga et al.

are 13.0% (Synthetic No Noise), 11.8% (Synthetic With Noise), 7.5%
(BP12012). Although we consider these numbers a good result, we
plan to delve into the possible use of hidden transitions, and how
to achieve a better balance within these two alternative solutions in
future work. Another drawback of alternative paths with duplicated
transitions is that it can generate an overfitting model. This is especially
risky when every non-compliant trace leads to an alternative path in the
net. As to this concern we like to note that alternative paths represent
anomalous behaviors that are common to a set of traces. The discovery of
common anomalous patterns in the log reduces the risk of overfitting at
some extent. Furthermore, the Minimum Description Length criterium
adopted by SUBDUE to discover anomalous patterns guarantees that
the largest frequent common patterns are found first, contributing to
the generalization ability. The first structures found by SUBDUE should
then be applied for repairing as a good practice to control overfitting,
as we did in the experiments, although we do not impose this as part
of the methodology since users could have repair goals other than
frequency (e.g., if an anomaly related to a special treatment for few
platinum clients leads to a substantial improvement of return, it can be
justifiable to promote it to standard practice.). The evaluation of the
generalization of the method by the PM4Py suite demonstrates good
performance on the selected datasets: 0.96 for Synthetic No Noise, 0.97
for Synthetic With Noise, 0.93 for Fine, 0.86 for BPI12012, and 0.87 for
BPI2017.

In terms of execution time, Anomalous LIGs Extraction represents
the most expensive step of the methodology. In particular, the cost of
IG building depends on finding the optimal alignment of all log traces;
while the time for the application of repair rules is negligible. The ex-
ecution of SUBDUE for extracting relevant subgraphs has a complexity
that depends on the size of the IGs and the number of subgraphs to
be extracted. In fact, at each iteration SUBDUE uses the subgraph with
the highest DL to compress IGs, and use them as input for the next
iteration. So the execution time depends on the number of relevant LIGs
to extract. In the case of all anomalies in real-world should be repaired,
SUBDUE should iterate until the first k most relevant LIGs covering all
traces in the log have been discovered. Finally, the complexity of the
LIG Integration step depends on the length of the alignment, which has
already been defined during the building IG step. Since the approach
in [5] is also based on optimal alignment, the difference stems in the
way models for the repair are extracted: SUBDUE and process discovery
respectively.

Finally, we would also like to point out that our approach is not
constrained to the use of a specific LIG extraction methodology. Indeed,
the only requirement to apply the proposed integration approach is to
provide in input (a) a LIG fulfilling the properties described in Section 3
(which can also be manually drawn by the user), and (b) an event log
involving at least one trace where the LIG occurs (which can also be
simulated).

6. Conclusions

In this work, we introduced a process repair technique based on the
use of local models representing high-level anomalous behaviors. These
high-level behaviors correspond to frequently co-occurring low-level
anomalous behaviors. The proposed approach allows to repair a single
high-level anomalous behavior. The integration of multiple anomalies
is still possible by iterating the procedure. We compared the approach
with respect to state-of-the-art competitor, both on synthetic and real-
world datasets, considering both a global and a local repair scenario.
In the first one, all anomalies have been repaired to obtain a single
repaired model, and differences in the output are only due to the repair
strategies; in the second scenario, we evaluate the results obtained
when incorporating only local behaviors, where also additional noise
can occur, potentially impacting the obtained model. The results show
that the proposed approach outperformed the competitor in terms of
precision and simplicity of the repaired models, at the cost of an often

Information Systems 122 (2024) 102349

modest improvement of fitness, showing a favorable balance in terms
of F1 measure.

For future work, first, we intend to extend the approach to deal
with multiple occurrences of a LIG within the same process execution.
Another extension we plan to include, is to consider small variants
of the identified LIGs, to improve fitness. Furthermore, we plan to
investigate strategies, similar to loop detection and post-processing
options in [5], to minimize the number of elements included into the
model, improving the simplicity of the outcome. With the same aim,
we plan to delve into the possible use of hidden, instead of duplicate,
transitions and how to achieve a better balance within these two
alternative solutions.

CRediT authorship contribution statement

Laura Genga: Writing — review & editing, Writing — original draft,
Supervision, Software, Methodology, Formal analysis, Conceptualiza-
tion. Fabio Rossi: Visualization, Software. Claudia Diamantini: Writ-
ing - review & editing, Writing — original draft, Supervision, Software,
Methodology, Formal analysis, Conceptualization. Emanuele Storti:
Writing — review & editing, Writing — original draft, Validation, Su-
pervision, Software, Methodology, Formal analysis, Conceptualization.
Domenico Potena: Writing — review & editing, Writing — original
draft, Validation, Supervision, Software, Methodology, Formal analysis,
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

We have used publicly available datasets. The link can be found in
the paper.

References

[1] W.M.P. van der Aalst, Process Mining - Data Science in Action, second ed.,
Springer, 2016.

[2] A.A. Cervantes, N.R. van Beest, M. La Rosa, M. Dumas, L. Garcia-Bafiuelos,
Interactive and incremental business process model repair, in: OTM Confeder-
ated International Conferences“ on the Move to Meaningful Internet Systems”,
Springer, 2017, pp. 53-74.

[3] A. Adriansyah, J.M. Buijs, Mining Process Performance from Event Logs: The BPI
Challenge 2012, BPM Center Report BPM-12-15, BPMcenter.org, 2012.

[4] L. Genga, M. Alizadeh, D. Potena, C. Diamantini, N. Zannone, Discovering
anomalous frequent patterns from partially ordered event logs, J. Intell. Inf. Syst.
(2018) 1-44.

[5] D. Fahland, W.M.P. van der Aalst, Model repair - aligning process models to
reality, Inf. Syst. 47 (2015) 220-243.

[6] C. Diamantini, L. Genga, D. Potena, W.M.P. van der Aalst, Building instance
graphs for highly variable processes, Expert Syst. Appl. 59 (2016) 101-118.

[71 A. Polyvyanyy, W.M.P. Van der Aalst, A.-H.M. Ter Hofstede, M.T. Wynn, Impact-
driven process model repair, ACM Trans. Softw. Eng. Methodol. 25 (4) (2016)
1-60.

[8] M. Dees, M. de Leoni, F. Mannhardt, Enhancing process models to improve
business performance: A methodology and case studies, in: OTM Confederated In-
ternational Conferences* on the Move to Meaningful Internet Systems”, Springer,
2017, pp. 232-251.

[9] A. Adriansyah, B.F. Van Dongen, N. Zannone, Controlling break-the-glass through
alignment, in: 2013 International Conference on Social Computing, IEEE, 2013,
pp. 606-611.

[10] K. Revoredo, On the use of domain knowledge for process model repair, Softw.
Syst. Model. (2022) 1-13.

[11] X. Zhang, Y. Du, L. Qi, H. Sun, An approach for repairing process models based
on logic Petri nets, IEEE Access 6 (2018) 29926-29939.

[12] Y. Teng, Y. Du, L. Qi, W. Luan, L. Wang, A simple logic transition repair
method for business process models via logic petri nets, IEEE Access 7 (2019)
76628-76644.

http://refhub.elsevier.com/S0306-4379(24)00007-3/sb1
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb1
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb1
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb2
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb2
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb2
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb2
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb2
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb2
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb2
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb3
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb3
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb3
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb4
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb4
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb4
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb4
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb4
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb5
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb5
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb5
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb6
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb6
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb6
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb7
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb7
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb7
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb7
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb7
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb8
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb8
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb8
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb8
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb8
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb8
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb8
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb9
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb9
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb9
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb9
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb9
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb10
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb10
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb10
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb11
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb11
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb11
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb12
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb12
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb12
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb12
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb12

L. Genga et al.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

J.C.A.M. Buijs, M. La Rosa, H.A. Reijers, B.F. Dongen, W.M.P. van der Aalst,
Improving business process models using observed behavior, in: International
Symposium on Data-Driven Process Discovery and Analysis, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2013, pp. 44-59.

A.A. Mitsyuk, L.A. Lomazova, 1.S. Shugurov, W.M.P. van der Aalst, Process
model repair by detecting unfitting fragments, in: AIST (Supplement), 2017, pp.
301-313.

C. Li, M. Reichert, A. Wombacher, Discovering reference models by mining pro-
cess variants using a heuristic approach, in: Proceedings of the 7th International
Conference on Business Process Management, Springer-Verlag, Berlin, Heidelberg,
2009, pp. 344-362.

D. Fahland, W.M.P. van der Aalst, Simplifying discovered process models in a
controlled manner, Inf. Syst. 38 (4) (2013) 585-605, Special section on BPM
2011 conference.

A. Kalenkova, J. Carmona, A. Polyvyanyy, M. La Rosa, Automated repair of
process models using non-local constraints, in: International Conference on
Applications and Theory of Petri Nets and Concurrency, Springer, 2020, pp.
280-300.

M. Reichert, P. Dadam, ADEPT flex—supporting dynamic changes of workflows
without losing control, J. Intell. Inf. Syst. 10 (2) (1998) 93-129.

M. Gambini, M. La Rosa, S. Migliorini, A.H. Ter Hofstede, Automated error
correction of business process models, in: International Conference on Business
Process Management, Springer, 2011, pp. 148-165.

N. Lohmann, Correcting deadlocking service choreographies using a simulation-
based graph edit distance, in: Business Process Management: 6th International
Conference, BPM 2008, Milan, Italy, September 2-4, 2008. Proceedings, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 132-147.

W.M.P. van der Aalst, W.Z. Low, M.T. Wynn, A.H.M. ter Hofstede, Change your
history: Learning from event logs to improve processes, in: 2015 IEEE 19th
International Conference on Computer Supported Cooperative Work in Design,
CSCWD, 2015, pp. 7-12.

J. Ghattas, P. Soffer, M. Peleg, Improving business process decision making based
on past experience, Decis. Support Syst. 59 (2014) 93-107.

17

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Information Systems 122 (2024) 102349

W.M.P. van der Aalst, Verification of workflow nets, in: P. Azéma, G. Balbo
(Eds.), Application and Theory of Petri Nets 1997, Springer Berlin Heidelberg,
1997, pp. 407-426.

A. Adriansyah, B.F. van Dongen, W.M.P. van der Aalst, Conformance checking
using cost-based fitness analysis, in: 2011 Ieee 15th International Enterprise
Distributed Object Computing Conference, IEEE, 2011, pp. 55-64.

D.J. Cook, L.B. Holder, Substructure discovery using minimum description length
and background knowledge, J. Artificial Intelligence Res. 1 (1993) 231-255.

1. Jonyer, D.J. Cook, L.B. Holder, Graph-based hierarchical conceptual clustering,
J. Mach. Learn. Res. 2 (Oct) (2001) 19-43.

K. Van Hee, N. Sidorova, M. Voorhoeve, Soundness and separability of workflow
nets in the stepwise refinement approach, in: International Conference on
Application and Theory of Petri Nets, Springer, 2003, pp. 337-356.

ProM, 2023, http://dx.doi.org/10.1007/11494744_25, Accessed: 2023-12-15.

A. Adriansyah, J. Munoz-Gama, J. Carmona, B.F. Van Dongen, W.M.P. Van
Der Aalst, Measuring precision of modeled behavior, Inf. Syst. E-Bus. Manage.
13 (1) (2015) 37-67.

F.R. Blum, Metrics in Process Discovery, Tech. Rep., Technical Report, TR/DCC,
2015, pp. 1-21.

PM4Py, 2023, https://doi.org/10.1016/j.simpa.2023.100556, Accessed: 2023-12-
15.

CPN Tools, 2023, https://doi.org/10.1007/s10009-007-0038-x, Accessed: 2023-
12-15.

B. van Dongen, BPI Challenge 2012. Version 1. 4TU.ResearchData. dataset,
2012, https://doi.org/10.4121/uuid:3926db30-{712-4394-aebc-75976070e91f,
Accessed: 2023-12-15.

B. van Dongen, BPI Challenge 2017. Version 1. 4TU.ResearchData. dataset,
2017, https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b,
Accessed: 2023-12-15.

M. de Leoni, F. Mannhardt, Road Traffic Fine Management Process. Version 1.
4TU.ResearchData. dataset, 2015, https://doi.org/10.4121/uuid:270fd440-1057-
4fb9-89a9-b699b47990f5, Accessed: 2023-12-15.

F. Mannhardt, M. De Leoni, H.A. Reijers, W.M.P. Van Der Aalst, Balanced
multi-perspective checking of process conformance, Computing 98 (4) (2016)
407-437.

http://refhub.elsevier.com/S0306-4379(24)00007-3/sb13
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb13
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb13
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb13
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb13
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb13
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb13
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb14
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb14
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb14
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb14
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb14
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb15
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb15
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb15
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb15
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb15
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb15
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb15
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb16
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb16
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb16
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb16
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb16
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb17
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb17
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb17
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb17
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb17
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb17
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb17
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb18
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb18
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb18
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb19
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb19
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb19
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb19
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb19
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb20
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb20
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb20
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb20
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb20
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb20
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb20
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb21
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb21
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb21
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb21
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb21
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb21
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb21
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb22
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb22
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb22
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb23
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb23
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb23
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb23
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb23
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb24
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb24
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb24
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb24
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb24
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb25
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb25
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb25
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb26
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb26
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb26
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb27
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb27
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb27
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb27
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb27
http://dx.doi.org/10.1007/11494744_25
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb29
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb29
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb29
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb29
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb29
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb30
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb30
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb30
https://doi.org/10.1016/j.simpa.2023.100556
https://doi.org/10.1007/s10009-007-0038-x
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb36
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb36
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb36
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb36
http://refhub.elsevier.com/S0306-4379(24)00007-3/sb36

	Model repair supported by frequent anomalous local instance graphs
	Introduction
	Motivating example
	Paper contribution and organization

	Related work
	Preliminaries
	Methodology
	Anomalous LIGs extraction
	Relevant subgraph mining
	Anomalous Subgraph Extraction

	Trace Selection
	LIG integration

	Experiments
	Experiment settings
	Performance metrics
	Global repair experiments
	Settings
	Results

	Local repair experiments
	Settings
	Results

	Discussion

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

