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Abstract: The present paper deals with the external identification of a reciprocal, special passive,
2n-port network under measurement uncertainties. In the present context, the multiport model is
represented by an admittance matrix and the condition that the network is ‘reciprocal special passive’
refers to the assumption that the real part of the admittance matrix is symmetric and positive-definite.
The key point is to reformulate the identification problem as a matrix optimization program over
the matrix manifold S+(2n)× S(2n). The optimization problem requires a least-squares criterion
function designed to cope with over-determinacy due to the incoherent data pairs whose cardinality
exceeds the problem’s number of degrees of freedom. The present paper also proposes a numerical
solution to such an optimization problem based on the Riemannian-gradient steepest descent method.
The numerical results show that the proposed method is effective as long as reasonable measurement
error levels and problem sizes are being dealt with.

Keywords: system identification; multiport model; Riemannian manifold; gradient-steepest-descent
optimization

1. Introduction

Two-port and multiport circuits are frequently employed in engineering and in applied
sciences to model complex circuit portions. Multiport circuit models are not limited to
electrical phenomena. For instance, multiport models have been used in the modeling of
acoustic systems [1] and transducers [2]; in the analysis of mufflers of complex geometry [3];
in the analysis of power delivery in electrical railways systems [4]; in the analysis of
microvascular networks [5]; in the characterization of hydraulic systems [6]; in waveguide
calibration [7]; in the modeling of electrochemical transport processes through biological
membranes [8]; in the analysis of harmonic-chain-based energy harvesters [9]; in the design
of wireless power transfer systems [10,11]; in the representation of electro-mechanical
transducers [12]; in the simulation of bending magnets [13]; in the modeling of complex
mechanical systems [14]; and in the design of power converter configurations for grid-
connected photovoltaic systems [15].

Most modeling techniques involve two-port models. However, multiport circuit
models are of prime importance in representing linear interaction phenomena where a large
number of variables are involved. As a specific application, to exemplify the usefulness
of multiport identification, consider the electronic chip-package de-embedding problem.
This problem was tackled for a three-port network in [16] and for a general n-port network
in [17]. The plastic package/connector of semiconductor-based electronic chips embeds a
number of highly conductive wires whose function is to connect the internal electronic chip
to the external pins. At very high frequencies (in the range of GHz), a number of parasitic
effects appear and the wires electromagnetically interact with one another in such a way
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that they may no longer be regarded as simple wires. Therefore, it is of prime importance to
obtain an accurate mathematical model of such interactions in order to recover the original
signals from the mixed ones.

In [17], the electronic chip package was modeled as a reciprocal, linear, time-invariant
multiport network, which is supposed to be accessible using n internal electrical ports and
n external electrical ports. The identification of the model, represented through a 2n× 2n
admittance matrix Y, may be carried out by measuring the admittance of the external
ports using a vector network analyzer. (Network analyzers are often used to characterize
two-port networks such as amplifiers and filters, but they can be used to characterize
networks with an arbitrary number of ports. The basic architecture of a network analyzer
involves a signal generator, a test set, one or more receivers and a display. Most vector
network analyzers have two test ports, permitting the measurement of four parameters, but
instruments with more than two ports are commercially available.) The internal ports are
connected to specific known loads, termed ‘standards’. In order to save time, the number
of standards may be kept to a minimum; however, this requires the measurements to be
extremely precise.

On the basis of the current knowledge of system modeling by multiport circuits
and their external identification, the present contribution proposes a novel technique
to determine the entries of the admittance matrix Y (in the frequency domain) in the
presence of measurement errors by setting up a non-linear optimization problem. In
particular, we contribute to the mathematical treatment of the problem by assuming that
an arbitrary number of standards may be accessed and that such measures may be affected
by uncertainties. Moreover, we add the assumption that the sought multiport network is
energetically passive, which makes the modeling problem manifold-structured and calls
for a Riemannian-gradient optimization of a properly designed criterion function.

A key feature of the present contribution is that modeling is formulated as an opti-
mization program over a product-manifold, obtained using the product of the set of real
symmetric, positive-definite matrices and by the set of real symmetric matrices. One such
formulation can be used to deal with the physical constraints that a model needs to obey
and with the numerical optimization process carried out by a computer-based implementa-
tion of a Riemannian-gradient steepest-descent method. We note that the interplay between
multiport systems and geometric (Hamiltonian) systems was investigated in the literature
(see, for instance, the introductory survey [18]).

The present research paper is organized as follows. In Section 2, we recall the general
equations pertaining to a multiport model when half of the ports are closed on known loads
and the remaining half are subjected to measurements. In particular, Sections 2.3 and 2.4
explain the technical assumptions regarding the sought model and the known-loads, which
result in mathematical constrains on the optimization problem laid out in Section 2.5. This
was set up to formulate the identification problem under measurement uncertainties and
redundant measurements. Section 3 presents a Riemannian-gradient-based algorithm to
estimate the optimal parameters of the sought multiport model; Section 3.1 defines the
optimization criterion function and illustrate the calculation of its Riemannian gradients
in detail with respect to the real part and imaginary part of the sought admittance matrix
representing the multiport model; Section 3.2 presents the optimization algorithm in terms
of a geodesic stepping method on the product manifold S+(2n)× S(2n). Section 4 illustrates
the results of a number of numerical experiments aiming to assess the numerical features
of the devised numerical optimization method during the identification of an unknown
multiport system. The Section 5 provides some final remarks.

2. Problem Formulation

To formulate the problem at hand, we shall make use of a linear circuit-theoretic
notation. However, the mathematical formulation is context-independent as it essentially
boils down to a non-linear, structured, complex-valued matrix optimization problem. For
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an introduction to linear circuit theory and matrix-based representations, readers might
consult, e.g., [19].

2.1. Linear, Time-Invariant Multiport Model

We assume that a linear, time-invariant (LTI) multiport system is partitioned into n
internal ports, described by a Fourier-domain current/voltage vector-pair (II, VI) and n
external port described by a Fourier-domain vector-pair (IE, VE), therefore, it holds that
II, VI, IE, VE ∈ Cn. In applied fields other than pure circuit theory, a current/voltage pair
may be replaced by any pair of conjugate variables, such as ionic-current/electrochemical-
potential in biochemistry (see, e.g., Equations (1) and (2) in [8]) or blood-flow-rate/blood-
pressure in circulatory physiology (see, e.g., the review in [20]).

The LTI 2n-port system is supposed to possess an admittance-matrix representa-
tion, namely: [

IE
II

]
=

[
YEE YEI
YIE YII

]
︸ ︷︷ ︸

=:Y

[
VE
VI

]
, (1)

where the four blocks YEE, YEI, YIE and YII of the complex-valued 2n× 2n admittance matrix
Y belong to Cn×n. In the present research paper, we adopt the following standpoints:

• In principle, the behavior of the multiport system depends on the frequency of the
excitation; assuming that the system is linear and time-invariant, it is possible to
appeal to the Fourier theory and work with one frequency at a time (in other terms,
phasor theory is in force);

• While a two-port network admits one or more of six independent matrix representa-
tions (impedance, admittance, scattering, inverse scattering, hybrid, inverse hybrid), a
multiport network admits one or more amid a large number of representations, among
which only four (impedance, admittance, scattering, inverse scattering) are univocally
determined, while the hybrid representations are multiple. The scattering-matrix
representations are popular in waveguide theory, while impedance/admittance-matrix
representations are common in electrical engineering; in the present paper, we will only
consider multiport networks that admit both impedance and admittance representations.

Assume that multiple loads of known admittance are connected to each of the internal
ports. The constraints on the internal electrical variables read:

II = −YSVI, (2)

where YS ∈ Cn×n represents the admittance matrix of the load (namely, it represents
a standard).

The n-port system arising by connecting the internal ports of the 2n-port network to a
n-port standard behaves, in turn, as a n-port, which is described by the admittance matrix
YM ∈ Cn×n, that links the external variables by IE = YMVE. The admittance matrix YM may
be measured by a vector network analyzer (see, for example, reference [21] for the case of
wave-guides). Combining the relationship (2) with the relationship (1), we obtain:

YM = YEE −YEI(YS + YII)
−1YIE, (3)

which is well-defined only if det(YS + YII) 6= 0.

Example 1. Ideally, the admittance matrix YS will be diagonal and each known-load will be realized
as a resistive-capacitive impedance (coils are cumbersome, while capacitors are easy to miniaturize).
In practice, especially at high frequencies, it is impossible to realize the independence of the loads
across the internal ports; therefore, the matrix YS is assumed to be non-diagonal (albeit possibly
diagonal-dominant). The presence of non-zero off-diagonal terms indicates the coupling of the sub-loads.
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2.2. Model Identification under the Assumption of Perfect Measurements

In the research paper [17], it is assumed that the 2n-port network representing the
electronic chip package/connector is reciprocal, implying the symmetry of the admittance
matrix Y; namely, that Y>EE = YEE, Y>II = YII and YIE = Y>EI, where the superscript > denotes
matrix transposition. As a consequence, the Equation (3) simplifies into

YM = YEE −YEI(YS + YII)
−1Y>EI. (4)

Likewise, the standard load is assumed to be represented by a reciprocal multiport
circuit, which implies that matrix YS is also symmetric. A reciprocal n-port standard
connected to a reciprocal 2n-port network results in a reciprocal n-port network which, in
turn, implies that the matrix YM is also symmetric.

The multiport identification problem under the assumption of error-free measure-
ments may be summarized as follows: Assuming that the admittance matrices Y(k)

S ∈ Cn×n,

k = 0, 1, . . . , 4, of five standards and the admittance matrices Y(k)
M ∈ Cn×n, k = 0, 1, . . . , 4 of

five corresponding measurements at the external pins of the electronic chip package/connector are
available, the three matrix blocks YEE, YEI and YII that perfectly fit the data can be found. Le us
recall the closed-form solution proposed in [17].

A canonical way to obtain the submatrix YEE is to measure the admittance matrix
YM that corresponds to short-circuited internal ports. In fact, if all the internal ports are
short-circuited, it holds that Y(0)

S = ∞ and, therefore, that YEE = Y(0)
M .

To determine the other two submatrices YII and YEI, let us set up the system of ma-
trix equations

Y(k)
M = YEE −YEI(Y

(k)
S + YII)

−1Y>EI, k = 0, 1, . . . , 4. (5)

The unknown block YII can be expressed as a function of the unknown block YEI
by subtracting the equation in the system (5) corresponding to k = 0 to the equation
corresponding to k = 1, which gives the relationship

YII = −Y>EI(Y
(1)
M −Y(0)

M )−1YEI −Y(1)
S . (6)

Analogously, subtracting the equation corresponding to k = 0 to the equation corre-
sponding to k = 2, k = 3 and k = 4, respectively, and plugging in the right-hand side of (6)
for YII, we can obtain the relationships

Z2 = Y−>EI Θ2Y−1
EI , Z3 = Y−>EI Θ3Y−1

EI , Z4 = Y−>EI Θ4Y−1
EI , (7)

where we made use of the auxiliary matrices

Zk := (Y(k)
M −Y(0)

M )−1 − (Y(1)
M −Y(0)

M )−1, Θk := Y(1)
S −Y(k)

S , (8)

with k = 2, 3, 4.
After solving for the matrix block YEI and substituting the found solution in (6), it

is possible to recover the submatrix YII as well. We underline that, in order to achieve a
solution using the recalled method, not only are the available measurements supposed to be
affected by negligible errors, the sub-block YEI is supposed to be invertible.

Using the first two equations in (7), we obtain

Z−1
2 Z3 = YEIΘ−1

2 Θ3Y−1
EI , (9)

If the matrix Θ−1
2 Θ3 is diagonalizable, it may be expressed as Θ−1

2 Θ3 = VΘΛV−1
Θ , where

the columns of the matrix VΘ ∈ Cn×n coincide with the eigenvectors of the matrix Θ−1
2 Θ3
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and the matrix Λ is n× n complex-valued diagonal and contains the eigenvalues of the
matrix Θ−1

2 Θ3. Therefore, we can write

Z−1
2 Z3 = (YEIVΘ)Λ(YEIVΘ)

−1. (10)

The above equation tells that, if we denote the matrix of the eigenvectors of the product
Z−1

2 Z3 by VZ ∈ Cn×n, the following relationship holds

VZ = YEIVΘΣ, (11)

where Σ is a n× n complex-valued diagonal unknown matrix that accounts for the fact
that the eigenvectors are determined apart from a scaling factor. (This is true if the columns
of the matrices VZ and VΘ are ordered by descending eigenvalues moduli; otherwise, we
should include an arbitrary permutation matrix to fix any possible arbitrary ordering
problem.) By expressing the submatrix YEI as a function of VZ, VΘ and Σ, we can obtain

YEI = VZΣ−1V−1
Θ , (12)

and by substituting the right-hand side of this expression in the relationship between Z2
and Θ2 in (7), we obtain

Z2 = V−T
Z Σ(V>Θ Θ2VΘ)ΣV−1

Z . (13)

Accordingly, the matrix Σ2 can be recovered from the above relationship since, if the
eigenvalues of Θ−1

2 Θ3 are distinct, then V>Θ Θ2VΘ is diagonal [22], therefore Σ(V>Θ Θ2VΘ)Σ
is a product of diagonal matrices; therefore, it holds that Σ(V>Θ Θ2VΘ)Σ = Σ2(V>Θ Θ2VΘ).
Substituting the above relationship into the formula (13), we can obtain

Σ2 = (V>Z Z2VZ)(V>Θ Θ2VΘ)
−1. (14)

The sign of the in-diagonal entries of the matrix Σ cannot be recovered using the first two
equations in (7) since V>Θ Θ2VΘ and V>Θ Θ3VΘ are both diagonal [22]. These signs can be
determined using the last equation in (7), since Θ4 cannot be diagonalized by VΘ. Let
us set Σ = ±S

√
Σ2, with S being a diagonal n× n matrix such that Srr ∈ {−1,+1} for

r = 1, 2, . . . , n. If, in the last equation of (7), we substitute the expression of YEI as a
function of S, we obtain

Z4 = Y−T
EI Θ4Y−1

EI = V−T
Z S
√

Σ2V>Θ Θ4VΘ
√

Σ2SV−1
Z (15)

and, therefore,
V>Z Z4VZ = S

√
Σ2V>Θ Θ4VΘ

√
Σ2S. (16)

Defining D := V>Z Z4VZ and B :=
√

Σ2V>Θ Θ4VΘ
√

Σ2, the above relationship can be rewrit-
ten as D = SBS. Since neither the matrix B nor the matrix D are diagonal, it is now possible
to determine one of the two solutions ±S by means of a simple recursion. Since the matrix
S is diagonal, it holds that Drs = SrrSssBrs; therefore, we can compute the non-zero entries
of S using

S11 := 1, Sr+1,r+1 =
Dr,r+1

SrrBr,r+1
, for r = 1, 2, . . . , n− 1. (17)
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In summary, the complete solution to the multiport identification problem as proposed
in [17] is given by:

YEE = Y(0)
M ,

Zk = (Y(k)
M −Y(0)

M )−1 − (Y(1)
M −Y(0)

M )−1, k = 2, 3, 4,

Θk = Y(1)
S −Y(k)

S , k = 2, 3, 4,
VZ = eigenvector matrix of Z−1

2 Z3 ordered by descending eigenvalue moduli,
VΘ = eigenvector matrix of Θ−1

2 Θ3 ordered by descending eigenvalue moduli,
Σ2 = (V>Z Z2VZ)(V>Θ Θ2VΘ)

−1,
D = V>Z Z4VZ,
B =
√

Σ2V>Θ Θ4VΘ
√

Σ2,
S = result of the iteration (17),
YEI = ±VZS

√
Σ2V−1

Θ ,

YII = −Y>EI(Y
(1)
M −Y(0)

M )−1YEI −Y(1)
S .

(18)

We underline that the above closed-form solution remains valid under a few assump-
tions, namely, that (1) the matrices Y(k)

S and Y(k)
M perfectly agree with the model (4), which

implies that their measurement was infinitely precise, and that (2) the eigenvalues of the
matrices Z−1

2 Z3 and Θ−1
2 Θ3 are distinct. The first assumption does not seem universally

realistic and does not hold in inexpensive experimental settings; therefore, we suggest
reformulating the problem in a different way to consider this phenomenon, as explained in
the following subsections.

2.3. Further Assumptions regarding the Multiport System

The sought 2n-port is energetically passive (meaning that it is unable to deliver energy).
This hypothesis implies that the matrix Y + Y† is positive semi-definite [23] (the superscript †

denotes conjugate transpose).
Let us explicitly denote the real part and the imaginary part of the complex-valued

matrix Y by YRe and YIm, respectively (namely Y = YRe + jYIm, where j denotes the
imaginary unit). The above hypotheses imply that

• The matrix YRe (termed conductance matrix) is symmetric and positive definite;
• The matrix YIm (termed susceptance matrix) is symmetric.

Let us denote by S(2n) the space of 2n× 2n symmetric matrices and by S+(2n) the
space of 2n× 2n symmetric, positive-definite matrices. The above conditions may be stated
compactly using the following, suggestive, notation:

Y ∈ S+(2n) + j S(2n). (19)

Let us discuss the above technical assumptions by using an example and a counter-
example to clarify their physical meaning.

Example 2. Let us consider a simple passive reciprocal network and its admittance matrix. Let us
consider a π-type two-port network, whose electrical structure is recalled in Figure 1.

Its admittance matrix is Y =
[

G1+G2 −G2
−G2 G1+G2

]
, where G1 := 1

R1
> 0 and G2 := 1

R2
> 0. This

admittance matrix, which is purely real-valued, is symmetric and positive-definite, and represents
a special passive network. (Notice that, in the ideal case where the value of the resistance R1
is large (hence, the value of the conductance G1 is small) and the value of the resistance R2 is
small (hence the value of the conductance G2 is large), the matrix Y is well-balanced and markedly
non-diagonal-dominant.)

As a counter-example, let us consider a class of multiports that may be energetically passive
but are not captured by a strictly positive-definite admittance-matrix representation.
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R1 R1

R2

Figure 1. A simple reciprocal, energetically passive π-network, with two shunt resistors R1 and a
series resistor R2.

We may speculate on the ‘ideal’ solution to the modeling problem, which is compatible with
the chosen admittance-matrix representation. By ideal solution, we mean a multiport network
that is electrically ‘transparent’ from the external ports to the internal ports and hence causes
no interference with the signals entering an electronic chip. The only non-interference condition
compatible with the admittance-matrix representation is IE + II = 0 for every possible instance of VE
and VI. From a circuit-theoretic standpoint, this condition means that, whatever the voltages applied
to each port, the intensity of the electrical current entering the p-th internal port equals the intensity
of the electrical current leaving the corresponding external port, for every p ∈ {1, 2, . . . , n}. If
we rewrite the relationship (1) as

IE = YEEVE + YEIVI, II = Y>EIVE + YIIVI, (20)

we can see immediately that the condition IE + II = 0, ∀ VE and VI, leads to YEE + Y>EI = 0 and
YEI + YII = 0. The ideal admittance matrix Ȳ would, therefore, take the expression

Ȳ :=
[

P0 −P0
−P0 P0

]
, with P0 ∈ S(n) + j S(n). (21)

Note that one such solution is only positive semi-definite. Take, for example, the case n = 1, that
gives Ȳ =

[ z −z
−z z

]
, with z ∈ R+ + jR, whose eigenvalues are 2z and 0. (Here, the symbol R+

denotes the semiline of positive real numbers).

2.4. Assumptions on the Known Loads

One might notice that there is no physical reason to choose the known loads connected
to the internal ports as non-reciprocal or non-passive standards. Therefore, it seems
reasonable to assume that the data Y(k)

S belong to the space S+0 (n) + j S(n), which we
denoted by S+0 (n) the set of symmetric, positive semi-definite matrices of size n× n. As a

result, all the addenda in the expression YEE −YEI(Y
(k)
S +YII)

−1Y>EI are symmetric matrices,

which implies that YEE −YEI(Y
(k)
S + YII)

−1Y>EI ∈ S(n).
An important consequence of the above assumption on the known-loads admittance

matrices Y(k)
S is that the sum Y(k)

S + YII is always invertible. In fact, we may prove two
important properties (in the following, the symbol Re{·} denotes the real part and symbol
Im{·} denotes the imaginary part):

• The matrix Re{YII} is symmetric, positive definite. The block YII lays at the lower-right

corner of the matrix Y. Let us define Q :=
[

0n In
In 0n

]
and Y∗ := QYQ =

[
YII Y>EI
YEI YEE

]
, where

the symbol In denotes a n× n identity matrix. The real part of the matrix Y∗ possesses
the same eigenvalues as the real part of the matrix Y; in fact, their characteristic
polynomials in the variable λ ∈ C are related by the following:
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det(Re{Y∗} − λ I2n) = det(QRe{Y}Q− λ I2n)

= det(QRe{Y}Q− λ Q2)

= det(Q(Re{Y} − λ I2n)Q)

= (det(Q))2 det(Re{Y} − λ I2n)

= det(Re{Y} − λ I2n),

where we used the properties Q2 = I2n (which may be directly checked) and
det(Q) = det(−In) = (−1)n (by the Lemma 2 in [24]). Therefore, the matrix Re{Y∗}
belongs to the space S+(2n). By virtue of the Sylvester’s criterion [25], the stated
conclusion follows.

• Each matrix Re{Y(k)
S + YII} is symmetric, positive definite. Since each matrix Re{Y(k)

S }
is symmetric non-negative definite and the matrix YII is symmetric positive definite,
it holds that each Re{Y(k)

S }+ Re{YII} is symmetric positive definite. In fact, recall
that a matrix M ∈ S(n) is positive definite if, and only if, for any x ∈ Rn − {0}, it
holds that x>Mx > 0. Assume that M = A + B, where A ∈ S+0 (n) and B ∈ S+(n)
(namely, A is non-negative definite). Then, x>Mx = x>(A + B)x = x>Ax + x>Bx.
The first term on the right-hand side is non-negative while the second term is positive;
hence, M ∈ S+(n). (Notice that, by contrast, each matrix Im{Y(k)

S + YII}, is generally
only symmetric.)

• Each matrix-sum Y(k)
S + YII is invertible. To prove this assertion, let us take a square

complex-valued matrix M ∈ Cn×n (that represents the sum Y(k)
S + YII) and write it as

M = P + jQ, where P, Q ∈ Rn×n. Let us make the assumptions that P is symmetric
positive-definite and that Q is symmetric. By definition, the matrix M is invertible if,
and only if, the equation Mz = 0, with z ∈ Cn, admits only the trivial solution z = 0.
Write z = x + jy, with x, y ∈ Rn. Therefore,

Mz = (Px−Qy) + j(Py + Qx).

If x = 0 and y 6= 0, then Mz = −Qy + jPy 6= 0 because Py 6= 0, while if x 6= 0 and
y = 0, then Mz = Px + jQx 6= 0 because Px 6= 0. If both x 6= 0 and y 6= 0, then
Mz = 0 if, and only if, Qy = Px and Qx = −Py are both verified. This might only
occur for those values of z such that x = P−1Qy and Qx = −Py, namely, only if
there exists a non-zero real-valued vector y such that (QP−1Q + P)y = 0. However,
it can immediately be proved that this is never the case, in fact, for every vector
y ∈ Rn − {0}, it holds that

y>(QP−1Q + P)y = y>QP−1Qy + y>Py = (Qy)>P−1(Qy) + y>Py.

While the term (Qy)>P−1(Qy) might be zero, the term y>Py is certainly positive;
therefore, there is no nonzero vector y (or, hence, any nonzero vector x) such that
Mz = 0. We may thus conclude that P + jQ is invertible as long as P ∈ S+(n).
(Alternatively, this result might be proven by invoking the Minkowski determinant
theorem [26].)

2.5. Formulation of the Modeling Problem in a Measurement-Error-Prone Setting as a
Least-Squares Problem

Assume that, in the simplest case in which n = 1, we were able to try as many as
K = 3 different standard loads Y(k)

S and to measure the corresponding external admit-
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tance matrices Y(k)
M , with k = 1, 2, 3. Each pair (Y(k)

S , Y(k)
M ) is supposed to satisfy the

relationship (3), namely:

Y(k)
M = YEE −YEI(Y

(k)
S + YII)

−1Y>EI, k = 1, 2, 3. (22)

In an error-free setting, three equations in three unknowns are enough to solve the problem.
As opposed to this, in a measurement-error-prone setting, three measurements are insuffi-
cient to provide a consistent estimation of the three unknown admittance matrix entries.

A similar reasoning holds for the general case of an arbitrary number of ports 2n.
Therefore, we shall assume a larger number of standard-measurement pairs to be available
to develop a numerical external identification procedure.

In the presence of measurement uncertainties and of a number K � 3 of data-
pairs (Y(k)

S , Y(k)
M ), which would make the above set of equations in the unknown matrices

YEE, YEI, YII over-determined and inconsistent, we may rewrite the system (22) as

Y(k)
M = YEE −YEI(Y

(k)
S + YII)

−1Y>EI + Λ(k), k = 1, 2, . . . , K, (23)

where the matrices Λ(k) ∈ Cn×n represent modeling errors (or residuals). The modeling
problem may be approached using a non-linear least-squares method [27]; namely, by
seeking the combination of matrices YEE, YEI, YII that minimizes the modeling errors ‖Λ(k)‖,
where ‖ · ‖ denotes a Frobenius norm.

Formally, one such residual minimization problem, which embodies the stated con-
straints on the sought solution, may be formulated as:

(YRe, YIm)opt := arg min
YRe∈S+(2n)
YIm∈S(2n)

K

∑
k=1

∥∥∥Y(k)
M −YEE + YEI(Y

(k)
S + YII)

−1Y>EI

∥∥∥2
, (24)

where YEE = YRe
EE + jYIm

EE , YEI = YRe
EI + jYIm

EI , YII = YRe
II + jYIm

II and

YRe =

[
YRe

EE YRe
EI

(YRe
EI )
> YRe

II

]
, YIm =

[
YIm

EE YIm
EI

(YIm
EI )
> YIm

II

]
. (25)

Note that the problem entails an inherent ambiguity, namely, replacing the submatrix YEI
with the submatrix −YEI leads to the same value of the modeling error. As a consequence,
both triples (YEE, YEI, YII) and (YEE,−YEI, YII) are valid solutions to the optimization prob-
lem. Such solutions are not equivalent from an energy-exchange point of view, as will be
discussed in Section 2.7.

A short example serves to clarify the above problem definition.

Example 3. Take, as an example, the case n = 1. In this instance of the non-linear constrained
optimization problem (24), from a circuit-theoretic standpoint, the multiport model is a two-port and
the standards are bipoles, allegedly resistive-capacitive impedances, whose electrical structure is
shown in the Figure 2.

R
C

Figure 2. A resistive-capacitive standard.

In this case, the matrix relationships (23) become a set of scalar equations

Y(k)
M = YEE −

Y2
EI

Y(k)
S + YII

+ Λ(k), k = 1, 2, . . . , K, (26)
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where Y(k)
M , YEE, YEI, Y(k)

S , YII, Λ(k) ∈ C. Consequently, the optimization problem (24) reduces to

(YRe, YIm)opt :=

arg min
YRe∈S+(2)
YIm∈S(2)

K

∑
k=1

|(Y(k)
M −YRe

EE − jYIm
EE )(Y

(k)
S + YRe

II + jYIm
II ) + (YRe

EI + jYIm
EI )

2|2

|Y(k)
S + YRe

II + jYIm
II |2

, (27)

with YRe =

[
YRe

EE YRe
EI

YRe
EI YRe

II

]
∈ R2×2 and YIm =

[
YIm

EE YIm
EI

YIm
EI YIm

II

]
∈ R2×2.

The numerical solution of the problem (24) is a key point in the present paper and will
be tackled in Section 3.

2.6. De-Embedding of a Device under Test

During operation, the device or sub-system connected to the internal ports of the
multiport system (referred to as electronic device under test or ‘DUT’) might not be di-
rectly accessible, as only the external ports of the multiport system are directly accessible.
According to [17], “de-embedding means to remove all systematic errors affecting the
measurement, due to non-ideality of the measurement set-up”.

In the present context, we shall assume that the DUT is a linear n-port device repre-
sented by an admittance matrix YD ∈ Cn×n. Upon connecting the electronic DUT to the
electronic chip package, the resulting circuitry behaves as a linear n-port device represented
by an admittance matrix YP ∈ Cn×n. Therefore, de-embedding means being able to recover
the admittance matrix YD of the DUT indirectly by probing for the admittance matrix YP of
the compound system and by means of an estimation of the admittance matrix Y ∈ C2n×2n

of the multiport circuit model. Formally, these three admittance matrices are related by a
formula such as (3), namely

YP = YEE −YEI(YD + YII)
−1Y>EI, (28)

where YP is known from measurements and YEE, YEI, YII are known from the devised
modeling procedure. It is assumed that det(YD + YII) 6= 0. The matrix YD is unknown and
determining its entries is precisely the purpose of de-embedding. If the matrix block YEI
and the matrix YEE −YP are invertible, the relation (28) may be reversed to provide

YD = Y>EI(YEE −YP)
−1YEI −YII. (29)

A key observation is that swapping YEI with −YEI does not influence the result of the
de-embedding process; therefore, the ambiguity in the sign of the block YEI may be ignored for a
full-fledged de-embedding.

2.7. Energy Exchange Rate of the Multiport Model

In the context of LTI systems, it is customary to quantify the energy exchange rate by
the (complex-valued) power Pc ∈ C. We recall that the real part of the complex number Pc is
termed active power or real power and is denoted by Pa.

For a multiport circuit described by the relationship (1), the complex power absorbed
by the multiport circuit as a whole is defined as

Pc := 1
2 V†

E IE + 1
2 V†

I II =
1
2 [V

†
E V†

I ]Y[V
>
E V>I ]>, with Y =

[
YEE YEI
Y>EI YII

]
. (30)

In particular, the real power absorbed by a multiport circuit is given by

Pa := Re{Pc} = 1
2 [V

†
E V†

I ]Y
Re[V>E V>I ]>. (31)
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The real quantity Pa measures the total energy, per time unit, that flows into the
multiport. Since, in a special passive multiport, the matrix YRe is symmetric positive-
definite, it is readily verified that Pa > 0 as long as [V>E V>I ] 6= 0. In other terms, the
multiport circuit overall is characterized by a continual dissipation of energy (for instance
into heath, which is the most common form of dissipated energy).

We would like to underline that, although reversing the sign of the block YEI changes
the value of the real power, it does not change its sign. To see this, according to the

expression (31), it is sufficient to prove that, if YRe =

[
YRe

EE YRe
EI

(YRe
EI )
> YRe

II

]
is symmetric positive-

definite, reversing the sign of the block YRe
EI still results in a positive-definite matrix. To

this aim, let us define the matrix J :=
[
In 0n
0n −In

]
, which satisfies J2 = I2n (as can be directly

checked) and det(J) = det(−In) = (−1)n (by the Lemma 2 in [24]). It is easy to verify that

YRe
∗ := J YRe J =

[
YRe

EE −YRe
EI

−(YRe
EI )
> YRe

II

]
,

namely, that pre-multiplying and post-multiplying YRe by J causes the reversing of the sign
of its off-diagonal blocks. However, the characteristic polynomials of YRe

∗ and YRe possess
the same roots; in fact,

det(YRe
∗ − λ I2n) = det(J YRe J − λ J2) = (det(J))2 det(YRe − λ I2n).

Therefore, the positive-definiteness of the matrix YRe implies the positive-definiteness of
the matrix YRe

∗ .
Let us now explicitly recast the expression of the real power in terms of the four blocks

of the admittance matrix representing the multiport. By computing the matrix-products in
the definition (30), we readily obtain

Pc =
1
2 V†

E YEEVE + 1
2 V†

I YIIVI +
1
2 (V

†
E YEIVI + V†

I Y>EIVE). (32)

Taking the real part of both sides, we obtain the expression of the real power absorbed by
the multiport circuit; that is,

Pa =
1
2 V†

E YRe
EEVE + 1

2 V†
I YRe

II VI + Re{V†
E YRe

EI VI}. (33)

While the first two terms in the relation (33) are always non-negative, the last term is
undefined. In addition, swapping the matrix YEI with −YEI leads to a different value of the
real power.

Since we know, from Section 2.6, that both YEI and −YEI, as solutions to the identifica-
tion problem, are acceptable for the purpose of de-embedding a DUT from an electronic
chip package/connector, one could choose the solution corresponding to a minimal en-
ergy dissipation model; namely, a model corresponding to the minimal value between
Re{V†

E YRe
EI VI} and −Re{V†

E YRe
EI VI}. Note that this operation requires additional informa-

tion, namely, the values of the internal ports and external ports voltages. This option is not
pursued any further in the present research paper.

3. Problem Solution: Riemannian Gradient Approach

The external identification problem (24) is a non-linear, structured matrix optimization
program whose feasible space coincides with the product manifold S+(2n)× S(2n). For
a review of the mathematical manifold S+(2n) of symmetric, positive-definite matrices,
readers might consult, e.g., the book [28] and the tutorials [29,30].

It is perhaps worth recalling that the tangent space to the manifold S+(2n) at every
point coincides with the space of symmetric matrices S(2n).

In the present section, we lay out an iterative algorithm to numerically solve the prob-
lem (24) based on a Riemannian gradient-steepest-descent flow on the product manifold
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S+(2n)× S(2n). Setting up such a numerical scheme requires determining the Riemannian
gradient of the criterion function in (24), which is carried out in Section 3.1 and in the
setting up of an iterative algorithm based on geodesic stepping, as laid out in Section 3.2.

3.1. Objective Function and Its Gradient

Let us define an objective function f̃ : (S+(n) + j S(n))×Cn×n× (S+(n) + j S(n))→ R+

based on the optimization problem (24):

f̃ (YEE, YEI, YII) :=
1
2

K

∑
k=1

∥∥∥Y(k)
M −YEE + YEI(Y

(k)
S + YII)

−1Y>EI

∥∥∥2
, (34)

whose point of minimum is sought after.
In order to set up a gradient-steepest descent numerical optimization algorithm, it

is necessary to compute the gradient of the objective function (34) with respect to the six
real-valued matrix-variables YRe

EE , YIm
EE , YRe

EI , YIm
EI , YRe

II and YIm
II . To achieve this aim and to

ease the notation, let us define error matrices

Λ(k) := Y(k)
M −YEE + YEI(Y

(k)
S + YII)

−1Y>EI, k = 1, 2, . . . , K (35)

as well as partial objective functions f (k) := tr(Λ(k)(Λ(k))†). Clearly, it holds that
f̃ = 1

2 ∑K
k=1 f (k).

Let us drop, for the moment, the superscript (k). The differential of a function f with
respect to the complex-valued matrix-variables YEE, YEI, YII reads

d f = tr(d ΛΛ† + Λ(d Λ)†)

= tr
(
(−d YEE + d YEI(YS + YII)

−1Y>EI + YEI(YS + YII)
−1 d Y>EI + YEI d(YS + YII)

−1Y>EI)Λ
†

+ Λ(−d Y†
EE + d Y∗EI(YS + YII)

−†Y†
EI + Y∗EI(YS + YII)

−† d Y†
EI + Y∗EI d(YS + YII)

−†Y†
EI)
)

,

(36)

where the symbol ∗ denotes complex conjugation, the symbol tr(·) indicates matrix trace
and the letter ‘d’ denotes differential. Notice that d YEE, d YII ∈ S(n), while d YEE ∈ Rn×n.
The differential of the inverse matrix function involved in the previous relation may be
computed as

d(YS + YII)
−1 = −(YS + YII)

−1 d YII(YS + YII)
−1,

therefore, the differential (36) takes the expression

d f = tr(−Λ† d YEE −Λ d Y†
EE)

+ 2tr
(
(YS + YII)

−1Y>EIΛ
† d YEI + (YS + YII)

−†Y†
EIΛ d Y∗EI

)
− tr

(
(YS + YII)

−1Y>EIΛ
†YEI(YS + YII)

−1 d YII + (YS + YII)
−†Y†

EIΛY∗EI(YS + YII)
−† d Y†

II

)
,

(37)

where we used the fact that YEE = Y>EE, YII = Y>II , Λ = Λ> and YS = Y>S . By separating the
real parts and the imaginary parts of the variables and by reinstating the superscript (k)

and summation over k, we can obtain the Riemannian gradients of the function f̃ in the
manifolds S(n) and Rn×n endowed with the Euclidean metric 〈U, V〉Rn×n

:= tr(U>V):

∇S(n)
YRe

EE
f̃ = −∑K

k=1 Re{Λ(k)},

∇S(n)
YIm

EE
f̃ = −∑K

k=1 Im{Λ(k)},

∇Rn×n

YRe
EI

f̃ = 2 ∑K
k=1 Re{Λ(k)Y∗EI(Y

(k)
S + YII)

−∗},

∇Rn×n

YIm
EI

f̃ = 2 ∑K
k=1 Im{Λ(k)Y∗EI(Y

(k)
S + YII)

−∗},

∇S(n)
YRe

II
f̃ = −∑K

k=1 Re{(Y(k)
S + YII)

−∗Y†
EIΛ

(k)Y∗EI(Y
(k)
S + YII)

−∗},

∇S(n)
YIm

II
f̃ = −∑K

k=1 Im{(Y(k)
S + YII)

−∗Y†
EIΛ

(k)Y∗EI(Y
(k)
S + YII)

−∗},

(38)
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where the superscript −∗ denotes conjugation together with matrix inversion.

Example 4. As an example, let us consider the case n = 1. Clearly, S(1) = R; therefore, the above
formulas for the gradients with respect to the real parts of the variables simplify to

Λ(k) = Y(k)
M −YEE +

Y2
EI

Y(k)
S +YII

,

∂ f̃
∂YRe

EE
= −∑K

k=1 Re{Λ(k)},
∂ f̃

∂YRe
EI

= 2 ∑K
k=1 Re

{
Λ(k)Y∗EI

(Y(k)
S +YII)∗

}
,

∂ f̃
∂YRe

II
= −∑K

k=1 Re
{

Λ(k)Y2∗
EI

(Y(k)
S +YII)2∗

}
,

(39)

where Y(k)
M , YEE, YEI, Y(k)

S , YII ∈ C. The formulas of the gradients with respect to the imaginary
parts of the variables may be obtained by replacing the Re{·} operator with the Im{·} operator.

It is worth noting that, as with the stated optimization problem, the above gradients are well-
defined as long as it holds that Y(k)

S + YII 6= 0. For the case discussed in the Example 2, the above

condition would write −Y(k)
S 6= G1 + G2. Since, by hypothesis, the standards Y(k)

S are passive
and, in the real-valued case, the passivity of the electronic chip connector results in YII > 0, this
condition is certainly verified.

With a slight abuse of notation, and thinking of the criterion f̃ as a function of the
matrices YRe and YIm, and recalling the block-partitions (25), we may calculate the gradients
∇S(2n)

YRe f̃ and ∇S(2n)
YIm f̃ by means of the following considerations. The differential of the

function f̃ with respect to the matrices YRe and YIm reads

d f̃ = 〈∇S(2n)
YRe f̃ , d YRe〉S(2n) + 〈∇S(2n)

YIm f̃ , d YIm〉S(2n), (40)

where the metric is defined as 〈U, V〉S(2n) := tr(U>V). Since the gradient-matrices∇S(2n)
YRe f̃

and ∇S(2n)
YIm f̃ are symmetric, they may be partitioned as

∇S(2n)
YRe f̃ =:


(
∇S(2n)

YRe f̃
)

EE

(
∇S(2n)

YRe f̃
)

EI(
∇S(2n)

YRe f̃
)>

EI

(
∇S(2n)

YRe f̃
)

II

, ∇S(2n)
YIm f̃ =:


(
∇S(2n)

YIm f̃
)

EE

(
∇S(2n)

YIm f̃
)

EI(
∇S(2n)

YIm f̃
)>

EI

(
∇S(2n)

YIm f̃
)

II

. (41)

Therefore, the differential of the objective function f̃ may be written as

d f̃ = tr



(
∇S(2n)

YRe f̃
)

EE

(
∇S(2n)

YRe f̃
)

EI(
∇S(2n)

YRe f̃
)>

EI

(
∇S(2n)

YRe f̃
)

II


[

d YRe
EE d YRe

EI

(d YRe
EI )
> d YRe

II

]

+ tr



(
∇S(2n)

YIm f̃
)

EE

(
∇S(2n)

YIm f̃
)

EI(
∇S(2n)

YIm f̃
)>

EI

(
∇S(2n)

YIm f̃
)

II


[

d YIm
EE d YIm

EI

(d YIm
EI )
> d YIm

II

]
=
〈(
∇S(2n)

YRe f̃
)

EE
, d YRe

EE

〉S(n)
+ 2
〈(
∇S(2n)

YRe f̃
)

EI
, d YRe

EI

〉Rn×n

+
〈(
∇S(2n)

YRe f̃
)

II
, d YRe

II

〉S(n)
+
〈(
∇S(2n)

YIm f̃
)

EE
, d YIm

EE

〉S(n)

+ 2
〈(
∇S(2n)

YIm f̃
)

EI
, d YIm

EI

〉Rn×n

+
〈(
∇S(2n)

YIm f̃
)

II
, d YIm

II

〉S(n)
.

(42)
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According to the metric compatibility property of the gradients, it holds that

d f̃ =

〈
∇S(n)

YRe
EE

f̃ , d YRe
EE

〉S(n)
+

〈
∇S(n)

YRe
EI

f̃ , d YRe
EI

〉Rn×n

+

〈
∇S(n)

YRe
II

f̃ , d YRe
II

〉S(n)

+

〈
∇S(n)

YIm
EE

f̃ , d YIm
EE

〉S(n)
+

〈
∇S(n)

YIm
EI

f̃ , d YIm
EI

〉Rn×n

+

〈
∇S(n)

YIm
II

f̃ , d YIm
II

〉S(n)
.

(43)

Therefore, through a direct comparison of the last two expressions of the differential d f̃ ,
the sought gradients take the form

∇S(2n)
YRe f̃ =

 ∇S(n)
YRe

EE
f̃ 1

2∇Rn×n

YRe
EI

f̃

1
2

(
∇Rn×n

YRe
EI

f̃
)>

∇S(n)
YRe

II
f̃

, (44)

∇S(2n)
YIm f̃ =

 ∇S(n)
YIm

EE
f̃ 1

2∇Rn×n

YIm
EI

f̃

1
2

(
∇Rn×n

YIm
EI

f̃
)>

∇S(n)
YIm

II
f̃

. (45)

Example 5. As an example, let us consider the case n = 1. One might check by direct calculations
that the partial derivatives (39) may be rewritten as

∂ f̃
∂YRe

EE
= −∑K

k=1 Re
{

Y(k)
M −YEE +

Y2
EI

Y(k)
S +YII

}
,

∂ f̃
∂YRe

EI
= 2 ∑K

k=1
Re{(Y(k)

M −YEE)(Y
(k)
S +YII)Y∗EI+YEI|YEI|2}

|Y(k)
S +YII|2

,

∂ f̃
∂YRe

II
= −∑K

k=1 Re
{

(Y(k)
M −YEE)(Y

(k)
S +YII)Y2∗

EI +|YEI|4

(Y(k)
S +YII)∗ |Y

(k)
S +YII|2

}
,

for the real parts of the unknowns. Henceforth, by replacing the above expressions into the general
equations (44) for the Riemannian gradient ∇S(2n)

YRe f̃ , one obtains:

∇S(2)
YRe f̃ =

K

∑
k=1

Re

 −Y(k)
M + YEE −

Y2
EI

Y(k)
S +YII

(Y(k)
M −YEE)(Y

(k)
S +YII)Y∗EI+YEI|YEI|2

|Y(k)
S +YII|2

(Y(k)
M −YEE)(Y

(k)
S +YII)Y∗EI+YEI|YEI|2

|Y(k)
S +YII|2

− (Y(k)
M −YEE)(Y

(k)
S +YII)Y2∗

EI +|YEI|4

(Y(k)
S +YII)∗ |Y

(k)
S +YII|2

.

Likewise, for the gradient ∇S(2)
YIm f̃ , which is obtained from the previous expression by replacing the

operator Re{·} with the operator Im{·}.

Since the real part, as a real-valued matrix, YRe belongs to the manifold S+(2n), it

is necessary to compute the Riemannian gradient ∇S+(2n)
YRe f̃ ∈ S(2n). Assuming that the

manifold S+(2n) is endowed with the canonical metric 〈U, V〉S
+(2n)

X := tr(X−1UX−1V) for
every X ∈ S+(2n) and U, V ∈ S(2n), the Riemannian gradient may be calculated by the
metric compatibility condition

tr
(
(YRe)−1(∇S+(2n)

YRe f̃ )(YRe)−1S
)
= tr

(
(∇S(2n)

YRe f̃ )S
)

, ∀S ∈ S(2n),

leading to the sought-after relationship

∇S+(2n)
YRe f̃ = (YRe)(∇S(2n)

YRe f̃ )(YRe). (46)

It can immediately be verified that ∇S+(2n)
YRe f̃ ∈ S(2n).
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3.2. Geodesic Stepping on the Product Manifold S+(2n)× S(2n)

In order to set up a geodesic-stepping optimization method to solve the non-linear
programming problem (24), it is necessary to recall the expressions of the exponential maps
corresponding to the chosen metrics in the spaces S+(2n) and S(2n). Since the manifold
S(2n) is a linear space endowed with the Euclidean metric, the exponential map is simply

expS(2n)
X (V) := X + V, (47)

for any pair of symmetric matrices X, V. On the other hand, since the manifold S+(2n) is a
non-linear space, once endowed with its canonical metric the following expression of the
exponential map can be admitted:

expS+(2n)
X (V) := X

1
2 Exp(X−

1
2 VX−

1
2 )X

1
2 , (48)

where (·)
1
2 denotes a symmetric matrix square root (that is well defined since the argument

X is symmetric, positive-definite) and the symbol Exp denotes the matrix exponential. (For
a review of matrix functions, see [31].)

On the basis of the above exponential maps, the iterative geodesic-stepping method
that produces a sequence of ever-refined solution pairs (YRe

` , YIm
` ), for ` = 1, 2, . . ., reads

YRe
`+1 = expS+(2n)

YRe
`

(
−ηRe

` ∇
S+(2n)
YRe
`

f̃
)

,

YIm
`+1 = expS(2n)

YIm
`

(
−ηIm

` ∇
S(2n)
YIm
`

f̃
)

,
(49)

with ` denoting a step-counter and ηRe
` , ηIm

` > 0 denoting step-size schedules. The initial
point (YRe

0 , YIm
0 ) may be chosen on the basis of any prior information on the location of the

optimal solution on the feasible manifold S+(2n)× S(2n).
To halt the iteration, a number of criteria can be used, two of which are

• Unconditional halting: The iteration proceeds over a predefined number of steps.
This criterion has the advantage of guaranteeing to halt in a finite number of steps but
cannot ensure convergence.

• Threshold-conditioned halting: The iteration may be stopped when the ratio between
the criterion function value at the current step and the initial value falls below a given
threshold τ > 0, namely, when

f̃ (YRe
`+1, YIm

`+1)

f̃ (YRe
0 , YIm

0 )
< τ. (50)

Care should be taken that the threshold τ is of the correct value: Too a narrow margin
might causes the algorithm to carry on over a large number of steps, which might
even result unbounded.

These halting criteria may be conjoined so that the iteration halts as soon as one of them
is met.

In summary, the optimization algorithm may be written as
YRe
`+1 = (YRe

` )
1
2 Exp

(
−ηRe

` (YRe
` )

1
2

(
∇S(2n)

YRe
`

f̃
)
(YRe

` )
1
2

)
(YRe

` )
1
2 ,

YIm
`+1 = YIm

` − ηIm
` ∇

S(2n)
YIm
`

f̃ ,
(51)
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where the first update rule is obtained by plugging the expression (46) into the Formula (48),
and where the involved matrices and sub-matrices read



∇S(2n)
YRe f̃ = Re{M}, ∇S(2n)

YIm f̃ = Im{M},

M :=
K
∑

k=1

[
−Λ(k) Λ(k)Y∗EI(Y

(k)
S + YII)

−∗

(Λ(k)Y∗EI(Y
(k)
S + YII)

−∗)> −(Y(k)
S + YII)

−∗Y†
EIΛ

(k)Y∗EI(Y
(k)
S + YII)

−∗

]
,

Λ(k) = Y(k)
M −YEE + YEI(Y

(k)
S + YII)

−1Y>EI ,

YEE = YRe
EE + jYIm

EE , YEI = YRe
EI + jYIm

EI , YII = YRe
II + jYIm

II ,

YRe =

[
YRe

EE YRe
EI

(YRe
EI )
> YRe

II

]
, YIm =

[
YIm

EE YIm
EI

(YIm
EI )
> YIm

II

]
.

(52)

Code-wise, one may appreciate how symmetry would imply some redundancy in matrix
calculations, which may be carefully exploited while writing the computer implementation.

The stepsizes may be chosen as constant (i.e., independent of the step-counter) as
long as convergence is achieved, or as step-dependent, which allows for better control of
the precision in the (yet approximate) achieved solution. We devised two versions of the
adaptation algorithms corresponding to two versions of the stepsize schedules:

• Unnormalized gradient version: This instance is obtained by setting the stepsize
schedules ηRe

` , ηIm
` to small constant values, denoted simply by ηRe, ηIm > 0.

• Normalized gradient version: This instance is obtained by choosing the stepsize
schedules ηRe

` , ηIm
` to be inversely proportional to the gradients norms, namely:

ηRe
` :=

ηRe√
〈∇S+(2n)

YRe
`

f̃ ,∇S+(2n)
YRe
`

f̃ 〉S
+(2n)

YRe
`

=
ηRe√

tr[(YRe
` ∇

S(2n)
YRe
`

f̃ )2]

, (53)

ηIm
` :=

ηIm√
〈∇S(2n)

YIm
`

f̃ ,∇S(2n)
YIm
`

f̃ 〉S(2n)
YIm
`

=
ηIm

‖∇S(2n)
YIm
`

f̃ ‖
, (54)

with ηRe, ηIm > 0 as predefined constants. In order to obtain the final expression
in (53), we used the relationship (46). This version of the stepsize schedule ensures a
uniform descent speed.

NOTE. As a short side comment, we observe that the matrix M defined above in (52)
may be rewritten in terms of empirical averages over the data-pairs (Y(k)

S , Y(k)
M ). Let us

partition this into four blocks M =:
[

MEE MEI
M>EI MII

]
. It is easy to verify that

1
K MEE = ⟪YM⟫−YEE + YEI⟪(YS + YII)

−1⟫Y>EI, (55)
1
K MEI = ⟪YMY∗EI(YS + YII)

−∗⟫−YEEY∗EI⟪(YS + YII)
−∗⟫

+YEI⟪(YS + YII)
−1Y>EIY

∗
EI(YS + YII)

−∗⟫ (56)
1
K MII = −⟪(YS + YII)

−∗Y†
EIYMY∗EI(YS + YII)

−∗⟫
+⟪(YS + YII)

−∗Y†
EIYEEY∗EI(YS + YII)

−∗⟫
−⟪(YS + YII)

−∗Y†
EIYEI(YS + YII)

−1Y>EIY
∗
EI(YS + YII)

−∗⟫, (57)

where we made use of the empirical averaging operator ⟪�⟫ := 1
K ∑k�

(k). It is interesting
to observe how the formulas of the three blocks are complicated, as they involve matrix
expressions containing one, two or three times the term (YS + YII)

−1.
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4. Numerical Tests

To assess the devised Riemannian-gradient steepest-descent optimization algorithm to
identify a multiport circuit model of an electronic chip package/connector, we performed
several numerically-simulated experiments, whose results are summarized in the present
section. The numerical tests were performed by MATLABr codes.

The first numerical test, whose results are reported in Section 4.1, aimed to assess
the robustness of the closed-form solution recalled in Section 2.2 against measurement
errors. The subsequent numerical tests, whose results are displayed and commented in
Sections 4.4 and 4.5, aim to assess the ability of the devised Riemannian-gradient-based
steepest-descent optimization algorithm to correctly identify a 2n-port admittance parame-
ter matrix.

4.1. Testing the Closed-Form Solution

As a first numerical test, we challenged the closed-form solution proposed in [17] and
summarized in Section 2.2. Apparently, this method was designed under the hypothesis
that the data-pairs (Y(k)

S , Y(k)
M ) ∈ (S+(n) + j S(n))× (S+(n) + j S(n)), k = 0, 1, 2, 3, 4 may

be measured with absolute precision.
The first test of this series was conducted on a two-port model, namely for the case

that n = 1. In this experiment, the exact admittance matrix of the electronic chip package
was set to

Ȳ =

[
3 + 0.2j −1 + 2j
−1 + 2j 0.8 + 1j

]
Ω−1, (58)

the known resistive-capacitive loads connected to the internal port took values

Ȳ(0)
S = ∞, Ȳ(1)

S = 0.65498− 0.39923j Ω−1, Ȳ(2)
S = 1.0427− 0.96192j Ω−1,

Ȳ(3)
S = 0.85812− 0.56399j Ω−1, Ȳ(4)

S = 0.96188− 0.3309j Ω−1,
(59)

while the equivalent admittances at the external port, calculated through the relationship

Ȳ(k)
M = ȲEE −

Ȳ2
EI

Ȳ(k)
S + ȲII

, (60)

took the following numerical values

Ȳ(0)
M = 3 + 0.2j Ω−1, Ȳ(1)

M = 5.7314 + 1.8214j Ω−1, Ȳ(2)
M = 4.6722 + 2.3362j Ω−1,

Ȳ(3)
M = 5.2856 + 2.0114j Ω−1, Ȳ(4)

M = 5.2416 + 1.6190j Ω−1.
(61)

The numerical values Y(k)
S of the admittances connected to the internal port and Y(k)

M
of the admittances at the external port actually fed to the numerical identification algorithm
were computed by adding random errors drawn from a Gaussian distribution to both
the real part and the imaginary parts of all admittances (except Ȳ(0)

S ). While the mean
value of the measurement errors was set to zero, their standard deviation ρ took the values
{10−5, 10−3, 10−1, 10} Ω−1. The error in the estimation was calculated as the norm of the
difference between the estimated admittance matrix and the actual admittance matrix. Due
to the sign indeterminacy in the parameter YEI, the estimation error was actually defined as

E := min
{
‖Ȳ−Y+‖, ‖Ȳ−Y−‖

}
(in Ω−1 units) (62)

where we used both feasible solutions

Y+ :=
[

YEE YIE
YIE YII

]
, Y− :=

[
YEE −YIE
−YIE YII

]
, (63)
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in which the sub-blocks YEE, YIE and YII denote the values estimated through the closed-
form identification algorithm.

The Figure 3 shows the result of adding random errors to the data-pairs and evaluating
the resulting mismatch in the estimated two-port model.

Figure 3. Mismatch in an estimated two-port model resulting from random errors in the data-pairs.
The horizontal axis displays the standard deviation of the measurement errors (in logarithmic scale),
while the vertical axis displays the Frobenius distance between the actual and estimated two-port
admittance matrix (in a logarithmic scale).

The curve represents the average result obtained over 500 independent trials.
The displayed curve shows a quasi-linear dependence between the estimation error

and the measurement error levels in a logarithmic scale, which corresponds to an exponen-
tial dependence of the kind E ∼ ρk. In other terms, as is readily appreciated, even modest
measurement error levels result in a noticeable mismatch in the model estimation.

The following tests of this series concern the case that the size n ranges from 2 to 7.
The obtained results are summarized in the Figure 4.

Apparently, as the size of the admittance matrices that are to be estimated grows, the
effect of measurement noise on the quality of the estimations also increases.

A major concern that emerges from these simulated experiments is that the measure-
ment errors is amplified by the estimation algorithm; therefore, the results of identification
process are no longer reliable.

4.2. Testing the Iterative Algorithm: Dataset and Initial Guess

The data-pairs (Y(k)
S , Y(k)

M ) were constructed by choosing an admittance matrix

Ȳ ∈ S+(2n) + j S(2n) and generating the known-loads Y(k)
S ∈ S+(n) + j S(n) and the

corresponding measurements Y(k)
M ∈ S+(n) + j S(n) by means of the relationship (22). The

size n ≥ 1 was selected beforehand and determines the complexity of the identification
problem. The synthetic measurements were then corrupted by noise.

To be more specific, let us define the operator σ : Rn×n → S(n) as σ(M) := 1
2 (M + M>),

which takes any square matrix and turns it into a symmetric matrix. The actual 2n-port
model admittance matrix was randomly generated by means of the relationship

Ȳ := Exp(σ(R1)) + jσ(R2), (64)
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where R1, R2 are two 2n× 2n real-valued random matrices whose entries are drawn from a
zero-mean Gaussian distribution. The standard deviation of the entries of the matrix R1
was set to 0.9, while the standard deviation of the entries of the matrix R2 was set to 1.5.

Figure 4. Mismatch in an estimated 2n-port model resulting from random errors in the data-pairs,
with n = 2, 3, 4, 5, 6, 7. (Graphs labelled as in Figure 3).

Likewise, the K error-free known-loads were randomly generated by the rule

Ȳ(k)
S := Exp(σ(R(k)

3 )) + jσ(R(k)
4 ), (65)

where R(k)
3 , R(k)

4 , for k = 1, 2, , . . . , K, are n× n real-valued random matrices whose entries
are drawn from a zero-mean Gaussian distribution. The standard deviation of the entries
of the matrices R3 was set to 0.3, while the standard deviation of the entries of the matrices
R4 was set to 1.5.

The synthetic error-free measurements were then generated by the relation

Ȳ(k)
M = ȲEE − ȲEI(Ȳ

(k)
S + ȲII)

−1Ȳ>EI, (66)

where ȲEE, ȲII and ȲEI denote the three independent n× n blocks of the matrix Ȳ.
Both the error-free synthetic known-loads and the synthetic measurements were

corrupted by measurement errors by the following relationships, which preserve the
positive-definiteness of the conductance components of the admittances:Y(k)

S := Exp(Log(Re{Ȳ(k)
S }) + σ(R(k)

5 )) + j(Im{Ȳ(k)
S }+ σ(R(k)

6 )),

Y(k)
M := Exp(Log(Re{Ȳ(k)

M }) + σ(R(k)
7 )) + j(Im{Ȳ(k)

M }+ σ(R(k)
8 )),

(67)

where R(k)
5 , R(k)

6 , R(k)
7 and R(k)

8 , for k = 1, 2, , . . . , K, denote n× n real-valued random
matrices whose entries are drawn from a zero-mean Gaussian distribution.

In all the following experiments, the standard deviation of the entries of the matrices
R5, R6, R7 and R8 was set to 0.01 and the number of known-loads was set to K = 50.
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To start the iteration, it is necessary to set an initial guess. In all following numerical
experiments, we set

Y0 := Exp(Log(Re{Ȳ}) + σ(R9)) + j(Im{Ȳ}+ σ(R10)), (68)

where R9 and R10 are 2n× 2n real-valued random matrices whose entries are drawn from
a zero-mean Gaussian distribution with a standard deviation equal to 0.3.

NOTE. The magnitude order of the entries of the matrices is not a concern, because
one may always invoke the notion of normalization within a given operation range. This is
a well-known notion from circuit theory that we may recall with a simple example: The
admittance of a capacitor of capacitance C in Farad (F) at the frequency f in Hertz (Hz)
is Yc := 2π j f C; now, the admittance corresponding to a (realistic, un-normalized) pair
f = 109 Hz and C = 10−9 F is the same corresponding to the (non-realistic, normalized)
pair f = 1 Hz and C = 1 F.

In the following experiments, the halting criterion is based on a prefixed number of
iterations, whose value may be desumed directly from the displayed figures.

4.3. Testing the Iterative Algorithm: Definition of Performance Figures

The entity of the measurement errors affecting the known loads as well as the equiva-
lent external admittance is quantified by the value

β2 :=
1
K

K

∑
k=1

(
‖Exp(σ(R(k)

5 ))‖2 + ‖σ(R(k)
6 )‖2 + ‖Exp(σ(R(k)

7 ))‖2 + ‖σ(R(k)
8 )‖2

)
, (69)

which increases as the entity of the errors affecting the measures increases.
In order to quantify the performances of the devised numerical optimization algorithm,

we define a global modeling error at the `-th iteration as

E` :=
1
K

K

∑
k=1

∥∥∥Y(k)
M −YEE,` + YEI,`(Y

(k)
S + YII,`)

−1Y>EI,`

∥∥∥, (70)

that accounts for the total error over each data pair corresponding to a current estimation
Y` of the electronic chip package’s admittance matrix. This error depends on the data and
may be evaluated even when the actual admittance matrix Ȳ is unknown.

In addition, we defined a modeling error with respect to the known model Ȳ pertaining
to the real part and to the imaginary part of the variables, separately. To quantify the error
in the real part of the sought admittance matrix, we need to define the notion of manifold
logarithmic map as the inverse of the exponential map (48), that is

logS+(2n)
X (Z) := X

1
2 Log(X−

1
2 ZX−

1
2 )X

1
2 , (71)

where X, Z ∈ S+(2n) and the symbol Log denotes principal matrix logarithm. On the basis
of the above logarithmic map, it is possible to evaluate the distance between two symmetric,
positive-definite matrices induced by the canonical metric, namely

dS+(2n)(X, Z) = 〈logS+(2n)
X (Z), logS+(2n)

X (Z)〉
1
2
X =

√
tr(Log2(X−

1
2 ZX−

1
2 )). (72)

The errors in the estimation of the real part and of the imaginary part of the admittance
matrix, under the assumption that no sign reversal occurs in the off-diagonal blocks, are
then defined as

R` := dS+(2n)
(

YRe
` , Re{Ȳ}

)
, I` :=

∥∥∥YIm
` − Im{Ȳ}

∥∥∥, (73)
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respectively, both referred to the iteration step `. (In case of sign reversion, the above errors
need to be replaced by R̄` := dS+(2n)(JYRe

` J, Re{Ȳ}
)

and Ī` :=
∥∥JYIm

` J − Im{Ȳ}
∥∥, where

the matrix J was defined in the Section 2.7.) Note that these errors may be evaluated only
during a test phase, where the actual value of the model Ȳ is known in advance.

4.4. Numerical Test on the Iterative Algorithm with n = 1

This special case, where the unknowns YEE, YEI and YII as well as the known data-
pairs (Y(k)

S , Y(k)
M ), for k = 1, 2, . . . , K, are complex-valued scalars, has been treated in

detail in the examples discussed throughout the present paper. In the present section, a
numerical test regarding the identification of a two-port is described and the obtained
results are discussed.

We can recall that a symmetric positive-definite matrix has precisely one symmetric
positive-definite square root [32]. In S+(2), a matrix square root may be written explicitly.
In the present context:

(YRe)
1
2 :=

1√
YRe

EE + YRe
II + 2

√
det(YRe)

[
YRe

EE +
√

det(YRe) YRe
EI

YRe
EI YRe

II +
√

det(YRe)

]
, (74)

with det(YRe) = YRe
EEYRe

II − (YRe
EI )

2. Let us recall from Section 3 that YRe
EE > 0, YRe

II > 0 and
det(YRe) > 0, therefore the above matrix-square-root is well-defined.

In addition, we recall that the matrix exponential of a 2× 2 real-valued symmetric
matrix may be written explicitly. (In general, the exponential of a n × n matrix S may
be written in closed form as a matrix polynomial in S of degree at most n − 1, whose
coefficients are functions of the eigenvalues of S. The structure of the coefficients of the
polynomial depends on the size n and needs to be written down explicitly once the size n
is determined.) An explicit formula for the matrix exponential of a 2× 2 symmetric matrix
S is

Exp(S) =

eλ((1− λ)I2 + S) if µ = λ,

µeλ−λeµ

µ−λ I2 +
eµ−eλ

µ−λ S if µ 6= λ,
(75)

where λ, µ ∈ R denote the eigenvalues of the matrix S, as explained, for instance, in [33].
The devised manifold-calculus-based optimization algorithm for the case that n = 1 is

summarized as follows:YRe
`+1 = (YRe

` )
1
2 Exp

(
−ηRe(YRe

` )
1
2 (Re{M`})(YRe

` )
1
2

)
(YRe

` )
1
2 ,

YIm
`+1 = YIm

` − ηImIm{M`},
(76)

where the involved matrices read, specifically:

M` :=
K
∑

k=1

 −
(Y(k)

M −YEE,`)(Y
(k)
S + YII,`) + Y2

EI,`

Y(k)
S + YII,`

(Y(k)
M −YEE,`)(Y

(k)
S + YII,`)Y∗EI,` + YEI,` |YEI,` |2

|Y(k)
S + YII,` |2

(Y(k)
M −YEE,`)(Y

(k)
S + YII,`)Y∗EI,` + YEI,` |YEI,` |2

|Y(k)
S + YII,` |2

−
(Y(k)

M −YEE,`)(Y
(k)
S + YII,`)Y2∗

EI,` + |YEI,` |4

(Y(k)
S + YII,`)∗ |Y(k)

S + YII,` |2

,

YEE,` = YRe
EE,` + jYIm

EE,`, YEI,` = YRe
EI,` + jYIm

EI,`, YII,` = YRe
II,` + jYIm

II,`,

YRe
` =

[
YRe

EE,` YRe
EI,`

YRe
EI,` YRe

II,`

]
, YIm

` =

[
YIm

EE,` YIm
EI,`

YIm
EI,` YIm

II,`

]
.

(77)

The results of a numerical experiment are illustrated in the Figure 5. As may be readily
appreciated from the curves shown in this figure, the modeling errors concerning the
real and the imaginary part of the variable matrix Y steadily decrease and remain stable
after convergence is achieved, which signifies that the numerical optimization algorithm is
numerically stable.
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Figure 5. Results of a numerical experiment by the Riemannian-gradient-based geodesic-stepping
optimization algorithm in the case that n = 1. (The global modeling error is normalized to its initial
value to get rid of the dependence from the random initial guess).

The (randomly generated) initial guess of the admittance matrix to start the algorithmic
iteration reads

Y0 =

[
1.4363− 0.4517j −0.0047 + 2.5924j
−0.0047 + 2.5924j 0.2886 + 1.2669j

]
Ω−1. (78)

The actual simulated admittance matrix of the two-port under modeling, in this
experiment, was

Ȳ =

[
1.0246− 0.5079j −0.2225 + 2.9846j
−0.2225 + 2.9846j 0.3483 + 1.3017j

]
Ω−1, (79)

while the estimated admittance matrix of the two-port through the devised algorithm equals

Y =

[
1.0302− 0.4570j −0.2031 + 2.9799j
−0.2031 + 2.9799j 0.3449 + 1.2924j

]
Ω−1. (80)

For this experiment, we report the whole dataset used in the numerical simulation
in Table 1.

The relative global estimation error (namely, the final error compared to the initial
error) equals 6.2%. The absolute global modeling error equals 0.0691 Ω−1. Note that the
order of magnitude of the absolute global estimation error is the same as the standard
deviation of the measurement error.

A de-embedding of a DUT from the package/connector was simulated. The ac-
tual simulated admittance of the DUT was ȲD = 1.2863− 0.5494j Ω−1, while the esti-
mated admittance of the DUT calculated through the relation explained in Section 2.6 was
YD = 1.2820− 0.5488j Ω−1.
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Table 1. Dataset used in the simulation and estimation error between the actual values of the
equivalent admittances YM and their estimations obtained from the estimated two-port model
admittance parameters. The standards’ values were generated to simulate resistive-capacitive loads.

Admittance YS (Ω−1) Admittance YM (Ω−1) Error YM− YEE + Y2
EI/(YS + YII) (Ω−1)

1.1124− 1.2379j 7.0784 + 0.1597j −0.0393 + 0.0136j
1.1250− 1.3959j 7.0237 + 0.7732j +0.0678− 0.0110j
1.4534− 1.5297j 5.7792 + 0.8618j +0.0054 + 0.0196j
0.9549− 0.0416j 5.0685− 3.4123j +0.0422− 0.0416j
0.8441− 1.4932j 8.1198 + 1.7359j +0.0295− 0.0180j
1.4462− 0.9969j 5.9039− 0.5838j −0.0388 + 0.0077j
0.7503− 1.5660j 8.1410 + 2.4958j −0.2254 + 0.0143j
1.1338− 1.0174j 6.9636− 0.6809j +0.0086 + 0.0591j
0.7061− 0.3764j 6.3569− 3.9917j −0.0236− 0.0242j
0.7927− 1.2844j 8.9652 + 0.4834j +0.1588− 0.0692j
1.9784− 2.5573j 3.6722 + 1.5033j −0.0735− 0.0394j
1.2995− 0.6294j 5.9743− 1.7234j +0.0652− 0.0358j
0.7838− 1.4537j 8.7559 + 1.6223j +0.2019− 0.0687j
0.7611− 2.8225j 3.2390 + 3.7089j −0.0139− 0.0039j
0.7060− 0.8579j 8.7494− 2.3664j +0.1297 + 0.0759j
1.1209− 1.5005j 6.7809 + 1.1667j −0.0449− 0.0253j
1.1613− 1.8849j 5.8398 + 2.2463j +0.0017 + 0.0081j
0.5441− 0.4434j 6.9465− 4.6594j +0.0362 + 0.0513j
0.8917− 0.0868j 5.1366− 3.5016j −0.0477 + 0.0261j
1.3726− 1.0058j 6.2036− 0.5823j +0.0523 + 0.0244j
1.0913− 2.8658j 3.3409 + 3.0197j −0.0666 + 0.0292j
0.7574− 1.4048j 8.8619 + 1.4650j +0.0068 + 0.0257j
0.5844− 2.1256j 5.7117 + 4.9610j +0.0569− 0.0317j
0.8580− 0.7926j 7.4722− 2.1901j −0.1807 + 0.0118j
0.7017− 1.1318j 9.4745− 0.5922j +0.0198 + 0.0002j
1.0018− 1.8725j 6.2774 + 2.7216j +0.0379 + 0.0355j
0.8431− 1.1107j 8.3449− 0.6071j −0.1073− 0.0344j
0.7845− 2.9513j 2.9921 + 3.4805j −0.0179− 0.0425j
0.9085− 2.4065j 4.4848 + 3.6081j −0.0051 + 0.0240j
1.3611− 0.0412j 4.7185− 2.5225j −0.0192− 0.0563j
0.8886− 0.7737j 7.3840− 2.1390j −0.0858 + 0.0442j
1.2796− 0.9545j 6.3104− 0.8038j −0.0836 + 0.0234j
1.0322− 0.4597j 6.1597− 2.6596j +0.0403− 0.0046j
0.8424− 0.7185j 7.3588− 2.5748j −0.1054− 0.0280j
1.2344− 2.0519j 5.3342 + 2.3385j +0.0582− 0.0129j
1.4030− 0.2168j 5.0976− 2.2274j +0.0903− 0.0158j
0.9254− 2.3863j 4.5861 + 3.4965j +0.0319− 0.0343j
0.9291− 0.1008j 5.1541− 3.4381j −0.0507− 0.0268j
1.0237− 0.6549j 6.7193− 2.1823j +0.0438 + 0.0194j
1.3005− 2.3434j 4.4360 + 2.4646j −0.0753− 0.0380j
1.4438− 0.3439j 5.1942− 1.9622j +0.0271 + 0.0116j
1.1113− 0.6057j 6.3443− 2.1407j +0.0279− 0.0223j
0.8153− 0.0213j 4.9847− 3.7259j −0.0278 + 0.0500j
0.8323− 0.0983j 5.2593− 3.6949j +0.0141 + 0.0089j
1.6141− 0.2818j 4.8033− 1.8139j −0.0423− 0.0068j
0.8103− 2.0658j 5.9463 + 3.8327j +0.1176 + 0.0290j
1.3128− 0.7866j 6.1558− 1.3194j +0.0439− 0.0422j
0.8008− 2.0980j 5.5845 + 3.8955j −0.1105 + 0.0154j
1.0121− 0.2593j 5.5922− 3.0262j +0.0083 + 0.0051j
1.1189− 0.9364j 6.9809− 1.0438j +0.0597 + 0.0187j

4.5. Numerical Tests on the Iterative Algorithm with n > 1

In the full-matrix case, namely, when the integer n is arbitrary, the unknowns YEE, YEI

and YII, as well as the known data-pairs (Y(k)
S , Y(k)

M ), for k = 1, 2, . . . , K, are complex-valued
n× n matrices.
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In the present section, progressively more complicated estimation problems will be
considered, with the integer n ranging from 2 to 6. The obtained results will be illustrated
in terms of convergence curves and through full matrices, as long as their size fits the page
width. In particular, since the real part and the imaginary part of the unknown admittance
matrix Y are updated according to mathematical rules of different conception, namely, a
rule based on geodesic stepping and a rule based on standard Euler stepping, the figures
will separately survey the speed of convergence of the real and imaginary part of package
admittance variable-matrix Y.

We specify that, in the MATLABr codes, the matrix exponential is computed through
the expm function, while the matrix-square-root is computed by the sqrtm function. We
notice that, for both matrix-functions, there are alternative calculation rules, which are
either more efficient or more precise. However, in the present paper, numerical complexity
is of no concern since model identification is supposed to be performed offline. In general,
in the context of numerical optimization, the precision of single steps is also of no concern
since all that matters is the precision of the achieved solution.

The Riemannian-gradient-based geodesic-stepping optimization algorithm in the full
matrix case is expressed again as in (76), where the necessary working quantities are
as follows:

M` :=
K
∑

k=1

[
−Λ(k)

` Λ(k)
` Y∗EI,`(Y

(k)
S + YII,`)

−∗

(Λ(k)
` Y∗EI,`(Y

(k)
S + YII,`)

−∗)> −(Y(k)
S + YII,`)

−∗Y†
EI,`Λ

(k)
` Y∗EI,`(Y

(k)
S + YII,`)

−∗

]
,

Λ(k)
` := Y(k)

M −YEE,` + YEI,`(Y
(k)
S + YII,`)

−1Y>EI,`,

YEE,` = YRe
EE,` + jYIm

EE,`, YEI,` = YRe
EI,` + jYIm

EI,`, YII,` = YRe
II,` + jYIm

II,`,

YRe
` =

[
YRe

EE,` YRe
EI,`

(YRe
EI,`)

> YRe
II,`

]
, YIm

` =

[
YIm

EE,` YIm
EI,`

(YIm
EI,`)

> YIm
II,`

]
.

(81)

The results of a numerical experiments performed with n = 2 are illustrated in the
Figure 6.

The (randomly generated) initial guess reads

Y0 =


1.6729 + 2.2931j 1.2798 + 1.2160j −0.6483 + 1.7859j 1.1588 + 1.8031j
1.2798 + 1.2160j 2.8347− 1.3807j 0.2173− 1.9424j 2.9445− 1.6019j
−0.6483 + 1.7859j 0.2173− 1.9424j 1.1749− 0.1453j 0.1298− 0.8123j
1.1588 + 1.8031j 2.9445− 1.6019j 0.1298− 0.8123j 4.1929− 0.3826j

 Ω−1. (82)

The actual simulated admittance matrix of the multiport under modeling is

Ȳ =


0.8843 + 2.4645j 0.6441 + 1.6827j −0.4110 + 1.8928j 0.4964 + 1.8550j
0.6441 + 1.6827j 1.2938− 1.1192j 0.3009− 1.3390j 1.0067− 1.6688j
−0.4110 + 1.8928j 0.3009− 1.3390j 1.4822− 0.0129j 0.0093− 0.8279j
0.4964 + 1.8550j 1.0067− 1.6688j 0.0093− 0.8279j 1.9016− 0.3350j

 Ω−1, (83)

and the estimated admittance matrix of the multiport through the devised algorithm equals

Y =


0.9117 + 2.4795j 0.6244 + 1.6635j −0.4083 + 1.8660j 0.5080 + 1.8279j
0.6244 + 1.6635j 1.3006− 1.0922j 0.2982− 1.3230j 0.9749− 1.6435j
−0.4083 + 1.8660j 0.2982− 1.3230j 1.4689 + 0.0020j −0.0106− 0.8439j
0.5080 + 1.8279j 0.9749− 1.6435j −0.0106− 0.8439j 1.8468− 0.3475j

 Ω−1. (84)

The relative global estimation error (namely, the final error compared to the initial
error) equals 2.8%. The absolute global modeling error equals 0.0465 Ω−1. Note that the
order of magnitude of the absolute global estimation error is the same as the measurement
error standard deviation.
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Figure 6. Results of a numerical experiment by the Riemannian-gradient-based geodesic-stepping
optimization algorithm in the case that n = 2.

A simulated de-embedding of a device-under-testing from the electronic chip package
was operated. The actual simulated admittance matrix of the DUT reads

ȲD =

[
1.0315− 0.2443j −0.0472− 1.2728j
−0.0472− 1.2728j 1.1561− 0.9266j

]
Ω−1, (85)

while the estimated admittance matrix of the device under testing reads

YD =

[
1.0160− 0.2392j −0.0457− 1.2658j
−0.0457− 1.2658j 1.1171− 0.9249j

]
Ω−1. (86)

The obtained result is in good agreement with the actual admittance matrix, and the error
in the estimation is of the same order of the simulated measurement errors.

The results of a numerical experiment obtained with n = 3 are illustrated in the Figure 7.
In this experiment, the relative global estimation error after optimization is 34.9%,

while the absolute global modeling error equals 0.0756 Ω−1. Nevertheless, the order of
magnitude of the absolute global estimation error is the same of the measurement error
standard deviation.

A de-embedding was simulated through a numerical experiment. The actual simulated
admittance matrix of the DUT reads

ȲD =

 1.9676− 0.6691j −2.7321− 0.7434j −4.6995− 0.6069j
−2.7321− 0.7434j 4.5285− 0.5506j 5.7589 + 1.3203j
−4.6995− 0.6069j 5.7589 + 1.3203j 12.7101− 0.5425j

 Ω−1, (87)

while the admittance matrix of the simulated DUT, estimated through the external identifi-
cation algorithm, reads

YD =

 1.9925− 0.6086j −2.8704− 0.8759j −4.9302− 0.7001j
−2.8704− 0.8759j 4.8933− 0.4124j 6.2649 + 1.3452j
−4.9302− 0.7001j 6.2649 + 1.3452j 13.4297− 0.7506j

 Ω−1. (88)



Energies 2023, 16, 2585 26 of 31

Certainly, the whole estimation/de-embedding process suffers because of an increasing
problem size, although the obtained result appears to be in good agreement with the
expected numerical values given the presence of measurement errors.

The outcomes of a further numerical experiment obtained by setting n = 4 are illus-
trated in the Figure 8. Even in this experiment, the convergence to an optimal solution
looks steady and stable.

Figure 7. Results of a numerical experiment by the Riemannian-gradient-based geodesic-stepping
optimization algorithm in the case that n = 3.

Figure 8. Results of a numerical experiment with n = 4.

The relative global estimation error after convergence equals 2.5% and the absolute
global modeling error equals 0.0866 Ω−1.
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Still for the experiment with n = 4, Table 2 shows the eigenvalues of the actual
conductance matrix Re{Ȳ}, as well as the eigenvalues of the estimated conductance matrix
Re{Y} for comparison purposes.

Table 2. Eigenvalues of the estimated conductance matrix Re{Y} compared to the eigenvalues of the
actual conductance matrix Re{Ȳ} in the case n = 4.

Eigenvalues of Re{Ȳ} (Ω−1) Eigenvalues of Re{Y} (Ω−1)

0.0679 0.0777
0.1339 0.1323
0.3177 0.3189
0.3632 0.3649
0.9779 0.9513
1.5232 1.5382
3.0090 3.0088
4.7040 4.6554

The eigenvalues of the estimated conductance matrix are in excellent agreement with
the eigenvalues of the actual conductance matrix, which is a further indicator of the quality
of the solution and the robustness of the estimation algorithm against measurement errors.

Even in this instance, a simulated de-embedding was operated. The actual simulated
admittance matrix of the device under testing reads

ȲD =


0.6695 + 0.0907j 0.3380 + 1.2023j −1.0583− 0.5594j −0.8518 + 1.7162j
0.3380 + 1.2023j 0.4424− 2.0950j −0.2798− 0.1147j 0.0501− 0.6896j
−1.0583− 0.5594j −0.2798− 0.1147j 2.5576 + 1.7276j 2.3586 + 1.3821j
−0.8518 + 1.7162j 0.0501− 0.6896j 2.3586 + 1.3821j 2.4361 + 0.6677j

 Ω−1, (89)

while the estimated admittance matrix of the numerically simulated device reads

YD =


0.6556 + 0.1137j 0.3624 + 1.1810j −1.0772− 0.5541j −0.8800 + 1.7338j
0.3624 + 1.1810j 0.4311− 2.0919j −0.3050− 0.1560j 0.0513− 0.6921j
−1.0772− 0.5541j −0.3050− 0.1560j 2.5652 + 1.7796j 2.3477 + 1.4369j
−0.8800 + 1.7338j 0.0513− 0.6921j 2.3477 + 1.4369j 2.4412 + 0.7626j

 Ω−1. (90)

The results of a further numerical experiment pertaining to a number of internal/external
ports of n = 5 are illustrated in the Figure 9. From this figure, the total measurement error
affecting the data is shown to increase with the size of the problem and, at the same time,
the convergence of the optimization algorithm becomes slower, although it remains steady.

In this experiment, the relative global modeling error after iteration attests to 4.5%,
with an absolute global modeling error of 0.166. The eigenvalue comparison shown in the
Table 3 confirms that the algorithm can recover the eigenstructure of the conductance part
with good precision.

A result of simulated embedding confirms the above conclusions: When the actual
admittance matrix of the DUT reads

ȲD =


2.7822 + 1.3378j −1.7279 + 0.5760j 0.2772 + 2.6109j 1.9181− 1.7692j 0.7222− 1.5057j
−1.7279 + 0.5760j 4.6236 + 1.1261j −2.1491 + 1.9037j −2.3820 + 1.0605j −0.1982− 3.3572j
0.2772 + 2.6109j −2.1491 + 1.9037j 1.1591 + 0.9735j 0.7353 + 0.4465j −0.0134 + 0.8203j
1.9181− 1.7692j −2.3820 + 1.0605j 0.7353 + 0.4465j 2.3560 + 0.2259j 0.0595 + 0.3476j
0.7222− 1.5057j −0.1982− 3.3572j −0.0134 + 0.8203j 0.0595 + 0.3476j 0.5141 + 3.6769j

 Ω−1, (91)

the corresponding admittance matrix estimated after completing the identification of the
multiport reads

YD =


2.7721 + 1.3399j −1.7378 + 0.5455j 0.3065 + 2.6136j 1.9616− 1.7040j 0.6951− 1.4498j
−1.6933 + 0.5518j 4.5485 + 1.1475j −2.1786 + 1.9144j −2.2832 + 1.2198j −0.1221− 3.3751j
0.2821 + 2.6223j −2.2023 + 1.9042j 1.1621 + 0.9535j 0.8159 + 0.4030j 0.0596 + 0.9525j
1.9228− 1.7165j −2.2391 + 1.2273j 0.7695 + 0.3980j 2.1058− 0.1718j 0.1474 + 0.1153j
0.6982− 1.4936j −0.0967− 3.3486j 0.0486 + 0.9215j 0.1217 + 0.1320j 0.4447 + 3.5238j

 Ω−1. (92)
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Table 3. Eigenvalues of the estimated conductance matrix Re{Y} compared to the eigenvalues of the
actual conductance matrix Re{Ȳ} in the case n = 5.

Eigenvalues of Re{Ȳ} (Ω−1) Eigenvalues of Re{Y} (Ω−1)

0.0133 0.0081
0.1417 0.1394
0.1939 0.2003
0.3158 0.3333
0.8436 0.8209
1.1496 1.1470
2.3292 2.3371
4.0322 4.0452
5.5390 5.3469
20.1115 19.9327

Figure 9. Results of a numerical experiment with n = 5.

As a last test, a numerical experiment was carried on with n = 6, whose results are
illustrated in the Figure 10. Even in this numerical experiment, the achieved convergence is
steady, although slower than in the previous experiments due to the increased size of the
optimization problem: note that the size of the optimization problem to be solved grows
twice as fast as the number of internal/external ports n.

From Figure 10, it can be seen that the number K of iteration was chosen to be
excessively low, which essentially resulted in a premature halting of the optimization
procedure. A larger number of iterations would have led to a more precise estimation of
the conductance matrix of the simulated electronic chip package/connector.

The Table 4 shows the eigenvalues of the actual conductance matrix Re{Ȳ}, as well as
the eigenvalues of the estimated conductance matrix Re{Y} for comparison. In this case,
since the number of internal/external ports equals 6, the number of estimated eigenvalues
equals 12. Nevertheless, the values in the table show excellent agreement, even though the
iteration halted prematurely.
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Figure 10. Results of a numerical experiment with n = 6.

Table 4. Eigenvalues of the estimated conductance matrix Re{Y} compared to the eigenvalues of the
actual conductance matrix Re{Ȳ} in the case n = 6.

Eigenvalues of Re{Ȳ} (Ω−1) Eigenvalues of Re{Y} (Ω−1)

0.0884 0.0884
0.1349 0.1348
0.2471 0.2644
0.3656 0.3906
0.5338 0.5278
0.5682 0.5858
1.5714 1.5986
2.2601 2.2647
8.4494 8.2849
9.8163 10.0289
18.8331 18.7491
20.8985 20.8803

5. Conclusions

The present paper dealt with a circuit-theoretic problem, framed as the external identi-
fication of a reciprocal, special passive, 2n-port network under measurement uncertainties.
The application is the de-embedding of a device under testing from an electronic chip
package/connector.

An admittance-matrix representation was chosen to model the multiport equivalent
circuit and the condition that the circuit under modeling is ‘reciprocal special passive’ results
in the assumption that the real part of the admittance matrix is symmetric, positive-definite.

The identification problem was cast as a matrix optimization problem over the matrix
manifold S+(2n)× S(2n), based on a least-squares criterion function. This criterion was
specifically crafted to cope with over-determinacy due to the cardinality of data-pairs
exceeding the number of degrees of freedom of the problem.

The present paper proposed and numerically evaluated an iterative algorithm to
carry on such optimization based on the Riemannian-gradient steepest descent method. A
number of numerical results confirmed that the proposed method is effective as long as
reasonable measurement error levels and problem sizes are dealt with.
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We are currently studying an alternative approach based on a ‘matrix polynomial’
formulation of the loss function f̃ , in contrast to the present formulation, which may be
referred to as ‘rational’. The novel approach under investigation is based, however, on
more restrictive hypotheses regarding the structure of the sought admittance matrix Y, and
will thus be of a less general scope than the one presented in this paper.
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