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ABSTRACT The assessment of muscle-recruitment timing from electromyography (EMG) signal is relevant
in different fields, including clinical gait analysis and robotic systems to interpret user’s motion intention.
However, available methods typically provide only information in time domain without evaluating muscle-
activation frequency content. This study aims to propose a novel adaptative algorithm for detecting muscle
activation in time-frequency domain based on continuous wavelet transform (CWT) analysis. Precisely, the
novel contribution of the proposed algorithm consists of evaluating the frequency range of every muscle
activations detected in time domain. Performances are evaluated on a test bench of 720 simulated and 105 real
surface EMG signals, stratified for signal-to-noise ratio (SNR), and then validated against different reference
algorithms. Outcomes indicate that the proposed approach can provide an accurate prediction ofmuscle onset
and offset timing in both simulated (mean absolute error, MAE≈ 10 ms) and real datasets (MAE< 30 ms),
minimally affected by the SNR variability and compatible with the timing of EMG-driven assistive devices.
Concomitantly, the maximum frequency of the activations is computed, ranging from around 100 Hz up
to almost 500 Hz. This suggests a large within-muscle between-muscle variability of the frequency range.
In conclusion, the current study introduces a novel reliable wavelet-based algorithm to detect both time and
frequency content of muscle activation, suitable in different conditions of signal quality.

INDEX TERMS Surface EMG signal, onset-offset detection, muscle activation, time-frequency domain,
wavelet transform.

ABBREVIATION LIST
BB = Biceps brachii.
BMI = Body mass index.
CFAR = Constant false alarm rate algorithm.
CUSUM = Cumulative sum algorithm.
CWT = Continuous wavelet transform.
DT = Double-threshold statistical algorithm.
EEG = Electroencephalography.
EMG = Electromyography.
ETKEO = Extended Teager-Kaiser energy operator.
GC = Gait cycle.
GL = Gastrocnemius lateralis.
MAE =Mean absolute error.
PROLIFIC = Profile likelihood based on Fibonacci
search.
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SD = Standard deviation.
sEMG = Surface EMG signal.
SENIAM = Surface ElectroMyoGraphy for the
Non-Invasive Assessment of Muscles.
SNR = Signal-to-noise ratio.
TKEO = Teager-Kaiser energy operator.
TP = True positive.
VL = Vastus lateralis.
WLT =Wavel.

I. INTRODUCTION
Muscle activity is typically quantified during human move-
ment using surface electromyography (sEMG). sEMG is a
non-invasive approach that permits the attainment of many
different tasks, such as estimating muscle function, eval-
uating muscular fatigue, identifying movement patterns,
explaining neuromotor-system strategies in complex tasks,
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controlling sEMG-driven assistive devices, and so on [1]–[3].
Expressly, quantifying muscular activity from sEMG signals
is acknowledged to be particularly relevant in clinical gait
analysis [4] and robotic systems to interpret user’s motion
intention [3], [5], [6].

Most of the literature in the field is mainly focused on the
analysis of the muscular activity in time domain to extract
the timing of activation onset and offset. This approach is
extensively adopted in clinics to quantitatively characterize
different neuromotor disorders [7], [8], patient follow-up,
and improve rehabilitation strategies [9]. Furthermore, myo-
electric non-pattern-recognition-based prosthetic control is
acknowledged to include an activation-timing algorithm as
one of the fundamental steps of the control procedure [10].
To this aim, the assessment of the onset event is more cru-
cial than identifying the offset event. On the other hand,
the approach of myoelectric pattern-recognition-controlled
devices typically mimics the functionality of an actual limb,
employing EMG signals from residual muscles leftover after
amputation or congenital disability [11]. This approach pre-
supposes a reliable acquisition and pre-processing of sEMG
signals, a focused feature-extraction procedure, an accurate
signal-classification process to predict a subset of designated
motor tasks, and eventually a multifunction prosthesis con-
trol. Thus, the capability of these systems to decode the motor
intention is determined by the quality of system performance
at each of the phases mentioned above [12]. Implementing
an onset-detection algorithm could help since it has been
shown that the performance of the classification phase could
be improved by windowing sEMG signals using a reliable
assessment of activation events [13].

In the same way, it has been suggested that the onset-
detection-based interpretation of sEMG signal could be
adopted together with or as a possible alternative to a
more complex EEG-based approach to improve move-
ment intention detection in stroke patients without residual
movements [14]. More generally, onset-offset detection algo-
rithms are used to develop increasingly sophisticated and
reliable EMG-based human-machine interfaces [15]. Further
applications of the assessment of activation onset in rehabil-
itation robotics are also reported [6], [16].

The onset (and sometimes the offset) timing is one of the
most frequently analyzed parameters in the characterization
of sEMG signals. Different approaches are introduced to
assess it. Visual identification is typically adopted to detect
the onset and offset timings of muscle activation [17], [18].
This approach consists of inspecting EMG signals by trained
human-movement specialists who visually identify the onset
event through a preset criterion. Unfortunately, this empirical
procedure is very time-consuming, mainly when identifying
activation events in a large dataset or long-lasting sEMG
signals [19]. Moreover, it could be susceptible to inter-expert
variability, specifically for the low value of signal-to-noise
ratio (SNR) [20].

To lower procedure duration, limit inter-expert variabil-
ity, and improve objectivity of the analysis, computer-based

techniques are introduced. A classical category of automatic
methods is the one representing the threshold-based algo-
rithms [21], [22], including the double-threshold (DT) statis-
tical algorithm [23], [24]. DT is even now considered among
the most reliable detection techniques; DT is indeed broadly
used both in research and in clinics, and it is also implemented
in commercial systems [25], [26]. A more recent approach
adopts an adaptive threshold computed by the constant false
alarm rate (CFAR) algorithm, where the EMG signal is
refined by morphological hole filling used to close up and
fill out missing information [27].

Despite the great effort in developing of techniques for
EMG-signal processing in time domain, only a small num-
ber of studies are focused on sEMG analysis in frequency
domain. Frequency analysis is mainly performed to com-
pute the power spectrum of the sEMG signal by applying
the Fourier transform, quantify the frequency content of
the whole signal and/or provide information on the muscle
fatigue process [28], [29].

It is acknowledged that muscle fibers can be broken
down into two main types: slow-twitch fibers, which respond
slowly to stimulus but are resistant to fatigue, and fast-twitch
fibers, which respond but also wear out more quickly. The
different fibers are characterized by different sEMG-signal
frequency content [30]–[32]. Thus, for a deeper compre-
hension of the electrophysiological processes behind neu-
romuscular activations, sEMG signals should be analyzed
in time as well as frequency domain. This is successfully
achieved, for example, by Lauer et al. [33]. They intro-
duced a time-frequency index that is significantly correlated
to gait kinetics, kinematics, and clinical measures of motor
impairment in children with cerebral palsy and is sensitive to
walking ability according to GrossMotor Functional Classifi-
cation Scale. Another example of the significant contribution
of time-frequency analysis is presented by Trigili et al. [34],
who adopted a cognitive human-robot interface approach to
detect the users’ motion intention fast through a machine-
learning interpretation of a set of subject-independent sEMG
time-domain features.

Moreover, Sacco et al. [35] investigated the spectral prop-
erties and muscle energy patterns in diabetic subjects with
neuropathy during gait using wavelet transform, showing that
lower energy content could be found at a lower frequency
(slow-twitch fibers) due to impairments caused by neuropa-
thy. The time-frequency approach has also been adopted
in complex classification tasks. Wang et al. [36] presented
a wavelet-based correlation dimension approach to clas-
sify sEMG signals in a prosthetic control system. Recently,
wavelet transform has become an efficient tool to assess
pertinent information from the EMG signal [37]. As shown
by both above-mentioned and other studies, indeed, wavelet
transform analysis has been proven to be a reliable tool
for the simultaneous characterization of EMG data in time
and frequency domain, providing a suitable approach for the
identification of motor-unit/fiber recruitment patterns [38],
the quantification of motor strategy patterns [35], the project
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of rehabilitation devices [36], and the assessments of clinical
features [33], [39], [40].

Thus, the present study aims to propose a novel adaptative
algorithm for detecting muscle activation in time-frequency
domain, based on continuous wavelet transform (CWT) anal-
ysis. Precisely, the approach’s novel contribution consists
of evaluating the frequency range of each of the muscle
activations detected in time domain by the proposed algo-
rithm. Acknowledged techniques, such as Fourier transform,
are widely adopted to assess the power spectrum of the
whole sEMG signal. However, this approach typically pro-
vides a single frequency content for all the possible different
activations and the silent (only noise) portion of the sig-
nal [28], [29]. The time-frequency approach of the proposed
algorithm goes further, allowing to identify muscle activity
intervals in time domain and concomitantly assessing the
frequency range for each one of these activations, providing
specific information in frequency domain about every single
activation of the analyzed task. To our knowledge, the present
analysis is the first to provide a reliable tool able to do this.

Moreover, it is acknowledged that detecting onset and
offset events is hard to achieve in sEMG signals character-
ized by high background-noise levels, reflecting in low SNR
values [19], [41]. This is true for all the methods mentioned
above. To address or at least improve this drawback, the
Teager-Kaiser energy operator (TKEO) and its extended ver-
sion (ETKEO) are introduced [42], [43]. The aim is to filter
the sEMG signal and, thus, increase SNR value to limit the
errors in detecting activation events. Despite this, worsening
detection performances could also be observed when TKEO
is implemented to improve signal quality [41], [44]. A further
issue to consider is that SNR could assume different values
in an other portion of the sEMG signal, especially in pro-
longed tasks like walking, running, cycling, and in specific
conditions as muscle fatigue assessment. Variability of SNR
within the same recording is likely due to the alteration of
electrode-skin contact features, the change of noise power,
and the variations in the ground reference level [24]. This
can influence the assessment of onset-offset events just in
the signal range where SNR degrades. For all these reasons,
although many EMG-based methodologies are developed to
identify muscle recruitment, a gold standard is not available
yet.

Thus, the further goal of the present study is to attempt to
limit the deterioration of algorithm performance associated
with very noisy signals. To this aim, the CWT approach is
chosen since it involves decomposing sEMG signal intomany
multiresolution components and applying a series of low-
and high-pass filters, making this approach very suitable for
handling signals affected by low SNR values [45]. Briefly, the
algorithm consists of windowing the sEMG signal in short
segments where SNR value is supposed to remain constant,
filtering sEMG signal by CWTdecomposition, estimating the
local time-frequency energy density of the signal through the
scalogram function [39], and then assessing onset and offset
events as the begin and the end of the time interval where the

scalogram is exceeding the 1% of the peak value of energy
density. The windowing procedure is performed in order to
handle the expected within-signal variability of SNR values.

Thus, in the present paper, we intend to first show that our
algorithm is reliable in time domain since it can provide a
quantitative time characterization of muscle activity (onset
and offset events), at least comparable with the reference
algorithm reported in the literature [23], [39], [46], [47].
Then, we show that it can further provide new informa-
tion, that is, the frequency content of every single activation
detected in time domain.

II. MATERIALS AND METHODS
A. ALGORITHM FOR ONSET AND OFFSET DETETCTION
Simulated and real sEMG signals are preliminary band-
pass filtered (2nd order Butterworth filter, cut-off frequency
20-450 Hz). Later, all signals are processed to achieve the
wavelet scalogram, according to the following procedure.
Continuous Wavelet Transform (CWT) permits identifying
time variations of non-stationary-signal frequency content,
maintaining the resolution of signal processing in both fre-
quency and time domain [48]. CWT of sEMG(t) is defined as
the inner product shown in the successive Equation 1:

CWT sEMG (a, b) =
∫
sEMG (t) ψ∗a,b (t) dt a 6= 0 (1)

where ψa,b(t) is the mother wavelet defined in Equation 2:

ψa,b (t) =
1
√
a
ψ

(
t − b
a

)
(2)

where a is the scale parameter, b is the translation parameter
(time shifting), and ψa,b(t) is achieved as the mother wavelet
function ψ(t) computed at scale a in time b. ψa,b(t) must
satisfy mathematical criteria like finite energy and no zero-
frequency component to be admissible [49]. The scale is
inversely proportional to spectral components. Low scales
(i.e., high frequencies) provide more local information. High
scales (i.e., low frequencies) supply more global information
about the sEMG signal.

In the present study, wavelet transform is implemented by
adopting Daubechis of order 4 with 8 levels of decomposi-
tion (db4) as the mother wavelet. This choice is made since
Daubechies is acknowledged as a suitable mother wavelet
for detecting signal changes and because its shape is simi-
lar to the shape of motor unit action potentials [50]. CWT
decomposes a signal into several multiresolution components
(coefficients) and performs a series of low- and high-pass
filter operations followed by down-sampling. In this way, the
sEMG signal is decomposed into its frequency content form
and then reconstructed. CWT was used for removing noise
from the sEMG signal and providing energy localization
in time-frequency. CWT denoising is based on the decom-
position of the signal, modification of detail coefficients
concerning a defined soft threshold and then signal recon-
struction concerning the new coefficients. This is achieved in
the present study, applying the denoising algorithm included
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in Wavelet Matlab Toolbox. The soft threshold (Donoho
threshold) is adopted for the denoising procedure. sEMG
signal was reconstructed by revised CWT coefficients [51].

Energy localization in time-frequency of sEMG signal is
identified using CWT scalogram function [45], [51]. Scalo-
gram function, PsEMG, is defined as the square of the absolute
value of CWT coefficients,WsEMG, as reported in Equation 3:

PsEMG (a, b) = |WsEMG (a, b) |2 (3)

For each sEMG signal (simulated or real), the scalogram
of denoised sEMG is computed in windows of a suitable
portion of the sEMG signal (number of samples), depending
on the signal characteristics (signal duration, muscle-activity
duration). Details are reported in the following sections.

Timing of onset and offset events is assessed as the interval
where the scalogram exceeds the 1% of the peak value of
energy density in each specific portion of the sEMG signal.
It is acknowledged that muscle recruitments lasting less than
30 ms have no effect in controlling joint motion [23]. Thus,
activation intervals detected by the algorithm but lasting less
than 60 samples are discarded. In the same way, activation
intervals distant less than 60 samples are put together in a sin-
gle activation interval. Once an activation interval is detected
in time domain, the correspondent activation interval in fre-
quency domain is computed as the frequency range associated
with the scalogram function to that specific activation time
interval. Maximum and minimum of the frequency content
is, thus, quantified for each one of the activations identified
in time domain.

B. ALGORITHM VALIDATION
Simulated and real data are considered to evaluate the appro-
priateness of the proposed approach to assess onset-offset
events of muscular recruitment in time-frequency domain.
To this purpose, the following sub-section describes the gen-
eration of a test bench of simulated sEMG signals. The next
sub-section introduces the experimental protocol adopted to
design two different datasets of real sEMG signals. The cur-
rent approach is validated by direct comparison with refer-
ence approaches on both real and simulated signals.

1) SIMULATED sEMG SIGNALS
Performances of the present approach in assessing onset and
offset events are firstly evaluated on a test bench of simulated
sEMG signals. Simulated sEMG signal is modelled as the
overlapping of two stationary processes: the original signal
generated by muscular activity and the background noise,
fundamentally provoked by the crosstalk of neighbouring
muscles and circuit noise [52]. Specifically, the background
noise is simulated as a gaussian process with zero mean and
variance σ 2

noise. The portion of the sEMG signal where the
muscle is active is modelled as the background uncorrelated
background noise plus the band-limited stochastic process
with zero-mean Gaussian distribution of amplitude and fixed
power level, according to the acknowledged method intro-
duced in [23]. This distribution is accomplished by band-pass

FIGURE 1. Example of simulated EMG signal depicted in blue line. The
truncated gaussian function adopted to model the simulated signal is
represented by the green dashed line.

filtering (cut-off frequencies= 80-120 Hz) a Gaussian series
of uncorrelated samples [23]. This Gaussian distribution is
truncated to simulate the sEMG activity due to muscle activa-
tion (Fig. 1). Each simulated sEMG signal is generated with
a sampling frequency fs = 2000 Hz, a time window of 1 s
as suggested in [23], and a randomly variable value of the
median of the gaussian µ, with 0 ≤ µ < 1. The physio-
logical variability of sEMG signals is reproduced regulating
the standard deviation, σ , and the time support, 2×α × σ ,
of the Gaussian distribution. α is the parameter used to vary
the time support of the distribution (i.e., the duration of signal
activation). Suitable values of σ are set in order to achieve the
wanted value of signal-to-noise ratio (SNR), where:

SNR = 10 ∗ log
(σ 2
signal)

(σ 2
noise)

(4)

Randomly varying the value of parameter µ, 8 simulated
sEMG signals are generated for all the different combina-
tions of the values adopted for σ (50, 100, and 150 ms),
α (1, 1.5, and 2), and SNR, (from 3 dB to 30 dB, with
step = 3), considering the suggestions reported in [23].
A total of 720 simulated signals are obtained. CWT
scalogram is computed separately for each one of those
2000-sample simulated signals. The start and the end of trun-
cated gaussian function used to model the simulated signal
are adopted as the ground-truth events for the onset and offset,
respectively. The original algorithm used to generate simu-
lated data is available contacting the corresponding author.

2) REAL sEMG SIGNALS
Two different datasets of real sEMG signals are used: the
first one is adopted to validate the current approach; the
second one is utilized to stress the potentiality of the present
approach in time-frequency domain. The first one con-
sists of a dataset of sEMG signals measured in 18 adult
subjects carrying out knee extension and elbow flexion.
It is made available by Tenan et al. at the following
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link (https://github.com/TenanATC/EMG) [18]. Correspon-
dent ground truth is also provided. Two motor tasks are
considered to evaluate the dependability of the approach
under various conditions and in signals from different mus-
cles. Participants carried out each exercise three times at a
self-selected exercise pace. A mass (2.3 kg) is applied to
subject’s right ankle to improve the efficacy of the knee
extension. To the same aim, elbow-flexion task is also carried
out with the same mass applied to the subject’s right wrist.
During both tasks, the volunteer is seated in a stationary
chair. sEMG probes are attached on biceps brachii (BB) for
monitoring elbow flexion and vastus lateralis (VL) for knee
extension. sEMG signals are analogue-to-digital converted
at 2048 Hz. In total, 105 sEMG signals are acquired and then
band-pass filtered with cut-off frequencies of 10-1000 Hz.
sEMG signals are visually inspected by three experts to write
down all the activation-onset in a randomized and double-
blind fashion (i.e., specific task and study identifier are not
known). Each expert checks every trial twice within a week.
Average over the six onset values is adopted as ground truth
for the experiments in [18], and is also used in the present
study with the same aim. Additional details are reported [18].
In this dataset, for each signal CWT scalogram is computed
in a window of 2000 samples around the ground-truth event.

Gait data characterize the second dataset of real data
adopted in the present study. Specifically, sEMG and foot-
floor contact signals during 30-control-subject walking are
retrospectively taken from the database assembled at Move-
ment Analysis Lab, Università Politecnica delle Marche,
Ancona, Italy and used for preceding studies of the present
group of researchers [53], [54]. The dataset is available by
contacting the corresponding author of present and previ-
ous works. Obese and overweight volunteers (body mass
index, BMI > 25) and subjects affected by any pathological
condition, joint pain, or undergone orthopaedic surgery are
excluded. Gait data are captured using multichannel record-
ing system Step32 (Medical Technology, Italy; sampling rate:
2 kHz; resolution: 12 bit). sEMG signals are acquired in
each leg by single differential probes placed over gastroc-
nemius lateralis (GL) and vastus lateralis (VL), respecting
SENIAM guidelines for EMG-sensor positioning [55]. Foot-
floor-contact signals are measured by three footswitches
placed under the heel, the first and the fifth metatarsal head of
each foot and processed to segment the different gait cycles,
according to [56]. Each subject walked barefoot at a self-
selected pace for about 5 minutes, following an eight-shaped
path, which involves natural deceleration, acceleration, and
reversing. Additional details about data acquisition are avail-
able in [53]. The present research has been undertaken fol-
lowing the ethical principles of the Helsinki Declaration and
was approved by the local ethical committee. In this dataset,
CWT scalogram is computed separately in every single stride.

3) ALGORITHM PERFORMANCES
Performances of the proposed approach are evaluated in
terms of precision, recall, F1-score, bias, and mean average

TABLE 1. Mean (± SD) performances of onset and offset detection over
all the simulated signals.

error (MAE), assessed in all the true positives. Bias is
assessed as the mean time distance between the predicted
event and the correspondent ground-truth event.MAE is com-
puted as the absolute value of the mean time distance between
the predicted event and the correspondent ground-truth event.
A predicted event occurring at time tp is acknowledged as
true positive if a ground-truth event of the same kind occurs
at time tg, such that | tg - tp| < T. T is a time tolerance set
to 100 ms according to [40]. Differently, the predicted event
is considered as false positive. After that, a further process-
ing procedure is implemented to identify and then remove
activation intervals that are too short to be physiologically
plausible. According to [23], activation intervals ≤ 30 ms
are discarded. For the same reason, consecutive activation
intervals distanced less than 30 ms are united.

C. STATISTICS
Statistical difference of data distributions is evaluated. Firstly,
Shapiro-Wilk test is adopted to appraise the normality of
each data distribution. Next, a two-tailed, non-paired Stu-
dent’s t-test is applied to verify the significance of the
difference between normally distributed samples. Likewise,
Mann-Whitney test is applied to verify the significance of
the difference between non-normally distributed samples.
Statistical significance is set at 5%.

III. RESULTS
A. SIMULATED sEMG SIGNALS
Mean performances of onset and offset detection timing
in simulated signals are shown in Table 1; MAE and bias
(on only TPs), precision, recall, and F1-score are computed.
Mean precision, recall, and F1-score are > 99% for the
onset and > 98% for the offset (Table 1). This means that
the algorithm fails in identifying TPs in no more than 1%
of the onset events. Nevertheless, MAE is computed in all
the simulated signals to investigate if reporting MAE for
TPs only could give false indication on comparing the two
methods. Differences in MAE values are minimal (< 4%)
compared with what was reported in Table 1 (TP only) and
do not change the results of comparison between methods.
Variability of MAE in function of α, σ , and SNR is quantified
in Table 2 and 3 for onset and offset, respectively. A colour-
level-coded portrayal is utilized to provide a useful visual
picture of MAE variability. The worst values of MAE are
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TABLE 2. Variability of MAE in function of simulated-signal parameters α, σ , and SNR (dB) for onset detection.

TABLE 3. Variability of MAE in function of simulated-signal parameters α, σ , and SNR (dB) for offset detection.

located in the table region characterized by the highest value
of α (2) and σ (100 and 150 ms) and the lowest value of SNR
(3-12 dB), concomitantly. Nevertheless, MAE value never
exceeds 50 ms. Results stratified for different SNR are high-
lighted in Fig. 2, in terms of mean MAE score (orange bars
in panel A for onset and B for offset) and F1-score (orange
bars in panel C for onset and D for offset). Specifically, mean
F1-score never falls below 96% for onset and 94% for offset
values, for the proposed approach. In the same way, mean
MAE never exceeds 18 ms for onset and 22 ms for offset val-
ues. In the same panels, performances are directly compared
with those obtained by DT algorithm in the same dataset.
No significant differences are identified between F1-score
values achieved by the two approaches in the whole SNR
range (p> 0.05, Fig 2, panels C and D). Similarly, no change
is measured inMAE values (p> 0.05, Fig 2, panels A and B),
except for SNR = 15 dB for the onset (p = 0.046) and for
SNR = 12 dB for the offset (p = 0.031).

B. REAL sEMG SIGNALS
The collection of sEMG signals assembled by
Tenan et al. [18] is adopted to validate the current approach

on real data. An example of raw and denoised sEMG signal
in a representative subject is depicted in Fig 3. To test the
effect of different SNR values, Tenan’s dataset is firstly split,
creating two subsets characterized by SNR ≤ 8 dB (first
subset, 52 signals) and 8 < SNR ≤ 16 dB (second subset,
35 signals), respectively. Outcomes are presented in Table 4
(first two rows) in terms of mean, standard deviation (SD),
median, 25-percentile, and 75-percentile of the absolute error
of onset prediction. Accuracy in onset prediction in both
subsets is 100% (precision = recall = F1-score = 100%).
No significant differences in the absolute error of onset
prediction are detected between the two subsets (p > 0.05).

Then, the first subset (SNR ≤ 8 dB) is further divided
into four ranges of signals characterized by increasing SNR
values with a step of 2 dB, as highlighted in the first column
of Table 4. Outcomes are reported in the lower four rows of
Table 4. Results in this four-range subsets are directly com-
pared with results achieved by the following four different
onset-detection algorithms in the same 52-signal dataset and
reported in [44]: a method based on the double-threshold
statistical algorithm, DT [23]; the wavelet approach intro-
duced in [39], WLT; the procedure founded on the CUSUM
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FIGURE 2. Mean F1-score computed in onset (panel A) and offset (panel
B) prediction and mean MAE computed in onset (panel C) and offset
(panel D) prediction for each SNR value by the proposed approach (CWT,
orange bars) vs. DT algorithm (yellow bars). ∗ means statistically
significant difference. Higher values of MAE (panel A and B) indicate a
larger prediction error in the assessment of the event. Higher values of
F1-score (panel C and D) indicate a higher accuracy in the assessment of
predicted event.

logic [46], CUSUM; and the recent approach grounded
on the profile-likelihood maximization, employing discrete
Fibonacci search, PROLIFIC [47]. Two filtering procedures

TABLE 4. Absolute error of onset prediction in function of SNR ranges in
terms of mean, standard deviation (SD), median, 25-percentile, and
75-percentile.

are also considered (TKEO and ETKEO). To facilitate the
interpretation, results are shown all together in Table 5. The
present approach achieves the lowest absolute-error values
for all the metrics and SNR ranges (Table 5 ), except for SD
in signals with SNR ≤ 2.

C. TIME-FREQUENCY ANALYSIS
To demonstrate the capability of the proposed method to
provide a time-frequency characterization of muscle activa-
tion, the present study adopts the dataset mentioned above
composed of basographic and sEMG signals captured dur-
ing walking of 30 control subjects. An example of CWT
scalogram computed in a representative stride for GL and

TABLE 5. Comparison among absolute errors of onset prediction provided in the same population by the proposed CWT approach and by four reference
algorithms. Best values of each parameter for SNR ≤ 8 db are highlighted in red bold. Best values for each parameter and each single SNR range are
highlighted in black bold.
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FIGURE 3. Raw (upper panel) and denoised (lower panel) sEMG signal in
a representative subject of Tenan’s dataset. Green and purple vertical
lines indicate the true and the correspondent predicted onset of muscle
activation, respectively.

VL is reported in Fig. 4. In a total of 200 strides taken
randomly from this dataset, three main activations for GL and
four main activations for VL are identified in the gait cycle
(GC). The mean value (± SD) over the 200-stride dataset
of these activations is summarized in Table 6, for both GL
and VL. A graphical representation is depicted in Fig. 5 to
help visualize each main activation’s position and duration
within GC.

For each activation identified in the time domain, the fre-
quency range (Hz) is computed as the difference between the
maximum and minimum frequency values and depicted in
Fig. 6. In the upper panel of Fig. 6, frequency-range bars
are split into three groups since three main activations are
detected for GL. The first group (GL1) is characterized by the
frequency-range bars of all the activations detected in early
stance (mean value onset-offset = 4-14 %GC, as reported
in Table 6). The second group (GL2) is characterized by
the frequency-range bars of all the activations detected dur-
ing push-off (mean value onset-offset = 21-45 %GC). The
third group (GL3) is characterized by the frequency-range
bars of all the activations detected during swing (mean
value onset-offset = 83-89 %GC). In the same way, in the
lower panel, frequency-range bars are split into four groups
since four main activations are detected for VL. The first
group (VL1) is characterized by all the frequency-range bars
of all the activations detected in early stance (mean value
onset-offset= 0-15%GC, as reported in Table 6). The second
group (VL2) is characterized by the frequency-range bars

FIGURE 4. Time-frequency representation of muscular activation
provided by CWT scalogram in a representative stride of healthy human
walking for GL (upper panel) and VL (lower panel).

FIGURE 5. Mean (± standard error, SE) activation intervals vs. percentage
of gait cycle for GL (red) and VL (blue), respectively.

of all the activations detected during push-off (mean value
onset-offset = 33-42 %GC) The third (VL3) and the fourth
(VL4) groups are characterized by the frequency-range bars
of all the activations detected during early and late swing,
respectively (mean value onset-offset = 72-78 %GC and
84-100 %GC). A large variability of the frequency range is
detected for both muscles, ranging from 85 Hz to 489 Hz.

IV. DISCUSSION
The current study proposes a novel adaptative algorithm for
assessing onset and offset timing of muscle activation in
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TABLE 6. Mean (± SD) onset and offset timing over all strides for GL and VL muscles in percentage of gait cycle (%GC).

FIGURE 6. Vertical red bars represent the frequency range (Hz) of every
activation detected in time domain during walking, for GL (upper panel)
and VL (lower panel). GL1, GL2, and GL3 and VL1, VL2, VL3, and VL4
represent the frequency-range groups defined in Section C of Results
(Frequency analysis).

the time-frequency domain, based on CWT analysis. One
of the added values of the current approach is to provide a
concomitant assessment of the onset/offset timing and the
frequency content of the muscle activation. Acknowledged
techniques, such as Fourier transform, are widely adopted to
assess power spectrum of the whole sEMG signal, including
all the possible different activations and the silent (only noise)
portion of the signal [28], [29]. The time-frequency approach
of the proposed algorithm allows identifying muscle activ-
ity intervals in time domain and concomitantly assessing
the frequency range for each of these activations, providing
specific information in frequency domain about every single
activation of the analyzed task.

Three datasets are involved in testing the time-frequency
performances of the proposed algorithm: 1) a test bench
of 720 simulated sEMG signals; 2) 105 real sEMG signals
measured in vastus lateralis during knee extension and in
biceps brachii during elbowflexion; and 3) real sEMG signals
from gastrocnemius lateralis, and vastus lateralis collected in
thirty healthy subjects during ground walking.

A. SIMULATED sEMG SIGNALS
The algorithm is tested in simulated data according to
what was performed in previous studies, which have intro-
duced novel algorithms for onset-offset detection [23], [24],
[39], [40]. The main reason is the need for a ground truth
that provides an error-free assessment of onset-offset events
for validating the algorithm. It is known that in real sEMG
signals, the ground truth for onset and offset events is pro-
vided by trained human-movement specialists who inspect
the signals and visually identify the onset-offset events. This
procedure could be very susceptible to inter-expert variabil-
ity [20], specifically for the low signal-to-noise ratio value,
as in the present study. Otherwise, the muscle activation
is generated in the simulated sEMG signal truncating the
Gaussian distribution (Figure 1). Thus the onset and offset
events are available with no error.

A total of 720 simulated sEMG signals are generated to
quantify the ability of the algorithm to detect the onset and
offset timing and assess its sensitivity to SNR variability. The
proposed algorithm can achievemean performance parameter
(precision, recall, and F1-score) values very close to 100%,
for both onset and offset detection, as shown in Table 1.
On average, correspondent values of bias and MAE are 6.0±
16.4 ms and 9.9± 14.4 ms for the onset and−1.1± 19.6 ms
and 12.9± 14.8ms for the offset, respectively. Vannozzi et al.
reported higher mean bias (≈ 7 ms for both onset and offset)
for their wavelet-based algorithm on a dataset of simulated
sEMG signals with SNRs ranging from 8 to 20 dB [40]. Even
higher bias values are achieved by Merlo et al. in applying
a different wavelet-based method to simulated sEMG signals
with 2 ≤ SNR ≤ 8 [39].

The analysis of MAE variability in function of SNR, α,
and σ can be appreciated in Table 2 for onset and Table 3
for offset prediction, thanks to a colour-level-coded repre-
sentation. As described in table legend, the darkest green
zones highlight the lowest MAE values. Symmetrically, the
darkest red zones show the highest MAE values. 10 ms is the
threshold value adopted to discriminate red from green zones,
since it is compliant with the mean MAE values displayed in
Table 1. Concomitance of highest values of α and σ seems
to affect onset/offset detection more than SNR variability.
This outcome suggests that detection capability gets worse
with augmenting the activation time-duration, being the time
support (i.e., the duration of a single activation) defined as
2 × α × σ . Despite this, MAE never overcomes 50 ms, a
value that seems to be compliant with the maximum accept-
able response time of 300 ms, essential for natural control
of an exoskeleton [57]. Furthermore, the mean worsening
of onset/offset detection identified for the signals with the
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lowest SNR value (SNR = 3) compared to the signals with
the highest value (SNR = 30) is very small, in terms of both
F1-score (≈3% decrease for onset and ≈6% decrease for the
offset) and MAE (10-ms increase for the onset and 11-ms
increase for the offset). This suggests good robustness of the
algorithm to SNR variability.

A direct comparison with the results achieved by DT algo-
rithm on the same simulated signals is adopted to evaluate the
reliability of the proposed approach. The two methods show
no significant difference (p > 0.05) between correspondent
F1-score and MAE values in the whole SNR range (with a
single exception, Fig. 2). Fig. 2 seems to indicate that DT
reported a lower MAE value for onset detection for many
SNR values. However, the statistical analysis shows that the
possible differences between MAE values provided by DT
and CWT are not significant (p> 0.05), except for one single
SNR value. Otherwise, average bias values are lower for
CWT prediction, even if not statistically (p > 0.05, Table 1).
For offset detection, the proposed CWT algorithm seems
to work better than DT for the lowest SNR values, while
the trend seems to invert for higher SNR values. Also, the
possible differences are not significant (p> 0.05), except for
one single SNRvalue. Thus, the concomitance of these results
allows asserting that the capability of the two algorithms in
detecting onset/offset events in simulated sEMG signals is
comparable. Moreover, it is worth reminding that the analysis
of the algorithm performances in time domain is achieved not
to demonstrate that the proposed algorithm is able to outper-
form the other approaches in assessing onset and offset events
in time domain, but just to show that the CWT algorithm is
reliable in time domain since it can provide an assessment
of onset and offset events at least comparable with reference
algorithm reported in the literature [23], [27], [39], [46], [47].
The actual aim of the present study is, indeed, to propose
an algorithm able to provide further and new information,
that is, the frequency content of every single activation
detected in time domain, as highlighted in the following
section C .
All these findings contribute to conclude that proposed

approach is able to provide a reliable prediction of muscle
onset and offset events in a large dataset of simulated sEMG
signals, being minimally affected by large SNR variability
(3-30 dB).

B. REAL sEMG SIGNALS
The reliability of onset detection in real sEMG signals is
tested on Tenan’s database [18]. Detection of offset timing
is not computed, given that the ground-truth offset is not
available. The choice of this dataset has been driven by the
following considerations: it is a large and complete sEMG
dataset available for free; it includes a reliable ground truth
for onset detection, which is already used and tested in previ-
ous studies [19], [44], [47]; the peculiarities of knee extension
and elbow flexion allow a simple and accurate visual detec-
tion of the muscle onset and, consequently, reliable identifi-
cation of the ground truth; results of the application to this

dataset of four onset-detection techniques and two filters are
available for a direct comparison [44]. A recent and exciting
study proposes an onset and offset detection algorithm for
muscle activation validated during hand-close movement of
10 subjects [27]. It is worth noticing that the outcomes of the
present study are at least comparable, in terms of MAE ±
SD, with those reported in [27], although the algorithm is
tested on a different dataset and in a different experimen-
tal condition. These results further support the reliability
of the present algorithm in detecting muscle onset in time
domain.

On the selected dataset composed by the 52 signals with
SNR ≤ 8 dB, the proposed algorithm globally outperforms
each one of the approaches employed in [44], achieving the
lowest onset-detection absolute error, in terms of all error
parameters (mean, SD, median, 25th percentile, and 75th
percentile; bold red characters in Table 5 ). This encouraging
outcome is associated to a perfect detection accuracy of the
proposed algorithm (precision= recall= F1-score= 100%).
With the aim of a more detailed comparison, the SNR range is
split in further four subsets. The proposed approach provides
the lowest absolute error values also in these SNR-dependent
subsets, as highlighted with bold black characters in Table 5
(with a single exception for SD when SNR ≤ 2 dB). These
results are also confirmed when the four onset-detection ref-
erence algorithms are combined with the advanced filtering
technique ETKEO (Table 5 ).

The effect of different SNR values is evaluated by com-
paring the detection performances obtained by the pro-
posed algorithm in signals characterized by low SNR values
(SNR≤ 8 dB) vs. signals with high SNR value (8 dB< SNR
≤ 16 dB). The absence of significant differences (p > 0.05)
between the two subsets strongly supports the algorithm’s
robustness to SNR between-signal variability suggested by
the analysis of simulated signals. Moreover, to handle the
expected within-signal variability of SNR values, the pro-
posed approach adopts a windowing procedure, splitting the
sEMG signal in 2000-sample segments where SNR value is
supposed to remain constant. Thus, the main procedure of
the algorithm (denoising, estimation of scalogram function,
removal of the portion of the signal < 1% of the peak value
of energy density) is applied in an adaptative way to each
one of the 2000-sample windows, for both real and simulated
signals. Since each signal is split into 2000-sample segments,
the denoising, the scalogram function, and the peak value of
energy density are computed for each segment (i.e., every
2000 samples). This means that the threshold adopted for
computing onset and offset timing (1% of the peak value of
energy density) is not a fixed value, but it changes from signal
to signal and from segment to segment within the same signal,
adapting to the peculiar characteristics of the sEMG signal in
that specific segment of the signal.

sEMG signals are split into 2000-sample segments for
three main reasons: 1) for considering sEMG-signal seg-
ments of the same (comparable) duration in the three datasets
adopted in the present study (2000 samples for simulated

9802 VOLUME 10, 2022



F. D. Nardo et al.: Wavelet-Based Assessment of Muscle-Activation Frequency Range by EMG Analysis

signal, 2000-2100 samples for a signal during walking,
and thus 2000 samples also for signals coming from
Tenan’s dataset); 2) for implementing an adaptative approach,
as stressed above; 3) because SNR value is supposed to
remain constant in such a small segment.

C. FREQUENCY ANALYSIS
Walking is one of the most suitable motor tasks to get insights
into human motion. Thus, the capability of the proposed
algorithm to characterize muscular activity in time-frequency
domain is assessed in a dataset of sEMG data collected from
GL and VL during 30-healthy-adult walking.

As reported in Fig. 5 (upper panel), three main activations
are identified for GL. Mean activation intervals depicted
in Fig. 5 match what reported in reference [58] and more
recent [59] literature. In particular, the activation starting
after the end of the heel rocker and finishing at the heel
off is the main GL activity (GL2), interpreted as the active
participation of GL in restraining the forward progression of
the tibia over the talus during the second rocker, hence con-
trolling dorsiflexion [58]. The other two activations (GL1 and
GL3) occur less frequently for control purposes, as discussed
in [59]. Four main activations are detected for VL during GC
(Fig. 5, lower panel). The two activations at the beginning
(VL1) and the end (VL4) of GC are acknowledged as the
typical vastii recruitment to generate tension in the terminal
swing in preparation for weight-bearing at initial contact and
to control knee flexion during weight acceptance [58]. The
other two activations highlighted in Fig. 5 are consistent with
what reported in [60]: the first one (VL2) is likely adopted
to stabilize the patella before the pre-swing phase, and the
second one (very sporadic, VL3) is connected to the activity
of vastii at the end of GC.

As shown in previous chapters, the performance of the
proposed CWT method in time domain is tested against the
double threshold (DT) algorithm [23] in the same dataset of
simulated sEMG signals. Then, CWT method is also tested
against four reference algorithms, the same DT used for
simulated data, WLT, CUSUM, and PROLIFIC [23], [39],
[46], [47] in the same dataset of real sEMG signals avail-
able in the literature [18]. Besides the promising outcomes
achieved in time domain, the present algorithm’s actual novel
contribution consists of providing a characterization of the
frequency content of each single muscle activation detected
in time domain. To our knowledge, this is achieved here for
the first time (Fig. 6). Thus, a direct comparison with other
approaches is not possible. However, some exciting consider-
ations could be made. As expected, every activation presents
a frequency content consistent with the typical frequency
spectrum of the sEMG signal (10-500 Hz) [61], supporting
the robustness of the proposed approach.

Furthermore, the large variability of the frequency range
is detected within the muscle and between muscles. In par-
ticular, the frequency range associated with the GL3 group
seems to be reduced compared to the other activation groups
(Fig. 6). In the same way, the frequency range associated

with the VL2 group decreases compared to VL1 and VL4.
A further difference between muscles is evident. The reduc-
tion of the frequency range is detected mainly in groups of
activations located in the late swing for GL (GL3); differently,
the decrease of VL frequency range is in mid-stance (VL2).
A possible explanation of these phenomena could lie in the
different functional tasks of each activation related to muscle
recruitment during GC. Although quantitative analysis of
the frequency content associated with different activations is
beyond the goal of the present study, these findings raise a
new issue that deserves to be investigated. Novel and specific
tools, like the one proposed here, could be beneficial to this
aim.

V. CONCLUSION
The high accuracy of outcomes and the successful validation
performed with a direct comparison against acknowledged
detection algorithms endorse the reliability of continuous
wavelet transform and, expressly, of the proposed algo-
rithm in detectingmuscular recruitment in the time-frequency
domain. The involvement of both simulated data and real
sEMG signals (from two different motor tasks: elbow flex-
ion and knee extension) supports the general validity of the
present findings.

The novel contribution of the current approach is the quan-
tification not only of the onset-offset timing but mainly the
frequency content of each one of the activations detected
in the time domain. Moreover, the low sensitivity to
between-subject and within-signal SNR variability makes
this approach suitable for all experimental conditions. Lim-
ited values of detection error make the current approach
compatible with the timing of sEMG-driven assistive devices.
However, further developments should focus on evaluat-
ing the suitability of the present approach for on-field
applications.
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