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a b s t r a c t 

This manuscript describes a methodology for measuring the first-order Volterra kernel of a discrete-time 

nonlinear system, that is, the impulse response for small signal amplitudes of the nonlinear system. In 

the proposed approach, multiple linear identifications are performed using the same excitation signal 

multiplied by different gains, and the first-order Volterra kernel is obtained from a polynomial interpo- 

lation of the measured values. Any linear identification method proposed in the literature can be used 

with this approach. The proposed approach is a multiple variance (MV) method that, in contrast to all 

other MV methods, aims to estimate one of the kernels of the Volterra model, the first-order kernel, with 

high precision. The manuscript discusses the proposed methodology, determines the mean square devia- 

tion (MSD) due to noise of the measured coefficients, and the value of the optimal gains that minimize 

the MSD. Remarkably, it is shown in the manuscript that the optimal gains assume only a reduced set 

of values that depends on the order of nonlinearity. The optimal number of measurements is also de- 

termined. The conditions under which the proposed methodology is more convenient than the classical 

linear methods are discussed. The experimental results demonstrate the proposed methodology and its 

strengths. 

© 2023 The Authors. Published by Elsevier B.V. 
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. Introduction 

Impulse response measurement is a transverse tool used in 

any fields of technology [1–14] . The impulse response fully char- 

cterizes any linear time-invariant system. Often, nonlinearities af- 

ect the measurement of the impulse response. These nonlineari- 

ies could be intrinsic to the system under measurement, which 

ould be mildly nonlinear rather than linear, or could be generated 

y the measurement system itself when taken to its limit. For ex- 

mple, in the measurement of the room impulse response, nonlin- 

arities have been observed at high reproduction volumes, caused 

y the saturation of the power amplifier or by nonlinearities aris- 

ng in the loudspeaker. In electrodynamic loudspeakers, nonlinear- 

ties can arise because of the nonlinear stiffness of the suspensions 

r nonuniform magnetic fields [15] . In the presence of nonlineari- 
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ies, the impulse response depends on the amplitude of the input 

ignal [16,17] . Engineers and technicians want to determine the im- 

ulse response for low signal amplitudes, which is the first-order 

ernel of the Volterra expansion of the system. Most impulse re- 

ponse measurement methods proposed in the literature consider 

he measurement of linear systems and ignore nonlinearities [18–

9] . Therefore, they are affected by the nonlinearity of the mea- 

urement system. Motivated by this problem, we propose a novel 

ethod for the measurement of impulse response that is robust 

owards nonlinearities. 

One of the early approaches to impulse response measurement 

irectly applied the definition of impulse response and measured 

he system by applying a pulse signal. In acoustics, gunshots, bal- 

oon explosions, and clappers have been used to directly record 

mpulse responses. The same approach was used by generating a 

ulse using electronic means [18] . To contrast the effect of noise, 

he response to periodic pulse excitation signals can be averaged. 

he repetition period should be sufficiently large to avoid aliasing 

rrors. In the presence of additive Gaussian noise, the signal-to- 

oise ratio (SNR) improves by 3 dB each time the number of av- 

raged periods doubles. The main limitation of a pulse excitation 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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ignal is its low power. The maximum amplitude of the pulse is of- 

en limited by the measurement system, which can saturate high- 

mplitude pulses or can even be damaged by them. 

One of the most successful approaches for impulse response 

easurement was proposed by Schroeder, and is based on the use 

f maximal length sequence (MLS) excitation [19] . An MLS is a bi- 

ary pseudo-noise periodic sequence with period 2 n − 1 and n ∈ N 

30] . MLSs have a white broadband spectrum and almost perfect 

utocorrelation, that is, a periodic pulse train apart from a small 

ffset, which is negligible for large periods. With MLSs, the im- 

ulse response is identified using the cross-correlation method by 

ross-correlating the measured output with the MLS input. Noise 

ejection can be improved by averaging the different periods of 

LS. In the presence of nonlinearities, MLSs generate visible dis- 

ortion artifacts, often in the form of spikes that overlap with the 

easured impulse response [31] . In reality, these spikes are scaled 

eplicas of the same impulse responses. In fact, they originate from 

he following property of the MLS: the product of an MLS m (n )

ith a delayed version of the same MLS m (n − i ) is again the

ame MLS delayed by a different quantity m (n − j) [32] . To con-

rast in part the effect of nonlinearities, inverse repeated MLSs 

IRMLSs) have been proposed and are obtained by inverting the 

ign of any odd-index sample in an MLS [33] . It has been proven

n the literature that IRMLSs are immune to even order nonlinear- 

ties [20] . Other sequences similar to MLSs are the perfect periodic 

equences (PPSs) used for linear system identification [21,34,35] . A 

PS for a linear system is a periodic sequence with perfect auto- 

orrelation, that is, a periodic pulse train. Thus, by using a PPS in- 

ut signal, the impulse response can be measured with the cross- 

orrelation approach. The PPSs for linear system identification have 

o specific protection against nonlinearities. Moreover, PPSs are 

ot binary sequences like MLSs; however, ternary PPSs have been 

roposed in the literature [36–38] . Odd-perfect sequences (ODD- 

SEQs) have also been proposed [22] . They are symmetrical, quasi- 

inary sequences, and except for a leading zero, all samples as- 

ume only two values { +1 , −1 } . Moreover, their period is formed

y two semi-periods, one the opposite of the other, and thus they 

llow identification of the impulse response immune to even order 

onlinearities as the IRMLSs. 

Currently, the most successful technique for impulse response 

easurement is based on exponential sweep excitation. This tech- 

ique has been developed almost simultaneously by different re- 

earchers [39,40] and was later improved by introducing the syn- 

hronized swept technique [41] . Measurements with exponential 

weeps are appreciated for their robustness to nonlinearities. It 

as shown in Farina [39] that if the measurement system can 

e modeled as a Hammerstein filter, that is, a memoryless non- 

inearity followed by a linear filter, the artifacts originating from 

he nonlinear terms can be segregated at negative times and win- 

owed out. In reality, it was recently shown that the nonlinear ker- 

els of the Hammerstein filter still affect the measures with ex- 

onential sweeps of Farina [39] , Müller and Massarani [40] , No- 

ak et al. [41] unless the measurement is corrected using the in- 

ormation of higher-order kernels [42] . Moreover, nonlinearities 

re rarely memoryless, and research has shown that nonlinearities 

ith memory also alter measurements with exponential sweeps 

43,44] . 

Many other measurement methods have been proposed for 

he impulse response measurement of linear systems without tak- 

ng any particular measure to prevent the effect of nonlineari- 

ies. It is worth mentioning: i) the time-stretched pulse techniques 

23,24] , using a pulse expanded in time; ii) the measurements 

ased on Golay codes [25] , where the system is measured twice 

sing sequences taken among the Golay codes; iii) the time delay 

pectroscopy [26,27] that uses a linear sweep excitation; iv) the 

tepped sine technique, where the excitation signal is composed of 
2

ure tones whose frequency increases in steps [28] ; v) the perfect 

eriodic sweeps [29] , which are perfect periodic sequences con- 

tructed in the frequency domain with an ideally flat magnitude 

esponse and linear group delay. 

More recently, different techniques have been proposed for the 

obust measurement of impulse response in the presence of non- 

inearities. These techniques directly model the measurement sys- 

em as a nonlinear filter, and attempt to estimate its linear com- 

onent. A first approach was proposed in Carini et al. [45] , Carini 

t al. [46 , 47 , 48] , where the measurement system was modeled as a

egendre nonlinear (LN) filter [45,46] or a Wiener nonlinear (WN) 

lter [45,46] . The LN and WN filters are orthogonal polynomial 

lters. Their basis functions are orthogonal for a certain distri- 

ution of input samples (uniform for the LN filters and Gaussian 

or the WN filters). It was shown that orthogonal polynomial fil- 

ers admit PPSs, which in this context are periodic sequences that 

uarantee perfect orthogonality of the basis functions over a pe- 

iod [49] . Using a PPS for LN or WN filters, it is possible to mea-

ure the linear part of the system under measurement, that is, the 

rst-order kernel, while simultaneously removing the influence of 

ther nonlinear kernels. Later in Carini et al. [50] , orthogonal peri- 

dic sequences (OPSs) were introduced and applied to the robust 

easurement of impulse response in the presence of nonlineari- 

ies [51,52] . The OPSs allow estimating a broad class of nonlinear 

lters, the functional link polynomial (FLiP) filters, which include 

any popular nonlinear filters, including well-known Volterra fil- 

ers. Given a persistently exciting periodic input sequence, an OPS 

s a periodic sequence that allows estimating one of the diagonals 

f the FLiP filter using the cross-correlation method. In impulse re- 

ponse measurements, the OPS is used to estimate the first-order 

ernel of the Volterra filter. Compared to PPSs, OPSs can be more 

asily developed, and for the same input sequence, OPSs suitable 

or identifying different nonlinear filters can be obtained. However, 

PSs are more sensitive to noise than PPSs. 

This study proposes a novel approach for the measurement of 

he first-order Volterra kernel, that is, the impulse response for 

ow amplitudes of a nonlinear system. This approach is based on 

he use of classical methodologies applied to measure the impulse 

esponse of linear systems; however, the excitation signal is now 

pplied multiple times with different gains. Any linear impulse re- 

ponse measurement method can be applied; for example, any of 

he previously mentioned methods [18–29,39–41] . The first-order 

ernel is extracted using polynomial interpolation from multiple 

easurements performed with different gains. 

The approach proposed in this paper was briefly introduced in 

 conference paper [53] . The theory has been improved by di- 

ectly exploiting the symmetric distribution of gains, as explained 

n Section 3 . The manuscript determines the expression of the 

ean square deviation (MSD) of the measured impulse response 

amples for additive Gaussian noise. The optimal value of the gains 

hat minimize the MSD is also found. It is shown that even when 

onsidering a large number of measurements, the optimal gains 

ssume only a reduced number of values, which depends on the 

rder of nonlinearity. Moreover, the optimal number of measure- 

ents is obtained. The optimal values of the gains and number 

f measurements are reported in tables to facilitate their appli- 

ability in common practice. This paper also discusses when the 

roposed method is convenient with respect to multiple mea- 

urements performed at low input powers to avoid the effect of 

onlinearities. 

The proposed approach belongs to the class of multiple vari- 

nce methods, in which the input signal is applied multiple times 

ith different variances, that is, powers. Multiple variance tech- 

iques have already been proposed in the literature [54] , but for 

urposes different from those presented in this paper [55] . The ap- 

roach in Orcioni [54] used multiple variances to contrast the lo- 
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ality of identification when a Wiener model was identified using 

he Lee–Schetzen method. With a single input variance, the model 

epresents well the behavior of the nonlinear system only for input 

owers that are close to the chosen value. To expand the validity 

f the Wiener model, in Orcioni [54] , different kernels were es- 

imated with different input signal variances, thereby minimizing 

he mean-square error between the output of the system and that 

f the model. In contrast, in this study, the multiple variance ap- 

roach is used to estimate with high accuracy a single kernel of 

he nonlinear model, the first-order kernel, and polynomial inter- 

olation is used for this purpose. 

The main original contributions of the manuscript are the fol- 

owing: 

• This study discusses a novel multiple-variance approach for im- 

pulse response measurements in the presence of nonlinearities. 
• This approach determines the impulse response for small sig- 

nals, that is, the first-order Volterra kernel of the system under 

measurement. 
• This method is based on classical linear techniques with an ex- 

citation signal applied multiple times with different gains. 
• Any classical linear identification technique can be used in 

combination with the proposed approach. 
• The MSD of the measured first-order Volterra kernel was deter- 

mined and used to determine the optimal values of the gains 

and number of measurements. 
• It was shown that the optimal values of the gains assume a 

reduced number of values, which depends only on the order of 

the measured nonlinear system. 
• The optimal values of gain and number of measurements are 

reported in tables to facilitate their applicability in common 

practice. 
• It is discussed when the proposed approach is convenient with 

respect to multiple measurements performed at a low excita- 

tion power to avoid nonlinearities. 

In contrast to other approaches for the robust measurement of 

he impulse response in the presence of nonlinearities, for exam- 

le, Carini et al. [45] , Carini et al. [46 , 47 , 48 , 51 , 52] , the proposed

pproach requires only mild knowledge of the order of nonlin- 

arity of the system, and applies classical linear techniques for 

he measurement. Thus, it is immediately applicable to current 

nstrumentation because only the input gain has to be changed. 

he main drawback is the requirement to perform the measure- 

ent multiple times to extract the impulse response for low signal 

mplitudes. 

Recent applications involving nonlinear systems that could ben- 

fit from the proposed approach can be found in Forti et al. [53] ,

oinila and Messo [56] , Kannan and Meyer [57] , Von Hauff [58] , 

iucci [59] , Altan and Hacıo ̆glu [60] , Tamilselvi et al. [61] , Med-

ings et al. [62] , Gharbi et al. [63] , Chen et al. [64] . 

The remainder of this paper is organized as follows. 

ection 2 briefly reviews the theory of Volterra filters. 

ection 3 presents the proposed method and computes the MSD 

f the measured samples for additive Gaussian noise. Section 4 de- 

ives the optimal value of the gains and number of measurements. 

ection 5 discusses when the proposed method is convenient with 

espect to a classical linear identification performed at a low input 

ower to avoid nonlinearities. Section 6 presents the experimental 

esults of the measurement of the first-order kernel of a real 

evice under various nonlinear conditions. Section 7 provides 

oncluding remarks. 

The following notation is used throughout the paper: calli- 

raphic letters denote operators, E[ ·] is the expectation, �·� is the 

rst integer greater than the argument, bold lowercase letters de- 

ote arrays, and bold uppercase letters denote matrices. 
3 
. Volterra filters 

Volterra filters are polynomial filters derived from double trun- 

ation with respect to the order and memory of the Volterra series 

17] . According to the Stone-Weierstrass theorem, they can arbi- 

rarily well approximate any causal, discrete-time, time-invariant, 

nite-memory, continuous nonlinear system, whose input-output 

elationship can be expressed by a nonlinear function f of the last 

nput samples: 

 (n ) = f [ x (n ) , x (n − 1) , . . . , x (n − N + 1)] , (1)

here x (n ) is the n th sample of the input signal x and belongs to

 compact in R , y (n ) is the n th sample of the output signal y , and

is the filter memory length. 

A Volterra filter of order K and memory N has input-output re- 

ationship 

 (n ) = 

K ∑ 

k =0 

H k (x )(n ) , (2) 

here H k (x ) is a homogeneous polynomial operator of order k and 

emory N applied to the input signal x and H k (x )(n ) is its n th

ample. Accordingly, H 0 (x )(n ) for all n is a constant h 0 ∈ R . H 1 (x )

s a linear operator written as 

 1 (x )(n ) = 

N−1 ∑ 

i =0 

h 1 ,i x (n − i ) , (3) 

here h 1 ,i are the coefficients of the first-order Volterra kernel, 

lso known as the linear kernel. H 2 (x ) is a quadratic operator that 

n the triangular form is [17] 

 2 (x )(n ) = 

N−1 ∑ 

i 1 =0 

N−1 ∑ 

i 2 = i 1 
h 2 ,i 1 ,i 2 x (n − i 1 ) x (n − i 2 ) , (4)

here h 2 ,i 1 ,i 2 are coefficients of the second-order Volterra kernel. 

n general, the k th order operator H k (x ) has the triangular form: 

 k (x )(n ) = 

N−1 ∑ 

i 1 =0 

N−1 ∑ 

i 2 = i 1 
. . . 

N−1 ∑ 

i k = i k −1 

h k,i 1 , ... ,i k 
x (n − i 1 ) · . . . · x (n − i k ) , (5)

here h k,i 1 , ... ,i k 
are the coefficients of the k th order Volterra kernel. 

The method discussed in the next section relies on the homo- 

eneity property of operator H k (x ) . If the input is multiplied by 

actor A , then 

 k (Ax ) = A 

k H k (x ) . (6) 

oreover, we exploit the fact that the odd order homogeneous op- 

rators are odd, and the even order ones are even, that is, 

 2 k (−x ) = H 2 k (x ) , (7) 

 2 k +1 (−x ) = −H 2 k +1 (x ) . (8) 

. The polynomial multiple variance method 

In this Section, we first introduce the proposed method and 

hen study the influence of noise on measurements. 

.1. The proposed method 

Assume that we are coping with a nonlinear system that can be 

odeled as a Volterra filter of order K, memory N, plus noise: 

 = H(x ) + ν = 

K ∑ 

k =0 

H k (x ) + ν, (9) 
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here H is the Volterra operator defined by (2) , ν is an output 

dditive noise signal, and the time notation (n ) has been dropped 

or compactness. We want to measure the coefficients of the linear 

ernel h 1 ,i for i = 0 , . . . , N − 1 , which correspond to the system im-

ulse response samples for small signals (when the constant term 

 0 is neglected). 

Let us consider any of the linear identification approaches pro- 

osed in the literature. Each of these approaches defines a linear 

perator L i from the space of sequences to R , such that for the

pecific input sequence x and linear output sequence y = H 1 (x ) , 

 i [ H 1 (x )] = h 1 ,i . (10) 

xamples of the linear operator L i are reported in Appendix A . 

For compactness, in what follows L i [ H 1 (x )] is simply denoted 

s L i H 1 (x ) exploiting the concatenation of the operators. 

Since L i is linear, when the operator is applied to (9) , 

 i (y ) = L i H(x ) + L i (ν) = 

K ∑ 

k =0 

L i H k (x ) + L i (ν) . (11)

nd in the considered conditions (11) does not equal to h 1 ,i both 

or the presence of the noise ν and of the nonlinear terms H k (x ) ,

or k � = 1 . 

In the following, a multiple variance methodology is adopted to 

easure h 1 ,i : the input signal x is applied multiple times, multi- 

lied by different factors A m 

, and the corresponding output signals 

 m 

are used to estimate h 1 ,i . For the homogeneity property in (6) ,

hen x is multiplied by A m 

, the output y m 

becomes 

 m 

= H(A m 

x ) + νm 

= 

K ∑ 

k =0 

A 

k 
m 

H k (x ) + νm 

, (12)

here νm 

is the additive output noise of y m 

. By applying the linear 

perator L i to Eq. (12) , we obtain 

 i (y m 

) = 

K ∑ 

k =0 

A 

k 
m 

L i H k (x ) + L i (νm 

) , (13)

hich, apart from the noise term, is a polynomial in A m 

with the 

oefficients L i H k (x ) . For a sufficiently large number of gains A m 

,

t is possible to estimate the terms L i H k (x ) for k = 0 , . . . , K, with

olynomial fitting, and thus obtain a measure of h 1 ,i from the es- 

imate of L i H 1 (x ) . 

Different strategies can be followed to choose the gains A m 

: 

hey can be asymmetrically or symmetrically distributed around 

ero. The symmetric distribution has many advantages: it mini- 

izes the condition number of the Vandermonde matrix of the 

odes involved in polynomial fitting [65,66] . It also allows us to 

implify the estimation problem by eliminating all even-order non- 

inear terms, as shown shortly. Thus, in the following, we assume 

hat the input signal x is applied 2 M times with gains A m 

, −A m 

for

 = 1 , . . . , M. 

Since H k (x ) is odd for k odd and even for k even, when x is

ultiplied by −A m 

, the system output y −m 

is: 

 −m 

= H(−A m 

x ) + νm 

= 

K ∑ 

k =0 

(−1) k A 

k 
m 

H k (x ) + νm 

. (14)

he estimation of h 1 ,i can be simplified by forming the terms 

 m 

= 

L i (y m 

) − L i (y −m 

) 

2 

= 

= 

� K/ 2 � ∑ 

r=1 

A 

2 r−1 
m 

L i H 2 r−1 (x ) + 

L i (νm 

) − L i (ν−m 

) 

2 

(15) 

or m = 1 , . . . , M and by exploiting the cancellation of even-order 

erms. Note that for K even, the polynomial fitting of (13) requires 

t least K + 1 measures with different gains A m 

, because we have
4 
 + 1 coefficients to fit. On the contrary, the polynomial fitting of 

15) can be performed with only K measures, since we have � K/ 2 �
oefficients to fit and we need two measures for each term d m 

. 

Define the M × 1 vectors 

 = [ d 1 , d 2 , . . . , d M 

] T , (16) 

= [ 
L i (ν1 ) − L i (ν−1 ) 

2 

, 
L i (ν2 ) − L i (ν−2 ) 

2 

, . . . , 

L i (νM 

) − L i (ν−M 

) 

2 

] T , (17) 

he � K/ 2 � × 1 vector 

 = [ L i H 1 (x ) , L i H 3 (x ) , . . . , L i H R (x )] T , (18)

ith R = 2 � K/ 2 � − 1 , and the � K/ 2 � × M Vandermonde-like matrix

 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 1 . . . 1 

A 1 A 2 . . . A M 

A 

3 
1 A 

3 
2 . . . A 

3 
M 

. . . 
. . . 

A 

R 
1 A 

R 
2 . . . A 

R 
M 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (19) 

Writing (15) for m = 1 , . . . , M in matrix form results in 

 = A 

T h + ν. (20) 

rovided M ≥ � K/ 2 � and A A 

T is invertible, 

 = ( A A 

T ) −1 A d − ( A A 

T ) −1 A ν. (21) 

emark 1. Neglecting the noise effect, h can be estimated with 

 

 = ( A A 

T ) −1 A d , (22) 

nd thus h 1 ,i can be evaluated as 

 

 1 ,i = e T 1 h = e T 1 ( A A 

T ) −1 A d , (23) 

ith e 1 the first column of the � K/ 2 � × � K/ 2 � identity matrix. 

.2. The effect of noise on the measurement 

Provided the nonlinear system has an order lower than or equal 

o K, comparing Eq. (21) with (22) it can be observed that in noise

bsence, i.e., for ν = 0 , the measure in (23) perfectly estimate h 1 ,i .

n the contrary, when ν � = 0 the measure is affected by an error, 

i = ̂

 h 1 ,i − h 1 ,i = e T 1 ( A A 

T ) −1 A ν, (24) 

nd the mean square deviation (MSD) of the estimated coefficient 

s 

SD = E 
[
( ̂  h 1 ,i − h 1 ,i ) 

T ( ̂  h 1 ,i − h 1 ,i ) 
]

= e T 1 ( A A 

T ) −1 A E[ ννT ] A 

T ( A A 

T ) −1 e 1 . (25) 

emark 2. In the hypothesis that the noise terms L i (νl ) , for l =
1 , . . . , ±M, are uncorrelated with each other and are Gaussian 

istributed with zero mean and variance σ 2 
ν , the MSD simplifies 

o 

SD = 

1 

2 

e T 1 ( A A 

T ) −1 e 1 σ
2 
ν . (26) 
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Fig. 1. Optimal value of MSD /σ 2 
ν vs. M for � K/ 2 � different A m values (continuous 

lines) and for M different A m values (dashed lines). 
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. The optimal gains 

It is clear from (19) to (26) that the choice of gains A m 

in-

uences the resulting MSD, and that there must exist an optimal 

hoice of gains that minimize it. 

Given the order K of the nonlinear model, the number M of 

ositive gains, and the maximum gain conventionally set to 1, the 

ptimal gains A m 

are those that minimize the nonlinear function 

(A 1 , . . . , A M 

) = 

MSD 

σ 2 
ν

= 

1 

2 

e T 1 ( A A 

T ) −1 e 1 , (27) 

ubject to 0 < A m 

≤ 1 for m = 1 , . . . , M − 1 and A M 

= 1 . Note that

he same function is obtained for both K = 2 k + 1 and K = 2 k + 2 ,

ith k ∈ N , and thus, the same set of gains is optimal for two con-

ecutive orders: odd and even. Any tool for the minimization of 

ultiple variable nonlinear functions can be used to minimize J. 

or example, in MATLAB® the fminsearch and fmincon func- 

ions can be used for this purpose. From our initial experiments 
Fig. 2. Positive optimal gains A m vs. M for different order K. The asterisk indic

5 
n the minimization of (27) , it appeared immediately clear that 

he optimal gains tend to cluster around a limited number of val- 

es. To reduce the number of different gains, in Forti et al. [53] ,

he optimal values of A m 

were quantized before their use in iden- 

ification. Later, we realized that the positive optimal gains cluster 

round exactly � K/ 2 � values. Moreover, we observed that if, in the 

inimization of (27) , we impose that the M gains A m 

assume at 

ost � K/ 2 � different values, the optimal J is always equal to or 

ower than the value obtained considering M different gains. 

As a matter of fact, Fig. 1 shows the minimum value of the cost 

unction in (27) for different orders K versus the number of posi- 

ive gains M both in case of � K/ 2 � gains and of M different gains.

ote that the curves for M different gains were obtained by per- 

orming, for each K and M, 10,0 0 0 runs of the optimization algo- 

ithm starting from a random initialization of the gains in the in- 

erval [0 , 1] and selecting the minimum value. Clearly, for low K

nd M, the continuous and dashed curves coincide. In contrast, for 

arge K and M, the optimization with M different values is always 

uboptimal. 

emark 3. The results of Fig. 1 indicate that � K/ 2 � gains are suffi-

ient to optimize (27) . 

Clearly, when M > � K/ 2 � some gain will be used multiple times,

.e., multiple measurements shall be performed with the same 

ain. 

Fig. 2 shows the optimal value of the gains for different orders 

from 3 to 10 and for M ranging from 1 to 50 (for K = 1 or 2,

e have only one value for the gain and A m 

= 1 for all m ). The

sterisk indicates that the gain has been selected multiple times 

nd the circle only one time. The repetitions favor the lowest gains, 

s expected, because the measurements at the lowest gains are the 

ost affected by noise. The continuous curves in Fig. 1 and the 

ptimal gains in Fig. 2 were obtained by optimizing (27) for any 

ossible combination of repeated gains and selecting the optimal 

olution. 

emark 4. For large M, the continuous curves in Fig. 1 decrease by 

 dB for any doubling of M, i.e., the MSD reduces by 3 dB for any

oubling of the data. 
ates the gain has been selected multiple times, the circle only one time. 
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Fig. 3. Optimal value of MSD /σ 2 
ν vs. M for � K/ 2 � different A m values (continuous 

lines) and 3 dB slope support curves (dashed lines). 
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Table 1 

Optimal value of M and optimal positive gains A m with their multiplicity for a 

1 dB difference from the 3 dB slope line. 

K M A m Multiplicy 

1, 2 1 1.0000 1 

3, 4 3 0.5459 2 

1.0000 1 

5, 6 5 0.3411 3 

0.8491 1 

1.0000 1 

7, 8 7 0.2470 4 

0.6670 1 

0.9235 1 

1.0000 1 

9, 10 9 0.1922 5 

0.5419 1 

0.7989 1 

0.9523 1 

1.0000 1 
This is the same MSD reduction achieved by doubling the pe- 

iod of the MLS, the PPS, or the length of the exponential sweep. 

his property can be better appreciated from Fig. 3 , where a loga- 

ithmic scale was used on the X -axis, and M ranges from 1 to 50.

he dashed lines are the 3 dB slope support lines, and they overlap 

ith the continuous curves for large M. This property inspires the 

ollowing criterion for the optimal choice of M: 

For each K choose the value of M that reaches the 3 dB slope 

line apart from a dB fraction. 

The reason for this rule is that we can achieve the same MSD 

mprovement obtained by increasing M beyond this value, by sim- 

ly increasing the period or length of the sequence used in the 

dentification. 

emark 5. Table 1 provides for each K the optimal value of M ac- 

ording to this rule and the corresponding optimal positive gains 

 m 

with their multiplicity for a 1 dB difference from the 3 dB slope

ine. Table 2 provides the same information for a 0.5 dB difference. 

. Discussion 

A natural question is when the proposed PMV method is more 

onvenient than classical linear methods. An intuitive answer is 

hat this depends on the level of nonlinearity. If the system under 

easurement, even at the highest input amplitude, has a very mild 

onlinearity, so mild that its effect on the measurement with the 

perator L i is negligible in comparison to the noise effect, the pro- 

osed approach would not be necessary. In contrast, for stronger 

onlinearities, we must expect the method to perform better than 

tandard approaches. The effect of the nonlinearity depends on the 

mplitude of the input signal. According to (13) , by reducing the 

mplitude of the input signal x by a factor A m 

, the influence of

he nonlinear terms H k (x ) for k = 2 , . . . , K is reduced by at least a

actor A 

2 
m 

. Thus, another possible way to measure the impulse re- 

ponse is to scale x by a factor A sufficiently small to neglect the

ffect of nonlinearities and average the results of multiple mea- 

urements to compensate for the reduced SNR ratio. For the same 

mount of data, that is, measurements, we determine in the fol- 

owing when the PMV method should be preferred over multiple 

veraged measurements at a single low amplitude A . For this pur- 

ose, we compare the MSD of the two methods. The MSD of the 

MV method is reported in (26) and is indicated by MSD in 
PMV 

6 
his section. It is shown in Appendix B that by averaging 2 M mea- 

urements performed with the operator L i and a sufficiently low 

mplitude input signal Ax , the MSD is 

SD Av = 

σ 2 
ν

2 MA 

2 
, (28) 

here σ 2 
ν is the variance of the noise terms L i (νm 

) . 

According to (26) and (28) , MSD PMV ≤ MSD Av for all A satisfying 

he following inequality, 

 ≤ ˆ A = 

√ 

1 

M e T 
1 
( A A 

T ) −1 e 1 
. (29) 

ccording to (29) , the PMV method should be preferred whenever 

he input signal has to be scaled by a factor lower than 

ˆ A to neglect

he effect of nonlinearities. 

emark 6. Table 3 provides the value of ˆ A for the optimal values 

f M and gains A m 

of Tables 1 and 2 . For orders K ≤ 6 , i.e., for the

ost commonly used orders, ˆ A presents large values and the PMV 

ethod is often advantageous even for very mild nonlinearities. 

Measuring the first-order Volterra kernel using the proposed 

pproach requires some initial choice. First, we must choose a lin- 

ar impulse response measurement method: any classical approach 

an be applied. Then, the impulse response length must be de- 

ermined. This is typically achieved through trial-and-error proce- 

ure or by exploiting the experience of the researcher/technician 

erforming the measurement. An important choice is the order of 

onlinearity we assume to cope with. To determine the order of 

onlinearity, the authors suggest performing harmonic analysis at 

he maximum planned input power. The highest relevant harmonic 

etermines the order of nonlinearity K . Chosen K , the number of 

easurements to be performed and the input gain to be used in 

ach measurement are reported in Tables 1 and 2 . The gains are 

ormalized and gain 1.0 corresponds to the maximum input power 

onsidered. The next section presentes some experimental results 

ollowing these guidelines. 

. Experimental results 

We consider the identification of a real nonlinear device, that is, 

 Behringer MIC100 vacuum tube preamplifier. Acting on the gain 

otentiometer of the preamplifier, it is possible to create differ- 

nt nonlinear scenarios characterized by different distortion levels. 

n the experiment, 17 different settings of the gain potentiometer 

ere considered, and they are indicated as setting 0 to 16 in the 

gures. At different settings, we have different gains and distortion 
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Table 2 

Optimal value of M and optimal positive gains A m with their multiplicity for a 

0.5 dB difference from the 3 dB slope line. 

K M A m Multiplicy 

1, 2 1 1.0000 1 

3, 4 4 0.5351 3 

1.0000 1 

5, 6 6 0.3320 4 

0.8421 1 

1.0000 1 

7, 8 9 0.2366 6 

0.6560 1 

0.9226 1 

1.0000 1 

9, 10 12 0.1823 8 

0.5307 1 

0.7971 1 

0.9518 1 

1.0000 1 

Table 3 
ˆ A for the values of K and M reported in Tables 1 and 2 . 

K M MSD PMV 

σ 2 
ν

ˆ A 

1, 2 1 0.5 1 

3, 4 3 1.79 0.30 

3, 4 4 1.22 0.32 

5, 6 5 3.00 0.18 

5, 6 6 2.34 0.19 

7, 8 7 4.26 0.13 

7, 8 9 3.03 0.14 

9, 10 9 5.58 0.10 

9, 10 12 3.78 0.11 
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evels. Figure 4 shows the second, third, and total harmonic distor- 

ions at different settings on a sinusoidal signal having the same 

ower as the test signals with the highest power considered in the 

xperiments. 

Different test signals were applied to the preamplifier, and the 

orresponding outputs were recorded at a 44 100 Hz sampling fre- 

uency. Specifically, the test signals are 

• a MLS with period 16,383, 
• an ODD-PSEQ with semi-period 16,382, 
• an exponential sweep (ES) with length 16,384. 
• an OPS input sequence with period 2,097,152. 

The ODD-PSEQs are sequences with perfect autocorrelation (a 

ulse train), whose period is composed of two semi-periods, one 

he opposite of the other. They are particularly suited to the PMV 

ethod because each period allows one to obtain two measures 

ith opposite gains. The exponential sweep was generated as in 
ig. 4. Second, third, and total harmonic distortion of the MIC100 preamplifier at 

he different settings. 
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7

ovak et al. [41] , and sweeps between 18.79 Hz and 20,218 Hz. 

he initial and final frequencies have been optimized to obtain a 

equence that starts and ends with a zero sample. 

The OPS input sequence, which has samples with a Gaussian 

istribution, is used to obtain a good reference for the measured 

mpulse response to compare the different methods. It has longer 

eriod than the other sequences and was played with a power 

0 dB lower than the maximum power used for the other test sig- 

als. For this input, an OPS suitable for identifying the first-order 

ernel of a Volterra filter of order 3, memory length 128, and di- 

gonal number 5 was developed according to Carini et al. [50] and 

as used to estimate the reference impulse response for the sys- 

em under test. Protection until the third order, combined with the 

ow power of the input sequence, confers strong immunity against 

onlinearities to the OPS. Its long period also guarantees robust- 

ess against noise, resulting in a good reference for other test sig- 

als. 

MLS, ODD-PSEQ, and ES were applied multiple times with dif- 

erent gains, considering the same power for the different se- 

uences. In particular, the gains in Table 2 for orders K = 2 , 4,

nd 6 were considered to perform identification using the PMV 

ethod. To allow comparison of the same amount of data, for 

ach gain, 12 repetitions of the periodic or sweep sequence were 

ecorded. The impulse response was identified for each of the 

2 recorded sequences. As shown in Appendix A , with MLSs and 

DD-PSEQs, identification is based on cross-correlation, and with 

Ss, it is based on deconvolution. The measurements were then 

sed for PMV identification with orders K = 2 , 4, and 6. Accord- 

ng to Table 2 , they require 2, 8, and 12 measurements, respec- 

ively, with different gains. Furthermore, to allow comparison of 

he same amount of data we have also averaged the identifications 

ith the classical methods at the same gain over 2, 8, and 12 mea- 

urements. 

The recorded signals had high SNR of approximately 70 dB at 

he maximum gain (gain 1) and 60 dB at the lowest gain (gain 

.332). The different methods were first compared under these 

igh-SNR conditions. Later, white Gaussian noise was added to the 

utput signals to study the effect of low-SNR conditions. 

Fig. 5 shows the identification results obtained at the differ- 

nt settings in the high SNR conditions. The results are given in 

erms of the log spectral distance (LSD) in the band [100 , 18 , 000]

z, falling strictly inside the passband of the measurement sys- 

em. Considering | H(k ) | as the measured magnitude response us- 

ng an FFT on T samples and | H Ref (k ) | as the reference magnitude

esponse obtained with the OPS, the LSD is defined in the band 

 = [ k 1 
F S 
T , k 2 

F S 
T ] , with k 1 and k 2 ∈ N , as follows: 

SD = 

√ √ √ √ 

1 

k 2 − k 1 + 1 

k 2 ∑ 

k = k 1 

[
10 log 10 

| H Ref (k ) | 2 
| H(k ) | 2 

]2 

. (30) 

In Fig. 5 , the bold black curve refers to the results of the PMV

ethod, and the thin curves refer to the results obtained by aver- 

ging the multiple measures with the classical methods. The plots 

n the first row refer to the MLS identification method, those in 

he second row refer to the ODD-PSEQ identification, and those 

n the third row refer to the exponential sweeps. In each plot, to- 

ether with the results of the PMV method, we present the results 

btained with the corresponding linear method averaged on the 

ame number of measurements and using the same gains of PMV 

dentification. In the first column, we have the results for PMV or- 

er 2. In this case, all the curves coincide, indicating that under the 

onsidered conditions, all methods are insensitive to second-order 

istortion. In fact, the curve of the LSD exhibits very similar be- 

avior to the third-order distortion in Fig. 4 . The second and third 

olumns provide the results for PMV orders 4 and 6, respectively. 
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Fig. 5. Log spectra distance in dB at different settings for the proposed method (thick black line) and for multiple averages at the same gains and on the same amount of 

data, with MLSs ((a), (b), (c)), ODD-PSEQs ((d), (e), (f)), ESs ((g), (h), (i)), for PMV order 2 ((a), (d), (g)), 4 ((b), (e), (h)), 6 ((c), (f), (i)). 

Fig. 6. Log spectra distance in dB at the different settings for the proposed method (thick black line) and for multiple averages at same gains and on the same amount of 

data for a 20 dB SNR, with MLSs ((a), (b), (c)), ODD-PSEQs ((d), (e), (f)), ESs ((g), (h), (i)), for PMV order 2 ((a), (d), (g)), 4 ((b), (e), (h)), 6 ((c), (f), (i)). 

8
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Fig. 7. Detailed plot of log spectra distance in dB at the different settings for the proposed method (thick black line) and for multiple averages at same gains and on the 

same amount of data for a 20 dB SNR, with MLSs ((a), (b), (c)), ODD-PSEQs ((d), (e), (f)), ESs ((g), (h), (i)), for PMV order 2 ((a), (d), (g)), 4 ((b), (e), (h)), 6 ((c), (f), (i)). 
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he PMV curves are very flat; only for the last settings, a slight in-

rement is observed, caused by higher-order distortions introduced 

y the power amplifier. PMV order 4 is sufficient for modeling the 

ower amplifier until setting 14, and only with settings 15 and 16 

 slight improvement is obtained using PMV order 6. In the second 

nd third columns, the PMV curves always show better or similar 

esults than the thin curves obtained with multiple averaged mea- 

urements. Only at the smallest setting in the measurements with 

xponential sweeps, the PVM of order 6 shows slightly worse re- 

ults than the thin curves. This behavior is due to the higher sensi- 

ivity of the exponential sweep measurement to noise, as discussed 

ater when the effect of noise is studied. 

In this experiment, the measurements with MLSs and ODD- 

SEQs were equally sensitive to third-order nonlinearities. In con- 

rast, even though they are also affected, exponential sweeps pro- 

ide a more robust measurement because the thin LSD curves at 

he highest settings are always lower than those of the other meth- 

ds. Nevertheless, the proposed PMV method can be used to ex- 

ract a more accurate estimate of the impulse response. 

To study the effect of noise, we added to all recorded signals 

apart from the reference OPS) a white Gaussian noise with zero 

ean and a certain variance, the same for all signals. The same 

oise variance was used for all test signals because this is the con- 

ition we have in a real measurement. The SNR clearly changes 

ith the gain used for a particular sequence. In the following, 

he SNR of the maximum gain sequence is used as a reference, 

nd the SNR for the lowest gain sequence (gain 0.332) is 10 dB 

ower. For each noise variance, we considered 200 different real- 

zations of the noise to allow ensemble measurement of the LSD. 

or an SNR of the maximum gain sequence equal to or higher than 

0 dB, we do not observe any difference from the curves in Fig. 5 .

n the contrary, for lower SNRs, some differences start to appear. 

igure 6 shows the ensemble average of the LSDs at the different 

ettings for a 20 dB SNR and Fig. 7 shows the same information 

ith an enlarged vertical scale. The plots are organized as in Fig. 5 .
9

he estimation with a PMV order K = 2 is robust towards the noise

nd the curves are practically identical to those of Fig. 5 . With PMV 

rder K = 4 and particularly with K = 6 we can observe the effect

f noise on the PMV measurement. At the highest settings and dis- 

ortions, the PMV measurement is still convenient with respect to 

he classical measurements. Anyway, the curve of LSD has raised 

nd at the lowest settings, it provides an LSD higher than the clas- 

ical methods. This observation is in agreement with the theory 

resented in Section 5 . The nonlinear terms are considered negligi- 

le when their effect is masked by the noise. The higher the noise, 

he higher the input power for which the nonlinearities are negli- 

ible. In Fig. 5 , at almost all settings condition (29) is satisfied, and

n Figs. 6 and 7 , this is not the case for the lowest settings, where

he PMV curves are higher than the thin curves. The method that 

s most affected by noise is based on the exponential sweep, which 

s also the most robust method against nonlinearities, as noted ear- 

ier. 

. Conclusion 

We presented a method for measuring the first-order Volterra 

ernel, that is, the impulse response for low signal amplitudes of 

onlinear systems. This approach is based on the use of classi- 

al linear identification methods, but the excitation is now applied 

ultiple times using different gains, and the impulse response is 

stimated with a polynomial interpolation of various measures. We 

erived the expression of the MSD of the impulse response sam- 

les for an additive Gaussian noise and used it to derive the opti- 

al values of the gains and optimal number of measurements. We 

howed that the optimal gains assume a reduced number of values 

hat depend on the order of nonlinearity of the system. Moreover, 

e discussed when the proposed method is advantageous com- 

ared to classical linear methods applied with low input powers 

o avoid nonlinearities. The proposed approach is often advanta- 

eous even for very mild nonlinear systems. The experimental re- 
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ults highlight the strengths of the proposed approach and its easy 

pplicability using linear instruments commonly used for impulse- 

esponse measurements. 
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ppendix A. Examples of linear operator L i 

An example of the linear operator L i in (10) is the cross- 

orrelation operator used for impulse response estimation with 

LSs and perfect periodic sequences (PPSs): 

 i [ y ] = 

< x (n ) y (n ) > L 

< x 2 (n ) > L 

, (A.1) 

here < · > L indicates the sum of L consecutive samples of the 

erm within angular brackets, and L is the MLS or PPS period. 

Another example is the deconvolution operator used for im- 

ulse response estimation with exponential sweeps, 

 i [ y ] = IFFT i [ ( FFT (y ) . ∗ FFT 

∗(x )) ./ ( FFT (x ) . ∗ FFT 

∗(x ) + δ) ] , (A.2) 

here IFFT i is the i th sample of the inverse fast Fourier trans- 

orm, FFT is the fast Fourier transform, . ∗ and ./ are the sample-by- 

ample product and division, respectively, and δ is a small positive 

onstant. 

For the measurement with OPS, the operator L i is the following, 

 i [ y ] = < z(n ) y (n ) > L (A.3) 

here z(n ) is the OPS sequence, and L is its period. 

ppendix B. MSD on multiple averaged low amplitude 

easurements 

Let us assume in (9) that we can neglect the constant term for 

 = 0 (e.g., because we have compensated it). Considering L i H 0 = 0

nd A m 

= A for all m , we obtain the following from (13) : 

 i (y m 

) = A L i H 1 (x ) + 

K ∑ 

k =2 

A 

k L i H k (x ) + L i (νm 

) , (B.1)

e perform 2 M measurements and estimate h 1 ,i = L i H 1 (x ) with 

 

 1 ,i = 

∑ 2 M 

m =1 L i (y m 

) 

2 MA 

= h 1 ,i + 

K ∑ 

k =2 

A 

k −1 L i H k (x ) + 

∑ 2 M 

m =1 L i (νm 

) 

2 MA 

. (B.2) 
10 
ote that the nonlinear terms in (B.2) reduce at least linearly with 

 . Thus, for sufficiently low A the nonlinear terms can be ne- 

lected, and 

 

 1 ,i = h 1 ,i + 

∑ 2 M 

m =1 L i (νm 

) 

2 MA 

. (B.3) 

n the hypothesis that the noise terms L i (νm 

) are uncorrelated 

ith each other, Gaussian distributed with zero mean and variance 
2 
ν , the MSD is 

SD Av = E[(h 1 ,i −̂ h 1 ,i ) 
2 ] = 

σ 2 
ν

2 MA 

2 
. (B.4) 
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