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Abstract

In the evolving field of acoustic engineering, the subjective assessment of sound
quality plays a pivotal role. Traditional methodologies predominantly rely on direct
feedback from human jurors, a process often challenged by its subjective nature and
potential for inconsistency. This thesis introduces an innovative approach to augment
sound quality jury testing by integrating physiological and biometric measurements,
specifically focusing on electroencephalography (EEG) and facial expression analysis.
By measuring these responses simultaneously with the jurors’ sound quality assess-
ments, this research aims to provide a more objective, reliable, and nuanced under-
standing of human auditory perception.

To substantiate this approach, the thesis conducts two preliminary tests and two
jury tests. The preliminary tests involved 16 and 40 participants, respectively, who
were exposed to various audio and audio-visual stimuli. Their facial expressions were
recorded to examine the emotional impact of these stimuli, highlighting the efficacy of
using facial expression analysis to predict emotions elicited by acoustic inputs. The tests
also demonstrated that visual components alongside audio stimuli can enhance emo-
tional response. For analyzing facial expression, a key aspect of this research involved
utilizing a computer vision-based software tool and a Convolutional Neural Network for
assessing the level of attention in participants. Eventually, results showed that facial
expression analysis is able to play an important role in jury testing, mainly in assessing
the level of jurors’ involvement, thus identifying more reliable responses among other
responses provided by jurors.

In the EEG-focused jury test, forty-three participants were involved, with EEG sig-
nals recorded using wearable sensors. The analysis of power spectral densities (PSDs)
was pivotal in identifying features correlated with acoustic sensations induced by the
stimuli. The tests revealed statistically significant differences in responses to different
audio stimuli. These findings underscore the potential of integrating wearable EEG
sensors in jury test assessments, offering a novel perspective on how physiological mea-
surements can enhance the reliability and depth of sound quality evaluations.

Subsequently, this thesis demonstrates that the integration of physiological and
biometric measurements—specifically EEG and facial expression analysis—into sound
quality jury testing can somehow enrich the assessment process. These methods pro-

vide a more objective basis for understanding auditory perception, offering promising
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avenues for future research in acoustic engineering and related fields.



Sommario

Nel campo in evoluzione dell’ingegneria acustica, la valutazione soggettiva della
qualita del suono gioca un ruolo fondamentale. Le metodologie tradizionali si basa-
no prevalentemente sul feedback diretto di giurati umani, un processo spesso messo
in discussione dalla sua natura soggettiva e dal potenziale di incoerenza. Questa te-
si introduce un approccio innovativo per incrementare l'affidabilita dei jury test per
la valutazione soggettiva della qualita del suono integrando misure fisiologiche e bio-
metriche, in particolare concentrandosi sull’elettroencefalografia (EEG) e sull’analisi
dell’espressione facciale. Misurando queste risposte contemporaneamente alle valuta-
zioni dei giurati sulla qualita del suono, questa ricerca mira a fornire una comprensione
piu oggettiva, affidabile e sfumata della percezione uditiva umana.

Per corroborare questo approccio, la tesi conduce due test preliminari e due jury
test acustici. I test preliminari hanno coinvolto rispettivamente 16 e 40 partecipanti,
che sono stati esposti a diversi stimoli audio e audiovisivi. Le loro espressioni facciali
sono state registrate per esaminare 'impatto emotivo di questi stimoli, evidenziando
I'efficacia dell’uso dell’analisi delle espressioni facciali per prevedere le emozioni su-
scitate dagli input acustici. I test hanno anche dimostrato che la risposta emotiva &
piu evidente quando gli stimoli audio sono accompagnati da componenti visive. Per
I’analisi dell’espressione facciale, un aspetto fondamentale di questa ricerca ¢ stato 1'u-
tilizzo di uno strumento software basato sulla computer vision e di una rete neurale
convoluzionale per valutare il livello di attenzione dei partecipanti. Alla fine, i risultati
hanno dimostrato che ’analisi dell’espressione facciale e in grado di svolgere un ruolo
importante nei jury test, soprattutto nel valutare il livello di coinvolgimento dei giurati,
identificando cosi risposte piu affidabili tra le quelle fornite dai giurati.

Nei jury test acustici condotti in simultanea con I'acquisizione della risposta filo-
logica dei giurati (mediante EEG) sono state coinvolte 43 persone, i cui segnali EEG
sono stati registrati con sensori indossabili. L’analisi delle densita spettrali di potenza
(PSD) ¢ stata fondamentale per identificare le caratteristiche correlate alle sensazioni
acustiche indotte dagli stimoli. I test hanno rivelato differenze statisticamente signifi-
cative nelle risposte ai diversi stimoli audio. Questi risultati sottolineano il potenziale
dell’integrazione di sensori EEG indossabili nelle valutazioni dei jury test, offrendo una
prospettiva nuova su come le misurazioni fisiologiche possano migliorare ’affidabilita e

I’accuratezza delle valutazioni della qualita del suono.
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Di conseguenza, questa tesi dimostra che I'integrazione di misure fisiologiche e bio-
metriche - in particolare TEEG e 'analisi delle espressioni facciali - nei jury test per
la valutazione della qualita del suono puo in qualche modo arricchire il processo di
valutazione. Questi metodi forniscono una base piu oggettiva per la comprensione del-
la percezione uditiva, offrendo strade promettenti per la ricerca futura nell’ingegneria

acustica e nei campi correlati.
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Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 The Impact of Auditory Experience in Product Design

The auditory experience in product design is a crucial element that goes beyond
the simple reaction to sound. It is an intricate process where the sound produced by a
product influences the users’ perceptions and feelings. Users often associate the sound
of a product with characteristics like reliability and high quality. This association
affects users’ emotions, the relationship they build with the product, and their decision
to purchase it[7].

Every sound a product makes interacts with the users’ senses, creating an environ-
ment that influences their perception and experience. These sounds are linked with
different attributes of the product, affecting how users view its value and effectiveness.
For example, a smooth and quiet engine sound in a car can make the car seem more
luxurious and well-designed. In today’s market, customers pay close attention to the
sound quality of a product, along with its functionality and performance. The noise
level and quality of a product are important factors that help shape the brand image
and customer loyalty. For example, products like cars, household appliances, and ar-
chitectural spaces are often designed with a focus on creating pleasing and effective
sounds [8].

Sound design is integrated into various products to enhance their appeal and per-
formance. It is used in cars to improve the driving experience, in household appliances
to make them seem more efficient, and in architectural spaces to create a better en-
vironment. In conclusion, sound design plays a vital role in product design, affecting

user satisfaction, brand image, and the overall success of a product in the market [9].

1.1.2 Introduction to Sound Quality Metrics

Sound quality assessment is a multifaceted field that is classified primarily into two

distinct types of metrics: subjective and objective. Subjective metrics which commonly
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will be performed by jury testing are related to the personal, human experience of
sound, which encompasses the perceptions, preferences, and responses of listeners in
various acoustic scenarios. Figure 1.2 represents a view of performing subjective sound
quality metrics. Objective metrics, which are schematically shown in Figure 1.1, on
the other hand, entail the quantification of sound quality using precise, measurable
parameters that can be systematically analyzed and replicated. These metrics facilitate
the consistent assessment of sound quality across different environments and systems
[10].

This section explores the three primary categories of objective sound quality metrics:

modulation-based, strength-based, and spectral-based metrics.

Modulation-Based Metrics

Modulation encompasses the temporal variations in a sound signal. Modulation
metrics evaluate how the fluctuations of a sound signal influence the listener’s percep-
tion. Fluctuation strength and roughness are two well-known examples of modulation-

based metrics [11].

Strength-Based Metrics

The strength of a sound relates to its power or energy, typically measured in decibels

(dB). Strength-based metrics relate to the perceived power [12].

e Loudness: A psychoacoustic metric reflecting the perceived strength of a sound.

e Sound Pressure Level (SPL): While SPL is a physical measure, it correlates
with perceived loudness, with A-weighting providing a more accurate representa-

tion of perception.

e Dynamic Range: The ratio between the softest and loudest parts of a sound,

with a wide dynamic range often associated with high fidelity.

Spectral Content-Based Metrics

The spectral content of a sound determines its timbre. Metrics in this category
analyze frequency distribution and energy to assess quality. Tonality, sharpness, and

Signal-to-Noise Ratio are some examples of spectral content-based metrics [13].
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Spectral content

Figure 1.1: An overview of objective sound quality metrics categorized into modulation,
strength, and spectral content [1].

Figure 1.2: Subjective sound quality metrics (performing jury testing).

1.1.3 Jury Testing in Product Sound Quality Assessment

Jury testing is a pivotal methodology employed in the realm of product develop-
ment, focusing predominantly on evaluating the perceived quality of sounds emanated
by various products. It involves a systematic approach where a selected group of in-
dividuals, referred to as jurors, participate actively in assessing and rating the sound
quality of a product under multiple operational scenarios. These jurors play a cru-
cial role by providing invaluable feedback, reflecting potential customer reactions and
perceptions towards the auditory aspects of new products][1].

The fundamental objective of jury testing lies in garnering insights into how a col-
lective group of users perceive and evaluate the sounds produced by a product. The
sound samples utilized in these experiments are meticulously recorded to capture the

product’s auditory performance under a diverse array of operating conditions. Jurors
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are then exposed to these sounds, and their opinions and ratings are solicited through
a series of structured questions. Their feedback establishes a nuanced understanding
of the correlation between the sound attributes of a product and its perceived quality.
In ensuring the applicability of the jury testing process, a statistically representative
sample of jurors is selected, often embodying the characteristics of potential future cus-
tomers. Through this strategic selection process, the obtained results are rendered more
authentic and reflective of genuine customer perceptions and preferences. The jurors’
responses and ratings serve as a critical feedback mechanism, facilitating informed mod-

ifications and enhancements in the sound design of the investigated products[14][15].

Jury testing is a pivotal experimental activity in the development of new products,
focusing explicitly on evaluating the perceived quality of sounds emanating from the
products. This methodology involves conducting a series of tests where a group of
individuals, referred to as jurors, are asked specific questions about a product’s sound
quality. The essence of jury testing lies in understanding and analyzing how a collective
group of users perceive, interpret, and rate the auditory aspects of a product. These
evaluations subsequently serve as crucial feedback, instrumental in guiding the future

modifications and enhancements of the investigated products [16].

In a typical jury test, sounds emanating from a product under various operational
conditions are recorded and presented to a group of jurors. These jurors are gener-
ally selected based on their representation of the potential future customer base of the
product. Jurors are exposed to each sound or group of sounds, followed by a series
of questions aimed at garnering their perceptions, feelings, and ratings of the sound
quality. These interactions establish a profound relationship between the sound ema-
nations and the perceived quality of the product in question, providing a rich dataset

for further analysis and interpretation [17][18][19].

The questions which will be asked during the jury tests can span a wide spectrum,
ranging from the pleasantness or annoyance of the sounds, to more subtle inquiries such
as which sounds are perceived as more luxurious or robust. Central to the design of the
questions is their alignment with the overarching objectives of the test, ensuring that
they elicit responses that are both relevant and insightful. Responses garnered during
jury tests are inherently subjective, rooted in the personal opinions and perceptions of
the jurors. Thus, there are no correct or incorrect answers, allowing for a diversity of
opinions and perceptions to be captured and analyzed. Post-testing, the responsibility
resides with the test moderators to meticulously analyze the collected responses. A
comprehensive analysis often involves calculating average ratings, identifying prevalent
trends and patterns in jurors’ responses, and distilling these findings into actionable
insights. This meticulous approach to analysis ensures that the extracted insights are
both representative and robust, providing a solid foundation upon which future product

modifications and enhancements can be judiciously informed and implemented [20][21].
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1.1.4 Ensuring Accuracy and Reliability in Jury Tests

Ensuring accuracy and reliability in the results derived from jury tests is an aspect
of paramount importance. This has captivated significant attention within the scientific
acoustics community, driven by a necessity to affirm the objectivity of the subjective
outputs garnered from jury tests. A central challenge intrinsic to jury tests revolves
around ensuring that the measurements obtained are not only reliable and repeatable
but also encapsulated with a degree of objectivity that minimizes the subjective influ-
ences exerted by both the moderator and the jurors. Traditionally, increasing the size
of the participant pool has been viewed as the most effective method to achieve this.
However, this approach often encounters practical limitations. Expanding the size of
the jury entails significant efforts, particularly in terms of human resources, which is
a major constraint in conducting sound quality tests. The need for a large number of
participants can make the process resource-intensive and less feasible in many scenarios
[22].

As an alternative, the integration of physiological and biometrics measurements
alongside traditional jury testing presents a promising solution. This approach can
significantly enhance the reliability and repeatability of the tests. By leveraging phys-
iological data, it is possible to gain deeper insights into the participants’ responses to
sound stimuli without the need to substantially increase the number of jury members.

The use of physiological and biometrics measurements offers several advantages.
Primarily, it simplifies the testing process as it does not require additional human
resources in the form of extra participants. Moreover, this method can provide more
nuanced data that may not be explicitly captured through conventional jury testing
methods. The integration of these measurements can lead to more comprehensive and
reliable assessments of sound quality, making it a valuable tool in both research and

practical applications.

1.2 Research Objectives

The primary objective of this research is to enhance the reliability and predictive
accuracy of subjective sound quality jury testing results by incorporating biometric and
physiological parameters measurement. This study explores the feasibility of utilizing
Electroencephalogram (EEG) data and facial expression analysis as innovative tools to
refine the outcomes of the jury tests in assessing sound quality. as it is shown in Figure

1.3, specific objectives include:

e Investigating the correlation between EEG data and facial expression analysis
with the jurors’ subjective responses, aiming to establish a methodology that

allows for a more accurate prediction of subjective sound quality ratings.

e Assessing the level of involvement of jurors during the evaluation process by ana-
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lyzing their facial expressions. This assessment aims to determine the reliability
of jurors’ responses, enabling the extraction of more dependable data for a com-

prehensive understanding of subjective sound quality assessments.

In pursuing these objectives, this study tries to present a novel approach in the
subjective evaluation of sound quality, striving for more robust, reliable, and enriched
data to enhance the accuracy and integrity of sound quality jury testing methodolo-
gies. Through a series of meticulously conducted experiments, this research aims to
unveil significant insights into the potential of biometric and physiological parameters

as pivotal contributors to improving traditional sound quality evaluation practices.

A
v

Biometric and
Physiologica)
Parameters

O

Enhance the jury test results

EEG reading

Figure 1.3: An overview of the objectives of the thesis

1.3 Thesis Outline

This thesis is structured into six chapters, each focusing on a specific aspect of
the study on sound quality metrics and the integration of facial expression and EEG
measurements in jury testing.

This thesis is structured into six chapters, each focusing on a specific aspect of
the study on sound quality metrics and the integration of facial expression and EEG

measurements in jury testing.

Chapter 1: Introduction to Sound Quality Metrics This chapter introduces the
phenomena under investigation and discusses the importance of having reliable

metrics in subjective sound quality jury testing.

Chapter 2: Review of Related Research This chapter delves into previous research
related to sound quality assessment, providing a comprehensive background and

context for the study.
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Chapter 3: Methodology for Facial Expression Measurement in Jury Testing
Discusses the methodologies utilized to assess the integration of facial expression
measurement in jury testing, aimed at enhancing the accuracy and reliability of

the test results.

Chapter 4: Methodology for EEG Measurement in Jury Testing This chap-
ter outlines the methodologies used to assess the application of EEG measure-
ment in jury testing, focusing on improving the accuracy and reliability of the

outcomes.

Chapter 5: Results and Analysis Discusses the results of the experiments and anal-
ysis, presenting the findings from the application of facial expression and EEG

measurements in sound quality jury testing.

Chapter 6: Conclusion The final chapter concludes the discussions of the thesis,

summarizing the key insights and contributions of the study.






Chapter 2

Literature Review

In this chapter, we scrabble around in the existing body of knowledge surrounding
Acoustic Sound Quality Jury Testing and explore how emerging technologies, specifi-
cally EEG (Electroencephalography) and facial expression analysis can help the pro-
cessing step and the accuracy of results obtained. The synthesis of relevant literature
will serve as the foundation for understanding the current state of research, and after-

wards, identifying the potential gaps which will be presented in the last section.

2.1 Acoustic Assessment, and Jury Testing

Acoustic Sound Quality Jury Testing has been an essential method for evaluating
the perceived quality of audio and sound systems for a long time. Jurors, typically
comprising experts or individuals with relevant experience, are tasked with assessing
various acoustic properties. This subjective evaluation is crucial for product develop-
ment, as it reflects how end-users will experience sound. Accordingly, the domain of
sound quality assessment is taking considerable attention within the scientific acoustics
field. The work by Dedene et al. [23] stands as an example to this interest, where Dedene
et al. introduced a parametric model based on multiple regression techniques. Their
model tried to forecast the subjective sound quality assessments performed by jury
testing, using the objective sound quality metrics. moreover, Bergman et al. [24] argue
that auditory pleasantness is mainly governed by the perceived loudness of a sound,
whereas arousal is influenced predominantly by its perceived sharpness. Moreover, the
insertion of highly pleasant sounds can modulate the pleasantness of noise. In a similar
vein, Wang and Subic [25] embarked on an exploration of the sound quality associated
with vehicle side mirrors. They attempted to draw parallels between subjective assess-
ments and objective measurements, employing two distinct mathematical constructs.
Notably, they focused on several key acoustic quality indicators, such as sound pressure
level, roughness, and tonality, as the basis of their correlation algorithms.

Further advancing the field, Ma et al. [26] demonstrated the efficacy of Artificial

Neural Networks (ANNs) in the prediction of subjective sound quality metrics from

9
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objective ones. Their method stood out, particularly due to its average error rate of
just 3.97%, supplemented by an insightful weight analysis.

Complementing these approaches, Wang et al. [27] took the concept of roughness
in vehicle interior noise and refined it to better align with human auditory percep-
tion. Their proposed metric, the Human Auditory Perception-based Roughness Metric
(HAP-RM), showed promising results in deciphering both stationary and transient
sound signals.

Lastly, the study by Parizet et al. [28] studied the acoustics of car door closures.
They employed psychoacoustic metrics to determine sound quality and concluded that
two timbre-related attributes—the frequency balance and the cleanness of the sound
emerged as predominant factors in evaluating the auditory impact of this specific noise
event.

Critical explorations and advancements have been made in pursuit of bolstering the
reliability of jury tests. An exemplary manifestation of this is the work undertaken
by Kim et al. [29], who ingeniously employed a decision error model as a strategy to
enhance the accuracy and reliability of subjective acoustic evaluations within jury tests.
Their study, particularly focused on the acoustic evaluations of laser printers, unveiled
that there exists a negative correlation between the likelihood of decision error and the
normalized variations discerned in the perceived acoustic stimuli. By implementing the
decision error model, they were able to discern insights that are instrumental in deci-
phering and augmenting the reliability of jurors’ responses. Their findings underscore
the potential of such models to act as pivotal tools, aiding in the systematic identifica-
tion and reduction of decision errors, thereby fostering an environment where jury test
results are characterized by enhanced objectivity and dependability.

A novel approach that has gained traction is the application of virtual reality (VR).
The study by Robotham et al. [30] explored the realm of sound quality assessment
within VR platforms. It compares several evaluation methods, including conventional
jury testing, paired comparison tests, and rating scales, underlining the necessity to tai-
lor sound quality evaluation methods to the distinct attributes and challenges presented
by VR environments.

In addition to the innovative use of VR, the refinement of statistical analysis tech-
niques has markedly improved the reliability and uniformity of results derived from
jury testing. [31] underscored the critical role of proper sample size determination and
statistical modelling in minimizing variability, thereby bolstering the precision of jury
testing outcomes.

Another emerging trend is the integration of wearable devices and physiological
monitoring tools in the evaluation of sound quality. Such devices have the capability
to track real-time physiological and biometric data, including heart rate, skin conduc-
tance, and brain activity, offering a window into the physiological reactions of listeners
to auditory stimuli. Correlating these physiological responses with subjective assess-

ments allows researchers to explore more deeply the innate responses and physiological
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underpinnings related to sound quality perception [32]. These topics will be examined

in further detail in subsequent sections.

2.2 Facial Expression Analysis in Emotion Detection

An intriguing dimension to the evaluation of sound quality is the study of facial
expressions as they naturally respond to different auditory stimuli. Hu et al. [33] con-
ducted a seminal investigation into this phenomenon, where they exploited advanced
deep learning techniques for the nuanced analysis of facial expressions. Their findings
revealed a high degree of congruence between the emotions detected through facial
expression analysis and those reported by subjects via questionnaires. Remarkably, in
certain instances, the facial expression analysis proved even more effective than tradi-
tional questionnaires. In contrast, Huang et al. [34] took a more generative approach
by correlating specific facial expressions with noise annoyance thresholds. Engaging
in an extensive social survey involving over seven thousand participants in a Chinese
city, they captured the public’s noise perception through questionnaires while simul-
taneously measuring noise levels with an analyzer. Subsequently, using a free-form
deformation technique, they constructed facial expressions reflective of the annoyance
levels gleaned from the survey data. Hadinejad et al. [35] investigated the emotional
impact induced by a tourism advertisement. By recording the facial expressions of
individuals from different cultural backgrounds as they viewed the advertisement, and
using the FaceReader software for emotion recognition, they could pinpoint a range of
emotions, including seven distinct categories alongside valence and arousal, thus show-
casing the tool’s adeptness at real-time emotion detection. Moreover, the study by
Meng et al. [36] explores urban sound perception and its manifestation through facial
expressions. Subjects were exposed to a variety of typical urban sounds, including
traffic, natural, and community noises. The research juxtaposed findings from a sound
perception questionnaire against facial expression analysis, concluding that the latter
is a potent tool for investigating sound perception. It was observed that emotions such
as happiness, sadness, and surprise were indicative of the participants’ reactions to the
acoustic stimuli.

The investigation into the interplay between soundscapes and psychophysiological
responses has been furthered by the work of Park et al. [37]. Park et al. assessed the
influence of various soundscape stimuli on parameters such as heart rate, electrodermal
activity, respiratory rate, and facial electromyography. Their laboratory experiments,
which were carried out in both VR and non-VR settings, indicated that rural sound-
scapes facilitated better psychophysiological recovery compared to urban soundscapes.
Notably, while VR and non-VR conditions did not yield significant differences in over-
all recovery, certain physiological responses were notably affected under VR conditions.
Further contributing to the field, Ozseven [38] studied emotion recognition through the

processing of speech spectrogram images. By converting speeches into spectrograms
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and employing texture analysis methods, emotions were detected and their recognition
rates were benchmarked. Using support vector machines, they found that this approach
outperformed traditional acoustic analysis in recognizing emotions from speech. Liu
et al. [39] utilized FaceReader software to examine the emotional responses elicited
in elderly individuals with dementia when exposed to various sounds. Their findings
affirmed FaceReader’s capability to distinguish between emotional changes correspond-
ing to different auditory stimuli. It was noted that music, in particular, was a pow-
erful emotional trigger, outstripping other sounds such as birdsong and the sound of
a stream in its effect. Moreover, Frescura and Lee [40] probed into the emotional re-
sponses elicited by common residential noise sources, such as footsteps, speech, and
music, within wooden buildings. The study combined the Self-Assessment Manikin
with physiological measurements, including facial electromyography of the corrugator
supercilii and zygomaticus major muscle groups, heart rate, and electrodermal activity.
Their results presented a noteworthy concordance between physiological responses and
self-reported emotion assessments.

A multitude of research has been undertaken to gauge the level of user engagement
elicited by soundtracks. This body of work advocates for the assessment of both the
pleasantness and the semantic associations of products, commencing with the work of
Zampini and Spence [41]. They found that sharper sounds can amplify the perceived
crispness of potato crisps, thereby enhancing enjoyment. Conversely, the coarse sounds
emitted by an epilator may induce fear. [42]. It is therefore imperative, especially
in Jury Testing contexts, to scrutinize the pleasantness and arousal associated with
products. These constructs not only help dissociate the test context from jurors’ pre-
conceived notions but also shed light on instances when jurors may become inattentive
during evaluations.

The PAD model (Pleasure, Arousal, Dominance), proposed by Russell and Mehra-
bian [43], delineates the experiential and communicative facets of affective attributes
related to objects, events, and people. Within this framework, pleasure represents the
degree of positive or negative valuation, similar to the hedonic tone engendered by one’s
state. Arousal reflects the intensity and stimulatory impact of an emotion, denoting the
level of activity and responsiveness within a given context. Bergman et al. [24] further
explicate the interrelation between pleasantness and arousal with respect to auditory
experiences. Research by Generosi et al. [44] extends this understanding by implement-
ing facial expression analysis to decipher emotional responses. This approach utilizes
an emotion and valence model, with valence representing the inherent attractiveness
or averseness of a situation, as outwardly expressed by an individual. This is closely
related to the emotional state being conveyed, and engagement epitomizes a compos-
ite measure of discrete emotions, such as anger, disgust, fear, happiness, sadness, and
surprise, as characterized by Ekman [45]. It signals the degree of a person’s active par-
ticipation in a scenario. Accordingly, valence corresponds to the pleasure component

of the PAD model, and engagement parallels arousal.
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These findings underscore the significance of exploring the emotional bond in user-
product interactions. Notably, valence and engagement emerge as key constituents of
this interplay, with observational techniques like facial expression recognition serving

as viable methods for the examination [44].

The quest to encapsulate human emotions in an objective and quantifiable form has
long fascinated the scientific community. Researchers have explored methods for clas-
sifying and categorizing human emotions based on discernible external signals. These
signals, which include facial expressions, vocal intonations, and various physiological
indicators, are the mediums through which humans, often subconsciously, communicate
their emotional states [46]. At the forefront of this research stands Paul Ekman, whose
seminal work in 1971 laid the groundwork for the modern understanding of emotions.
Ekman postulated that there exists a finite set of fundamental emotions, each asso-
ciated with a unique and universally recognized facial expression. This concept was
encapsulated in what is now referred to as ”Ekman’s Universal Facial Expressions”.
The emotions identified by Ekman—anger, disgust, fear, happiness, sadness, and sur-
prise—are expressed similarly around the globe, emphasizing the universal nature of

these emotional experiences [45].

Facial Expression Recognition (FER) systems have become a cornerstone in in-
terpreting human emotions, with a profound impact on the development of human-
computer interaction technologies. The utilization of deep learning methods, particu-
larly Convolutional Neural Networks (CNNs), has been extensively documented in the
literature, illustrating their capacity to process and analyze complex visual data with
remarkable accuracy [47]. CNNs have shown exceptional efficacy in classifying the six
fundamental emotions identified by Ekman — happiness, surprise, sadness, anger, dis-
gust, and fear [46]. Recent studies have explored the recognition of emotions even under
the constraints of personal protective equipment, demonstrating the versatility of FER
systems [48]. Moreover, the application of neural networks extends beyond emotion
recognition to the prediction of psychological states such as depression, anxiety, and
stress by analyzing facial expressions through the Facial Action Coding System (FACS),
offering a nonintrusive and real-time solution for mental health monitoring [49]. The
continuous refinement of CNN architectures has led to broader applications, enhancing
user experience in human-computer interaction, providing valuable customer feedback,
aiding in elderly care, and reinforcing law enforcement in smart cities [50]. These ad-
vancements underscore the shift towards noninvasive emotion recognition technologies.
Unlike biofeedback tools like EEG, ECG, or GSR, which, despite their accuracy, de-
mand extensive setup time, intrusive attachment to the body, and costly equipment,
camera-based systems provide a more practical and user-friendly alternative for real-

world implementations [51, 52].
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2.3 EEG as a Tool in Acoustic Evaluation

The pursuit of enhancing sound quality jury testing is a multifaceted challenge
that encapsulates the reliability, accuracy, and repeatability of subjective evaluations.
The inherent complexity of sound quality necessitates a comprehensive approach that
balances human perception with technical rigour [53, 1]. In response to these challenges,
there has been a concerted effort within the research community to refine and advance
the methodologies used in jury testing.

Further progress in this domain has been marked by the development of stan-
dardized test protocols, utilizing objective sound quality metrics, statistical tools, and
virtual reality to enhance the reliability of jury testing outcomes [54, 55, 56]. As an
example, Zhang et al. [57] have showcased the pivotal role of careful sample size de-
termination and robust statistical modelling. These statistical approaches are crucial
in mitigating variability and improving the precision of jury test outcomes, thereby
enhancing sound quality metrics. Moreover, the advent of wearable technology and
physiological monitoring tools marks a significant leap forward in jury test methodolo-
gies. These devices are capable of monitoring and recording real-time biometric data
such as heart rate, skin conductance, and brainwave patterns. Such physiological data
are invaluable as they offer an objective glimpse into the listener’s immediate response
to auditory stimuli. When these physiological markers are analyzed in tandem with
subjective evaluations, a richer and more detailed picture of sound quality perception
emerges. This correlation not only sheds light on the listener’s sensory experience but
also on the complex interplay between sound and its physiological impact. The integra-
tion of these wearable devices in jury testing assessment presents a unique opportunity
to bridge the gap between subjective auditory perception and its objective physiological
underpinnings, potentially augmenting the reliability and accuracy of the sound quality
assessment process [58].

The use of EEG has become increasingly prevalent within the field of acoustic per-
ception, particularly due to its capability to track and record the brain’s physiological
response to auditory stimuli in real time. The brain’s electrical activity is known to fluc-
tuate in response to the perception and cognitive processing of environmental sounds.
EEG technology captures these fluctuations by measuring the voltage changes gener-
ated by ionic currents flowing within the brain’s neurons [59]. The EEG sensors, placed
on the scalp following the internationally recognized 10-20 system, detect a spectrum
of brainwave frequencies, each associated with different states of consciousness [60].
Budak et al. [61] explored the novel application of EEG by focusing on the detection of
driver drowsiness. By processing EEG signals, they were able to differentiate between
states of wakefulness and drowsiness in drivers. Their approach involved comparing
EEG data from these two states and developing a model to assess drowsiness levels
effectively. This study highlights the potential of EEG in enhancing road safety by

monitoring drivers’ alertness levels. In another intriguing exploration, Zuk et al. [62]
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ventured into the classification of natural sounds using EEG signal processing. Their
study revealed unique EEG patterns associated with speech and music, demonstrat-
ing the distinct brain responses elicited by different types of auditory stimuli. This
research underscores the versatility of EEG in distinguishing between various acoustic
experiences.

The exploration of human brain physiology in response to external stimuli, partic-
ularly visual and acoustic, has yielded profound insights into the simultaneous occur-
rence of brain activities and external stimulations [63, 64]. Trimmel’s work [65] has
highlighted that exposure to noise can significantly alter the central nervous system’s
activity. The extent of this impact varies depending on the type of sound and its Sound
Pressure Level (SPL). This finding underscores the intricate relationship between au-
ditory stimuli and the physiological responses they evoke.

Further investigations into EEG power spectral densities (PSDs) have revealed a
direct correlation with individual acoustic perceptions. Among these, some studies
explored the interplay between emotional states and EEG responses elicited by acoustic
stimuli. Notably, the research conducted by Schmidt and Trainor [66] presented a
fascinating observation. Their study involved playing musical excerpts characterized
as happy or sad and examining the resultant EEG activity. They discovered a decrease
in alpha power at the left frontal electrodes during exposure to happy music, while sad
music was linked to a more pronounced decrease in alpha power at the right frontal
leads. Kabuto et al. [67] expanded on this by analyzing the changes in PSDs induced
by pleasant music. They found that alpha power is heightened in states described as
"pleasant” and ”"calm,” suggesting a strong association between increased alpha power
and a state of relaxation.

Moreover, Lee et al. [68] studied the relationship between subjective sound quality
ratings and EEG responses. In addition to establishing a correlation between subjec-
tive ratings and sound metrics, they discovered a significant association between these
ratings and the brain’s EEG responses. This finding is particularly significant as it
bridges the gap between subjective auditory perceptions and objective physiological
measures, offering a comprehensive approach to understanding and evaluating sound
quality.

Additionally, Walker [69] reported findings that establish a connection between
self-reported inattentiveness to music and the production of high theta- and high delta-
waves. This correlation provides an intriguing insight into how the brain’s electrical
activity can reflect varying levels of engagement with auditory stimuli, even in the
absence of conscious attention.

These studies collectively contribute to a more nuanced understanding of how EEG
can serve as a potent tool for assessing the impact of sound on human brain activity
and emotional states. This intersection of acoustic stimuli and EEG responses offers
invaluable perspectives for advancing sound quality metrics and enhancing auditory

experiences.
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2.4 Research Gaps

In the previously mentioned research on enhancing sound quality through jury test-
ing, an important aspect that has often been overlooked is the degree of involvement
of the jurors. Considering the level of engagement of jurors is crucial because it allows
a more accurate assessment of the reliability of the answers provided by the jurors. By
giving more weight to the responses provided by highly involved jurors and discounting
or excluding responses from distracted jurors, the overall quality of the evaluation can
be improved.

Furthermore, the existing research on sound quality assessments has not explored
the potential of utilizing physiological and biometric measurements as a valuable tool
for predicting the outcomes of subjective sound quality jury testing and assisting the
moderators to get an insight into the level of involvement of the jurors during the
sound quality assessment. These supplementary measurements can provide additional
insights into individuals’ emotional and perceptual responses to sound stimuli that
can be correlated to human preference and perception, rather than potentially biased
surveys-only data sources coming from traditional jury testing processes. For example,
by incorporating EEG measurement alongside the conventional jury testing approach,
a complementary and corroborative assessment of sound quality can be achieved. This
integration of prediction results derived from EEG and facial expression analysis with
the outcomes of jury testing can offer a dual assurance mechanism, strengthening the
reliability and validity of the overall evaluation process.

Considering the degree of juror involvement and integrating physiological and bio-
metric measurements into subjective sound quality assessments, allows us to enhance
the accuracy and robustness of jury testing evaluations. This approach provides a
more comprehensive understanding of individuals’ subjective experiences and prefer-
ences regarding sound quality, leading to more reliable and informed decisions in various

audio-related applications and industries.



Chapter 3

Jury Test Combined with Facial

Expression Measurement

In this Chapter, we aim to explore the practicality of including assessments of
facial expressions to ensure consistent jurors’ feedback. The underlying idea here is
that by adding facial expression recognition, we might reduce the personal opinions
that can vary among jurors and lessen the need for intervention by a moderator. This
study focused on examining the various sounds in car noise, recorded under different
conditions for research purposes. Using facial expression recognition methods could
help counteract biases and personal opinions in evaluations, since facial expressions are
often natural and automatic. This approach evaluates the possibility of having a more
objective measure of jurors’ emotional responses. Also, it’s important to consider the

context in which the responses are given [58][70].

This chapter of the thesis is dedicated to evaluating the feasibility of incorporating
facial expression analysis into sound quality jury testing. To thoroughly examine this

integration, two preliminary tests were conducted prior to the main jury test campaign.

The following sections will delve into the specifics of these preliminary tests, outlin-
ing their design, execution, and the rationale behind them. These tests were crucial
in establishing a foundational understanding of how facial expressions correlate with

auditory stimuli in the context of sound quality evaluation.

Additionally, a comprehensive discussion on the jury test campaign, which combined
traditional sound quality assessment with facial expression analysis, will be presented.
This campaign was instrumental in exploring the potential synergies and insights gained

from this multidimensional approach.
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3.1 Theoretical Framework: Emotion and Facial Expres-

sion

Facial expression analysis merges the disciplines of psychology, biometry, and com-
puter science. The core principle of facial expression analysis lies in the interpretation
of physical manifestations of emotions on the face. This involves identifying specific
muscle movements and categorizing them into recognizable emotions. Historically, the
study of facial expressions as a means of conveying emotions dates back to Charles Dar-
win, who first suggested their evolutionary importance. This field gained substantial
traction with Paul Ekman’s pioneering research, which identified universal emotions
expressed through distinct facial expressions [71, 45].

To assess emotion factors, one of the most promising approaches in this domain in-
volves the utilization of Deep Learning-driven software, specifically leveraging models
designed for recognizing facial expressions. While techniques demanding direct user in-
put tend to introduce significant subjectivity and bias, the analysis of facial parameters
offers an objective avenue for rating the degree of user appreciation.

In the context of this research, a tool founded on a Convolutional Neural Network
(CNN), developed using the Python programming language and harnessed through the
Keras and TensorFlow frameworks, has been employed [72]. The primary function
of this CNN is to perform the recognition of Ekman’s six universal emotions—namely,
happiness, surprise, sadness, anger, fear, and disgust—using facial images as input. The
output generated by the network consists of a percentage-based probability assigned to
each of these emotions.

Ekman’s emotion scores, predicted from every camera video frame, are normalized
to a percentage value of 100. Valence can then be calculated at each moment by
distinguishing between positive and negative emotions according to Ekman. Positive
emotions are generally associated with expressions like happiness, joy, contentment,
and love, which tend to be characterized by features such as smiling, bright eyes, and
a relaxed facial posture. On the other hand, negative emotions include sadness, anger,
fear, and disgust, often reflected in facial expressions through frowning, furrowed brows,
narrowed eyes, and tense mouth. As a result, valence ranges from -100 to 100, indicating
the total positivity or negativity expressed by the participants [73].

To enhance the dependability of the assessment regarding valence and engagement,
a facial expression recognition system has been integrated with software capable of
discerning the user’s attentiveness during the evaluation. This system combines several
parameters, including the degree of head rotation in relation to the camera (positioned
on top of the screen), the direction of gaze, and the proportion of eyelid aperture. The
underlying assumption is that instances where the test subject displays inattentiveness
might lead to less reliable emotional data derived from the facial expression recognition
CNN. This could be attributed to emotions expressed through facial expressions that

may have been triggered by events or memories unrelated to the ongoing evaluation
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[74]. In order to gauge the level of attention, the third-party library Dlib has been
exploited. This library facilitates the extraction of a comprehensive mapping of the
user’s facial features, enabling a comprehensive assessment of their attention status [2].

In particular, the distances between six couples of points (i.e, 17-31, 1-31, 13-55,
5-49, 17-27, 1-18 have been considered to estimate the head orientation with respect
to the screen figure 3.1. In fact, based on the usual symmetric characteristic of a face,
such distances should remain constant between the left and right sides. Consequently,
the division ratio between the distances constructed in the left part of the face and
those in the right part should remain in the neighborhood of 1. If the calculated ratio
remains in such a neighborhood the user is considered to be attentive. The more the
ratio is far from the desired value the lower the user attention level will be. Also in
this case a threshold is defined; if the user’s attention level is below that threshold the

user is considered to be distracted [75].
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Figure 3.1: DIlib facial landmarks used for attention evaluation [2]

3.2 Device Specifications

The measurement campaigns employed a variety of tools and software to facilitate

the collection, management, and analysis of data.

Face Recording Setup: For capturing video streams, the Windows Camera app
was utilized, storing the footage taken by a Logitech HD C925E webcam connected
to a PC. This setup ensured high-quality video capture, essential for accurate analysis

(refer to Figure 3.2a).

Audio/Video Stimuli Management: A software developed in Matlab played a

crucial role in managing and casting the audio/video stimuli. It also handled the



20 3. Jury Test Combined with Facial Expression Measurement

synchronization of these stimuli with the recording software, ensuring precise timing

across all data streams.

Video Analysis Software: The analysis of the recorded videos was conducted us-
ing software developed in Python, as described in paragraph 3. This software was

instrumental in processing the video data to extract meaningful insights.

Data management and Formatting: The outputs from the video analysis, includ-
ing the probability percentages associated with each frame for Ekman’s emotions, along
with timestamps and attention values (boolean true/false), were stored in CSV format.

This format facilitated easy access and manipulation of the data for further analysis.

Computational Resources: The image processing tasks were executed on a desk-
top PC equipped with an Intel i9 10900 CPU, Nvidia Quadro P2200 video card, and
128GB of RAM. This high-performance setup was critical for handling the intensive

computational demands of the image processing algorithms.

Display: To maximize the immersiveness of the subjects in the test, a ProjectionDe-
sign F10 AS3D ZOOM projector, laptop screen, and a 49-inch Samsung Odyssey G9
curved screen were used in order to display visual content, respectively, for the first
and second preliminary test and the jury test campaign. The high-quality displays
were chosen for thier ability to deliver clear and engaging visuals, thereby enhancing

the overall experience and effectiveness of the test.

Headphone: For the efficient playback of sounds to the participants during the test,
Reference studio headphones, specifically the AKG K702 model (Figure 3.2b), were
utilized. The AKG K702 headphones, belonging to the renowned AKG company, were
selected for their high-quality sound reproduction capabilities. These over-ear head-
phones are known for their comfort and sound fidelity, making them an ideal choice
for tests requiring precise and clear audio delivery. Key specifications of the AKG
K702 headphones that contributed to their selection include a rated impedance of 60
ohms and a sensitivity of 105 dB SPL/V @ 1 kHz. These technical features ensure
that the headphones provide accurate and consistent sound levels, which is crucial for

maintaining the integrity of the auditory stimuli presented to the participants.
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(a) (b)

Figure 3.2: (a): face recording by a Logitech HD C925E webcam. (b): AKG K702 headphone
to playback of sounds to the participants

3.3 Preliminary test 1: Stimulating Facial Expression by
Video/Sounds

The primary objective of this experiment was to investigate whether variation in au-
ditory and visual stimuli can influence the emotional reactions of participants detected
by facial expression analysis. To this end, a comprehensive test has been devised in

which participants are exposed to a variety of auditory and visual stimuli.

3.3.1 Participants’ Demographics

The experimentation took place at Universita Politecnica delle Marche, where the
test participants primarily consisted of diverse individuals, including students and pro-
fessionals from varying age groups associated with the university. Their involvement
encompassed exposure to a variety of acoustic and visual stimuli while a camera, po-
sitioned in front of their faces, captured their facial expressions. The participants
contained a total of 16 subjects. The gender distribution among the participants was
nearly equal, maintaining a balance between males and females. The average age of

subjects was 25 years.

3.3.2 Design and Procedure

The test was designed with the specific goal of assessing variations in facial expres-

sions in response to a range of video and sound stimuli.
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Environment Setup

For this test, a carefully designed environment was prepared to ensure that the

participants’ concentration was fully focused on the content presented.

The test environment was deliberately set up to be a dimly lit room, creating a
conducive atmosphere for focus and minimizing distractions. Ambient noise was sig-
nificantly reduced, which was crucial for the participants’ concentration. This was
achieved by providing the participants with headphones, which also served to isolate

them from any external noise.

To further enhance the participants’ focus and to create an enclosed environment, all
external stimuli and sources of potential distraction were eliminated. The environment
was designed to be as controlled and isolated as possible, ensuring that the participants’

concentration remained solely on the test.

Test Procedure

Upon arrival at the testing site, subjects underwent a process of acclimatization to

the environment and received comprehensive instructions regarding the test protocols.

The initial step involved acquainting each participant with the testing environment.
This was crucial for ensuring that subjects felt comfortable and at ease, which could

significantly influence their responses and the overall quality of the data collected.

Additionally, clear and detailed instructions regarding the test procedures were pro-
vided to all participants. This briefing was essential to ensure that the subjects under-
stood their roles and the test’s objectives. The importance of following the protocols

accurately was emphasized to maintain the integrity of the experiment.

Furthermore, an Informed Consent Form was presented to each participant. This
form contained all necessary information about the experiment, including its purpose,
potential risks, and benefits. Subjects were required to read and sign this form, con-
firming that they were participating voluntarily, fully informed, and aware of what their

involvement entailed.

Figure 3.3 illustrates the test environment, providing a visual representation of the
setting in which the subjects participated in the experiment.
Design of the Test

A carefully designed test was implemented in which participants were exposed to a

variety of auditory and video stimuli. The objective of this test was to elicit a range of
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emotions in the participants, corresponding to those identified in Ekman’s expressions
as described by the Facial Action Coding System (FACS) method.

The stimuli used in the test were categorized into three macro-categories to facilitate

a structured and comprehensive emotional response analysis. These categories were:

e Sound: This category, depicted in Figure 3.4a, consisted solely of auditory stim-
uli designed to evoke specific emotional responses based on their characteristics

and content.

e Sound with Video: Represented in Figure 3.4b, this category included stimuli
that combined both auditory and visual elements, providing a more immersive

experience to potentially elicit a broader range of emotional reactions.

e Validated Video: The third category, shown in Figure 3.4c, comprised of vali-
dated video stimuli, specifically selected for their proven effectiveness in evoking

certain emotional responses in line with Ekman’s expressions [76].

3.3.3 Sequence

The test is structured as follows: in the first phase (Figure 3.4a), three 30-second
samples of various noises are interspersed with identical 40-second soothing sounds of
a tranquil spring river. This is intended to restore the participants’ emotional state to

a neutral baseline.

The subsequent phase (Figure 3.4b) aims to compare the emotional responses evoked
by sound and video stimuli. The sequence from the initial phase (Figure 3.4a) is re-
peated, replacing the auditory stimuli with corresponding videos. This entails exposing
participants to videos of a blackboard, clapping, and mosquito noises interleaved with

the same relaxing video as before.

The final phase (Figure 3.4c¢) includes six different videos, each lasting 10 seconds,
with the relaxing 40-second video again interspersed between them. These videos are

selected from a validated dataset tailored to induce emotional responses [76].

To ensure an environment conducive to capturing participants’ attention and fo-
cusing it on the screen’s content, a purpose-designed setting has been arranged (Figure
3.3). This controlled setup features a dimly lit laboratory equipped with a large screen
projector. To minimize ambient noise, participants are provided with headphones.
Moreover, the environment is enclosed to eliminate external stimuli or potential sources

of distraction.
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Figure 3.4: Sequence of the first preliminary test. (a): sequence of audio, between [0 250]
seconds. (b): sequence of audio plus video, between [210 460] seconds. (c):
sequence of validated video, from 420 seconds until the end
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3.4 Preliminary Test 2: Emotion Response to Acoustic

Stimuli

This section provides a detailed overview of the test protocols conducted during
the campaign aimed at assessing variations in facial expressions in response to different
acoustic stimuli. A diverse group of participants, including students and professionals
from various age ranges, took part in the research. This study was conducted at the
Universita Politecnica delle Marche, with all participants having an affiliation with the
university, thus ensuring a wide-ranging demographic representation.

The study included a total of 40 subjects, with an almost equal distribution of males
and females, thereby maintaining gender balance. The average age of the participants
was calculated to be 30.8 years.

The central component of the test involved exposing participants to a blend of
acoustic and visual stimuli. A camera, strategically positioned in front of the partici-
pants, was tasked with capturing the nuances of their facial expressions in response to

these stimuli (refer to Figure 3.5).

3.4.1 Objective of the Test Campaign

The primary aim of this test campaign was to scrutinize how different acoustic
stimuli impact facial expression variations. To achieve this, participants were presented
with three distinct auditory stimuli, alongside a carefully crafted questionnaire. This
approach was designed to probe the correlation between auditory stimuli and facial

expression responses.

3.4.2 Test Sequence

As illustrated in Figure 3.6, the test sequence was structured in which participants
were subjected to three varied soundtracks, each representing different acoustic stim-
ulation. Specifically, three types of soundtracks were employed engine noise, relaxing
sound, and exterior car noise. The procedure involved a 60-second silent interval pre-
ceding each soundtrack to establish a consistent auditory baseline for the subjects.
Following the playback of each 60-second soundtrack, an answering session was con-
ducted where participants responded to a set of questions. This structure ensured a

controlled and uniform testing environment.

3.4.3 Acoustic Perception Feedback

After exposure to each sound, participants were asked a series of three questions.
These inquiries were crafted to evaluate the subjects’ perceptions of each sound in
terms of annoyance or pleasantness, relaxation or stress, and quietness or loudness. The

purpose of these questions was to gain insights into the subjective auditory experience
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of each participant, thereby linking acoustic stimuli with observed facial expressions.
The data obtained from these responses were integral in understanding the emotional

and psychological impact of different acoustic environments on individuals.

Figure 3.5: View of the performing the preliminary tests 2

Legend
A (1-3) Audios
Q (1-3) (Questionnaire)

Test explanation
(Informed
Consent)

Figure 3.6: Test Sequence for the second preliminary test

3.5 Experimental Study of Combining Facial Expression
with Traditional Jury Test

The subjective sound quality jury test campaign was conducted to investigate the
perception of various interior car sounds. The experiment utilized facial expression
analysis to gauge reactions and assess the impact of different auditory stimuli. The
pool of the jurors consisted of 40 individuals in a diverse range of genders and ages,

specifically, 21 females and 19 males between the ages from 19 to 54 years. Notably,
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a substantial 75% of the jurors fell within the age of 28 + 6 years, ensuring a youthful

perspective in the assessment process.

3.5.1 Test Environment and Procedure

The Virtual Reality laboratory at Universita Politecnica delle Marche, Italy, fa-
cilitated the experiment in June 2023. Sessions were structured in two distinct slots:
morning (9 AM to 1 PM) and afternoon (2:30 PM to 6:30 PM), to accommodate jurors’

availability and maintain a consistent testing environment.

Jurors, upon arrival, were acclimated to the testing environment and furnished
with clear instructions regarding the test protocols and their roles. This also included
reading carefully and signing an Informed Consent Form, ensuring that all participants
were well-informed, willing to partake in the experiment voluntarily, and fully aware of

what they are agreeing to, including potential risks and benefits.

3.5.2 Methodology

Employing an AB comparison approach augmented by AB BA repetition, the study
aimed to analyze jurors’ subjective assessments of seven different interior car sounds.
Jurors interacted with a user-friendly interface developed in Matlab. This design con-
sideration aimed to enhance the jurors’ comfort and concentration during the experi-
ment, ensuring that their responses were as accurate and reflective as possible to the

comparison queries.

In tandem with the sound evaluations, the experiment incorporated continuous fa-
cial expression recordings, providing real-time emotional metrics to enhance the depth
of the analytical findings. Jurors were advised to maintain a relaxed demeanor, mini-
mizing extraneous movements and focusing on the acoustic assessments, which is indeed
necessary for the facial expression assessment as well. Figure 3.8 is depicting a view of
the jury test campaign, during which a juror is performing the sound quality assess-

ment.

The main objective of the experiment was to assess jurors’ acoustic perceptions and
differentiate them under various sound exposures. Two primary questions guided the
comparison: ”Which sound is more annoying?” and ”Which one appears to be from
a higher quality car?” Through this approach, the study aimed to uncover insightful

data regarding the subjective acoustic quality of different car interiors.

Subsequent to the jury testing, jurors completed a questionnaire, accessed via a QR
code. This questionnaire aimed at gauging the jurors’ focus and involvement through-
out the experiment, acting as a reflective feedback tool. Figure 3.7 represents the

questionnaire.
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Please indicate your level of concentration during the test by selecting at least %
two options from each row below

— | was I was gt | was | was | felt
actively partially ; Heavy mentally
cancentrared involved Concentrated disteacted  boeed Eyed fatigued
Atthe
begining
of the U U 0 o O oo 0O
test
At the
middle
ofifie U U 0 o 0O o d
test
At near
to the
snil ot O O O O 0O O 0O
the test

Name and Surename: *

Your answer

Age: *

Your answer

Gender: *

O Male
O Female
(O other.

Email or phone contact:

Your answer

Figure 3.7: Questionnaire capturing the jurors’ self-declaration of their involvement level per-
formed in Google Forms. The jurors filled out this questionnaire at the end of the
test
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3.5.3 Jury Testing Process and Sequence

This section outlines the comprehensive procedure adopted for the jury testing,
which involved a total of seven distinct sounds as testing material. These sounds were
specifically chosen to represent a variety of interior and exterior vehicle noises, offering
a broad spectrum of auditory experiences.

The sounds selected for the jury testing included:

e One exterior noise sample from an electric vehicle.

e Three exterior noise samples from internal combustion engine vehicles.
e Three interior noise samples from internal combustion engine vehicles.

For the purpose of conducting an AB comparison jury test, the sounds were paired
into 21 unique sound couples, ensuring that each sound was compared against every
other. To reinforce the robustness of the test, an additional 21 sound couples were
included, inverting the initial pairings. This resulted in a total of 42 sound sequences,
which were then shuffled to maintain an unbiased testing environment.

On the other hand, to familiarize the jurors with the test mechanism and expecta-
tions, a primary trial part was incorporated at the commencement of the test. This trial
segment comprised only one sequence, which entailed a single sound couple comparison.
This initial step was instrumental in acclimating the jurors to the test environment and
process, ensuring they had a clear understanding of how to engage with and respond to
the comparisons effectively. The inclusion of this preliminary trial sequence was crucial
in promoting a smooth transition for jurors into the main test.

The jury test was structured into several distinct stages:

1. Initial Instruction Stage: Jurors were first provided with instructions and
briefed on the test’s objectives. They were also required to read and sign an
Informed Consent Form, ensuring they were fully aware of the test’s nature and

their role.

2. Trial Part: This stage allowed jurors to familiarize themselves with the test in
a practical sense. It was also an opportunity for them to ask any questions and

clarify any doubts about the process.

3. Main Test Stage: During this stage, jurors were presented with the 42 sound
couples in sequence. They were instructed to focus intently on the test, mini-
mizing movements and refraining from speaking to ensure the accuracy of their

responses.

4. Questionnaire Completion: The final stage involved the jurors filling out a
questionnaire, which served to gather their subjective assessments and feedback

on the sound samples.
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3.5.4 Interface app and input device

A user interface app has been developed, in Matlab App Designer platform, to
facilitate the jurors in performing the experiment, offering graphical instructions and
an interactive platform. Figure 3.9 represents a screenshot of the App used for the test.

During the experiment, the app automated the presentation of sound pairs, termed
as A and B, to the jurors. The app was instrumental in managing and collecting
the jurors’ responses to comparison questions by an external Bluetooth mini keyboard
which is presented in Figure 3.10. The external Keyboard was used as the primary
device for jurors to input their responses. The decision to use this device stemmed
from its convenience advantages. As it is depicted in Figure 3.8, jurors could easily hold
the keyboard in their hands, allowing for a more natural and relaxed posture during
the experiment. This setup minimized eye or hand movements, enabling jurors to
focus intently on the sounds and respond effortlessly by pressing the keyboard buttons
corresponding to their choices. The prevention of eye and head movements strengthens
the accuracy of facial expression analysis as well, since it can be slightly affected by

fast movements.

Figure 3.8: Experimental setup overview of sound quality jury assessment test
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Figure 3.9: A screenshot of the graphical user interface used to interact with the jurors

Figure 3.10: Using the external mini keyboard used to collect input answers from the jurors






Chapter 4

Jury Test Combined with
Physiological Response

4.1 Theoretical Framework

In the 215 century, a major challenge in brain science is developing mathemati-
cal models to understand and predict how brain activities relate to EEG (electroen-
cephalography) signals. EEG is a method that captures the brain’s electrical ac-
tivity, providing valuable insights into various health conditions and cognitive pro-
cesses. This technology has diverse applications, such as detecting seizures, diagnos-
ing epilepsy, identifying abnormal EEG patterns, recognizing brain activity related to
Alzheimer’s disease, detecting consciousness levels, and facilitating Brain-Computer
Interfaces (BCI) [77].

4.1.1 Standard EEG measurement

EEG works by monitoring the electrical activity in the brain. This electrical activity
is complex but holds key information about how we think and process information. To
measure EEG, electrodes are placed on the scalp. These electrodes detect differences
in electrical potential caused mainly by the synchronized activity of certain brain cells
(pyramidal neurons) arranged in cortical columns. These potential differences give us a
glimpse into the brain’s intricate workings. Figure 4.1 provides a simplified illustration
of how EEG electrodes detect the brain’s electrical activity [78].

33
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Figure 4.1: Generation of extracellular voltage fields from graded synaptic activity. Rela-
tionship between polarity of surface potentials and site of dendritic postsynaptic
potentials [3].

Neurotransmitters stimulate neurons, opening sodium channels on the neuron’s
postsynaptic dendrites. This action allows positive Na® ions to flow in, creating a
negative charge near the dendrites compared to other areas of the neuron. This charge
difference forms an electric dipole field. When neurotransmitters inhibit these dendrites,
the dipole’s polarity, and consequently, the polarity at the EEG electrode, reverses.
The electric field created travels to the EEG electrode through two processes: volume
conduction in the brain’s fluid and capacitive conduction through biological tissues and
the skull. However, this journey weakens the field significantly. To detect a measurable
signal at the electrode, a large number of neurons (around 10%) must be activated

simultaneously so their electric fields can combine [3].

EEG signals are crucial in both clinical and research applications, offering deep in-
sights into brain activity. Captured using sensors on the scalp, they measure electrical
activity from large neuron groups in the brain. Analyzing these signals helps in under-
standing cognitive and emotional states, monitor alertness, study chronic conditions,
and even develop biofeedback and assistive technologies. A major benefit of EEG is
its ability to provide multi-dimensional information. By examining signals in time,
frequency, or spatial domains, we can decode complex neural patterns and understand
brain activities from various angles. EEG’s rapid signal capture also allows for real-
time brain function analysis. Practically, EEG is advantageous because it’s reliable,
portable, non-invasive, affordable, and accessible. These qualities make it widely used
in both research and healthcare [6].
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4.1.2 EEG Recording Devices

EEG recording devices, vital in neuroscience and clinical medicine, are designed to
capture the brain’s electrical activity. These devices use electrodes placed on the scalp
to detect signals from brain neurons. These electrodes are linked to an amplifier, which
strengthens and filters the signals for accurate recording. The signals are then digitized
and stored for analysis and interpretation. EEG devices vary in design, from traditional
wired systems with multiple electrodes to more modern, portable, and wireless versions,
offering ease of use and flexibility. These devices are key in diagnosing and monitoring
neurological conditions like epilepsy, sleep disorders, and brain injuries. They also serve
as important tools in research, enabling the study of brain activity and the exploration
of cognitive processes and disorders. EEG recording devices have undergone significant
advancements, leading to improvements in signal quality, patient comfort, and data
analysis capabilities. These advancements have solidified their role as essential tools in

both neuroscience research and clinical applications [6].

Classification of EEG Devices Based on communication type

EEG headsets, for data transmission, come in two primary forms: wired and wire-

less, each with distinct features and implications for data integrity and user experience.

¢ Wired Communications: Wired EEG headsets use cables to connect to a com-
puter, providing stable data transmission and the ability to handle large volumes
of data effectively. However, it’s crucial to acknowledge that the movement of
cables and electrodes might introduce artifacts into the EEG signals. This is
mainly due to the disturbance in electrode-skin connections, potentially affecting
the accuracy of the data [79].

e Wireless Communications: In contrast, wireless EEG headsets utilize tech-
nologies like Wi-Fi or Bluetooth for connectivity. This design grants users greater
mobility, reducing constraints imposed by wired connections. Nevertheless, a sig-
nificant limitation of wireless systems is the risk of connectivity loss during data
acquisition. Such interruptions can lead to gaps in data recording, posing chal-

lenges for consistent and reliable data capture [79].

Classification of EEG Devices Based on Electrode Type

The classification of EEG recording devices can also be based on the type of elec-
trode used for scalp connection. Each type presents unique characteristics and appli-

cation methods which are described in the following [4].

e Soft Gel-based Electrodes: These electrodes require the application of a con-

ductive gel to establish a connection with the scalp. Post-experiment, it is im-
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perative to clean the headset by removing the gel and thoroughly cleansing the

electrodes, typically using alcohol for its evaporative properties.

e Saline Solution Electrodes: Some EEG headsets use electrodes that are con-
nected by applying a saline solution. This method is employed to facilitate a
low-impedance electrical connection between the skin and the sensor electrode,

providing an alternative to conductive gel.

e Dry Electrodes: Dry EEG devices eliminate the need for conductive gel or
saline, thereby streamlining the EEG data recording process. These devices do
not require a trained technician for setup, and they offer a significantly reduced

setup time compared to wet headsets.

e Other Types: There are EEG devices that utilize unique connection methods,
not fitting squarely into the aforementioned categories. For instance, some use

conductive solid gel materials to establish electrode connections in EEG recording.

EEG recording devices vary significantly in their design and functionality, especially
concerning the types of electrodes they use. Each type of electrode offers distinct
advantages and may be suited to different applications.

Figure 4.2 represents Three samples of three primary categories of EEG recording

devices based on their electrode types.

(@) (b) ()

Figure 4.2: A view of different EEG recording devices with different electrode types. (a) dry,
(b) saline solution, (c) gel-based [4]

4.1.3 Standardized Systems for EEG Electrode Placement

Accurate electrode placement is vital for obtaining reliable and meaningful EEG
data. It ensures comprehensive coverage of brain regions while minimizing potential
signal distortions or artifacts.

Standardized electrode placements, such as the 10-20, 10-10, and 10-5 Systems,

facilitate data comparison and exchange across different studies. They enable precise
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localization of brain activities and provide a uniform framework for EEG researchers

and clinicians [80].

e The International 10-20 System The 10-20 System is grounded in anatom-
ical landmarks and precise measurements, ensuring systematic and reproducible
electrode positioning across different participants and sessions. It categorizes the
scalp into distinct regions and assigns electrode positions based on calculated
percentages of distances between different electrodes. The labeling of electrodes,
such as Fp (frontopolar), F (frontal), C (central), P (parietal), and O (occipital),
coupled with numbers, provides a clear indication of their location in relation to
the left /right hemisphere and specific areas within each region (refer to Figure
4.3).

e The international 10-10 System As an extension of the 10-20 System, the
10-10 System offers an increased number of electrode positions. This results
in a higher spatial resolution, which can be particularly beneficial in detailed
brain mapping studies (refer to Figure 4.3). Owing to its enhanced accuracy in
identifying specific brain regions, the 10-10 System has gained popularity in both

research and clinical domains.

e The international 10-5 System The 10-5 System further elevates the elec-
trode density by adding even more positions between those of the 10-10 System.
This provides an even finer spatial resolution. It is especially beneficial in high-
density EEG studies, such as source localization and connectivity analysis, the
10-5 System allows for a more detailed mapping of brain activity (refer to Figure
4.4).

4.1.4 Characterization and Analysis of EEG signals

The analysis of EEG data involves categorizing rhythmic activities and transients
into various frequency bands, a process integral to understanding the underlying neural

processes and mental states.

e Categorization of EEG Frequency Bands: While the division into specific
bands like alpha (8-12 Hz) can be somewhat subjective, these categorizations
are based on observed scalp distribution patterns and biological implications.
Spectral analysis methods, such as Welch’s method, are commonly used to ex-
tract these frequency bands. Software like EEGLAB or the Neurophysiological
Biomarker Toolbox facilitate this process, allowing for detailed analysis of EEG
data.

¢ Quantitative Electroencephalography (qEEG): qEEG refers to the compu-

tational analysis of EEG data, focusing on voltage fluctuations associated with
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Figure 4.3: Electrode positions and labels in the 10-20 and 10-10 system. Black circles indicate
positions of the original 10-20 system, gray circles indicate additional positions
introduced in the 10-10 extension [5]

different mental states, internal conditions, or pathological disorders. Research
indicates a strong correlation between distinct cognitive processes and specific

frequency domains.

These waves, generated by synchronized neural activities, vary depending on the
participant’s internal state. Analysis reveals harmonic frequencies ranging from 1 to
100 Hz, with most informative content lying below 45 Hz. Frequencies beyond this
range are often considered artifacts. In standard clinical recordings, EEG waveforms
are categorized into alpha, beta, theta, delta, and gamma bandwidths, each playing a
crucial role in clinical practice and research and are explained in the Table 4.1.

In the following a detail explanation is performed for the EEG signal bandwidths.

Delta Waves (0.1 Hz — 4 Hz): In adults, delta waves are primarily observed dur-
ing slow-wave sleep. Conversely, in infants, these waves are commonly present,
reflecting developmental stages of the brain. The prominence of delta waves in
different brain regions varies with age. In adults, they are usually most noticeable
in the frontal region, while in children, a more pronounced presence is observed in
the posterior region. The occurrence of focal delta waves may indicate the pres-

ence of subcortical lesions. In contrast, the widespread distribution of delta waves
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Figure 4.4: Selection of 100-5 electrode positions in a realistic display [5]

can be associated with conditions like diffuse lesions, metabolic encephalopathy,

hydrocephalus, or deep midline lesions.

Theta Waves (4 Hz — 7.5 Hz): In young children, the presence of theta waves is
considered normal. In older individuals, these waves are often observed during
drowsiness or arousal and are even present during meditation. Apart from their
occurrence in sleep states, theta waves are also associated with relaxed, medita-
tive, and creative states. An abnormal increase in theta activity for a particular
age group can signify dysfunctional brain function. Focal disruptions in theta
wave patterns can be indicative of focal subcortical lesions. Conversely, a gen-
eralized distribution of theta waves may point towards conditions like diffuse
disorders, metabolic encephalopathy, deep midline disorders, or certain types of

hydrocephalus.

Alpha Waves (7.5 Hz — 12 Hz): Alpha waves was initially coined by Hans Berger
to describe the rhythmic EEG activity he observed, known as the ” posterior basic
rhythm” or ”posterior dominant rhythm” [81]. It is typically observed in the
posterior regions of both sides of the head, alpha waves show greater amplitude
on the dominant side. They become more prominent when the eyes are closed and
during relaxation, but diminish in intensity with eye opening or mental exertion.
In young children, the posterior basic rhythm may fall below 8 Hz, technically
aligning with the theta range. Abnormal alpha wave patterns can be seen in
conditions such as ”alpha coma”, where diffuse alpha activity is unresponsive to

external stimuli.

Beta Waves (12 Hz — 30 Hz): Beta waves typically appear symmetrically on both

sides of the brain, especially noticeable in the frontal region. Beta activity is
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closely related to motor behavior and is observed to diminish during active move-
ments. Low-amplitude beta waves with multiple and varying frequencies are often
associated with active or anxious thinking and focused concentration. Beta waves
are predominantly seen in individuals who are alert, anxious, or have their eyes
open. Rhythmic beta activity characterized by dominant frequencies can be in-
dicative of conditions like Dup15q syndrome or the effects of certain medications,
particularly benzodiazepines. In areas of cortical damage, beta waves may be

absent or exhibit reduced activity.

Gamma Waves (30 Hz — 45 Hz): Gamma waves, which occupy the higher frequency
range in EEG, are essential for understanding the synchronization of neuronal
populations and their role in cognitive and motor functions. These waves are be-
lieved to represent the synchronization of different neuronal populations, forming
networks that are responsible for specific cognitive or motor functions. Gamma
rhythms are associated with the process of binding neural circuits together, indi-

cating their role in complex brain activities and functionalities.

Understanding these EEG bandwidths and their corresponding mental states is
crucial for interpreting EEG data and its application in both clinical and research

settings [6].

Table 4.1: Correlation of EEG Bands with Brain States [6]

Band Frequency [Hz] Brain State
Delta () [1,4] Deep sleep
Theta (0) [4,8] Meditation

Emotional stress
Creative inspiration
Alpha («) [8,13] Closed eyes wakeful state
Wakeful relaxation
Mental stress

Beta (8) (13,30] Strong mental activity
Problem solving
Concentration
Gamma (7) [30,100] Cognitive activity

Motor activity

4.1.5 EEG Signals Oscillations

EEG signals, characterized by rhythmic activity arising from neuron population
excitability, provide insights into neural oscillations and cognitive functions. Alter-
ations in the rhythmic patterns of neural oscillations can indicate the neurophysiologi-
cal manifestation of cognitive functions. Changes in these patterns are often reflective
of different states of the brain.

The strength of neural oscillations is quantified by the amount of energy conveyed

by their electric fields per unit of time. This correlates with the power of the EEG
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signal. The relationship can be expressed through following equations: [78].

P= lim — / et di (4.1)

T—00 2T -T

or for discrete signals:

P= Jim N1+ > lnlaln] (4.2)
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Understanding the distribution of power across various frequency domains in EEG
signals is crucial, and the power spectral density (PSD) serves as a key tool for this
purpose.

PSD is used to specify how power is distributed across different frequency domains
in an EEG signal. The PSD is defined as the Fourier transform of the signal’s auto-
correlation function, providing a means to analyze the signal in the frequency domain.

The mathematical representation of this relationship is represented as following:

+o00 )
PSD = S, (w) = / Tor(T)e™ T dr (4.3)
and:
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Welch’s method provides a reliable approach for estimating the PSD of time-discrete
signals, crucial for EEG analysis. The initial step involves segmenting the signal into
K segments z[j] of length L. These segments may overlap to ensure comprehensive
analysis. Each segment is then weighted with a window function w[j]. This step is
designed to reduce the leakage effect, enhancing the accuracy of the PSD estimation.

Following the application of the window function, the Fourier transform of these

segments is computed. This process is mathematically represented by:

L-1

Aln] = 3 3wl (15)
j=0

In a next step, K periodograms I, are calculated:

ATV (16)
fa=7, n=0, g (4.7)
and:
1 L-1
U=1 3wl (1.9
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The estimated PSD is the average of the periodograms (eq. 4.9):

=

PSD = uulfu] = = S Lilfu] (4.9
k=1

To obtain the band power, the PSD is integrated over the frequency intervals:

upper limit
Pond = / PSD(f) df (4.10)
1

ower limit

4.2 Device Specifications

This section outlines the methodology adopted for acquiring the data and perform-

ing the tests in this study, focusing on the equipment used.

4.2.1 Equipment Used for EEG Signal Acquisition

The EEG signals in this study were acquired using the Interaxon MUSE headband,
a commercially available wearable device known for its efficacy in recording EEG data.

The details of the Interaxon MUSE headband and the location of its electrode on
the scalp are illustrated in Figure 4.5.
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Figure 4.5: A view of the Interaxon MUSE headband and the locations of its electrodes in
the 10-20 illustration system

Electrode Placement

In the Interaxon MUSE headband, the placement of electrodes followes an optimized
EEG signal acquisition and is shown in Figure 4.5. The reference electrode FPz is
positioned on the forehead, while the input electrodes consisted of two frontal electrodes
(AF7 and AF8) located on the left and right sides of the reference, respectively, and
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are made of silver material. Additionally, two posterior electrodes (TP9 and TP10) are

placed above each ear, using conductive silicone-rubber material.

Effectiveness of the MUSE Device in Research

Despite the challenges associated with EEG signal acquisition, the MUSE device
has been demonstrated to be effective in various research settings. This is evidenced by
several studies that have successfully utilized the MUSE device for different research
purposes.

For instance, Krigolson et al. [82] employed the MUSE device for Event-Related
Potential (ERP) studies with notable success. In their research, they assessed the
reliability of ERP data collected using the MUSE device. Through resampling analysis,
they were able to obtain reliable ERP components, particularly the N200, even with
a limited number of participants. This finding underscores the potential of the MUSE
device in capturing critical neural responses in ERP studies.

Another significant study conducted by Youssef et al. [83] focused on lie detection
using the MUSE device. Their experiment achieved notable success, demonstrating the
applicability of the MUSE device in experimental objectives beyond traditional EEG
applications. These studies collectively highlight the versatility and effectiveness of the
MUSE device in various research domains.

A significant comparison study was conducted by Ratti et al. [84]. provides insight
into the performance of consumer-grade MUSE portable devices relative to traditional
EEG medical devices. In their study, the researchers focused on comparing the power
spectral densities (PSDs) obtained from MUSE with those from medical-grade EEG
systems. The findings indicated that the PSDs of the MUSE device were similar to
those of medical-grade systems. However, there was a slightly higher variation in the
MUSE data, with power spectral ratios ranging from 1.125 to 1.225, compared to the
0.975 to 1.025 range for medical equipment. This broader spectrum increase in MUSE
data could potentially be attributed to artifacts in the recordings made by the dry
electrodes of the MUSE device.

Despite these variations, the simplicity and ease of setup of the MUSE device,
along with its quick applicability (less than 10 minutes for setup), make it highly
convenient for self-help applications and rapid deployment in various settings. Such
findings underscore the utility and potential of consumer-grade EEG devices in both

research and practical applications.

4.2.2 Earphones

The selection of appropriate headphones for use with the Muse 2 EEG headband was
a critical aspect of the experimental setup, with the aim of ensuring optimal electrode

adhesion and participant comfort.
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Due to compatibility issues with over-ear headphones, which can interfere with the
proper adhesion of the EEG electrodes, a more suitable type of headphone was neces-
sary. For this purpose, the Sony MDR-~-E9LP compact earphones were chosen. These
earphones were preferred because they do not disrupt the positioning or functioning of
the Muse 2 EEG headband’s electrodes.

Additionally, in-ear headphones were not considered for this study as they may not
be comfortable for all participants. The comfort of the participants was a priority, and
it was essential to select a headphone type that would be universally acceptable and
comfortable for all individuals involved in the test. This consideration was crucial to

ensure participant compliance and the quality of EEG data recorded.

4.2.3 Data Acquisition Process

The MUSE device used for recording the EEG signals operated at a sampling fre-
quency of 256 Hz, and the data acquisition process was carried out using the MUSE
application, a key component of the EEG signal recording setup. This application
was paired with a smartphone via Bluetooth Low Energy (BLE) technology, enabling
efficient and wireless communication. The impedance check, an essential step for en-
suring signal quality, was facilitated by the application. This was visually confirmed in

real-time by observing the raw signal on the smartphone screen.

Challenges in EEG Signal Acquisition with Frontal Electrodes

The acquisition of EEG signals, particularly with frontal electrodes, poses specific
challenges that can impact the accuracy and reliability of the data collected. Frontal
electrodes are notably more susceptible to capturing artifacts caused by eye blinks
and movements, which can significantly interfere with the accurate measurement of
actual brain waves [85]. This susceptibility necessitates careful consideration in both
the placement of electrodes and the interpretation of the recorded data.

Moreover, the use of dry electrodes, often employed for their ease of setup and non-
invasiveness, can lead to discomfort over extended periods of use. Additionally, there
is a heightened risk of misplacement on the forehead with dry electrodes, potentially
resulting in decreased signal accuracy. Factors such as the participant’s head shape,
size, and hairstyles can further complicate the data collection process. Insufficient
contact with the scalp, often arising from these individual differences, may impede

proper signal acquisition, thereby affecting the overall quality of the EEG data [86].

4.3 EEG Test Campaign for Acoustic Evaluation

The effectiveness of EEG measurements in the context of sound quality jury testing
was a key focus of this study. To this end, comprehensive EEG measurements were

performed in tandem with acoustic sound quality assessments in September 2022.
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The acoustic laboratory at the “Universita Politecnica delle Marche” in Italy served
as the venue for these experiments. The choice of this location was driven by its

suitability for conducting detailed acoustic and EEG analysis.

4.3.1 Experimental Protocol

This section explains the experimental protocol in detail, from initial preparations

to the conclusion of the listening test.

The participants were equipped with the Muse headband and headphones, as de-
picted in Figure 4.6. They were comfortably seated in a chair positioned approximately
70 cm away from a screen. Throughout the course of each trial, the participants were
instructed to maintain a relaxed posture, minimize muscle tension, and try to limit eye
movements as much as possible. These precautions were essential to reduce potential

artifacts in the EEG data and to ensure the accuracy and reliability of the recordings.

Adjustment and Communication: The Muse headband was carefully adjusted for
each participant’s comfort. The experimental protocol and data management proce-
dures were clearly communicated to all volunteers, ensuring they were well-informed

about the study’s nature and objectives.

Information Sheet and Consent: To maintain confidentiality, the data collected
from the volunteers underwent a process of anonymization. Each volunteer was required
to sign a privacy information sheet and a consent form explaining the purpose of the
study. Subsequently, participants were briefed on the test procedure, outlining what to

expect and the do’s and don’ts during the experiment.

Questionnaire and Personal Information Collection: Volunteers were instructed
to use their smartphones to scan a QR code leading them to an online questionnaire
created with Google Form (See Figure 4.8). In the questionnaire, participants provided
personal information such as first name, last name, age, gender, country of origin, and
the volume value set on the computer for the test. Additionally, they answered a series

of questions related to the sounds they would be listening to during the experiment.

The questions were structured into three sets of three questions, to be filled out
immediately after listening to each audio segment. Specifically, participants were asked
to rate how annoying or pleasant, relaxing or stressful, and quiet or loud they found
each audio piece. This feedback was crucial for assessing the subjective experience of

each participant regarding the sounds played during the test.
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Name and Surname (Nome e cognome): *

Your answer

Your Age (Eta): *

Your answer

Gender (Genere): *

QO Male (Maschio)

O Fremale (Femmina)

Country of Origin (Paese d'origine): =

Your answer

Set the PC volume as the one of a normal conversation level and insert the value *
here [0-100] (Imposta il volume del PC come il livelle di una normale
conversazione ed inserisci il valore qui [0-100])

Your answer

Next Clear form

(a)

Sound No. 2

How much did you find Sound No. 2annoying or pleasant? (Quanto hai trovato il
Suono No 2 fastidioso o piacevole?)

Annoying (fastidioso) O O O 0O O Pleasant (piacevole)

How much did you find Sound No. 2 relaxing or stressful? (Quanto hai trovato il
Sound No.2 rilassante o stressante?)

1 2 3 4 5

Relaxing (rlassanty O O O O O srressful (stressante)

How much did you find Sound No. 2 quiet or loud? (Quanto hai trovato il suono
No. 2 volume basso o volume alto?)

1 2 3 4 Bl

o 0 O O O

Quiet (basso) Loud (volume alto)

Back Next Clear form

(©)

Sound No. 1

How much did you find Sound No.1 annoying or pleasant? (Quanto hai trovato il
Suono No.1 fastidioso o piacevole?)

1 2 3 4 5

annoying (fastigioss) O O O O O pleasant (piacevole)

How much did you find Sound No.1 relaxing or stressful? (Quanto hai trevatoil  *

Sound No.1 rilassante o stressante?)
1 2 3 4 5

Relaxing (rilassante) O o O O O Stressful (stressante)

How much did you find Sound No.1 quiet or loud? (Quanto hai trovato il suone  *
No.1 volume basso o volume alto?)

T 2 38 & 5
c 0 0 O O

Quiet (basso) Loud (volume alto)

Back Next Clear form

(b)

Sound No. 3

How much did you find Sound No. 3 annoying or pleasant? (Quanto hai trovato il
Suono No.3 fastidioso o piacevole?)

Annoying (fastidioso) O O O O O Pleasant (piacevole)

How much did you find Sound No. 3 relaxing or stressful? (Quanto hai trovato il
Sound No.3 rilassante o stressante?)

1 2 3 4 5

Relaxing (ilassantey O O O O O swesshul (stressante)

How much did you find Sound No. 3 quiet or loud? (Quanto hai trovato il suono =
No. 3 volume basso o volume alto?)

T 2 3 & 5
o 0 O O O

Quiet (basso) Loud (volume alta)

Back Next Clear form

(d)

Figure 4.8: Sound quality assessment questionnaire created by GoogleForms. (a), (b), (c),
and (d) respectively illustrate the first, second, third, and fourth pages of the

questionnaire.
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4.3.2 Test Contents and Sequence

The test consisted of three one-minute audio segments, each preceded by a one-
minute silence interval (refer to Figure 4.7). The silence served to relax the participant
between the different audio stimuli, mitigating any residual effects from the previous
audio.

Participants initiated the test by clicking a point on the PC desktop, which trig-
gered a “beep” sound. This sound served both to inform the participants that the
test had begun and to aid in synchronizing the data for later processing. During the
test, the proper coupling between the electrodes and the participant’s skin, crucial for
the quality of EEG data, was monitored live through the Muse Headband app. The
use of Bluetooth Low Energy (BLE) technology enabled communication between the
EEG Muse Headband and a paired smartphone. After approximately six minutes, en-
compassing the listening of the three audios, the test was concluded by an operator
stopping the recording. Subsequently, the captured data was automatically transferred
to a Google Drive folder, allowing for real-time review by all operators involved in the

project.

Audio Description

In this study, three distinct auditory stimuli were utilized to evoke emotional re-
sponses in participants. The selection of each sound was based on its distinct acoustic
properties, including spectral attributes. Figure 4.9 visually presents spectrograms
for the three chosen stimuli, providing a comprehensive visualization of their spectral
content. Moreover, Table 4.2 serves as a crucial reference, presenting the spectral char-
acteristics obtained from the temporal distribution of frequency components for each
sound. Systematic analysis of these metrics can offer valuable insights into the nuanced
acoustic differences within the sounds. Building on the observations from Figure 4.9
and Table 4.2, the subsequent section provides a detailed exposition of each sound,
along with their corresponding spectral metrics.

Sound No. 1 encompasses the noise generated by an internal combustion engine,
evoking associations with power, mechanical precision, and intensity. This sound ex-
hibits a centroid value of 341 Hz, indicating a moderate concentration of frequencies
around the mid-range. The entropy value of 0.48 signifies a relatively balanced distri-
bution of frequencies. A crest value of 1152 points to a dynamic sound characterized by
pronounced peaks. Additionally, a kurtosis value of 148 suggests an elevated concen-
tration of spectral energy around the mean frequency, while a skewness value of 10.2
implies substantial asymmetry in the spectral distribution.

Sound No. 2 features soothing music, eliciting sensations of tranquility, relaxation,
and harmony. The sound showcases a centroid value of 203 Hz, indicative of a lower
frequency concentration. An entropy value of 0.36 implies a relatively predictable

frequency distribution. A crest value of 1617 underscores a highly dynamic sound
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with prominent peaks. Furthermore, a kurtosis value of 6 indicates a more uniform
distribution of spectral energy, while a skewness value of 1.0 points to a relatively

symmetrical spectral distribution.

Sound No. 3, represented by road noise, conjures associations of a bustling am-
bient environment. This sound is characterized by a higher centroid value of 538 Hz,
indicating a preponderance of frequencies in the higher range. An entropy value of
0.65 suggests a more intricate and diverse frequency distribution. A crest value of 564
denotes a moderately dynamic sound with discernible peaks. Additionally, a kurtosis
value of 36 suggests a moderate concentration of spectral energy around the mean fre-
quency, while a skewness value of 4.5 hints at a moderate degree of asymmetry in the

spectral distribution.

Table 4.2: Spectral Characteristics of the Sounds. The presented values are median values
derived from the temporal distribution of frequency components.

Audio description Centroid Entropy Crest Kurtosis Skewness

Audio 1 Engine noise 341 Hz 0.48 1152 148 10.2
Audio 2 Music 203 Hz 0.36 1617 6 1
Audio 3 Road noise 538 Hz 0.65 564 36 4.5

4.3.3 Estimation of Effective Sample Size

To estimate the effective sample size needed for the experimental campaign, a
G*Power3 statistical analysis was performed [87]. The priori analysis setting, as out-
lined in Table 4.3, provided the basis for this estimation. The analysis yielded a sample

size of 36 for the parametric tests and 38 for the non-parametric tests.

Table 4.3: G*Power3 statistical setting parameters.

Parameters Values

required power level (1- 3) 0.95

prespecified significant level () 0.05

the effect size f 0.25

Number of measurements 3

Number of groups 1

statistical test repeated measures - within factor ANOVA and test

Wilcoxon signed-rank test

4.3.4 Participants Demographics

The experimental campaign ultimately included a total of 43 participants, compris-
ing 21 females and 22 males. The participants were primarily young students, with ages
ranging from 19 to 61 years old. Notably, 80 percent of the participants were within
the age range of 28 4+ 7 years, highlighting the study’s focus on a younger demographic.
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4.3.5 EEG Signal Pre-processing

The Muse 2 headband is equipped with an integrated Digital Signal Processing
(DSP) module that undertakes essential data preprocessing steps. Notably, the DSP
module incorporates a bandpass noise filter operating within the frequency range of
0.1 to 45 Hgz, effectively eliminating unwanted frequencies. Moreover, a 50 Hz notch
filter is implemented to eliminate power line interference. To enhance data quality,
the DSP module employs advanced techniques for the removal of artifacts stemming
from eye blinks and jaw clenching. To unlock frequency domain insights, a Fast Fourier
Transform (FFT) is executed using a window size of 256 samples and a step interval of
22.

Feature Extraction

The resultant FFT provides access to PSD within distinct frequency bands. Specifi-
cally, five crucial frequency bands are extracted: delta, theta, alpha, beta, and gamma.
Within each of the aforementioned frequency bands, comprehensive feature extraction
is performed across four input channels: TP9, AF7, AF8, and TP10. The following

essential features are computed for each channel within these frequency bands:

Relative Power:

n
. B
LizoB (4.11)
2i=o P
where B is the power of the signal in a specific frequency band and P is the total

power.

Frontal Asymmetry (FA):

Barg — Barr (4.12)
e Temporal Asymmetry (TA):
Brpio — Brpy (4.13)
e Band Ratio in Each Channel: alpha
bela (4.14)

4.3.6 Quantification of Individual Sound Perceptions

The frequencies of individual responses regarding personal sound perceptions were
computed. Employing a tailored Python script, a robust statistical analysis was un-
dertaken to establish intrinsic correlations connecting individual acoustic perceptions
with dynamic changes in EEG features. This exploration was conducted across three

distinct audio stimuli.
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Statistical Validation

In the pursuit of statistical rigor, the Shapiro test and Bartlett test were harnessed to
assess the underlying assumptions of normality and variance homogeneity, respectively.
Notably, within the cohort of features, a solitary exception emerged (—Delta AF'8),
demonstrating a distribution distinct from the Gaussian one [88][89].

To discern the nuances of EEG feature means across distinct variables under dif-
fering conditions, two distinct methodologies were exploited. The first, the repeated
measures ANOVA model, was chosen given the satisfaction of both normality and
homogeneity assumptions. The second, the Kruskal-Wallis non-parametric test, was

selectively employed when these assumptions were not upheld [90].

In-depth Post-hoc Examination

The discriminative potential of EEG features across different auditory conditions
(A1-A2, A1-A3, and A2-A3) was subjected to in-depth post-hoc analysis. This assess-
ment was conducted using the Dwass-Steel-Critchlow-Fligner pairwise comparison test
[91].

4.3.7 Quantifying Measurement Uncertainty

Drawing inspiration from the Guide to the Expression of Uncertainty in Measure-
ment (GUM) 77?7, a detailed uncertainty analysis was conducted on the EEG features
obtained from the experiments.

In the process of analyzing these EEG features, the arithmetic mean and the un-
certainty of the mean were key metrics of interest. The arithmetic mean, denoted as
f, provides a central value of the data, representing the typical EEG feature value.
Meanwhile, the standard uncertainty of the mean, denoted as uy, offers insight into the
variability and reliability of the EEG measurements.

The calculation of these two statistical parameters for each unique EEG feature
allowed for a more nuanced understanding of the data. This approach aligns with
the principles outlined in the GUM, ensuring that the analysis adheres to established

standards in measurement and uncertainty expression [92].
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Figure 4.9: Spectrograms illustrating the spectral content of three sound stimuli over time.
(a) engine noise, (b) soothing music, and (c) road noise



Chapter 5

Results and Discussions

5.1 Results of Experiments on Facial Expression in Acous-

tic Perception

This section provides a detailed discussion of the results from the experiments aimed
at assessing the role of facial expression analysis in sound quality jury testing. The
analysis covers three distinct test campaigns designed to study facial expressions in
response to acoustic stimuli.

The first part of the analysis focuses on the two preliminary tests. These tests
were crucial in setting the groundwork for understanding how facial expressions vary in
response to different acoustic stimuli. The methodology, data collection, and analytical
techniques employed in these preliminary tests provided valuable insights, shaping the
approach for the subsequent jury test campaign.

Afterward, the jury test campaign which was conducted with an added component
of facial expression analysis is discussed. This campaign was pivotal in exploring the
practical application of facial expression analysis in a sound quality jury testing context.
The results from this campaign are crucial in evaluating the feasibility and effectiveness

of integrating facial expression analysis into sound quality assessments.

5.1.1 Results of Preliminary Test 1

To evaluate the effect of different stimuli on participant engagement, a non-parametric
Friedman test was performed. This choice was necessitated by the lack of normality in
the distributions of the engagement data. The stimuli, categorized into three macro-
categories, served as the between-subject factor, with engagement as the dependent

variable.

The results of the Friedman test revealed a statistically significant difference in en-
gagement across different stimuli, x?(2) = 23.2,p < 0.001. This finding indicates that

the type of stimulus had a considerable impact on the level of engagement among

53
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participants.

Following the Friedman test, post hoc analysis was conducted using Wilcoxon signed-

rank tests. To account for multiple comparisons, a Bonferroni correction was applied,
setting the significance level at 0.017.

The median (Interquartile Range, IQR) engagement levels for the three macro-
categories: ”Sound”, ”Sound with Video”, and ”Emotional Video”, were found to be
7.2 (5.6 to 12.0), 8.8 (5.5 to 13.0), and 10.0 (7.0 to 13.0), respectively. These values
indicate varying degrees of engagement elicited by each type of stimulus.

In the pairwise comparisons, no significant difference was found between the ” Sound”
and ”Sound with Video” categories (Z

-1.350, p = 0.177). However, significant
differences were observed in engagement levels between the ”Sound with Video” and

”Emotional Video” categories (Z = -3.236, p = 0.001), as well as between the ”Sound”
and ”Emotional Video” categories (Z = -4.083, p j 0.001).

The discernible distinctions among jurors became readily apparent from a qualita-
tive standpoint, as evidenced in Figure 5.1 and 5.2, where we compare the engagement

data of two jurors. It is evident that jurors responded divergently to the presented
stimuli.
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Figure 5.1: Engagement values averaged over each stimulus for Subject No.4
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Figure 5.2: Engagement values averaged over each stimulus for Subject No.3

While we could discern clear differences in the jurors’ responses based on qualitative
observations, we aimed to support our findings with quantitative data. We wanted to
demonstrate that the different stimuli evoked varying levels of emotional reactions.
Specifically, we found that the categories labeled as “Video” and “Video with annoying

sounds” elicited stronger emotional responses compared to those categorized as “Sound”

or “Sound with video” (please refer to Figure 5.3).

In Figure 5.3, we present boxplots that provide a statistical evaluation of how
emotional measures changed when a specific stimulus (in this case, the applause sound)
was presented. Jurors were exposed to this stimulus both in isolation and in conjunction
with a video featuring the same applause sound. The results clearly show that when
accompanied by an animated video background, jurors exhibited more pronounced

emotional expressions compared to when they only heard the sounds.

This suggests that visual stimuli, particularly animated video, play a significant
role in intensifying the emotional impact of the experience for jurors. It highlights the

importance of considering multimedia elements in the presentation of stimuli, as they

can significantly influence juror responses.
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Figure 5.3: Mean values and 95% confidence intervals for the means of the 3 macro-categories
used in preliminary test 1

5.1.2 Results of Preliminary Test 2

Pearson product-moment correlation coefficients were computed to assess the re-
lationship between the emotional valence and the subjective answers provided by the
jurors. The results, as shown in Table 5.1, revealed positive correlations between the
first audio and the first question (r = 0.272,p = 0.09), indicating that jurors found
the audio to be pleasing and that the tool effectively captured this interaction. Addi-
tionally, negative correlations were observed between the second audio and the second
question (r = —0.333,p = 0.04), suggesting that while jurors found the audio to be
relaxing, the tool predominantly assigned a negative valence. No significant correla-
tions were found between valence and the other audio files and questions. In summary,
the tool demonstrated limited capability to capture substantial correlations between
valence data and the questionnaires. Achieving a higher precision would be necessary

to infer jurors’ preferences for one set of videos over another.

Table 5.1: Correlations coefficient between the emotional valence and the questionnaire an-
swers given by the jurors

Annoying vs. pleasantness Relaxing vs. stressful Quiet vs. loud

Audio 1 0.272 -0.135 -0.112
Audio 2 0.055 -0.333 -0.052
Audio 3 -0.076 -0.205 -0.092
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5.1.3 Results of Jury Test Campaign enhanced by Facial Expression
Measurement

This section is dedicated to presenting the findings from the Jury Test Campaign,
which was augmented by the inclusion of Facial Expression Measurement. The results
here detail the patterns, variations, and key observations identified through the combi-
nation of traditional jury testing methods and advanced facial expression analysis. The
analysis of facial expressions offered an additional layer of data, contributing to a more
comprehensive understanding of the reliability of participants’ subjective experiences

and reactions to the test sounds.

Correlational Analysis Between Acoustic Perceptions and Facial Expres-

sions

To deepen our understanding of the potential correlation between acoustic percep-
tions and facial expression analysis, a comprehensive statistical analysis was conducted.
This involved dissecting the emotion values, which were extracted from the facial ex-
pression analysis, based on the jurors’ choices of soundtracks.

The emotion values obtained from the facial expression analysis were segregated
into distinct periods, corresponding to the preferences indicated by the jurors. These
periods were categorized based on whether the jurors chose sound A, sound B, or
expressed an equal preference for both.

The analysis of emotional responses to acoustic stimuli is further elucidated in Fig-
ure 5.4, which presents a series of boxplots representing the manifestation of temporal
change in anger during audio B compared to the period of audio A and related to the
first question, which probes the annoyance level of the sound.

Each boxplot in Figure 5.4 corresponds to an individual juror, depicting the range
of changing anger values that emerged when the juror perceived a sound as annoying.
The position and spread of each boxplot provide valuable insights. When a boxplot
is positioned above zero (above the x-axis), it indicates that the juror exhibited an
increase in anger in response to finding the sound annoying. Conversely, a boxplot
below zero suggests a decrease in anger, implying a more subdued emotional response
to the annoying sound.

The trends observed in Figure 5.4 can be contrasted with those in Figures 5.5 and
5.6, which represent the emotional responses of valence and engagement, respectively.
The general observation across these figures is that most boxplots are centered around
zero or display random values. This pattern suggests that the jurors did not exhibit a
considerable change in anger, valence, or engagement in response to sounds they found
more annoying. However, it is important to note the individual variations among jurors,
indicating diverse emotional responses to the same acoustic stimuli.

From the collective analysis of Figures 5.4, 5.5, and 5.6, several inferences can be

drawn. Despite the majority of the boxplots being clustered around zero or displaying
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random values, indicating no significant change in anger levels, there are notable excep-
tions. In Figure 5.4, for instance, 10 boxplots are positioned above zero, suggesting an
increase in anger, while only two are below zero, indicating a decrease. The remaining

29 boxplots are balanced at zero, reflecting a neutral response in terms of anger.

This pattern is similarly observed in the valence and engagement analyses. When
jurors perceive a sound as annoying, there tends to be a decrease in valence and an
increase in engagement, indicating a shift towards negative emotions and heightened
attention. Therefore, while responses vary among individual jurors, a general trend
can be observed wherein annoying sounds elicit increased engagement and potentially

negative emotional states.
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Figure 5.4: Changes in anger values extracted for the periods of times when the jurors chose
audio B as the more annoying audio
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Figure 5.5: Changes in valence values extracted for the periods of times when the jurors chose
audio B as the more annoying audio
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Figure 5.6: Changes in engagement values extracted for the periods of times when the jurors
chose audio B as the more annoying audio

Questionnaire Results

At the final stage of the jury test process, after finishing the sound quality eval-
uation, jurors were asked to complete a questionnaire. In this stage, in addition to
providing demographic information such as age and gender, jurors were mainly tasked
with expressing their levels of concentration during different stages of the test.

Jurors evaluated their concentration levels at three distinct phases: the beginning,
middle, and end of the test. They could select from various categories to best describe

their mental state, such as:

Fully concentrated

Actively involved

Partially concentrated

Distracted

Feeling bored

Heavy-eyed

Feeling mentally fatigued

The results, depicted in Figure 5.7, revealed a trend in jurors’ concentration levels
throughout the test. Initially, jurors mostly reported being ”fully concentrated” or
”actively involved.” However, as the test progressed, a shift was observed, with jurors
indicating lower concentration levels, feeling ”partially concentrated” or ”"bored”. Es-
pecially after the middle of the test, towards the end of the test, jurors predominantly

expressed feelings of being "heavy-eyed” and ”mentally fatigued,” signifying a decrease
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in overall alertness and focus. This trend suggests that jurors started the test with
a high level of freshness and active involvement but experienced a gradual decline in
concentration, attributed partly to the lengthy duration of the test (refer to Figure
5.8).

Understanding jurors’ concentration levels is pivotal in interpreting the results ac-
curately. The observed trends could influence the jurors’ perception and evaluation of
the sound qualities, making this an essential aspect to consider when analyzing and

drawing conclusions from the collected data.

1At the begining of the test
m At the middle of the test
At near to the end of the test

Fully
concentrated
1 =
Feel I 08
eel mentally . .
fatigued Actively involved
Partially
heaEyed Concentrated
Being bored Distracted

Figure 5.7: Radar chart to represent the jurors’ concentration levels throughout the test cam-
paign
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Figure 5.8: Bar chart to illustrate the quantitative jurors’ concentration
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Correlation between Facial Expression and Concentration Level

Based on the jurors’ self-reported mental statuses from the questionnaire, facial
expression data were extracted corresponding to the specific time periods when jurors
expressed each mental status. This allowed for the assessment of emotional values

related to each mental/concentration status from a statistical viewpoint.

The emotional metric of attention was selected as a key indicator to discern dif-
ferences across various concentration statuses due to the fact that attention value is a
representative metric of jurors’ levels of concentration and involvement in the experi-

ment.

In Figure 5.9, the attention levels are visualized using three box plots representing
three distinct concentration statuses i.e. fully concentrated, distracted, and heavy-
eyed. Each box plot symbolizes the range of attention values associated with a specific
concentration status, providing a visual representation of the jurors’ attention variations
corresponding to their self-reported mental states. Figure 5.10 provides a comparative
view by subtracting the attention values associated with a ”fully concentrated” status
from all other attention values linked to each concentration status and setting the ” fully
concentrated” status as a baseline with fixed zero values. This adjustment made the

differences more apparent.

Accordingly, positive values in Figure 5.10 indicate an increase in attention levels
when transitioning from a ”fully concentrated” status to another, while negative values
signify a decrease. An observable shift below zero in the box plots related to the ”dis-
tracted” and "heavy-eyed” statuses, suggests a reduction in attention levels compared
to the ”fully concentrated” status. It reveals an overall discernible decrease in atten-
tion levels, calculated from facial expression analysis, when jurors felt distracted or
heavy-eyed compared to when they were fully concentrated. This insight is crucial for
understanding the reliability and validity of the jurors’ responses, acknowledging the

impact of varying concentration levels on their subjective sound quality assessments.
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Figure 5.9: Boxplot charts of attention values for different concentration statuses. Note that
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Figure 5.10: Comparative boxplot charts depicting attention values across various concentra-
tion statuses, with ”fully concentrated” as the baseline

5.2 Results of Physiological Measurement

This section focuses on the findings from the EEG measurement campaign, specifi-

cally examining the effects of acoustic stimuli on the participants’ brain activity.
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5.2.1 Subjective Acoustic Perception Distribution

Upon thorough examination of the averaged ratings derived from the questionnaire
responses, noteworthy distinctions emerged across the three auditory stimuli, and de-
picted in Figure 5.11.

The musical stimulus got the highest scores for both pleasantness and relaxation,
signifying its positive influence on participants. In contrast, road noise received the
lowest ratings in terms of pleasantness and relaxation, possibly reflecting its disruptive
impact on participants’ emotional states. Car noise consistently occupied intermediary
positions in these dimensions.

Moreover, participants consistently perceived road noise as the loudest among the
stimuli, evident from the highest average rating in the quietness/loudness dimension.
Conversely, music was perceived as the least loud, aligning well with its calming and
enjoyable attributes.

These outcomes underscore the diverse impact of auditory stimuli on participants’
subjective experiences, thereby holding implications for comprehending how distinct

sounds may elicit varying reactions in individuals.

Average scores
45
35
2.5

15

0.5
Pleasant Relaxing Loud

M Engine noise M Music M Road noise

Figure 5.11: Subjective questionnaire results overview

5.2.2 EEG-Acoustic Perception Correlation

Broadly, the EEG measurements exhibited meaningful correlations with acoustic
perceptions, specifically relating to the amplification or attenuation of brain wave
power. Elevated delta values were discerned in the right frontal and temporal electrodes
(TP10, AF8) as well as theta TP10 under A1 (Audio 1) exposure, distinguishing it from
the other stimuli. Post-hoc analysis established statistically significant differences in
delta TP10, delta AF8, and theta TP10 between both A1-A2 and A1-A3 conditions
(see Table 5.2 and Figures 5.12, 5.13, and 5.14). Moreover, relative alpha TP10 demon-
strated higher values during A2 (Audio 2) exposure. Notably, a surge in TA alpha was
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evident under A3 (Audio 3) exposure, with TA showing statistical contrasts in the A2-
A3 condition. The subsequent section provides an in-depth analysis of the results. This
comprehensive examination aims to distil key findings, interpret significant patterns,

and offer insights derived from these referenced materials.

Delta Waves and Emotional Experience

Delta waves, as the lowest recorded brain waves in humans, are intrinsically linked
with deep relaxation aspects of restorative sleep. Notably, delta activity has been
noted to hold significance in emotional experiences. The findings by J.L. Walker [69]
establish a correlation between high-delta and high-theta production and responses
to 'unpleasant’ music. Additionally, this study unveils a connection between elevated
delta activity and a state of 'paying little attention’, aligning with the hypothesis that
prevalent delta activity is modulated by perceptions of annoying sounds. Our outcomes
echo this notion, emphasizing that heightened delta activity aligns with perceptions of

annoyance (refer to Figures 5.12 and 5.13b).

5.2.3 Theta Waves and Annoyance

Consistent with the work of Zheng-Guang Li et al. [93], our results showcase an
increase in theta waves in response to annoying sounds. Their findings demonstrated
that theta wave activity escalates as a subjective sense of annoyance intensifies during
noise exposure. This congruence highlights the robust association between theta waves

and the perception of annoyance (refer to Figure 5.13b).

5.2.4 Alpha Waves and Auditory Attentiveness

According to Figure 5.13a, the prominence of alpha activity has been linked to
heightened attentiveness to sounds and a state of pleasant relaxation. Notably, emo-
tionally significant stimuli inherently capture attention. Consequently, the possibility
that participants directed enhanced attention towards the rhythmic auditory stimuli

during musical sound is conceivable [94].

5.2.5 Interplay Between Auditory Context and Brain Activation

In Figure 5.14, contrasts between A2 and A3 audio exposures were revealed for TA
alpha, underscoring a greater right hemisphere brain activation during audio stimulus
processing. The study of functional lateralization in subcortical and cortical auditory
structures supports the notion that interhemispheric asymmetry is contingent upon
acoustic context. However, it is crucial to acknowledge that neither hemisphere can
be deemed certainly dominant in processing individual aspects of audio stimuli. This

notion aligns with the concept of dynamic functional localization, positing that the en-
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tire brain cooperatively engages in every function, due to distributed neuron ensembles
[95].

Table 5.2: Repeated measured ANOVA - Kruskal-Walli’s test results

EEG signal features  (f & uf)4,; (f tu)As  (ftus)As H-statistic p-value

Delta T P9 0.6 £0.07 0.5 +0.08 0.5+ 0.06 7.5 0.001
Delta_AF7 0.6 £0.06 0.5+0.09 0.5+ 0.08 5.1 0.009
Delta_AF'8 0.7 £ 0.06 0.6 £0.08 0.6 £0.09 10.6 0.005
Delta T P10 0.7+ 0.05 0.5 4+0.07 0.5+ 0.06 16.7 < 0.001
Theta AF7 0.24+0.07 0.2 +0.06 0.2 +0.06 3.3 0.04
Theta_AF8 0.3 +0.07 0.3 +0.07 0.24+0.07 5.6 0.005
Theta T P10 0.4 £0.06 0.3 +£0.06 0.3+0.04 11.1 < 0.001
Alpha_AF7 0.4+0.05 0.3+0.05 0.3 +0.04 4.9 0.01
Alpha_AF8 0.4 +0.05 0.4 +0.06 0.3 +£0.06 5.5 0.006
Beta TP10 0.4 +0.03 0.4+0.04 0.4+0.04 4.5 0.01
Gamma T P9 0.1 +£0.06 0.03 + 0.05 0.5 +0.06 3.3 0.04
Gamma T P10 0.1 £0.04 0.05 = 0.05 0.03 +0.04 4.8 0.01
Relative_Delta T P10 0.3 +£0.02 0.3 +0.02 0.3 +0.04 3.6 0.03
Relative_Alpha T P10 0.3+0.02 0.3+0.02 0.3 +0.02 11.9 < 0.001
Relative_Gamma_ T P10 0.04 £0.02 0.03 £0.02 0.01 £0.02 4.1 0.02
T A _Theta —0.04+0.03 —0.024+0.03 0.01 £0.02 3.4 0.04
TA_Alpha —0.06 £0.03 —0.003+£0.03 0.05+0.03 8.3 0.001
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Figure 5.12: Histograms of Dwass-Seel-Critchlow-Fligner Pairwise Comparing Audio 1 and
Audio 2 in terms of delta wave. The ranges above the bars represent the standard
deviation. (a): related to the electrode AF8. (b): related to the electrode TP10.
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Figure 5.13: Histograms of Dwass-Seel-Critchlow-Fligner Pairwise Comparing Audio 1 and
Audio 2 observed in the electrode TP10. The ranges above the bars represent
the standard deviation. (a): relative alpha wave. (b): theta wave.
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Figure 5.14: Histograms of Dwass-Seel-Critchlow-Fligner Pairwise Comparing Audio 2 and
Audio 3 observed in terms of TA alpha. The ranges above the bars represent
the standard deviation.

Closure Discussion

The experimental results represent the dynamic nature of EEG responses, which
exhibit discernible variations corresponding to different auditory inputs. Notably, the
correlation between the acoustic stimuli and the EEG data establishes the feasibility of
employing EEG measurements as a predictive tool for discerning jury responses during
the listening phase of jury testing.

While the potential of EEG as a diagnostic tool for jury testing is promising, it
is imperative to acknowledge certain inherent challenges. Variability in individual re-
sponses, influenced by a range of factors including personal predispositions, the in-
tricate complexity of the human brain, and the potential for subjective experiences
like daydreaming or mind wandering, introduce certain limitations. These intricacies
underscore the necessity for a subtle approach in utilizing EEG data in this context.
Despite the current limitations, the potential to enhance the reliability and precision

of jury testing results is evident. The objective insights derived from EEG data offer a
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valuable complement to traditional assessments, providing a deeper understanding of

the cognitive processes underlying juror decision-making.






Chapter 6

Conclusion

This thesis explored the enhancement of sound quality jury testing results through
the integration of physiological and biometric measurements, specifically focusing on
EEG and facial expression analysis of jurors during sound quality assessments. The

study was structured into four key tests: two preliminary tests and two jury tests.

The preliminary tests, involving 16 and 40 participants respectively, aimed to as-
sess facial expressions in response to audio and audio-visual stimuli. These tests high-
lighted the feasibility of using facial expression analysis tools to predict emotions in-
duced by acoustic stimuli. Notably, the results demonstrated that visual support could
strengthen emotion induction as reflected in facial expressions. The first jury test,
fortified by facial expression analysis, revealed a correlation between facial expressions
and self-reported engagement levels suggesting that facial expression analysis can en-
hance the reliability of jury test results. This method could be particularly useful in
identifying biases or inconsistencies in jurors’ responses, thereby improving the validity

of sound quality assessments.

In the second jury test, involving 43 participants, EEG signals were recorded to an-
alyze the correlation between brainwave patterns and acoustic sensations. The study
discovered distinct patterns in the power spectral densities (PSDs) correlated with var-
ious audio stimuli. Specifically, the delta power in the TP10 and AF8 channels and
Theta TP10 were higher under exposure to annoying audio (Al), suggesting these
brainwaves are modulated by the perception of annoying audio stimuli. Conversely,
relative alpha power was higher during exposure to pleasant sound (A2), and there was
a notable right lateralization of the brain in processing sound content associated with
negative emotions, particularly in the presence of background noise (A3). Accordingly,
the EEG analysis provides insight into the neurological underpinnings of auditory per-
ception. The distinct brainwave patterns associated with different audio stimuli open
avenues for more objective and precise assessments of sound quality, offering a potential

biomarker for these auditory experiences.

69
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Limitations of Emotion Recognition Systems from Facial Expressions: The
application of emotional facial expression recognition technologies in this thesis, while
innovative, encounters inherent limitations. A critical review by Barrett et al. high-
lights a significant distinction: these technologies are more adept at detecting facial
expressions than deciphering the underlying emotions. This discrepancy arises due to
the multifaceted nature of emotional expression, which is influenced by cultural, situ-
ational, and individual variations. A universal expression of emotions, such as smiling
for happiness or frowning for anger, does not necessarily hold true across different cul-
tures or individuals. This variability challenges the generalization of facial expression
recognition results, as noted in the referenced study [56]. Additionally, in the context
of sound quality evaluation, jurors may maintain neutral facial expressions, compli-
cating the identification of emotional responses to the sound. This study encountered
such challenges, reflecting the findings of asymmetrical emotional responses to different
affective media [1]. These limitations underscore the complexity of interpreting emo-
tions from facial expressions and the need for caution in applying these technologies

universally.

Advantages and Limitations of Using EEG in Sound Quality Jury Testing:
The use of wearable EEG devices in this study offered non-invasive and comfortable
monitoring of jurors’ brain activity, providing an objective complement to subjective
assessments. However, this approach is not without its limitations. Wearable EEG
devices, while advantageous for their non-invasive nature, suffer from limited spatial
resolution compared to more conventional EEG setups. This limitation can affect the
precision and reliability of the data collected. External factors like noise and electro-
magnetic interference can also impact the accuracy of EEG measurements. Further-
more, individual differences in baseline brain activity and the variability in electrode
placement add another layer of complexity, making it difficult to establish uniform
benchmarks for EEG data interpretation. The practical aspect of integrating EEG
with sound quality assessments also posed challenges. Ensuring that the earphone and
EEG device were both comfortable and non-intrusive was crucial to maintain the jurors’
concentration and deliberation effectiveness. This aspect of the study highlights the

need for careful selection and integration of technology in jury testing environments.

Future Research

This thesis lays the groundwork for the innovative use of EEG technology in jury
tests for sound quality assessment. Future research could be done in addressing the
identified limitations and challenges of integrating EEG into this context. Continuous
refinement of EEG technology, informed by ongoing feedback, research findings, and
technological advancements, is essential. This would involve enhancing the spatial

resolution of wearable EEG devices, minimizing interference from external factors, and
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developing more consistent benchmarks for EEG data interpretation. Future studies
could also explore ways to integrate EEG data with other biometric measures to provide
a more comprehensive understanding of jurors’ responses to sound quality.

Another avenue for future research is the improvement of reliability and validity
in emotion recognition from facial expressions. This could be achieved by employing
more context-specific datasets that take into account cultural, situational, and indi-
vidual variability in emotional expression. An advanced application of the attention
recognition system, currently used as a boolean value, could be developed to provide a
more nuanced range between 0 and 1. Additionally, integrating a fuzzy filter to handle
uncertainties arising from gaze direction and the degree of face rotation could further
refine the accuracy of emotion recognition.

Despite the limitations, this study has demonstrated the potential of combining
biometric measurements with jury tests in sound quality assessment. Future research
should explore scenarios where a large sample of users is available or where specific
sounds elicit distinct emotional states. This would allow for more robust data to ob-
jectively evaluate jurors’ responses, reducing biases such as distraction. Moreover, this
research opens new avenues in integrating sound quality into product design, empha-
sizing the need to consider the emotional responses of customers. This approach not
only enhances the user experience but also offers valuable insights for designers and

manufacturers in tailoring products to meet user preferences and expectations.
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